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HIGH-ORDER/SPECTRAL METHODS ON UNSTRUCTURED GRIDS

I. TIME-DOMAIN SOLUTION OF MAXWELL'S EQUATIONS �

J.S. HESTHAVENy AND T. WARBURTONz

Abstrat. We present an ab initio development of a onvergent high-order aurate sheme for the

solution of linear onservation laws in geometrially omplex domains. As our main example we present a

detailed development and analysis of a sheme suitable for the time-domain solution of Maxwell's equations

in a three-dimensional domain. The fully unstrutured spatial disretization is made possible by the use of a

high-order nodal basis, employing multivariate Lagrange polynomials de�ned on the triangles and tetrahedra.

Careful hoies of the unstrutured nodal grid points ensure high-order/spetral auray, while the equations

themselves are satis�ed in a disontinuous Galerkin form with the boundary onditions being enfored weakly

through a penalty term. Auray, stability, and onvergene of the semi-disrete approximation to Maxwell's

equations is established rigorously and bounds on the global divergene error are provided. Conerns related

to eÆient implementations are disussed in detail.

This sets the stage for the presentation of examples, verifying the theoretial results, as well as illustrating

the versatility, exibility, and robustness when solving two- and three-dimensional benhmarks in omputa-

tional eletromagnetis. Pure sattering as well as penetration is disussed and high parallel performane of

the sheme is demonstrated.

Subjet lassi�ation. Applied Mathematis

Key words. high-order/spetral auray, stability, onvergene, unstrutured grids, Maxwell's equa-

tions

1. Introdution. The ability to aurately and reliably model wave-dominated problems ontinues

to be an essential, and in many ases an enabling, tehnology in the development and analysis of emerging

tehnologies suh as stealth tehnology, noise redution, subsurfae exploration and optial ommuniation to

name a few. These are all problems haraterized by being very large in terms of a harateristi wavelength,

geometrially extremely omplex, often omposed of a heterogeneous olletion of di�erent materials and all

requiring a high �delity solution with a rigorous ontrol of the numerial errors. Even for linear problems

suh onditions fores one to look beyond standard omputational tehniques and seek new omputational

frameworks enabling the aurate, eÆient, and robust modeling of wave-phenomena over long times in

settings of a realisti geometri omplexity.

The requirement that one an aurately propagate waves over many periods of time naturally suggests

that high-order/spetral methods be onsidered [1℄. On the other hand, the use of suh methods is tra-

ditionally in onit with the need for signi�ant geometri exibility by being restrited to fairly simple

geometries. The standard approah to overome this restrition is to introdue a multi-element formulation
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in whih the basi building blok is parametrially mapped ubes in the spirit of �nite element methods.

This approah has been very suessfully applied to the solution of problems in uid mehanis [2, 3, 4℄,

gasdynamis [5, 6, 7, 8, 9, 10℄, and eletromagnetis [11, 12, 13, 14, 15℄.

While suh tehniques, when appliable, are powerful they do su�er from the need to tile the omputa-

tional using only hexahedral elements. Unfortunately, automated grid generation using only suh elements

for general three-dimensional omputational problems of a realisti omplexity remains a very nontrivial

task and is typially very time-onsuming. Furthermore, spatial adaptation, while ertainly possible, is

quite a hallenge with a method based solely on hexahedral elements. On the other hand, automated grid

generation employing a fully unstrutured grid is signi�antly more mature, due mainly to extensive devel-

opments within the �nite-element ommunity. Spatial grid adaptation is also onsiderably easier within a

fully unstrutured grid formulation.

It is with these issues in mind that we present an ab initio development of a omputational framework

that ombines the strengths of a high-order/spetral formulation with the exibility of a fully unstrutured

grid. The formulation relies on the resolution of two entral issues. On one hand we shall disuss in detail

how to represent funtions de�ned on triangles and tetrahedra to high auray and how this translates into

the onstrution of basi operators needed to solve partial di�erential equations. On the other hand we need

to address the issue of how to use suh a high-order representation to formulate a onvergent sheme suitable

for solving systems of linear hyperboli problems in general and Maxwell's equations in partiular.

Muh in the spirit of the original work on spetral element methods [2, 3℄ we shall fous on the formulation

of eÆient and exible unstrutured grid methods using nodal elements. This is in ontrast to past attempts

to develop high-order unstrutured grid methods, suitable for solving time dependent problems, whih have

been foused on the use of high-order modal expansions, e.g., [16, 17, 18, 19, 20, 21℄. In these works, modal

expansions of orthogonal polynomials de�ned on the simplex are utilized while a straightforward monomial

basis is used in [22℄ (see also [23℄ and referenes therein) muh in the tradition of lassial high-order �nite

element methods for ellipti problems [24, 25℄.

