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Abstract

We consider the construction of semi-implicit linear multistep methods that can be applied 

to time-dependent PDEs where the separation of scales in additive form, typically used in 

implicit-explicit (IMEX) methods, is not possible. As shown in Boscarino et  al. (J. Sci. 

Comput. 68: 975–1001, 2016) for Runge-Kutta methods, these semi-implicit techniques 

give a great flexibility, and allow, in many cases, the construction of simple linearly 

implicit schemes with no need of iterative solvers. In this work, we develop a general set-

ting for the construction of high order semi-implicit linear multistep methods and analyze 

their stability properties for a prototype linear advection-diffusion equation and in the set-

ting of strong stability preserving (SSP) methods. Our findings are demonstrated on several 

examples, including nonlinear reaction-diffusion and convection-diffusion problems.

Keywords Semi-implicit methods · Implicit-explicit methods · Multistep methods · Strong 

stability preserving · High order accuracy

Mathematics Subject Classification 65L06 · 65M06 · 65M12

1 Introduction

In many applications we are dealing with dynamical systems arising from the spatial dis-

cretization (or more generally from the discretization in the phase space) of time depend-

ent partial differential equations. For problems where the various terms have different time 

scales that can be easily separated the resulting system of ordinary differential equations 

takes the form
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with � > 0 a small parameter emphasizing the stiffness in the system. We refer to problem 

( A ) as additive type problem. In ( A ) the solution u(t) is a vector in ℝm which initially satis-

fies the condition u(0) = u
0
 . Typically, the term f contains some nonlinearity or complex-

ity that we do not want to integrate implicitly, whereas the term g∕� is stiff and requires 

an implicit integration. For systems of the type ( A ) implicit-explicit (IMEX) schemes are 

nowadays a very popular choice [5, 6, 13, 27].

However, in some cases, this separation is not possible and more in general we have a 

dynamical system of the form

where the right hand side has a stiff dependence only on the last argument. We refer to 

problem ( G ) as generalized partitioned form. Similarly to ( A ) for problem ( G ) it is highly 

desirable to construct a numerical method based on evaluating implicitly only the stiff 

component u(t)∕� by keeping explicit the non-stiff one in order to reduce the computational 

complexity of a fully implicit solver. Following [9] we shall call them semi-implicit meth-

ods, since they can be used in a more general context than IMEX methods.

A simple first order method which realizes the above idea reads as follows:

There are many circumstances in which this semi-implicit approach leads to considerable 

advantages, for example if the function H is linear with respect to the stiff component the 

numerical solution can be computed solving only linear systems of equations [8].

The extension of this simple idea to higher order, however, is not straightforward. 

Here, following the approach recently introduced in [9] for Runge-Kutta methods we 

construct high order semi-implicit discretization based on the use of linear multistep 

methods. To this aim, by setting v(t) = u(t)∕� in ( G ) we obtain the equivalent formula-

tion for a partitioned system

where v(0) = u
0
∕� . Thus, the formal equivalence among ( G ) and ( P ) allows us to adopt 

IMEX techniques for partitioned systems to more general cases [9, 10]. We refer to [9] for 

a detailed discussion and results on the equivalence between the various forms of systems 

( A ), ( G ) and ( P ), which are usually treated with IMEX methods. For IMEX methods based 

on Runge-Kutta schemes we refer to [5, 13] as general references. A large literature in this 

direction has been devoted to the construction of IMEX Runge-Kutta schemes satisfying 

the asymptotic-preserving (AP) property in the case of hyperbolic problems [10, 12, 24, 

27] and for kinetic equations [11, 14, 16, 17]. For the case of IMEX linear multistep meth-

ods, we refer to [1, 2, 4, 6, 18, 20, 21, 30, 31] for results on the construction and properties 

(A)
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of the schemes for various types of PDEs and to [3, 15] for the construction of schemes 

satisfying the AP property.

The rest of the manuscript is organized as follows. In the next section, we introduce 

the IMEX multistep methods for partitioned systems and derive the corresponding semi-

implicit formulation for problem ( G ). Next in Sect.  3 we detail the derivation of the 

schemes and analyze their stability properties for a prototype linear advection-diffusion 

equation and in the setting of strong stability preserving (SSP) methods. Section 4 is then 

devoted to present several numerical applications that confirm the validity of the present 

approach. The manuscript ends with some conclusions in Sect. 5.

