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High-Order Schemes and Entropy Condition
for Nonlinear Hyperbolic Systems of

Conservation Laws
By J. P. Vila*

Abstract. A systematic procedure for constructing explicit, quasi second-order approximations
to strictly hyperbolic systems of conservation laws is presented. These new schemes are
obtained by correcting first-order schemes. We prove that limit solutions satisfy the entropy
inequality. In the scalar case, we prove convergence to the unique entropy-satisfying solution
if the initial scheme is Total Variation Decreasing (i.e., TVD) and consistent with the entropy
condition. Finally, we slightly modify Harten's high-order schemes such that they obey the
previous conditions and thus converge towards the "entropy" solution.

1. Introduction. We present here a systematic procedure for constructing explicit,
quasi second-order approximations to hyperbolic systems of conservation laws.
Other authors have recently dealt with high-order schemes: Majda and Osher [10],
Harten [3], Le Roux and Quesseveur [9], Osher and Chakravarthy [11], but they have
no result for systems, except in the case of time-continuous approximations ([10],
[11])-

In Section 1 we recall basic useful features of numerical schemes for systems of
conservation laws, in particular consistency with the system of conservation laws
and its entropy condition (following ideas in Harten, Lax and Van-Leer [5]). In
Section 2 we give examples of numerical schemes verifying consistency and study
more precisely the scalar case with Total Variation Decreasing (TVD) schemes (see
also Harten [3] and Tadmor [12], [13]). Section 3 is devoted to the description of our
algorithm for constructing high-order schemes (see also Le Roux and Quesseveur [9])
and to the statement of our main result. We prove that limit solutions of our
schemes are weak entropy solutions of the system of conservation laws. We also give
more precise results concerning the scalar case and TVD high-order schemes. In
Section 4 we examine a slight modification of Harten's high-order TVD schemes
which enforces entropy inequalities for limit solutions. In the last section we present
numerical experiments.
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54 J. P. VILA

1. Generalities.
1.1. Systems of Conservation Laws. In this paper we consider numerical approxi-

mations to admissible weak solutions of the initial value problem (I.V.P.) for
hyperbolic systems of conservation laws,

Í «,,+ /(«),* = 0,       (x,i)eRxR+,
*  ' ' \«(x,0) = «„(*),        «er.
The system is assumed to be strictly hyperbolic (i.e., \t(u), the eigenvalues of Df(u),
are real and distinct),

M«)< ••• <*,(«)< ••• <Àm(u).
We consider systems of conservation laws that possess an entropy function r/(£/)
defined as follows:
(1.2.a) T) is a strictly convex function of u,

(1-2-b) Vu-fu = Fu,
where F is some function called the entropy flux.

Admissible weak solutions of (1.1) satisfy the following inequality in the distribu-
tion sense,

(1.3) ij(«),» + Hu),x < 0   Vr/ verifying (1.2).
In the scalar case (m = 1), the condition (1.3) guarantees uniqueness of the

solution to (1.1) in the range of admissible solutions. For m greater than 1, the
results are weaker (see, e.g., DiPerna [2]).

1.2. Numerical Schemes and Consistency. We consider finite difference approxima-
tion of (1.1) in conservation form: h is the space step, k the time step, r =
k/h; Uh(x,t) is the approximate solution: Uh(x,t)= U* for (x, r) e((; - \)h,
(j + %)h)X[kn, k(n + 1)); A + is the spatial difference operator: A+ay = a, + 1 — a,.

(1.4) U/+l = Uf - rA+(g(í//_í+1)...,C$Vi))
is the general form of a (p + ^)-point scheme in conservation form,  g is the
numerical flux of the scheme; we note

g{uJ%+l,...,u;+p-1) = gj.l/2.

Definition 1.1. The scheme (1.4) is consistent with (1.1) if
(1.5) g(t/,..., [/,..., U)=f(U)
and g is AT-Lipschitz,

(1.6) 3K>0;    \gj_l/2-f(Uj)\^K    £      lA^.J.
I—<<?-2)

Definition 1.2. The scheme (1.4) is consistent with the entropy condition (1.3) if:
For each rj, the entropy of (1.1), there exists some numerical entropy flux F

(function of p + q arguments) which satisfies
(i)F(t/,...,t/,...,L/) = F(t/);
(ii) F is A^-Lipschitz in the sense of (1.6);
(iii) t,(C// + 1) - 1,(1//) - rb+P;_l/2 < 0.
The following theorem, due to Lax (see [5]), shows the interest of these two

concepts.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 55

Theorem 1.1. A limit solution of a numerical scheme satisfying Definition 1.1
(consistency with the system) is a weak solution of the initial value problem (1.1).
Moreover, if the numerical scheme satisfies Definition 1.2 (consistency with the entropy
condition), then the limit solution is a weak admissible solution of the I.V.P. (1.1).