In ontrast to the lassial spetral element approah, however, we do not seek a globally ontinuous

solution but rather require that the equations be satis�ed in a disontinuous Galerkin/penalty fashion. This

is related to the lassi disontinuous Galerkin �nite element method [23℄ although the present approah

represents a more general formulation, ontaining the lassi disontinuous Galerkin formulation as a speial

ase. Suh more general tehniques have been known in the ontext of spetral methods as penalty meth-

ods [26℄ for a while and reently stable formulations on general one-dimensional [27℄, triangular [28℄, and

tetrahedral domains [29℄ have been disussed. These methods all share the great advantage of a omplete

deoupling of all elements, hene enabling high parallel eÆieny, and allows for disontinuous solutions

between elements in a natural way. As we shall see later, this is essential in allowing for the inlusion of

material interfaes in a natural and straightforward manner.

While the majority of what we shall disuss is of a very general nature we have hosen to disuss in detail

the development and analysis of a high-order/spetral auray unstrutured grid sheme for the solution

of Maxwell's equations in the time-domain. This is not only a hallenging problem but also a problem of

signi�ant ontemporary interest due to emerging tehnologies suh as broad-band target illumination and

penetration, advaned materials and di�ration based modern optis, all haraterized by being eletrially

large, having a signi�ant separation of sales and requiring substantial geometri exibility of the ompu-

tational framework. On the other hand, Maxwell's equations serve as an exellent example of numerous

other linear hyperboli systems of equations in, e.g., elastiity, aoustis, solid mehanis et, for whih
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the presented framework an be adapted with little e�ort. In part II of this work [30℄ we shall disuss in

detail generalizations of the proposed omputational framework with an emphasis on the solution of general

systems of onservation laws.

What remains of the paper is organized as follows. In Se. 2 we set the stage by briey desrib-

ing the physial setting, Maxwell's equations, their normalized and sattered �eld formulations, as well as

boundary onditions at material interfaes and metalli boundaries. The �rst step in the onstrution of

a high-order/spetral unstrutured grid sheme for the solution of Maxwell's equations is taken in Se. 3

where we introdue a Lagrangian high-order basis on the general urvilinear simplex. In the appendix we

inlude a disussion of tehniques allowing for eÆient and aurate implementations of the basi operators,

e.g., di�erentiation, �ltering, and high-order integration in volumes and on faes. By providing the basi

building blok for the spatial approximation, this development sets the stage for the formulation of a high-

order/spetral onvergent sheme for solving Maxwell's equations as disussed in Se. 4. The onvergene

of the sheme, being a generalized disontinuous Galerkin/penalty method, is established in the lassi way

through onsisteny as well as loal and global stability. A stronger and optimal result is furthermore estab-

lished by showing the sheme to be error-bounded, guaranteeing at most linear growth in time and ontrol

over the growth rate. This result is also used to establish bounds on the behavior of the divergene error.

Veri�ation and performane of the omplete sheme is the topi of Se. 5 where we present a number of

simple tests, verifying the theoretial results, prior to illustrating the eÆieny, versatility, and robustness

of the omputational framework for the solution of two- and three-dimensional sattering and penetration

problems. We shall also briey disuss measures taken in the implementation of the sheme to ensure eÆient

exeution on large sale ontemporary parallel omputational platforms. In Se. 6 we onlude by o�ering

a few remarks and guidelines for future work within the present framework.

2. The Physial Setting and Maxwell's Equations. We shall onern ourselves with the diret

solution of Maxwell's equations on di�erential form

� ~D

�~t
= ~r� ~H + ~J ;

� ~B

�~t
= � ~r� ~E ;(1)

~r � ~D = ~� ; ~r � ~B = 0 ;(2)

within the general three-dimensional domain, 
, with the harge distribution, ~�(~x; ~t). The eletri �eld,
~E(~x; ~t), and the eletri ux density, ~D(~x; ~t), as well as the magneti �eld, ~H(~x; ~t), and the magneti ux

density, ~B(~x; ~t), are related through the onstitutive relations

~D = ~" ~E ; ~B = ~� ~H :

The permittivity tensor, ~", as well as the permeability tensor, ~�, are in general anisotropi and may depend

on spae and time as well as the strength of the �elds themselves. The urrent, ~J , is typially assumed to

be related to the eletri �eld, ~E, through Ohms law, ~J = ~� ~E, where ~� measures the �nite ondutivity,

although more omplex relations are possible.

