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SUMMARY

In this paper, a feedback linearization-based controller with a high-order sliding mode observer running parallel
is applied to a quadrotor unmanned aerial vehicle. The high-order sliding mode observer works as an observer
and estimator of the effect of the external disturbances such as wind and noise. The whole observer–estimator–
control law constitutes an original approach to the vehicle regulation with minimal number of sensors.
Performance issues of the controller–observer are illustrated in a simulation study that takes into account
parameter uncertainties and external disturbances. Copyright # 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation

Small unmanned aerial vehicle (UAV) quadrotors are designed to easily move in different
environments while following specific tasks and providing a good performance as well as a great
autonomy. Affected by aerodynamic forces, the quadrotor dynamics is nonlinear, multivariable, and
is subject to parameter uncertainties and external disturbances. In turn, controlling of the quadrotor
is required: (i) to meet the stability, robustness and desired dynamic properties; (ii) to be able to
handle nonlinearity; and (iii) to be adaptive to changing parameters and environmental disturbances.

Main difficulties of the motion control are thus parametric uncertainties, unmodelled
dynamics, and external disturbances [1], which result in further complication in the design of
controllers for actual systems [2, 3]. Various advanced control methods such as feedback
linearization method [4] have been developed to meet increasing demands on the performance;
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however, they required full information on the state that may limit their practical utility. Indeed,
even if all the state measurements are possible they are typically corrupted by noise. Moreover,
the increased number of sensors makes the overall system more complex in implementation and
expensive in realization. In order to decrease the number of sensors in [5] the use of only a
rotational motion sensors is proposed in order to control tilt angles and evaluate translational
motion. However, aerodynamic forces still cause difficulties to overcome. Thus motivated, an
observer-based feedback design becomes an attractive approach to robotic control.

The use of state observers appears to be useful not only in system monitoring and
regulation but also in detecting as well as identifying failures in dynamic systems. Almost all
observer designs are based on the mathematical model of the plant, is not linearized and
consequently have uncertain inputs. On the other hand, the relative degree of the model with
respect to the known outputs heavily depend on the accuracy of the mathematical model of the
plant [6].

So the main motivations of the paper are: first, the use of observer to avoid the third
derivatives of the measured states needed for the feedback linearization controller of the
quadrotor, second, when the quadrotor is subjected to external disturbances, it would
be suitable to compensate them through an observer-based controller, third, the observer
should be robust with respect to external perturbations (wind and noise) and finally,
observers-based identification perturbation allows to reduce the number of sensors required
for control design.

1.2. Methodology

Sliding mode observers (see, for example, the corresponding chapters in the textbooks [7, 8], and
the recent tutorials [9–11]) are widely used due to their attractive features: (a) insensitivity (more
than robustness!) with respect to unknown inputs; (b) possibilities to use the values of the
equivalent output injection for the unknown inputs identification; and (c) finite-time
convergence to exact values of the state vectors.

In [12–14] a robust exact arbitrary order differentiator was designed ensuring finite-time
convergence to the values of the corresponding derivatives, and applications of higher-order
sliding algorithms were considered.

Modifying the second-order sliding-mode supertwisting algorithm, Davila et al. [15, 16]
proposed an observer for mechanical systems with only position measurements ensuring best
possible approximation for the velocities and uncertainties.

The relative degree of the UAV quadrotors model w.r.t. unknown inputs is 2 or 4 and the
standard necessary and sufficient conditions for observation of the systems with unknown
inputs without differentiation are not fulfilled [17]. To solve the problem of observation for
UAV quadrotors the higher-order sliding-mode observers based on higher-order sliding-mode
differentiation [14] will be used.