2  Semi‑implicit Multistep Methods

In this section, we first introduce the general class of IMEX linear multistep schemes for 

partitioned systems together with some preliminary definitions. Next, we recall some gen-

eral results on the order conditions and, subsequently, we apply the schemes to the system 

in the general form ( G ) to derive the corresponding semi-implicit formulation.

2.1  IMEX Linear Multistep Methods for Partitioned Systems

Let us consider a general partitioned system in the form

where y(t) ∈ ℝ
p and z(t) ∈ ℝ

q , p, q ⩾ 1 and y(0) = y
0
 , z(0) = z

0
.

For the partitioned system in the form (2) we consider schemes based on solving the 

first component with an explicit linear multistep method and the second with an implicit 

one

where b
−1

≠ 0 . Implicit methods for which bj = 0 , j = 0,⋯ , s − 1 are referred to as back-

ward differentiation formula (BDF). Another important class is represented by Adams 

methods, for which ã
0
= −1 , a

0
= −1 , ãj = 0 , aj = 0 , j = 1,⋯ , s − 1.

Remark 1 Classical systems in additive form ( A ), i.e.,

(2)

⎧
⎪
⎨
⎪
⎩

dy(t)

dt
=F(t, y(t), z(t)),

dz(t)

dt
=G(t, y(t), z(t)),

(3)

⎧
⎪⎪⎨⎪⎪⎩

yn+1
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s−1�
j=0

ãjy
n−j

+ Δt

s−1�
j=0

b̃jF
�
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, yn−j
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�
,

zn+1
= −

s−1�
j=0

ajz
n−j

+ Δt

s−1�
j=−1

bjG
�
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, yn−j
, zn−j

�
,

(4)
du(t)
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= f (t, u(t)) +

1

�

g(t, u(t))



704 Communications on Applied Mathematics and Computation (2021) 3:701–718

1 3

with initial data u(0) = u
0
 can be also written in partitioned form by defining 

u(t) = y(t) + z(t) , F(t, y(t), z(t)) = f (t, u(t)) , G(t, y(t), z(t)) = g(t, u(t))∕� and rewriting

for any initial data such that y(0) + z(0) = u
0
.

2.2  Semi-implicit Methods in Predictor-Corrector Form

Let us now apply the previous general formulation to the case of system ( G ) in the partitioned 

form ( P ), i.e.,

where in order to simplify notations, we remove the dependence on the parameter � in the 

second argument, keeping in mind that this dependence is stiff.

We obtain the semi-implicit multistep solver

where initially we assume vn−j
= un−j , j = 0,⋯ , s − 1 . Let us point out that even if 

the scheme doubles the number of unknown the number of evaluations of the function 

H(t, u(t), v(t)) is not doubled since both schemes use the same time levels. In particular, 

if for notation simplicity we assume the system to be autonomous and the function H to 

depend linearly from the second argument

where the function K ∶ ℝ
m
→ ℝ

m and A(u(t)) is an invertible m × m matrix, the resulting 

scheme can be solved without any need of an iterative solver. In fact, the second equation 

in (7) can be rewritten as

or equivalently in explicit form

(5)

⎧
⎪
⎨
⎪
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⎨
⎪
⎩
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(7)

⎧
⎪⎪⎨⎪⎪⎩
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s−1�
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ãju
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�
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�
,
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s−1�
j=0

ajv
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+ Δt
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�
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�
,

(8)H(u(t), v(t)) = K(u(t)) + A(u(t))v(t),

vn+1 = −

s−1
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ajv
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s−1
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bjH
(
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)

+ Δtb−1
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K
(
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+ A(un+1)vn+1
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since un+1 is computed from the first equation in (7).

For semi-implicit Runge-Kutta methods (see [9]) in the case of autonomous systems 

it is possible to construct the scheme in such a way that the two solutions provided by 

the system at time n + 1 coincide. Otherwise for scheme (7) at time level n + 1 we will 

have two distinct numerical solutions un+1 and vn+1 approximations of the true solution 

u(tn+1) of problem ( G ). Note, however, that both these solutions are used by the scheme 

to advance in time.