In this work, we shall restrit the attention to materials whih an be assumed isotropi, linear and

time-invariant, in whih ase the onstitutive relations take the form

~D = ~"0"r ~E ; ~B = ~�0�r
~H :
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Here ~"0 = 8:854�10�12 F/m and ~�0 = 4��10�7 H/m represent the vauum permittivity and permeability,

respetively, and "r(x) and �r(x) refers to the relative permittivity and permeability, respetively, of the

materials.

Taking the divergene of Eq.(1) and applying Eq.(2) in ombination with Gauss' law for harge onser-

vation immediately on�rms that if the initial onditions satisfy Eq.(2), and the �elds are evolved aording

to Maxwell's equations, Eq.(1), the solution will satisfy Eq.(2) at all times. Hene, one an view Eq.(2) as a

onsisteny ondition on the initial onditions and limit the solution to the time-dependent part of Maxwell's

equations, Eq.(1).

To simplify matters further, we shall onsider the non-dimensionalized equations for whih we introdue

the normalized quantities

x =
~x
~L

; t =
~t

~L=~0
;

where ~L is a referene length, and ~0 = (~"0~�0)
�1=2 represents the dimensional vauum speed of light. The

�elds themselves are normalized as

E =
~Z�10

~E
~H0

; H =
~H
~H0

; J =
~J ~L
~H0

;

where ~Z0 =
p

~�0=~"0 refers to the dimensional free spae intrinsi impedane, and ~H0 is a dimensional

referene magneti �eld strength.

With this normalization Eq.(1) takes the nondimensional form

"r
�E

�t
= r�H + J ; �r

�H

�t
= �r�E ;(3)

whih is the general form of the equations we onsider in the following.

To solve Maxwell's equations in the viinity of boundaries, penetrable or not, we shall need boundary

onditions relating the �eld omponents on either side of the boundary.

Assuming that a normal unit vetor, n̂, to the boundary is given, the boundary onditions on the eletri

�eld omponents take the form

n̂� (E1 �E2) = 0 ; n̂ � (D1 �D2) = �s ;

where Ei and Di, i = (1; 2), represent the �elds on either side of the interfae and �s represents a surfae

harge. Equivalently, the onditions on the magneti �elds are given as

n̂� (H1 �H2) = Js ; n̂ � (B1 �B2) = 0 ;

where Js represents a surfae urrent density.

In the general ase of materials with �nite ondutivity, no surfae harges and urrents an exist, and

the simpli�ed onditions take the form

n̂� (E1 �E2) = 0 ; n̂� (H1 �H2) = 0 ;(4)

expressing ontinuity of the tangential �eld omponents, while the normal omponents of the ux densities

must satisfy
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n̂ � (D1 �D2) = 0 ; n̂ � (B1 �B2) = 0 ;(5)

i.e., they are likewise ontinuous, while the normal omponents of the �elds themselves are disontinuous.

For the important speial ase of a perfet ondutor, the onditions take a speial form as the perfet

ondutor supports surfae harges and urrents while the �elds are unable to penetrate into the body, i.e.,

n̂�E = 0 ; n̂ �B = 0 :(6)

2.1. The Sattered Field Formulation. For sattering and penetration problems involving linear

materials it is often advantageous to exploit the linearity of Maxwell's equations and solve for the sattered

�eld, (Es;Hs), rather than for the total �eld, (E;H), whih are trivially related as

E = Ei +Es ; H =H i +Hs ;

where (Ei;H i) represents the inident �eld, illuminating the sattering objet. Assuming that (Ei;Hi)

represents a partiular solution to Maxwell's equations, one reovers the sattered �eld formulation

"r
�Es

�t
= r�Hs + �Es � �

"r � "ir
� �Ei

�t
+ (� � �i)Ei ;(7)

�r
�Hs

�t
= �r�Es � �

�r � �i
r

� �Hi

�t
;(8)

where "ir(x), �
i
r(x), and �i(x) refers to the relative permittivity, permeability and ondutivity of the media

in whih the inident �eld represents a solution to Maxwell's equations. To simplify matters we have assumed

Ohms law, J = �E. We note that the important speial ase of a vauum �eld illuminating the sattering

objet is reovered by using "ir = �i
r = 1, �i = 0, and using a free spae solution in the foring funtion.