Remark. We call limit solution a limit in the sense of bounded L1^ convergence
(i.e., Uh converges towards U in L1,^ as h goes to zero and Uh is bounded in U°).

2. Numerical Schemes.
2.1. Godunov Type Schemes. In [5], Harten, Lax and Van-Leer define a class of

approximate Riemann solvers and their associated Godunov type schemes. They
give two properties that allow numerical schemes to verify Definitions 1.1 and 1.2
(we refer the reader to [5] for more details).

The canonical example of Godunov type schemes is the Godunov scheme: The
exact solution is taken as the Riemann solver; we can easily prove that it satisfies
Definition 1.1 and it is known to be consistent with the entropy condition when the
generic Riemann solution exists.

We can only prove such a result in the scalar case, in some particular cases (e.g.,
Euler isentropic equations) and for some particular entropy (in the last case, L°°
stability is also proved, see Le Roux [8]). The problems are similar for any other
Godunov type scheme.

The only known example in which we can prove that a scheme satisfies the exact
Definition 1.2 is the Lax-Friedrichs scheme (see Lax [7]). In [5], Harten, Lax and
Van-Leer present a one-intermediate-state Riemann solver,

I f x ^UL lf y < aL>

«(f. M¿."r) =  i ULR      iiaL<J<aR>

\ <
_ aRuR - aLuL      fR - fL

aR - aL aR- aL

They show consistency with the entropy condition under the following restriction:
aL and aR are lower and upper bounds, respectively, for the smallest and highest

signal velocity in the Riemann problem. For m greater than 1, there is no general
method for calculating such bounds (unless \uL — uR\ is small). For the particular
case of Euler isentropic equations, we present in [14] an algorithm that calculates
some aL and aR and hence we obtain consistency with entropy condition for the
physical choice of entropy ("mechanical energy").

2.2. Scalar Case and TVD Schemes. In the scalar case, a basic tool for inducing
convergence of a numerical scheme is the concept of TVD. We study it in detail and
show that any 3-point TVD scheme in conservation form is at most first-order
accurate. This shows that schemes with more than 3 points are required to achieve
second-order accuracy.

2.2.1. 3-point TVD schemes (in conservation form). Let
TV(c/) = L|A + i/y|.

j
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56 J. P. VILA

Consider

(2.1) u;+1 = u; ~ rà+g(ufa,u;).
Definition 2.1. The scheme (2.1) is TVD if and only if TV(U" + 1) < TV(U").
A 3-point scheme is characterized by its numerical viscosity

f7 2) œ       _ /(^)-2g(t//,y+1)+/(t//+1)

Hence, the scheme (2.1) can be written as

(2.3)     ufa1 = u; - j(f(Uj'+l) -/{Ufa)) + \*+(Qj-v*KUj-i)-
A 3-point scheme is also characterized by its incremental form:

(2.4.a)    Cfa/2 = rf\+8fi/2        {gfa/2 - g(U/, Ufa); // - f(U/))t
f"     — v"

Jj+1       07+1/2(2.4.b) Cfa r-
1/2     '       A+i//

(2.5) I//+> = I// + C/+'1/2A + Í// - C/_-ï/2A + Ufa.

The coefficients G+ 1/2 are related to the numerical viscosity by

(2-6) Cfa/2 = \i[Qfa/2 + r^)j.

We note that Cfa"/2, Q"+x/2, gJ+1/2 are functions of two arguments: Uf and Ufa.

Theorem 2.1. A 3-point TVD scheme is at most first-order accurate (in smooth
regions ).

Similar results can be found in Harten [3] and in Tadmor [13]; we therefore omit
the proof and just recall some interesting lemmas.

Lemma 2.1. Let a scheme be given in its incremental form (2.5). We assume that its
incremental coefficients are positive. We denote by (i) and (ii) the following conditions
on these coefficients:

(i)C/+i/2 + C/+1/2<iy/eZ,
(ü)C/+3/2-cy-+1/2<iy/ez.

// condition  (i)  is satisfied,  we have  TV(t/" + 1) < TV(U").   If condition  (ii)  is
satisfied, we have \\U" + l\\x < \\U"\\X.