To define a unique solution, it is natural to consider the scheme (7) as a predictor-

corrector multistep method for the non-stiff component, where the explicit scheme is 

used to predict un+1 which is then used by the implicit solver as a corrector for vn+1.

As an example, reverting back to the notations used initially, we can write the semi-

implicit scheme for ( G ) as

The above scheme uniquely identifies the numerical solution at time un+1 . In the following 

section we will discuss the general order conditions for (3) and present different types of 

semi-implicit multistep methods of various order.

Remark 2 As a consequence of the above predictor-corrector formulation for the non-stiff 

component, if the implicit solver has order p it is typically enough to consider an explicit 

solver of order p − 1 . We emphasize that this predictor-corrector interpretation holds true 

only for the non-stiff component, since the stiff one is treated implicitly by the resulting 

scheme.

3  Order Conditions, Stability and Derivation of the Schemes

In this section, we provide the details of the schemes that will be used in our numerical 

results. First, we recall the order condition and then some general definitions concerning 

the stability properties. The stability properties for IMEX multistep methods are usually 

discussed in the case of additive systems for simple one-dimensional convection-diffu-

sion problems [6, 18, 20, 21]. We also refer to the recent stability analysis in [3] for the 

case of two dimensional partitioned systems.

vn+1 =
(

I − b−1ΔtA(un+1)
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(

−
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3.1  Order Conditions

For a partitioned system in the form (3) an order p scheme is obtained if both schemes are of 

order p, namely the following conditions are satisfied:

We recall that an s-step implicit multistep scheme can achieve order s + 1 , while an s-step 

explicit method has only order at most s . We refer to [6, 18, 20, 23] for more details on the 

order conditions for IMEX multistep schemes in the case of additive systems. Here, we 

remark that the order conditions for the partitioned scheme are simpler than in the case of 

additive schemes where there is a coupling between the explicit and the implicit solver. In 

addition, in the case of system (9) only p − 1 order of accuracy is required by the explicit 

predictor solver to guarantee that an order p implicit corrector step yields the desired order 

p accuracy.

3.2  Stability Properties

The stability properties are usually analyzed for simple one-dimensional linear problems of 

the form

where �,� ∈ ℝ and i is the imaginary unit. These kinds of problems typically are origi-

nated by the space discretization of convection diffusion equations, hyperbolic balance 

laws or linear kinetic models [6, 15, 18, 20, 23]. For example, in the case of one-dimen-

sional linear convection diffusion problems

discretized by standard central differences of the mesh Δx we have (11) with

(10)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 +

s−1�
j=0

ãj = 0, 1 +

s−1�
j=0

aj = 0,

1 −

s−1�
j=1

jãj =

s−1�
j=0

b̃j, 1 −

s−1�
j=1

jaj =

s−1�
j=−1

bj,

1

2
+

s−1�
j=1

j2

2
ãj = −

s−1�
j=1

jb̃j,
1

2
+

s−1�
j=1

j2

2
aj = b−1 −

s−1�
j=1

jbj,

⋮ ⋮

1

p!
+

s−1�
j=1

(−j)p

p!
ãj

1

p!
+

s−1�
j=1

(−j)p

p!
aj

=

s−1�
j=1

(−j)p−1

(p − 1)!
b̃j, =

b−1

(p − 1)!
+

s−1�
j=1

(−j)p−1

(p − 1)!
bj.

(11)
du(t)

dt

= i�u(t) + �u(t),

�u

�t
= a

�u

�x
+ D

�
2
u

�x2
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where k is the frequency of the corresponding Fourier mode.

In partitioned form system (11) will correspond to system

Note that, since the direct application of an IMEX multistep method to a system in the 

additive form (11) is not equivalent to the application of the combination of an explicit and 

an implicit multistep scheme to the partitioned form (12) even the resulting stability analy-

sis will differ.