In this formulation, the boundary onditions along a dieletri interfae take the form

n̂� (Es
1 �Es

2) = 0 ; n̂� (Hs
1 �Hs

2) = 0 ;(9)

for the tangential omponents, while the onditions on the sattered �eld omponents beomes

n̂�Es = �n̂�Ei ; n̂ �Bs = ��rn̂ �Hi ;(10)

in the ase of a perfetly onduting boundary. As we shall see shortly, there is no need to onsider the

onditions on the normal omponents further.

3. The Nodal Element. We shall seek approximate solutions to Maxwell's equations in a general

domain, 
, possibly ontaining a heterogeneous olletion of sattering and penetrable bodies. To failitate

the required geometri exibility, we represent the omputational domain as the union of K non-overlapping

body-onforming d-simplies, D. Hene, for two-dimensional problems we shall use triangles as the geometri

building blok while the tetrahedron is employed to �ll the omputational volume.
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(x,y,z)=Ψ-1
(ξ,η,ζ)

(ξ,η,ζ)=Ψ(x,y,z)

x

y

z

ξ
η

ζ

v
I

v
II

v
III

v
IVv

1

v
2

v
3

v
4

n
a

n
bn

cD I

Fig. 1. Mapping between the urvilinear tetrahedral, D, and the standard tetrahedral, I, inluding the numbering and

notation employed in the text.

While this multi element formulation is essential in enabling the solution of geometrially omplex

problems, it also introdues new ompliations, the understanding and resolution of whih are at the heart

of the onstrution of the sheme. In partiular, the use of simplies requires an understanding of how to

onstrut high-order aurate Lagrange interpolation polynomials on suh elements and, subsequently, how

we an formulate approximations to basi operations suh as interpolation, di�erentiation and integration

of funtions de�ned on general urvilinear d-simplies. These are issues we shall deal with in the following.

For ontinuity we shall postpone the disussion of pratial, yet essential, tehniques for the eÆient and

aurate implementation of the basi operations to the appendix.

The equally important question of how to exploit this knowledge to onstrut global high-order/spetral

auray solution tehniques suitable for Maxwell's equations as well as other linear hyperboli systems is

the entral issue addressed in Setion 4.

3.1. The Curvilinear d-Simplex. We start by assuming that the omputational domain, 
, is de-

omposed into urvilinear d-simplies, D � Rd, as illustrated in Fig. 1 by a 3-simplex, a tetrahedron. For

generality we shall limit muh of the disussions to the three-dimensional ase and regard the two-dimensional

problem as a natural simpli�ation.

While we shall not require that the faes of the tetrahedron are planar, suh an assumption will, as we

shall see shortly, signi�antly simplify matters in terms of analysis as well as implementation. It should also

be noted that for most omputational problems, the vast majority of the elements will have planar faes

whih thus supplies the single most important speial ase.

Let us introdue the standard tetrahedron, I � R3, given by the verties

vI =

2
64
�1
�1
�1

3
75 ; vII =

2
64

1

�1
�1

3
75 ; vIII =

2
64
�1
1

�1

3
75 ; vIV =

2
64
�1
�1
1

3
75 ;

as illustrated in Fig. 1 with the orresponding verties in D termed v1-v4. To �x the notation within the

tetrahedron, let us also name the fae in D opposite vertex v1, i.e, spanned by the three verties v2, v3, and

v4, for fae 'a', that opposite of vertex v2 for fae 'b' and so forth. In general we shall name the oordinates

in the physial simplex, D, as x = (x; y; z) while the oordinates, � 2 I, shall be referred to as � = (�; �; �).
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To relate operations on D to those on I we need to onstrut a smooth and invertible mapping, 	 : D! I,

that uniquely relates the two simplies as illustrated in Fig. 1. In the ase of a general urvilinear mapping,

this an be onstruted diretly by the use of linear trans�nite blending funtions. Although lengthy,

expressions of these mappings are straightforwardly arrived at by blending parameterized versions of faes,

edges, and the vertex-oordinates. For a detailed aount of this we refer to [21℄.

A partiularly important and simple ase is that of D being straightfaed in whih ase the mapping

beomes

x = 	(�) = �1 + � + � + �

2
v1 +

1 + �

2
v2 +

1 + �

2
v3 +

1 + �

2
v4 ;(11)

derived diretly by exploiting that any point in the straightfaed tetrahedron an be expressed as a onvex

sum of the verties with the weights being the baryentri oordinates (see e.g. [21℄).