Lemma 2.2. A 3-point scheme in conservation form is completely determined by its
numerical viscosity Q, or by its incremental coefficients C+, C~. The following
conditions are equivalent:

(i) (2.1) is a 3-point TVD scheme;
(¡i)l >Qj+i/2>r\*Jj/KUj\VjGZ;
(iii) C/+1/2 + Cfa/j < 1, Cfa/2 > 0, Cfa/2 > 0, V,' e Z
We now recall a recent result of Tadmor [12] on TVD schemes in the scalar case.
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NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 57

Theorem 2.2. A 3-point TVD scheme containing more numerical viscosity than the
Godunov scheme is consistent with the entropy condition under the Courant-Friedrichs-
Levy (CFL) condition 1/2, and it converges towards the unique entropy-satisfying
solution.

3. High-Order Schemes.
3.1. General Algorithm and Main Theorem. We present here an algorithm that

converts a 3-point first-order accurate scheme in conservation form to a 7-point
more accurate scheme in conservation form.

Suppose the initial 3-point scheme satisfies Definition 1.2 (consistency with the
entropy condition). Then we shall prove this algorithm to ensure that limit solutions
are weak entropy-satisfying solutions of the initial value problem.

We first compute Ufa1 from U" with the 3-point scheme, which can be consid-
ered as a predictor

(3.1) Ufa1 = U; - rA+gfa/2.
We then compute antidiffusion vectors anfa/2 = (a)+i/2> • • •, alfa)2,..., afa*2),

(3.2) afa/2 = j(f{Ufa) - 2gfa/2 + /([//))

-yö//+1/2-(/(i//+1)-/([//)).

Dfj"+1/2 is some approximation of Df(U) (the Jacobian of f(U)) near U" and Ufa.
If we compute Ufa1 by

(3.3) Ufa1 = Ufa1 - à+aj+ù,
we obtain the well-known Lax-Wendroff second-order accurate scheme which ad-
mits unstable and entropy-violating solutions. A correction of antidiffusion vectors
is necessary to achieve stability and good entropy production. We thus use a
correction based on the Boris and Book FCT algorithm [1] (see also Le Roux and
Quesseveur [9]), V/ g {1,2,..., m}

loJ=Sffi¿i+Üfa,
\d'fa/2 = aWJo.mhuW, \a'fa/2\, \c'^Üfa, \a'A+Üfa^.

C is some positive constant and a a chosen real number such that 0 < a < 1. The
final solution at time step n + 1 is computed as follows:

(3-5) Ufa1 = Ufa1 - A+afa/2.
We can briefly describe our scheme as a two-step algorithm: a prediction step (3.1)
and an antidiffusion-correction step (3.2), (3.4), (3.5).

We now state our main results; proofs will be given in Subsection 3.2.

Theorem 3.1. Let a 2-step scheme be defined by

(3-6) Ufa1 = U; - rA+gfa/2,
(3.7) Ufa1 = Ufa1 - faafa/2.
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58 J. P. VILA

Assume that
(i) the predictor scheme (3.6) is consistent with the conservation law (1.1) and its

entropy condition (in the sense of Definitions 1.1 and 1.2);
(ii) the "antidiffusion coefficients" ä,_1/2 satisfy

(3.8) |fl/-i/al< «(*)   Y/' e Z ""''* lim e(A) = °-
h—»0

77ie«, z/i/ze approximate solution Uh(x, t) (computed by (3.6)—(3.7)) « bounded in TV
and L™, Uh converges boundedly towards some u in L1,^ and u is a weak entropy-satis-
fying solution of the I.V.P. (1.1).

Remark 3.1. In the scalar case we can take Dffa/2 = A+f(U")/A+ U" and

'Kfiu/V(3.9) a"+y+1/2 Qj*l/2-'' a+u; A+í//,

which exhibits the numerical viscosity coefficients.
We also claim that our algorithm preserves the "TVDness" of the 3-point

schemes. It converts a 3-point TVD scheme to a 7-point second-order accurate TVD
scheme. This will be proved by the following theorem.

Theorem 3.2. m = 1 (scalar case). Suppose the predictor scheme is TVD and
satisfies Definitions 1.1 and 1.2 (consistency with the system and its entropy condition).
Then the approximate solution Uh, calculated by our 2-step algorithm converges
towards the unique admissible solution u of the IVP (1.1).

In particular, if the numerical viscosity Q of the predictor scheme satisfies

(3.10) e?+i/2<e,+i/2<i/2
(where Q(/+1/2 is the numerical viscosity of the Godunov scheme), the hypotheses of
Theorem 3.1 are satisfied and the final scheme is second-order accurate in the regions
where the solution is smooth.

3.2. Proof of Main Results.
3.2.1. A general form of correction and its properties. To clarify the proof of

Theorem 3.1, it is useful to examine some properties of a general algorithm
(including (3.1), (3.2), (3.4), (3.5)).

Definition 3.1. Consider the following algorithm:

(3.11a) Ufa1 = Ufa1 - A+äfa/2
with Ufa1 given by some scheme Ufa\h, k, Ufa, Uf, Ufa).