1.3. Main contribution

In the paper the models of UAV quadrotor and feedback linearization-based controller are
suggested. To realize this with a high-order sliding-mode observer running parallel is applied to
a quadrotor UAV. The high-order sliding-mode observer works as an observer and estimator of
the effect of the external disturbances such as wind and noise. To realize the control algorithm
and identify the uncertainties a fourth-order sliding-mode observer based on third-order
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differentiator robust exact differentiator [14] is suggested. This observer ensures the
identification of the wind and noise effect. The whole observer–estimator–control law
constitutes an original approach to the vehicle regulation with minimal number of sensors.
Performance issues of the controller–observer are illustrated in a simulation study that takes
into account parameter uncertainties and external disturbances.

1.4. Paper structure

The rest of the paper is outlined as follows. UAV dynamics is deduced in Section 2. The inner
outer controller is developed in Section 3. The observer design is presented in Section 4.
Simulation results are given in Section 5. Section 6 yields some conclusions.

2. QUADROTOR DYNAMICS

The quadrotor is composed of four rotors. Two diagonal motors (1 and 3) are running in the
same direction whereas the others (2 and 4) in the other direction to eliminate the anti-torque.
On varying the rotor speeds altogether with the same quantity the lift forces will change
affecting in this case the altitude z of the system and enabling vertical take-off/on landing. Yaw
angle c is obtained by speeding up/slowing down the diagonal motors depending on the desired
direction. Roll angle f axe allows the quadrotor to move towards y direction. Pitch angle y axe
allows the quadrotor to move towards x direction. The rotor is the primary source of control
and propulsion for the UAV. The Euler angle orientation to the flow provides the forces and
moments to control the altitude and position of the system. The absolute position is described
by three coordinates ðx0; y0; z0Þ; and its attitude by Euler angles ðc; y;fÞ; under the conditions
ð�p4c5pÞ for yaw, ð�p=25y5p=2Þ for pitch, and ð�p=25f5p=2Þ for roll (Figure 1).

Figure 1. The quadrotor helicopter.
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The derivatives with respect to time of the angles ðc; y;fÞ can be expressed in the form

colð ’c; ’y; ’fÞ ¼

0 SfSey CfSey

0 Cf �Sf

1 SfTy CfTy

2
664

3
775o ð1Þ

with S: ¼ sinð�Þ; C: ¼ cosð�Þ; T : ¼ tanð�Þ; Se: ¼ secð�Þ and o ¼ colðp; q; rÞ is the angular velocity
expressed with respect to a body reference frame.

Similarly, the time derivative of the position ðx0; y0; z0Þ is given by

colð ’x0; ’y0; ’z0Þ ¼ V0 ð2Þ

where V0 ¼ colðu0; v0;w0Þ is the absolute velocity of the UAV expressed with respect to an earth
fixed inertial reference frame.

Equations (1) and (2) are the kinematic equations. The dynamic equations are now expressed.
Using Newton’s laws about the centre of mass one obtains the dynamic equations for the
miniature four rotors helicopter

m ’V0 ¼
X

Fext ð3Þ

J ’o ¼ �o� Joþ
X

Text ð4Þ

where the symbol � denotes the usual vector product, m is the mass, J is the inertia matrix
which is given by

J ¼ diagðIx; Iy; IzÞ

Due to the symmetry of the geometric form of the quadrotor the coupling inertia is
assumed to be zero. The notations

P
Fext;

P
Text stand for the vector of external forces and that

of external torques, respectively. They contain the helicopter’s weight, the aerodynamic forces
vector, the thrust and the torque developed by the four rotors. It is straightforward to compute
that

X
Fext ¼

Ax � ðCfCcSyþ SfScÞu1

Ay � ðCfSySc� CcSfÞu1

Az þmg� ðCyCfÞu1

2
664

3
775;

X
Text ¼

Ap þ u2d

Aq þ u3d

Ar þ u4

2
664

3
775 ð5Þ

* ½Ax;Ay;Az�
T and ½Ap;Aq;Ar�

T are the resulting aerodynamic forces and moments acting on
the UAV and are computed from the aerodynamic coefficients Ci as Ai ¼