One the mapping, 	(�), has been established, we an utilize this to ompute the urvilinear metri of

the transformation by

�x

��

��

�x
=

�	(�)

��

��

�x
=

2
64

x� x� x�

y� y� y�

z� z� z�

3
75
2
64

�x �y �z

�x �y �z

�x �y �z

3
75 =

2
64

1 0 0

0 1 0

0 0 1

3
75 :

Within this new metri, the divergene of a vetor �eld, F = (Fx; Fy; Fz), is expressed on the well known

form

r � F =
1

J

�
�

��
(JF � r�) +

�

��
(JF � r�) +

�

��
(JF � r�)

�
;

where we have introdued the transformation Jaobian

J =

�����x��
���� = 1

r� � (r� �r�)
:

The metri also immediately gives outward pointing normal vetors at the 4 faes of D on the form

na = r� +r� +r� ;

nb = �r� ; n = �r� ; nd = �r� :

It is worth while paying attention to the speial ase of the mapping between straightsided tetrahedra,

Eq.(11), in whih ase we realize that

�x

��
=

�	(�)

��
=

1

2

2
64
�vT1 + vT2

�vT1 + vT3

�vT1 + vT4

3
75 ;

is onstant. Thus, the full metri, r�, r�, and r�, is onstant as is the transformation Jaobian, J , i.e.,

every two straightsided tetrahedra are onneted through a simple linear transformation. As we disuss in

detail in the appendix, this observation an be exploited to signi�antly simplify the implementation of the

general unstrutured sheme by introduing template operators.

Let us �nally de�ne a number of di�erent inner produts on the urvilinear simplex, D. Consider the

two smooth funtions, f [D℄ 2 C[D℄ and g[D℄ 2 C[D℄ for whih f(x) : D ! R and g(x) : D ! R. The global

inner produt, the assoiated L2-norm and the inner produt over the surfae of D are de�ned as
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(f; g)
D
=

Z
D

f(x)g(x) dx ; (f; f)
D
= kfk2

D
; (f; g)ÆD =

I
ÆD

f(x)g(x) dx :

These loal inner produts and norms form the basis for the orresponding global broken measures as

(f; g)
 =
X
k

(f; g)
D
k ; (f; f)
 =

X
k

kfk2
D
k = kfk2
 ;

(f; g)Æ
 =
X
k

I
ÆDk

f(x)g(x) dx ;

where K represents the total number of elements used to over 
.

3.2. A Multivariate Polynomial Basis on the d-Simplex. With the urvilinear framework in plae

we an now fous the attention on the development of a high-order/spetral representation of a funtion

de�ned on the elemental element, I, rather than a general D.

Contrary to the approah taken in [17, 21℄, where a purely modal approximation is utilized, we shall em-

ploy a purely nodal sheme. Hene, we assume that the unknown solutions, q(�; t), an be well approximated

as

qN (�; t) =

NX
j=0

q(�j ; t)Lj(�) ;

where Lj(�) is the genuine three-dimensional multivariate Lagrange interpolation polynomial, Lj(�) 2 P3n,

where

P3n = span
�
�i�j�k ; i; j; k � 0; i+ j + k � n

	
;

based on the N3
n = N + 1 nodal points, �j , given in the interior as well as on the boundary of I. It is

straightforward to see that the minimum number of nodal points that will allow this basis to be omplete is

N3
n =

1

6
(n+ 1)(n+ 2)(n+ 3) ;

where n signi�es the maximum order of the polynomial.

The ruial hoie of a nodal set, well suited for Lagrange interpolation within the tetrahedron, is an

issue that has reeived some attention lately with suh nodal sets being given in [31℄ and [29℄. The former

is derived by using an minimization proedure for the identi�ation of the nodal set that minimizes an

approximation to the Lebesque onstant while the approah taken in the latter work involves the solution of

an eletrostati problem within the tetrahedron. Either proedure results in fully unstrutured nodal sets, an

example of whih is given in Fig. 2, with a large degree of symmetry, exatlyN3
n nodes within the tetrahedron

and a very well behaved Lagrange polynomial as measured through the growth of the assoiated Lebesque

onstant. Furthermore, both nodal sets inlude the 4 verties in I and have exatly 1
2 (n + 1)(n + 2) nodes

at eah of the four faes. This latter property is important as it ensures that a omplete two-dimensional

polynomial is supported by the nodes on eah fae.