(i) The algorithm is said to be a M.C. (monotone correction) if and only if

(3.11b)     V/ e {1,2.....m)    âfa/2 = p!fa/2A+Üfa = Sfa/2A+Üfa
with

(3.11c) f#I/2>o, s/;''1/2>o, 8y';V2 + /4+"i/2<i> s/;V2 +4-1/2 <i;
(ii) an M.C. correction is said to be MCC if and only if there exists a function

e(h), positive, such that limA_()e(/i) = 0 and

(3.12) \5'fa/2\<e(h).
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Proposition 3.1. The correction algorithm (3.2), (3.4), (3.5) is MC,, with e(h) =
Cha.

Proof, ûj+i/2 is defined by the following identity

afa/2 = o'max(o,mm{cha, \afa/2\, \o'L+Ûfa, WA + Û>^.
So we get

-either

sgnA+c7'_1 = sgn A + i7/ = sgnA+^'+1 = a',

afa/2 = a'min{CA°, |flj+1/2|, \\*+Ufa |, \\t+Vfa |},
thus |aj+1/2| < C/i", âj+1/2 = 8A + Üj'_1 = ¡iA + UJ+1, withO < \i < § and thenO < 8
< 5, so that inequalities (3.11b, c) are satisfied;

-or äj+i/2 = 0, in which case (3.11b, c) again holds.   D
We now present the main property of M.C. schemes.

Proposition 3.2. An M.C. correction does not increase the TV and L°° norms:

(3.13) ¡u'-^L <F,'"+IIL,
(3.14) TV(U'-"+1) ^TV(t7''"+1).

Proof of Proposition 3.2. Substituting for aj±l/2 from (3.11b) in (3.11a), we obtain
the following incremental form for Uj-"+1:

(3.15) Ufa + l = Üfa+1 - dJfa/2A+Üfafa + fi'fa}2KÜfa+1.
Taking relation (3.11c) into account, we note that the incremental coefficients are
positive and satisfy hypotheses (i) and (ii) of Lemma 2.1 with

\J-l°) S-l/2       °/+l/2< S+l/2       My-1/2-

The results now follow immediately.    D

3.2.2. Proof of Theorem 3.1.
• Convergence towards a weak solution. This part of the proof is straightforward,

since the scheme is in conservation form, and is therefore omitted.
• Entropy condition. This is the crucial part of the proof.
We use the approximate entropy inequality associated with the scheme (3.1),

(3.17) v{Üfal) - i,(l//) + rA+Ffa/2 < 0.
We denote by Fh(x, t) the function

Fh(x, t) = Ffa/2    for (x.r) E (( / - 1)A, jh) X [kn, k(n + 1))

and by <j> some positive test function in Q°,

<*>*,(*, t) = V     ~V    for (x,t) E (( j - \)h,(j + \)h) X [ft*. k(n + 1)),
±n _  in

<t>hx(x,t) =   J   fa'1    for (x,t) z((j - \)h, jh] x[kn, k(n + \)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



60 i. P. VILA

We multiply (3.17) by h(f>" and sum over n and j,

E h^Ufa1) - viU/))^ + E kA + {Ffa/2)y
"•j "J

^^(r'l-iir))*;-
In the sequel we denote by RS (resp. LS) the right (resp. left) side of inequality
(3.18). Integrating LS by parts with respect to each increment, the left-hand side of
(3.18) becomes

- E MirO^nr^ -E "^^nr^.
which turns out to be equal to

- f [        dxdt{1,(Uh(x,t))4t,(x,t) + Fh(x,t)4fijx,t)}.
J  •'RXR+

The convergence of LS towards the quantity

-ffdxdt{i,(u(x, t))<t>tl(x,t) + F(x,t)<t>Jx,t)}
follows immediately from the Lebesgue dominated convergence theorem and the
A^-Lipschitz continuity of Fh (see Definition 1.2).

It remains to prove that limA_0RS < 0. We shall use a consequence of the
convexity of 17:

If t, is a c€1 convex function in Rm, then

(3.19) V(X,y)e(Rm)2,    V(X)-V(Y)^7}'(X)(X-Y).

Thus,

RS < E $¡hi({Ufax) -(Ufa1 - Ufa1) s RSX.
»J

By (3.11a),
RSi= -Eh;tj'(^"+1)-a+^++i/2-

Integrating by parts, we obtain

RS! = E hA^viufa1)) ■ afa/2 = E H;+1(A+V(c//+1)) • âfa/2
n.j n,j

+ Lh{A^)V'(ufa1)-5fa/2.
"J

We denote by RS2 and RS3 respectively the first and second sum in the right-hand
side of the previous equality, thus RSX = RS2 + RS3.