Applying the semi-implicit scheme (7)–(12) yields

where un−j
= vn−j , j = 0,⋯ , s − 1 . By direct substitution of the first equation into the sec-

ond we obtain the explicit form

This leads to the characteristic equation

where zR = �Δt , zI = i�Δt and

Stability corresponds to the requirement that all roots have modulus less than or equal one 

and that all multiple roots have modulus less than one.

� =
a

Δx
sin(kΔx), � =

2D

(Δx)2
(cos(kΔx) − 1),

(12)

⎧
⎪
⎨
⎪
⎩

du(t)

dt
=i�u(t) + �v(t),

dv(t)

dt
=i�u(t) + �v(t).
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
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�
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�
1
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�
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+ Δt

s−1
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.
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3.3  Derivation of the Schemes

In the sequel, to simplify the notation, we restrict to autonomous systems (this is always 

possible simply by augmenting the dimension of the system by one), i.e., the function 

H does not depend explicitly on time. Let us first point out that the simplest first-order 

method (1) is common to multistep methods and Runge-Kutta methods and in the case 

of system (6) reads

with vn
= u

n , which corresponds to a simple identity as explicit predictor for the non-stiff 

component and backward Euler as implicit corrector for the stiff one.

Second-order methods The general form of second order schemes for (6) reads as 

follows:

with u
n
= v

n , u
n−1

= v
n−1 and the solver for the non-stiff component is represented by 

the forward Euler. Popular choices for the implicit solver are obtained for � = 1∕2 and 

� = 0 which corresponds to Crank-Nicholson, the resulting scheme will be referred to as 

FE-CN2, and � = 1 and � = 0 corresponding to the second order BDF scheme, we will 

refer to this scheme as FE-BDF2. In the case of � = 1∕2 the value of � = 1∕8 yields the 

best damping properties [6], the resulting scheme requires the additional storage of level 

n − 1 and is referred to as FE-MCN2.

Third-order methods and higher The most natural way to obtain third-order methods, 

as a combination of an explicit and an implicit multistep method, is to use a two-step 

Adams-Bashforth method with a two-step Adams-Moulton method. This same strategy 

actually can be used to obtain methods of a higher order. We will refer to this general 

class of schemes as AB-AMp, where p is the order of the resulting scheme. Except for 

AB-AM2, which is the same as FE-CN2, these schemes in general suffer from poor sta-

bility properties when � ≪ 0 (see Fig. 1). Replacing the Adams-Moulton methods with 

BDF schemes with the same order yields a class of schemes with better stability proper-

ties referred to as AB-BDFp, where p is the order of the resulting scheme. In this way, 

AB-BDF2 is the same as FE-BDF2.

We report in Fig. 2 the stability contours for various semi-implicit multistep methods 

up to order four.

Strong stability preserving methods Often the time integration of PDEs requires some 

monotonicity properties to be satisfied. An important class of methods in this direction 

is represented by the so-called strong stability preserving (SSP) methods. These meth-

ods were designed specifically for solving the ODEs coming from a semi-discrete, spa-

tial discretization of time dependent partial differential equations, especially hyperbolic 

PDEs and convection-diffusion problems [19]. In summary, these schemes are stable for 

a certain (semi) norm

u
n+1

=u
n
,

v
n+1

=v
n
+ ΔtH

(

u
n+1

, v
n+1

)

u
n+1 = u

n + ΔtH(un
, v

n),

v
n+1 =

1

2� + 1

(

4�u
n − (2� − 1)un−1

)

+
Δt

2� + 1

(

(2� + �)H
(

u
n+1

, v
n+1

)

+2(1 − � − �)H(un
, v

n) + �H
(

u
n−1

, v
n−1

))
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under a suitable time step restriction Δt ⩽ Δt
0
 . Typically these schemes are applied to the 

convective part and Δt
0
 refers to the stability constraint, usually referred to as CFL condi-

tion, which links Δt
0
= CΔt

FE
 , where C is the CFL coefficient and Δt

FE
 the stability con-

straint of the SSP property in the forward Euler scheme.