In this work we have hosen to use the nodal set from [29℄ as the nodes on whih the Lagrange interpo-

lation polynomials are based. These nodal sets are given for n up to 10, orresponding to N3
10 = 286 nodal

points within eah tetrahedron and 66 nodal points at eah fae.
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X

Y

Z

a) b)

Fig. 2. Example of nodal set for a 5th order interpolation, i.e., N3

5
= 56 nodes within the tetrahedron. In a) we show a

3D view of the nodes within the tetrahedron while b) gives a top view emphasizing the high degree of symmetry assoiated with

the nodal set.

One we have identi�ed a proper nodal set, we an proeed with the formulation of the interpolation

whih must have the property

I3Nf(�j) = f(�j) ;

for any f 2 C[I℄. For the atual onstrution of the interpolation polynomials, let us introdue the omplete

polynomial basis, pi(�) 2 P3n and express the interpolation property as

8i : f(�i) =

NX
j=0

f̂jpj(�i) ;(12)

or in ompat form

Vf̂ = f ;

where f̂ = [f̂0; ::; f̂N ℄
T is the vetor of expansion oeÆients, f = [f(�0); ::; f(�N )℄T is the grid vetor

and Vij = pj(�i) is the multi-dimensional generalization of the Vandermonde matrix. Clearly, for the

interpolation to exist, V must be nonsingular whih is a property that depends solely on the nodal sets. For

polynomial interpolation along the line it is well known that jVj 6= 0 provided that the nodes are distint.

Unfortunately, no suh simple results are known for polynomial interpolation in I and we shall simply rely

on omputational veri�ation that the nodal sets indeed allow for the omputation of a unique interpolation

polynomial[29℄. Under this assumption we an likewise express Eq.(12) as

8i : f(�i) =
NX
j=0

f(�i)Lj(�i) ;(13)

whih has to be true for any f 2 C[I℄, and in partiular pi(�) itself. Hene, the Lagrange polynomials an be

evaluated at any point, � 2 I, by solving the dual problem

VTL = p ;(14)

9



where L = [L0(�); ::; LN (�)℄
T and p = [p0(�); ::; pN (�)℄

T . This naturally enables the evaluation of I3Nf(�)
anywhere in I by omputing Lj(�) and applying Eq.(13).

In seeking the approximate solution to partial di�erential equations, the single most important operation

is that of omputing approximations to spatial derivatives. However, one we have identi�ed a well behaved

Lagrange basis, approximations to spatial derivatives evaluated at the grid points, �i, is obtained diretly

through matrix-vetor produts as

I3n
�f

��
' �I3nf

��
= D�f ; I3n

�f

��
' �I3nf

��
= D�f ; I3n

�f

��
' �I3nf

��
= D�f ;

where the entries of the quadrati di�erentiation matries are obtained as

D�
ij =

�Lj(�i)

��
; D�

ij =
�Lj(�i)

��
; D�

ij =
�Lj(�i)

��
:

The entries an be omputed diretly by using Eq.(14) and the uniqueness of the polynomials as

D� = P�V�1 ; D� = P�V�1 ; D� = P�V�1 ;

where the entries of P(�;�;�) are

P�
ij =

�pj(�i)

��
; P�

ij =
�pj(�i)

��
; P�

ij =
�pj(�i)

��
:(15)

4. A Convergent Sheme for Maxwell's Equations. Having realized high-order formulations of

basi operations on the nodal tetrahedron, we are now in a position to develop a sheme suitable for solving

linear systems of hyperboli problems in omplex geometries, exempli�ed by a sheme for solving Maxwell's

equations.

To simplify matters, let us express Maxwell's equations, Eq.(3), in onservation form

�q

�t
+r � F (q) = S ;(16)

where we have introdued the state vetor, q, and F (q) = [F1(q); F2(q); F3(q)℄
T , as the ux de�ned as

q =

"
"rE

�rH

#
; Fi(q) =

"
�ei �H
ei �E

#
;

respetively. Here ei signi�es the three Cartesian unit vetors and S = [SE ;SH ℄T represents body fores,

e.g., urrents, and terms introdued by the sattered �eld formulation, Eqs. (7)-(8).

4.1. Central Elements of the Sheme. Let us begin by introduing the nodal basis disussed in the

previous setion and assume that the statevetor, q, an be represented as

qN (x; t) =

NX
j=0

q(xj ; t)Lj(x) ;

within eah general urvilinear element, Dk.