We examine first RS2. Since <¡> has compact support, we can assume that
<p(x, /) = 0 for |;| > T. Furthermore, since Uh is bounded in L00, we have

|A+t,'(í//+1) I < I u"(l/*(-, (» + l)k)) ¡JUfa1 - Ufa11 < K^+Ufa11.
We can thus write

RS2^K1e(h)Zh4>fa\A+Ufa1\^^Kle(h)\\<t>\\x  E   kTV(U"+1).
n,j nk^T
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Since Uh(-, t) is bounded in TV, and h/k is bounded, there exists a constant K2
such that
(3.20) RS2< K2(<t>,T,h/k)e(h).
We next analyze RS3. We have

RS3<^(A)E^^h'(i//+1)hRS4.
"J

By introducing <¡>hx and i\'(Uh), the step functions associated with A+4>"/7i and
i)'(Ufax), respectively, we get

RSA = je(h)ff dxdt\^Jx,t)\\r¡'(Uh(x,t))\.
By the Lebesgue dominated convergence theorem there exists a positive constant C
such that
(3.21) RS4 < Ce(h).
Combining relations (3.20) and (3.21), we obtain limA _ 0 RS = 0.   D

3.2.3. Proof of Theorem 3.2. The first part (convergence) is a straightforward
corollary of Theorem 3.1. Using BV estimates together with L°° estimates (the initial
condition is supposed to have a compact support), we obtain L1 estimates. Com-
pactness results of L'loc n BV in Z/loc permit us to construct a subsequence Uh
converging towards the unique admissible solution u.

• Second-order accuracy. We shall discuss two complementary points of view:
-Characterizing the "smooth regions" in which our scheme reduces to the

Lax-Wendroff scheme.
- Proving directly second-order accuracy by the use of standard Taylor expansion

methods.
We first have to characterize the "smooth regions". We use boundedness of

derivatives and we limit ourselves to regions far away from critical points of u. We
shall take (R.C.) as a regularity criterion near x =j0h at time nk:

(i)       A+ U" retains a constant sign for j e [j0 - p, j0 + p], p e N,

P>2;
(R.C.)   ((Ü)      \A + Ufah\^CR    Vje[j0-p + l,jo+p-l]\

I \A + U/\    \A+Uj"_1\\      5
(iU)        "H   .A     Tin    I'    IA     Tin,    }>   8       Y/' G  [ Jo ~ P + 2» Jo + P ~ 2J •\A+Ufa\' \a+u;\ j" 8

We make the following comments about (R.C): (i) expresses the monotonicity, (ii)
the boundedness of the first spatial derivative; criterion (iii) is similar to the
boundedness of the second spatial derivative. From (3.9) we have

|2\
1

"+1/2 -   2     öj"+1/2       r'
A+//
A + q A + i//.

We shall take

â"fa/2 = amax{o,min{iCÄA°, |a;í¿a|. \oA + Ufax\ hoA+Ufa,1})
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and prove that a~nfa/2 = a"fa/2; therefore, the scheme is second-order accurate near
Xj, since it has the same numerical flux as the Lax-Wendroff scheme.

For simplicity we assume A+U" > 0; then anfa/2 is positive, and from (3.10) we
have

l/ji+l     I  <  1A     TI» <   If   L
\"j+l/2\   *>   4a+Uj    ^   4*~Rn-

By using the increment form of the predictor scheme, we get

A + ̂ +V = (1 - ô;+3/2)A + t//+1 + I¡Qfa/2 - r[j^\\A+Ufa

1 / A+/," \

Wesetx = A+///A+i//.
By using (R.C.) (iii) and (3.10), we are led to

A

^AV>([^ + \(QJ+l/2 + rX))A+u;).

^{afa/2 - \faUfa1) < \Qfa/2 - ± - jrX - r'XJ

< 1 2    2 1 / M2       n

and therefore |a7n+i/2| < iA+l^1- Similarly, we obtain \a]+l/2\ < iA+ tZ/V, hence
n+l        _  „n+\

n - "j-l/
A direct proof of second-order accuracy is possible. A sufficient condition is

aj + \/2 ~ aj-\/2-

that

g fa/2 + rafa/2 = ffa/2 + rafa/2 + 0(h2)
(gj+1/2 + raj+i/2 is me numerical flux of the Lax-Wendroff scheme). We shall use
an equivalent condition,