(14)‖u
n+1‖ ⩽ ‖u

n‖
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Fig. 1  Contours of the stability region in the case of problem (11) for third-order and fourth-order SSP 

methods. The use of the SSP property permits to improve the stability behavior for � ≪ 0
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In [19] it is shown that there are no implicit multistep SSP schemes of order higher 

than 1. Therefore, we can combine optimal explicit multistep methods satisfying the 

SSP property (14) as a predictor for the non-stiff component with implicit methods to 

improve the overall stability region in our semi-implicit schemes.
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Fig. 2  Contours of the stability region in the case of problem (11) for some semi-implicit multistep meth-

ods of order one to four. Increasing the order of accuracy the stability constraints on Δt become more severe 

for � ≪ 0
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The explicit multistep SSP schemes are of the general form

The optimal second order two steps explicit SSP method ( C = 1∕2 ) corresponds to 

the choices � = (4∕5, 1∕5)T and � = (8∕5,−2∕5)T , whereas the optimal third order 

explicit four steps scheme ( C = 1∕3 ) is obtained for � = (16∕27, 0, 0, 11∕27)T and 

� = (16∕9, 0, 0, 4∕9)T (see [19]). The corresponding schemes are denoted as SSP-AM3, 

SSP-BDF3 and SSP-BDF4. If one increases the number of steps, then SSP methods can 

be found to have larger SSP regions. Because there is no significant increase in the com-

putational cost when the number of steps is increased, if storage is not a consideration, it 

may be advantageous to use an SSP multi-step methods with more steps and larger stabil-

ity domain. For example, the optimal second order four steps SSP method ( C = 2∕3 ) is 

obtained with � = (8∕9, 0, 0, 1∕9)T and � = (4∕3, 0, 0, 0)T . The corresponding third order 

semi-implicit schemes are denoted as SSP2-AM3 and SSP2-BDF3.

We report in Fig. 1, the stability contours of AB-AM3 and SSP-AM3. The importance 

of the optimal SSP property in the explicit scheme is evident and improves dramatically 

the stability properties of the resulting method. For large values of |�| the semi-implicit 

method based on AM3 becomes stable under a reasonable CFL condition of ΔtzI ⩽ 1∕2 . 

Similarly the use of SSP2 predictor increases this stability constraint to approximatively 

ΔtzI ⩽ 3∕5 . We also give in the same figure the optimal third- and fourth-order methods 

constructed using the BDF formulae. Again the use of SSP2 predictor slightly improves the 

stability properties for large |�|.

4  Numerical Results

In what follows we investigate semi-implicit schemes for non-linear problems with stiff 

terms, where the stiffness can be solved efficiently by linear solvers.

We will discuss non-linear diffusion-reaction and convective-diffusion problems, fol-

lowing different examples extracted from [9, 22].

4.1  Test 1: Order of Convergence for Reaction-Diffusion System

Following the validation example of [9] we consider the non-autonomous diffusion-reac-

tion system, where � = (�1,�2) ∶ ℝ+ × [0, 2π)2 → ℝ
2 is solution of the following system

and the time dependent factors are �(t) = 2e
t∕2 and f (t) = −2e

−t∕2 . Accounting periodic 

boundary conditions, the initial data is extracted from the exact solution

(15)un+1
=

s−1
∑

j=0

(

�ju
n−j

+ Δt�jH
(

un−j
, vn−j

))

, �j ⩾ 0.

(16)

⎧
⎪
⎨
⎪
⎩

�t�1 = Δ�1 − �(t)�2

1
+

9

2
�1 + �2 + f (t),

�t�2 = Δ�2 +
7

2
�2,

(17)

{

�1(t, x, y) = e
−t∕2(1 + cos(x)),

�2(t, x, y) = e
−t∕2

cos(2x),
(x, y) ∈ [0, 2π)2.
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To apply the semi-implicit multistep scheme (7) we reformulate system (16) introducing 

u = (u1, u2) and v = (v1, v2) , and the operator

We initialize the multistep scheme evaluating the exact solution for the first steps.

For the spatial discretization of the diffusion operator we apply a sixth order central 

finite difference, on a uniform grid for the periodic domain [0, 2π)2 with Δx = Δy . For 

u(t, x, y) evaluated on a point (tn, xi, yj) we consider the operators

and similarly Dyy for the y-direction, taking into account periodic boundary conditions.