We shall onsider shemes in whih we require Eq.(16) to be satis�ed in the following way

Z
D

�
�qN
�t

+r � FN � SN

�
�i(x) dx =

I
ÆD
 i(x)G([qN ℄) dx :(17)
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Here �i and  i signify sequenes of N funtions whileG([qN ℄) is a funtion of the jump [qN ℄ of the statevetor

at the boundary/interfae of the element, e.g., if the fae is at a solid boundary [qN ℄ reets the di�erene

between the presribed boundary ondition and the atual value of the statevetor.

Let us emphasizing a few harateristis of this general formulation, Eq.(17). In partiular we see that

onsisteny of the sheme is immediate as the right hand side of Eq.(17) vanishes when the exat solution is

introdued, i.e., if the inner sheme is onsistent so is the full approximation. One should also observe that

boundary/interfae onditions are not imposed exatly but rather weakly through the penalizing surfae

integral. Finally we emphasize that in a multi-element ontext, the formulation is inherently disontinuous,

enforing the interfae onditions weakly through the penalizing term and giving rise to a highly parallel

formulation of the sheme.

In hoosing �i,  i andG([qN ℄) one has a tremendous degree of freedom in designing shemes suitable for

solving di�erential equations. In [10℄ we proposed stable spetral olloation methods with weakly imposed

boundary/interfae onditions for solving the advetion-di�usion equation and the ompressible Navier-

Stokes equations by hoosing �i(x) =  i(x) = Æ(x�xi) and de�ning G([qN ℄) to impose the orret upwind

ux onditions. Alternative hoies, likewise leading to stable shemes for solving linear onservation laws,

were disussed in [28, 29℄. There we onsidered mixed Galerkin-olloation formulations by hoosing �i(x) =

Li(x), as in a lassi Galerkin formulation, but using  i(x) = Æ(x � xi) to impose the boundary/interfae

onditions. Upwind ux onditions were used to onstrut G([qN ℄).

To formulate a sheme for Maxwell's equations, let us assume that the eletri, E, and magneti, H,

�eld omponents an be represented as

EN (x; t) =

NX
j=0

E(xj ; t)Lj(x) =

NX
j=0

Ej(t)Lj(x) ;

HN (x; t) =
NX
j=0

H(xj ; t)Lj(x) =
NX
j=0

Hi(t)Lj(x) ;

within eah general urvilinear element, Dk. Here Ej(t) and Hj(t) represent the time dependent nodal

values, i.e., the unknowns of the sheme, while xj = xj(�j) are the mapped nodal oordinates.

We shall require that the equations, Eq.(3), be satis�ed in the following Galerkin-like way

Z
D

�
�qN
�t

+r � FN � SN

�
Li(x) dx =

I
ÆD
�(x)Li(x)n̂ � [F+N ℄ dx ;(18)

where qN , FN , and SN refers to the approximate state vetor, ux and body fore, respetively. As in Se.

3, Li(x) represents the n'th order Lagrange interpolation polynomial, i.e., in the language of the general

formulation in Eq.(17) we have �i(x) =  i(x) = Li(x), while we have G([qN ℄) = �(x)n̂ � [F+N ℄. Here n̂ is

the outward pointing normal vetor, �(x) is a free parameter to be spei�ed later, while [F+N ℄ reets the

jump in the upwind ux, i.e., we have introdued the splitting, FN = F+N +F�N , into the upwind, F+N , and

downwind, F�N , omponent of the ux.

It is noteworthy that the lassial disontinuous Galerkin formulation [23℄ is reovered from Eq.(18) by

a simple integration by parts and onsidering all uxes at interfaes as upwind uxes, i.e., it is a speial ase

of the muh more general approah put forward in Eq.(17).

To understand the exat form of the penalizing ux term, n̂ � [F+N ℄, it is helpful to reall that

11



n̂ � FN =

"
�n̂�HN

n̂�EN

#
;

i.e., the normal omponent of the uxes represents nothing else than the tangential �eld omponents and

the e�et of the right hand side in Eq.(18) is to impose the orret boundary/interfae onditions on the

tangential �eld omponents at the fae of the element. It is worth notiing that the unspei�ed funtion,

�(x), ontrols how strongly the onditions are enfored, e.g. if � is very large the onditions are essentially

enfored exatly.