äfa1/2 = afa/2 + 0(h2).
In a smooth region away from critical points of u, the following estimates are valid:

o;+5/2 = o;+i/2 + ö1(ä),  Qfa/2 = Qfa/2 + o2(h),  A+u; = o3(h),

J+n2   =x + 04(h),   A+Ufa = A+U;(\ + 05(h)),a+uj+2

A + Ufa = A + U;(\ + 06(h)).
It follows that

(3.22)   A + c7"+V = A+i//(l + 07(A)),    ^A+U/fa = A + Ufa\ + Og(h)).
If ây+i/2 * aj+i¿2> either â,+i/2 - kà+Uj-i, or â>+1/?_= 2-A+t/ + 1. Suppose first

that fly+i/j = 2^+Uj-i (it follows that a(aJ+l/2 - \A+Uj_l) > 0; then

°K+i/2 - â,+1/2) = —p-(e,+1/2 - r2x2 -1 + o8(/i))

|o3(A)(-|-r2x2 + 08(A)),
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NONLINEAR HYPERBOLIC SYSTEMS OF CONSERVATION LAWS 63

which contradicts o(aJ+l/2 - ^A+U_l) > 0, unless

QJ + l/2-r2X2-l = 09(h).

Therefore, aj+l/2 - dJ+l/2 = 0(h2). The proof is similar if ä,+1/2 = \A + Uj+l. The
case fl,+1/2 = 0 never occurs if aj+1/2 * aJ+1/2, since, away from critical points of
«,sgnA+c/_i = sgnA+L7.+1 by (3.22).   D

3.3. Some Remarks About Second-Order Accuracy. In [3] Harten presents his
second-order accurate TVD schemes as first-order TVD schemes applied to a
modified equation. We shall use similar heuristic arguments to describe our algo-
rithm.

The 3-point predictor TVD scheme is

Ufa1 = U; - rà+gfa/2.
Denote

«■">-£(&-äH'W.
Consider the following problem (P.l):

{Find u at t = (n + l)k such that
u,+f(u),x = At(ß(u,r)u,x)x,

u(x,nk) = U".

We can say that U" + l is a second-order accurate TVD approximation to (P.l) (see,
e.g., [6]).

U" + l is defined by Ufa1 = Ufa1 - A+ä;_+11/2. Consider the problem (P.2):

ÍFind natí = (w + l)A: such that
u,= -At{ß(u,r)ux)x,

u(x,nk)= U" + 1.

We can say that U" + 1 is a second-order accurate TVD approximation to (P.2). So
U"+l is a second-order accurate TVD approximation to (P.l), (P.2), and (P.l), (P.2)
is a 2-step formulation for:

(Find u at t = (n + \)k such that

«,,+/(«),* = 0,
u(x,nk) = U".

4. Entropy Condition for Harten High-Order Schemes. In this section we extend
the ideas developed in the previous parts to Harten's high-order schemes [3]. In the
scalar case, we slightly modify them, keeping their "TVDness" and their second-order
accuracy in smooth regions. We then prove that the resulting schemes converge
towards the unique entropy-satisfying solution (under reasonable conditions).

4.1. A Modified Algorithm. Let us consider a 3-point TVD scheme with the
following numerical viscosity:

(4.1) o;+i/2 = ö("/+,/2)
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in which

r   t   ,/„        ifA+f7"#0,
(4.2) vfa/2=l     Ku;

\rf\Uj") ifA+l/ = 0.
Q is some Lipschitz function of x which satisfies

(4.3) |x|<|ß(x)|<l    forO<|x|<ju<l.
From Lemma 2.2, the resulting scheme is TVD under the following CFL restriction:

(4.4) l"y+i/al<M-
We now construct the corresponding 5-point scheme by applying the 3-point

scheme to a modified flux fM,

(4.5a) f» = f{Uj)+±aj,       0j = a(Uj.x,UJtUJ+x).
Then

A+a
(4.5b) vj+l/2 = vJ+x/2 + yJ+1/2,       vJ+l/2 = YJf/

The numerical flux of the 5-point scheme is fjiXn,

(4.5c)   ffa/2 = \[f(Uj) + f(UJ+l)\ + Yr["j + *J+i - Q(pjÏ1/2)1+Uj].
The coefficient aj is given by the following algorithm

!Oj = a max[0,min(|ä>+1/2|, äj_1/2a, Cha)],

Vi/2=î[ô("y+i/2)-("v+1/2)2]A+^,
a = sgn(à7+1/2).

C is a positive constant, a a fixed real number such that 0 < a < 1.

Lemma 4.1. The 5-point scheme (4.5) is TVD under the same CFL condition as the
3-point original scheme,

(4.6) max|^+1/2| </i.
J

It is second-order accurate in smooth regions.