To estimate the order of accuracy in time we proceed refining the space step and time 

steps with stability conditions

where Δx = Δy and � to be chosen according to the stability property of the scheme. Thus 

we refine simultaneously the space step and the time step and we monitor the �
∞

 norm of 

the error decay for the numerical solution �ij(t) at final time T = 2

where �
(k)

ij
(T) is the numerical solution evaluated on the uniform grid and �(xi, yj, tn) is the 

exact solution evaluated at (xi, yj, T).

In Fig. 3 we report the error decay �
∞

 for different schemes and different choice of the 

CFL parameter. In the left plot, we fix to � = 0.25 and compare with the results obtained 

in [9] where � = 0.5 . We observe similar accuracy for schemes of the same order but for a 

smaller CFL condition, on the other hand, we show that higher order is achievable. In the 

right plot, we have modified the CFL parameter according to the order of the scheme: we 

keep � = 0.25 for fourth order schemes, for third order is increased to � = 0.3 , for second 

H(t, u, v) =

⎛
⎜
⎜
⎝

Δv1 − �(t)u1v1 +
9

2
v1 + v2 + f (t)

Δv2 +
7

2
v2

⎞
⎟
⎟
⎠

.

(Dxxun)ij =
2un

i+3j
− 27un

i+2j
+ 270un

i+1j
− 240un

ij
+ 270un

i−1j
− 27un

i−2j
+ 2un

i−3j

180Δx2
,

Δt = �Δx,

(18)�∞(�
(k)) = max

i,j
‖�

(k)

ij
(T) − �(xi, yj, T)‖,

Fig. 3  Test 1: we report the error decay computed according to (18) for the solution of (16) � = (�1,�2) . 

Left plot reports the �
∞

 error, for � = 0.25 . Right plot depicts different choice of the CFL is adapted: for 

second order � = 0.5 , for third order � = 0.3 , and for fourth order � = 0.25
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order we use � = 0.5 . According to the stability results we observe that for lower-order 

schemes the CFL condition can be relaxed.

4.2  Test 2: Non-linear Reaction Diffusion System

We consider the Gray-Scott model, as studied in [22, 26, 32],

where � = (�1,�2) ∶ ℝ+ × [−1, 1)2 → ℝ
2 with periodic boundary conditions, and initial 

data

and zero otherwise on the squared domain [−1, 1]2 . The diffusion and reaction parameters 

are

Initial data and parameters are selected in order to match the test proposed in [22] and 

inspired from [26]. In order to apply the semi-implicit multi-step scheme (7) we reformu-

late system (19) introducing u = (u1, u2) and v = (v1, v2) , and the operator

where now we treat explicitly the diffusion terms, since D1, D2 are negligible with respect 

to the reaction coefficients.

Thus the linear reaction terms are taken implicitly, whereas the non-linear term is taken 

implicit only in the �
1
 component. We employ multistep scheme SSP3-BDF4 for time integra-

tion and fourth order central difference for the space discretization, introducing the operators

and similarly Dyy for the y-direction, taking into account periodic boundary conditions. Ini-

tialization of the multistep scheme is performed via Matlab solver ode45.

Figure  4 reports the evolution of the component �2(t, x, y) for different times. Starting 

from a symmetric concentration Gray-Scott model produces spot multiplication, resembling 

cell division process. The computational domain is discretized with Nx = Ny = 200 points in 

space, final time is T = 1 500 with uniform step Δt = Δx∕2.

We additionally show in Fig. 5 the marginal distributions of the second component com-

puted as

(19)

{

�
t
�1 = �1Δ�1 − �1�

2

2
+ �(1 − �1),

�
t
�2 = �2Δ�2 + �1�

2

2
− (� + �)�2,

(20)

⎧
⎪
⎨
⎪
⎩

�1(0, x, y) = 1 − 2�2(0, x, y),

�2(0, x, y) =
1

4
sin

2(4πx) sin
2(4πy),

(x, y) ∈ [−1∕4, 1∕4]2,

�1 = 8 × 10−5, �2 = 4 × 10−5, � = 0.024, � = 0.06.