1
2
rairCiW

2

[18, 19] (rair is the air density, W is the velocity of the UAV with respect to the air) [20]. (Ci

depends on several parameters like the angle between airspeed and the body fixed reference
system, the aerodynamic and geometric form of the wing);

* g is the gravity constant ðg ¼ 9:81 m=s2Þ;
* d is the distance from the centre of mass to the rotors;
* u1 ¼ ðF1 þ F2 þ F3 þ F4Þ is the resulting thrust of the four rotors;
* u2 ¼ dðF4 � F2Þ is the difference of thrust between the left rotor and the right rotor;
* u3 ¼ dðF3 � F1Þ is the difference of thrust between the front rotor and the back rotor;
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* u4 ¼ CðF1 � F2 þ F3 � F4Þ is the difference of torque between the two clockwise turning
rotors and the two counter-clockwise turning rotors;

* C is the force to moment scaling factor.

Assuming that the electric motors are velocity controlled, then ðu1; u2; u3; u4Þmay be viewed as
control inputs. The dynamic model of the quadrotor has been developed in many experimental
works but in different manners, like Bouabdallah et al. [21]. With reference to [22], the real
control signals ðu1; u2; u3; u4Þ have been replaced by ð%u1; %u2; %u3; %u4Þ to avoid singularity in Lie
transformation matrices when using exact linearization. In that case u1 has been delayed by
double integrator. The other control signals will remain unchanged

u1 ¼ z; ’z ¼ x; ’x ¼ %u1

u2 ¼ %u2

u3 ¼ %u3

u4 ¼ %u4 ð6Þ

The obtained extended system is described by state-space equations of the form

’x ¼ %f ðxÞ þ
X4
i¼1

%giðxÞ%ui

y ¼ hðxÞ ð7Þ

where x ¼ ½x0; y0; z0;c; y;f; u0; v0;w0; z; x; p; q; r�T; y ¼ ½x0; y0; z0;c�T and

%f ¼

u0

v0

w0

qSfSeyþ rCfSey

qCf� rSf

pþ qSfTyþ rCfTy

Ax

m
�

1

m
ðCfCcSyþ SfScÞz

Ay

m
�

1

m
ðCfSySc� CcSfÞz

Az

m
þ g�

1

m
ðCyCfÞz

x

0

Iy � Iz

Ix
qrþ

Ap

Ix

Iz � Ix

Iy
prþ

Aq

Iy

Ix � Iy

Iz
pqþ

Ar

Iz

2
66666666666666666666666666666666666666666666664

3
77777777777777777777777777777777777777777777775

;

%g1ðxÞ ¼ ½0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0�
T

%g2ðxÞ ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;
d

Ix
0; 0

� �T

%g3ðxÞ ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0;
d

Iy
; 0

� �T

%g4ðxÞ ¼ 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0
1

Iz

� �T
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The purpose of the next section is to design a feedback controller for the four-rotor miniature
helicopter which exhibits robustness properties against neglected effects and parametric
uncertainties.

3. FEEDBACK LINEARIZATION CONTROLLER

The feedback linearization technique is based on inner and outer loops of the controller. The
input–output linearization-based inner loop uses the full-state feedback to globally linearize the
nonlinear dynamics of selected controlled outputs. Each of the output channels is differentiated
sufficiently many times until a control input component appears in the resulting equation. Using
the Lie derivative, input–output linearization will transform the nonlinear system into a linear
and non-interacting system in the Brunovsky form. The outer controller adopts a classical
polynomial control law for the new input variable of the resulting linear system.

3.1. Structure of the inner controller

The input–output decoupling problem is solvable for the nonlinear system (7) by means of static
feedback. The vector relative degree fr1; r2; r3; r4g is given by r1 ¼ r2 ¼ r3 ¼ 4 and r4 ¼ 2 and we
have

colð y
ðr1Þ
1 ; yðr2Þ2 ; yðr3Þ3 ; yðr4Þ4 Þ ¼ bðxÞ þ DðxÞ%u ð8Þ

where bðxÞ and DðxÞ are computed as follows:

bðxÞ ¼

Lr1
f h1ðxÞ

..