Proof of Lemma 4.1. Compared to Harten's scheme, we have simply added the
term Ch" in (4.5d). The new scheme is obviously as accurate as Harten's scheme,
since in smooth regions äj+l/2 is 0(h) (first spatial derivative of u is bounded), thus
Cha is greater than |57+1/2| and \aj_-L/2\, and therefore a, is the same as gj for the
original Harten's scheme; therefore, the scheme is second-order accurate. It remains
to prove that the scheme is TVD. Since it consists of the 3-point scheme applied to a
modified flux, it is obviously TVD under the following CFL condition:

max|vfil/2\ < 1.

Suppose lfy+x/21 < Mi then from (4.5d).

\vjii/i\ =l"y+i/2 + Y/+1/2I «Sky+i/al + 2-|ô(",+i/2) -(^+i/2)2|

<l"y+i/2l + ¿I1 -("y+i/2)2| < I-
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Let us consider now a simplified form of (4.5),

Q("fii/i) = Ö(",+i/2) +1V1/2I
We get as in [3] the following scheme:

~'M

(4.7a) Ufa1 = U; - rAJfa/2,

(4.7b) //+i/2=//+i/2+ 7a,+i/2

(/+1/2 's trie numerical flux of the 3-point scheme),

(4.7c) aJ + 1/2 = amax{o,min[c/ia, \äJ+1/2\, aäj_l/2, aâ,+1/2] ).

This scheme has some resemblance with the schemes developed in Section 3. This
particular form enables us to apply this construction to any 3-point TVD scheme
(the numerical viscosity ôy+1/2 IS not necessarily a function of vJ+l/2). The resulting
scheme has the same properties as the previous scheme (i.e., it is TVD and
second-order accurate).

4.2. Entropy Condition for the Modified Scheme.

Theorem 4.1. Suppose the 3-point TVD scheme satisfies Definition 1.2 (i.e.,
consistency with the entropy condition). Then the limit solutions of the 5-point schemes
(4.5) and (4.7) are entropy-satisfying solutions of the initial value problem.

Proof. We shall use Theorem 3.2.
The scheme (4.7) has the following form: Let

(4.8) Ufa1 « u; - Aj;_l/2.
Then

(4.9) Ufa1 = Ufa1 - A+afa/2,
and from (4.7c), |a, + 1/2| < Cha.

We get the result by a direct application of Theorem 3.2.
The scheme (4.5) also has a similar form: From (4.5c),

#1/2 = \[f(Uj) +/(t/,+i)] + ¿h■ + Vi - QtäwKUj]

= W + yM + aJ+* + [ö(",+i/2) - Q('ZiA)]à+Uj}'
// +1/2 's trie numerical flux of the 3-point scheme.

Let

«/ + 1/2 -*{«,+ aJ+l + [ô(",+ 1/2) - 0(^1/2)]A + c/};

then we can write the scheme as (4.8), (4.9).
From (4.10) and (4.5d),

K + 1/2I < i(a* + Ch" + \Q('j+i/i) - C(r/ii/a)|A+^},
lô("/+1/2) - ö("y+ 1/2)1 < KIY/+1/2I since Q is K-Lipschitz, therefore

l«/ + i/2l < Ch" + K\yj+l/2\H+Uj < Ch" + K\aJ+l - Qj\
< (C + 2KC)h".

A direct application of Theorem 3.2 gives the result.   D
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We shall now use the results of Tadmor [12] to make the results of Theorem 4.1
more precise.

Theorem 4.2. Suppose the numerical viscosity Q(x) satisfies

ô(x) = |^+£    f°r\x\<2E>       0<a<§.

\\x\ for \x\ < 2e,

Then the scheme (4.5) converges towards the unique entropy-satisfying solution under a
sufficiently small CFL condition.

Suppose the numerical viscosity of the 3-point scheme satisfies

\vy+l/21 < 67 +1/2 < öy+1/2 <   2>

where Qj+1/2 is the numerical viscosity of the Godunov scheme. Then the resulting
5-point scheme converges towards the unique entropy-satisfying solution under the CFL
condition

max|^+1/2| < \.
j

Moreover, if the 3-point scheme is the Godunov scheme, the result holds with

max|j'y+1/2| < 1.
i

Proof. Part A. From Corollary 5.1 of Tadmor [12], the 3-point scheme satisfies an
approximate entropy inequality for sufficiently small CFL number. The result then
follows immediately.

Part B. Here again, we make a direct application of Theorem 5.1 of Tadmor: For
the Godunov scheme we can use CFL = 1, since we have an approximate entropy
inequality under the same CFL restriction.   D

5. Numerical Experiments. We compute solutions to the Euler 1-dimensional
isentropic equations of compressible gas dynamics (with p(p) = kp2), using the
schemes developed in the previous sections.