H(t, u, v) =

(

D1Δu1 − v1u
2

2
+ �(1 − v1)

D2Δu2 + v1u
2

2
− (� + �)v2

)

,

(21)(Dxxun)ij =
−un

i+2j
+ 16un

i+1j
− 30un

ij
+ 16un

i−1j
− un

i−2j

12Δx2
,

�̄2(t, x) = ∫
10

−10

�2(t, x, y) dy.
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compared with a reference with Nx = Ny = 400 points.

4.3  Test 3: Nonlinear Convection-Diffusion

We finally consider the nonlinear convection diffusion model defined on the full plan 

x ∈ ℝ
2 as follows:

Fig. 4  Test 2: (Gray-Scott model) Solution of the reaction-diffusion system (19) in the component �
2
 at 

different time frames obtained with scheme SSP3-BDF4 on the square � = [−1, 1]2 with uniform space-

time discretization with Δx = 0.01 and Δt = Δx . Parameters of the model are �
1
= 8 × 10−5 , �

2
= 4 × 10−5 , 

� = 0.024 and � = 0.06

Fig. 5  Test 2: (Gray-Scott model) Marginal distributions of the reaction-diffusion system (19) of the �
2
 

component computed with SSP3-BDF4 computed with Nx = Ny = 200 points in each direction
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where E = (1, 1)T and � = 0.5 . The initial data is extracted from the exact solution given by

In order to solve numerically (22) we introduce the operator

where we treat the convection and diffusion terms implicitly, on the computational domain 

[−10, 10] up to final time T = 1 . We choose the uniform space step Δx = Δy = 0.1 and 

Δt = Δx∕2 . For time integration we compare different schemes FE-CN2, SSP2-AM3, and 

SSP-BDF4. For space we use the 4th order central difference for diffusion operator, as in 

(21), and for the convective term we account the operator

(22)

�
�

t
� + (E + �∇ log(�)) ⋅ ∇� = �Δ�,

�0(0, x) = e−‖x‖2∕2,

�(t, x) =
1

√
4�t + 1

e
−

‖x−Et‖2

8�t+2 .

H(t, u, v) = −(E + �∇ log(u)) ⋅ ∇v + �Δv,

(Dxun)ij =
−ui+2j + 8ui+1j − 8ui−1j + ui−2j

12Δx
,

Fig. 6  Test 3: (non-linear convection diffusion). Numerical solution of model (22) on the domain [−10, 10] 

up to final time T = 1 . Space step Δx = Δy = 0.1 and Δt = Δx∕2 . Time integration is performed with LM 

scheme SSP3-BDF4 and 4th order central difference for convective and diffusion operator
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and equivalently Dy for the y-direction. In Fig. 6 we report the numerical solution at differ-

ent times from t = 0 to t = 1.

In Fig. 7 we present the marginal distribution of the solution �(x, y) . We observe that 

increasing order of the semi-implicit multistep has a better coherence with the profile of 

the reference solution.

5  Conclusions

We derived high order semi-implicit schemes based on linear multistep methods. The 

schemes have been constructed following the approach recently introduced in [9] for 

Runge-Kutta methods. The resulting time discretizations have a predictor-corrector struc-

ture and, compared with Runge-Kutta methods, do not require additional order condi-

tions so that they can easily reach high order accuracy. Numerical tests for schemes up to 

fourth-order accuracy have been presented in the case of nonlinear reaction-diffusion and 

convection-diffusion problems. From a practical point of view it has been observed that 

order three and four schemes represent the best compromise between accuracy and stability 

(and, therefore, computational cost) while higher order schemes have more severe stability 

restrictions. For convection dominated problems, the use of multistep predictor methods 

that satisfy the SSP property permits to increase the stability range.
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Fig. 7  Test 3: (nonlinear 

convection-diffusion). Marginal 

distribution of system (22). The 

numerical solution is com-

puted using different schemes: 

FE-CN2, SSP2-AM3, SSP-BDF4 

with Nx = Ny = 100 points and 

Δt = �Δx with � = 0.5 . We 

observe that increasing higher 

order method is able to capture 

better profile of the reference 

solution
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