.

Lr4
f h4ðxÞ

2
66664

3
77775; DðxÞ ¼

Lg1L
r1�1
f h1ðxÞ � � � Lg4L

r1�1
f h1ðxÞ

..

. . .
. ..

.

Lg1L
r4�1
f h4ðxÞ � � � Lg4L

r4�1
f h4ðxÞ

2
66664

3
77775 ð9Þ

where

Lf hðxÞ ¼
Xn
i¼1

@h

@xi
fiðxÞ and Lk

f hðxÞ ¼ Lf ðL
k�1
f hðxÞÞ

The matrix DðxÞ is non-singular everywhere in the region z=0; �p=25f5p=2; �p=25y5p=2:
Therefore, the input–output decoupling problem is solvable for system (7) by means of a control
law of the form

%u ¼ D�1ðxÞð�bðxÞ þ vÞ ð10Þ

Moreover, since system (7) has dimension n ¼ 14; the condition r1 þ r2 þ r3 þ r4 ¼ n is
fulfilled and therefore, the system can be transformed via static feedback into a system which, in
suitable coordinates, is fully linear and controllable. However, due to the presence of external
disturbances the input–output linearization is not exact and the inner closed-loop system in that
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case is composed into a linear part and a nonlinear disturbance part

y
ð4Þ
1

y
ð4Þ
2

y
ð4Þ
3

y
ð2Þ
4

0
BBBBBB@

1
CCCCCCA
¼

d4x0

dt4

d4y0

dt4

d4z0

dt4

d2c
dt2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

¼

v1

v2

v3

v4

0
BBBBB@

1
CCCCCA
þ

x1ðx; tÞ

x2ðx; tÞ

x3ðx; tÞ

x4ðx; tÞ

0
BBBBB@

1
CCCCCA

ð11Þ

with

x1ðx; tÞ

x2ðx; tÞ

x3ðx; tÞ

x4ðx; tÞ

0
BBBBB@

1
CCCCCA
¼

.Ax

m
þ a14Ap þ a15Aq

.Ay

m
þ a24Ap þ a25Aq

.Az

m
þ a34Ap þ a35Aq

a45Aq þ a46Ar

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

where

a14 ¼ ðzSfCcSy� zCfScÞ=ðmIxÞ; a15 ¼ �ðzCcCyÞ=ðmIyÞ

a24 ¼ ðzSfScSyþ zCfCcÞ=ðmIxÞ; a25 ¼ �ðzScCyÞ=ðmIyÞ

a34 ¼ ðzSfCyÞ=ðmIxÞ; a35 ¼ ðzSyÞðmIyÞ

a45 ¼Sf=ðIyCyÞ; a46 ¼ Cf=ðIzCyÞ

v1; v2; v3; v4; represent the new input control signals. The controller compares the primary state
ðx0; y0; z0;cÞ and their successive derivatives to the desired state trajectory.

3.2. Structure of the outer controller

While adapting a classical polynomial control law for the new input variable v with disturbance
compensation, one obtains the following equations:

v1 ¼x
ð4Þ
d � l3

:::
e11 � l2.e11 � l1 ’e11 � l0e11 � z

f
41

v2 ¼ y
ð4Þ
d � l3

:::
e12 � l2.e12 � l1’e12 � l0e12 � z

f
42

v3 ¼ z
ð4Þ
d � l3

:::
e13 � l2.e13 � l1’e13 � l0e13 � z

f
43

v4 ¼ .cd � l5’e5 � l4e5 � z
f
6 ð12Þ

where xd ; yd ; zd ;cd represent the desired output signals, corresponding to x0; y0; z0;c;
respectively, the error signals e11 ¼ ½x0 � x0d �; e12 ¼ ½y0 � y0d �; e13 ¼ ½z0 � z0d �; and
e5 ¼ ½c� cd � and the coefficients li; i ¼ 0; . . . ; 5 are to be specified in the sequel. The variables
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z
f
41; z

f
42; z

f
43; and z

f
6 are the filtered signals of z41; z42; z43; and z6 given in the observer section. The

closed-loop system (11), (12) can be rewritten in the form

’e ¼Aeþ *xðx; tÞ

*x ¼ x� z f ¼ ½x1; x2; x3; x4�
T � ½z

f
41; z

f
42; z

f
43; z

f
6 �

T

where e represents the tracking error between the desired value and the actual one
given by e ¼ ½e1; e2; e3; e4;e5; e6�

T; e1 ¼ ½e11; e12; e13�
T; e2 ¼ ’e1; e3 ¼ .e1; e4 ¼

. . .
e1; and e6 ¼ ’e5:

The vector *xðx; tÞ is the wind parameter errors of the disturbances and the matrix A is then
given by

A ¼

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

�l0I �l1I �l2I �l3I 0 0

0 0 0 0 0 1

0 0 0 0 �l4 �l5

2
666666666664

3
777777777775

where I is an identity matrix of dimension 3� 3 and the control gains li; i ¼ 0; . . . ; 5 are such
that the eigenvalues of the matrix A have desired locations.

It is very important to know the domain of attraction of an equilibrium point, that is the set
of initial states from which the system converges to the equilibrium point itself [23, 24]. Actually,
such problem arises in both system analysis and synthesis, in order to guarantee a stable
behaviour in a certain region of the state space.

4. HIGH-ORDER SLIDING-MODE OBSERVER

The navigation sensor package will include a differential global positioning system
(DGPS) which provides high-accuracy position and velocity information. For the x- and y-
positions, the DGPS provides both the proportional and derivative terms. To compensate
for poor GPS accuracy in the vertical direction, a sonar altimeter (based on ultrasonic
transducer) will be employed to provide altitude information at a reasonable accuracy. A digital
compass will be used to establish the helicopter yaw angle to about �18: While the navi-
gation sensors and the associated inner-loop control software are able to have the heli-
copter take-off, land, and fly from waypoint to waypoint, the UAV must be capable of
establishing these waypoints. Since the competition environment is dynamic, this must be done
in real time [25].

Motivated by practice, the measured UAV variables are the absolute positions x0; y0; z0 and
the orientation c which represent the translational motion and rotation around the z-axis,
respectively. Although non-measurable signals can be obtained by successive differentiation,
however, they are contaminated by the measurement noise to such a degree that the
differentiation can no longer be used. To avoid numerical differentiation let us construct an
observer based on arbitrary order high-order sliding-mode differentiator [14].
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4.1. Observer model

The linearized dynamic model of the quadrotor with the measured signals x1 ¼ ½x0; y0; z0�
T; and

x5 ¼ c can be represented in the following state-space form:

’x1 ¼ x2

’x2 ¼ x3

’x3 ¼ x4

’x4 ¼ ½v1; v2; v3�
T þ ½x1; x2; x3�

T

’x5 ¼ x6

’x6 ¼ v4 þ x4 ð13Þ

Let us propose the observer based on high-order differentiation for the state variables x1;x2;
x3;x4;x5; x6 of the form

’#x1 ¼ #x2 þ g1jx1 � #x1j
3=4 signðx1 � #x1Þ

’#x2 ¼ #x3 þ g2jm2 � #x2j
2=3 signðm2 � #x2Þ

’#x3 ¼ #x4 þ g3jm3 � #x3j
1=2 signðm3 � #x3Þ

’#x4 ¼ ½v1; v2; v3�
T þ z4

’#x5 ¼ #x6 þ g4jx5 � #x5j
1=2 signðx5 � #x5Þ

’#x6 ¼ v4 þ z6 ð14Þ

where

z4 ¼ a4 signðm4 � #x4Þ

z6 ¼ a6 signðm6 � #x6Þ ð15Þ

and m2 ¼ #x2 þ z1; m3 ¼ #x3 þ z2; m4 ¼ #x4 þ z3; m6 ¼ #x6 þ z5:

Theorem 1
The observer (14), (15) for system (13) ensures in finite time the convergence of the estimated
states to the real states, i.e. ð #x1; #x2; #x3; #x4; #x5; #x6Þ ! ðx1; x2;x3;x4;x5;x6Þ: The filtered values of
z
f
4 ¼ ½z

f
41; z

f
42; z

f
43�

T and z
f
6 converge to x123 ¼ ½x1; x2; x3�

T and x4 in the intervals of
differentiability of x123 and x4 when the filter time constant match more than sampling step
and both tend to zero.

Proof
The finite-time convergence of observers for variables *x5; *x6 is proved in [15]. Taking *xi ¼
xi � #xi the estimation error can be written as

’*x1 ¼ *x2 � g1j *x1j
3=4signð *x1Þ

’*x2 ¼ *x3 � g2jm2 � #x2j
2=3signðm2 � #x2Þ
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’*x3 ¼ *x4 � g3jm3 � #x3j
1=2signðm3 � #x3Þ

’*x4 ¼ x123 � a4 signðm4 � #x4Þ ð16Þ

To prove finite-time convergence of the error of observer (14) for *x1; *x2; *x3; *x4; we just need to
rewrite first four equations of (16) in the form of differential inclusion

’*x1 ¼ *x2 � g1j *x1j
3=4 signð *x1Þ

’*x2 ¼ *x3 � g2jm2 � #x2j
2=3 signðm2 � #x2Þ

’*x3 ¼ *x4 � g3jm3 � #x3j
1=2 signðm3 � #x3Þ

’*x4 2 ½�f
þ
4 ; f

þ
4 � � a4 signðm4 � #x4Þ ð17Þ

This inclusion is understood in Filippov sense [26]. The proof of finite-time convergence now
follows from Lemma 8 in [14]. The convergence of the filtered values of z

f
4 ¼ ½z

f
41; z

f
42; z

f
43�

T and z
f
6

to x123 ¼ ½x1; x2; x3�
T and x4 in the intervals of differentiability of x123 and x4 follows from the

theorem about physical meaning of equivalent control [27] (Chapter 2). &

4.2. Output states reconstruction

The sliding observer presented above is in fact a state estimator with partial state feedback
ðx0; y0; z0;cÞ taken as measured variables. The observer estimates the state needed by the control
law to calculate the tracking error between the desired trajectories ðx1d ; x2d ;x3d ;x4d ; x5d ;x6dÞ and
the estimated ones ð #x1; #x2; #x3; #x4; #x5; #x6Þ: Unfortunately, the estimated state does not involve all
the output states. In that case, to complete the full state output, the missed variables ðy;f; p; q; rÞ
of the state vector x (7) have been calculated through the estimated values and from the
nonlinear system of Equation (7), without taking the perturbation into account. So, from (7) y
and f are deduced as follows:

#f ¼ arcsin
�mð #.x0Sc� #.y0CcÞ

z

� �
; #y ¼

1

C #f
arcsin

�mð #.x0Ccþ #.y0ScÞ
z

� �
ð18Þ

The variables ð#p; #q; #rÞ can be found from the transformation equation (1) which needs

the variables ð
’#c; ’#y; ’#fÞ: The latter can be evaluated from (18) and the third derivatives

ð #
:::
e0; #

:::
y0Þ; i.e.

’#y ¼ �
1

C #yC2 #fz
fm #:::x0ðS #fS #yScþ CcC #fÞ þm #:::y 0ðC #fSc� S #fCcS #yÞ þ #’czC #fS #fC2 #y� S #yzg

’#f ¼
1

zCð #fÞ
f�m #:::x0Scþ czC #fS #yþ zS #fþmCc #:::y0g
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So from the following matrix equation, the estimation of the variables ð #p; #q; #rÞ can be
deduced:

#p

#q

#r

2
664
3
775 ¼

0 S #fSe
#y C #fSe

#y

0 C #f �S #f

1 S #fT #y C #fT #y

2
6664

3
7775

�1 ’#c

’#y

’#f

2
66664

3
77775 ð19Þ

The stability proof for this overall closed-loop system is similar to those of Theorem 1 and it is
therefore omitted. Instead, simulation evidences will be provided in the next section.