We first solve these equations with the following initial condition (a Riemann
problem):

37 5       \
\24 + ^r°   if*<0'

u(x,0)={{ W      '
'¿,0) ifx>0.

The exact solution consists of a 1-rarefaction wave (containing a sonic point) and a
shock wave of speed a = §, separated by a constant state Í7* = (H, if)- (See Figure
1 for a view in the (x, i)-plane.

We present results at time T = 4.8, obtained respectively with
1 - the Lax-Friedrichs modified scheme (with Q = §) - (Figure 2).
2 - the Godunov scheme - (Figure 3).
3 - the L.F. modified scheme, plus the correction algorithm (3.4), (3.5)-(Figure 4).
4 - the Godunov scheme plus a M.C. correction algorithm- (Figure 5).
5 - the Godunov scheme plus the correction algorithm (3.4), (3.5)-(Figure 6).
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2tf\>

24       2\fl

A    - 2  - J/, P~

U    -   ( il      25

Figure 1
£xac? solution in the (x, t)-plane.

RESULTS FOR     T= . 480E +0 1

H0 5 0 6 0

SPATIAL COORDINATE

Figure 2
Lax-Friedrichs modified scheme

DT = .08       Current number = 0.5
/exact solution       ßcomputed solution
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RESULTS FOR   T=.U80E + 01

5 0 6 0

SPATIAL COORDINATE

Figure 3
Godunov scheme

DT = .16       Current number = 1
/exact solution       /computed solution

In practice, for higher-order schemes, we always omit the correction term Ch". It
is only efficient in shock regions, where we already have dJ + x/2 = 0.

In case 4, we use the following M.C. algorithm, which is more restrictive than the
simplest component-by-component ones ((3.4)—(3.5)):

• «,+i/2 's given by (3.2) with Df"+x/2 = Df(uE(uJ_l,uj)) (uK is the stationary
value of the Riemann problem used in the Godunov scheme).

• As in (3.4), we define for / = 1,2,

(5.1)

(i)

(i¡)

V= sgnA + Ufa,
-.l.n
'j+l/2 o-'max{0,min(aa, \a'fa/2\, {o'A + Ufa,, {a'A+ Ufa)),

Fi1"      = 0"j+l/2       u'
Tjl.n fil.n
"j+l/2       "j+l/2

'f a)+ 1/2 -àj+ 1/2 = 0,

in the other cases;

(5.2) Ufa1 = Ufa1 à+aj. 1/2-
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RESULTS FOR   T =.U80E + 01

5 U

SPATIAL COORDINATE

Figure 4
L.F. modified scheme +(3.4)-(3.5) correction scheme

Idem Figure 2

We note that (see Figure 3) the Godunov scheme does not perfectly resolve the
rarefaction wave at a sonic point ("dog-leg" phenomenon). As a consequence, we are
obliged to use a stricter flux limiter than (3.4), if we want to avoid amplifying this
phenomenon by using a higher-order scheme (Figures 5-6).

Figure 4 exhibits the efficiency of our algorithm even for the Lax-Friedrichs
modified scheme; the resulting scheme is less accurate than the Godunov scheme
plus (5.1)-(5.2), but it is very easy to implement and at low costs. These results show
the efficiency of the method compared to a field-by-field flux limiter, which requires
diagonalization of Df as in Harten [3]. In Figure 7 we finally present results of
2-dimensional numerical simulation of water waves generated by a landslide in a
lake. The basic equations are shallow-water equations (which are similar to Euler
isentropic equations). We use the Godunov scheme with the correction algorithm of
case 4, and dimensional splitting with the Strang algorithm. Total reflection condi-
tions are used at the boundaries.
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RESULTS FOR      T = .480E + 0i

MO 5 0 6 0

SPATIAL  COORDINATE

Figure 5
Godunov scheme +(M.C.) correction scheme (5.1)—(5.2)

Idem Figure 3
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RESULTS FOR    T=.480E+01

4 0 5 0 6 0
SPATIAL COORDINATE

Figure 6
Godunov scheme plus correction algorithm (3.4)-(3.5)

DT = .16       Current number = 1
/ exact solution       $   momentum computed solution       / density

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 J. P. VILA

SUBMERSION 2-D
T=3,2.s

Boundary

SUBMERSION 2-D
T=17,4 s

CONTOUR PLOT CONTOUR PLOT

SUBMERSION 2-D
T-7,85

SUBMERSION 2-D
T=22 s

CONTOUR PLOT CONTOUR PLOT

SUBMERSION 2-D
T-12,6  s

SUBMERSION 2-D
T-26,4 s

CONTOUR PLOT CONTOUR PLOT

Figure 7
Time evolution of water wave generated by landslide, with reflections at boundaries.

Grid calculation: 30 x 40
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