5. SIMULATION RESULTS

The constant quadrotor parameters, used in the simulation run, are m ¼ 2 kg; Ix ¼ Iy ¼ 0:8;
Iz ¼ 1:2416 N:m=rad=s2; d ¼ 0:1 m and g ¼ 9:81 m=s2: The gain values of ðl0; l1; l2; l3Þ and
ðl4; l5Þ represent the coefficients of the polynomial ðsþ 5Þ4 and ðsþ 5Þ2; respectively. For a
specific f þi and ai; the values of gi are chosen as g1 ¼ 3; g2 ¼ 2:5; g3 ¼ g4 ¼ 1:5 and a4 ¼ a6 ¼ 1:1:
An application has been established without and with disturbances and with uncertainties to test
the performance and robustness of the sliding-mode observer.

* Simulation without disturbance: ðAx ¼ Ay ¼ Az ¼ 0Þ; ðAp ¼ Aq ¼ Ar ¼ 0Þ; the obtained
results are shown in Figure 2.

* Simulation with aerodynamic force disturbances: for Ax ¼ 2 sinð0:1tÞ; Ay ¼ 2 sinð0:1tÞ;
Az ¼ 2 sinð0:1tÞ occurring at 10, 20, and 40 s; respectively, the obtained results are shown
in Figures 3–5.

* Simulation with aerodynamic moment disturbances: for Ap ¼ 0:09 sinð0:1tÞ; Aq ¼ 0:01 sin
ð0:1tÞ; Ar ¼ 0:2 sinð0:1tÞ occurring at 10, 20, and 40 s; respectively, the obtained results are
given in Figure 6.
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Figure 2. Reference trajectories and estimation errors.
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It is concluded from the simulations, made without perturbation, that the high-order sliding-
mode observer gives satisfactory results. The results of estimation errors given in Figure 2 show
the efficiency of the observer. The same conclusion follows from the tracking errors which
vanish after a finite time with a perfect convergence. When wind disturbances are introduced the
results in Figures 3 and 4 reflect the robustness of the mixed observer–controller, without the
need of an external estimation procedure. The estimation of force and moment disturbances are
presented in Figures 5 and 6, it shows that the estimated disturbances follow exactly the
computed ones. However, it appears that the system dynamic behaviour is more sensitive
towards aerodynamic moment disturbances. This is also confirmed by variation of forces F1; F2;
F3; and F4 in Figure 6 which exactly reflects the movement of the quadrotor in x; y; and z
directions in the presence of disturbances. The convergence of the output state vector is obtained
in spite of the non-robust exact linearization against uncertainties on system parameters. On the
other hand, excessive chattering around desired trajectories is avoided by using high-order
sliding mode.
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6. CONCLUSION

A feedback linearization controller using high-order sliding-mode observer has been applied to
a quadrotor unmanned aerial vehicle (UAV). Although the behaviour of the UAV, affected by
aerodynamic forces and moments, is nonlinear and high coupled, the feedback linearization
coupled to HOSM observer and applied to the UAV, turns out to be a good starting point to
avoid complex nonlinear control solutions and excessive chattering. However, in the presence of
nonlinear disturbances the system after linearization remains nonlinear. The observer used here
overcomes easily this nonlinearities by an inner estimation of the external disturbances to
impose desired stability and robustness properties on the global closed-loop system. The
unmeasured states and their derivatives have been successfully reconstructed through the
sliding-mode observer design.
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Theoretical results have been supported by numerical simulations that demonstrated
efficiency of the proposed controller design. It is hoped that further investigation would be
carried out on robust controllers that would compensate noise effects and initial condition
problems.
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