As disussed in Se. 2 the boundary onditions on the tangential �eld omponents, be that in the

sattered �eld or in the total �eld formulation, require ontinuity between any two elements regardless of

their material properties. This yields the expliit form of the penalizing boundary term as [32℄

n̂ � �F+
N

�
=

(
Z
�1
n̂� (Z+[HN ℄� n̂� [EN ℄)

Y
�1
n̂� (�n̂� [HN ℄� Y +[EN ℄)

;(19)

where

[EN ℄ = E+
N �E�N ; [HN ℄ =H+

N �H�
N ;

measures the jump in the �eld values aross an interfae, i.e., supersript '+' refers to �eld values from the

neighbor element while supersript '-' refers to �eld values loal to the element. To aount for the potential

di�erenes in material properties in the two elements, we have introdued the loal impedane, Z�, and

ondutane, Y �, de�ned as

Z� =
1

Y �
=

s
��r

"�r
;

and the sums

Z = Z+ + Z� ; Y = Y + + Y � ;

of the loal impedane and ondutane, respetively.

The speial ase of a perfetly onduting wall is handled in the above formulation be de�ning a mirror

state within the metalli satterer as

n̂�E+
N = �n̂�E�N ; n̂�H+

N = n̂�H�
N ;

to enfore the orret boundary onditions and de�ne the material parameters by Z+ = Z�.

Now returning to the semi-disrete sheme, Eq.(18), we have an elementwise expression for the eletri

�eld

NX
j=0

�
M"

ij

dEj

dt
� Sij �Hj �MijS

E
j

�
(20)

=
X
l

Fil

�
n̂l � Z+

l [H l℄� n̂l � [El℄

Z+
l + Z�l

�
;
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and likewise for the magneti �eld omponents

NX
j=0

�
M�

ij

dHj

dt
+ Sij �Ej �MijS

H
j

�
(21)

=
X
l

Fil

�
n̂l � �n̂l � [H l℄� Y +

l [El℄

Y +
l + Y �l

�
:

Here we have introdued

M"
ij = (Li(x); "(x)Lj(x))D ; M�

ij = (Li(x); �(x)Lj(x))D ;

as the material saled mass-matries and

Mij = (Li(x); Lj(x))D ; Sij =
�
Sxij ; S

y
ij ; S

z
ij

�
= (Li(x);rLj(x))D ;

representing the loal mass- and sti�ness matrix. Note that in the speial ase where "r and �r are elemen-

twise onstant, we reover (M";M�) = ("rM; �rM).

We have, furthermore, introdued the fae-based mass matries

Fil = (Li(x); �(x)Ll(x))ÆD ;

where the seond index is limited to the trae of the nodal set situated at the faes of D.

Expressing Eqs.(20)-(21) in fully expliit form yields

dEN

dt
=(M")

�1
S�HN + (M")

�1
MSE(22)

+ (M")�1 F

�
n̂� Z+[HN ℄� n̂� [EN ℄

Z+ + Z�

�����
ÆD

;

and

dHN

dt
=� (M�)

�1
S�EN + (M�)

�1
MSH(23)

� (M�)�1 F

�
n̂� n̂� [HN ℄ + Y +[EN ℄

Y + + Y �

�����
ÆD

:

The disrete operators that need to be initialized are, besides the mass-matries, M and M";�, whih an be

omputed exatly as desribed in the appendix and inverted straightforwardly. We shall also need

(M";�)�1 S = (M";�)�1 [Sx; Sy; Sz℄T ;

representing the general urvilinear di�erentiation matrix, as well as (M";�)�1M for soure terms. It is

worth notiing that for all straightfaed tetrahedra with onstant material parameters, the entries of S an

be formed diretly by ombinations of the lassial di�erentiation matries introdued in Se. 3, e.g.,

M�1Sx = D��x +D��x +D��x ;

and similarly for M�1Sy and M�1Sz. Hene, as disussed in detail in the appendix, template matries an be

used for the initialization of these operators in all suh elements while an individual initialization is required

for general urved elements and elements with smoothly varying material parameters.

The same holds true for the fae-based operators M�1F whih again an be preomputed for all straight-

faed elements with onstant materials by linear saling from standard template operators for I. The general

urvilinear faes requires individual attention.
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4.2. Consisteny. In analyzing the sheme, Eqs.(22)-(23), it is natural �rst to onsider the global

auray, and hene onsisteny, and how it depends on the size of the tetrahedra, i.e., its h-onvergene

rate, as well as how it sales with the order, n, of the polynomial approximation. To simplify matters we

shall assume throughout that all elements involved are straightfaed, i.e., the transformation between D

and I is linear. We shall furthermore assume that the material parameters, "r and �r, be onstant on eah

element, but they an vary freely between elements. We shall later briey revisit the impat on the results

of the analysis of relaxing these assumptions.

Let us introdue the exat solution, q = [E;H℄, to Maxwell's equations, Eq.(3), as well as its projetion,

PNq = [PNE;PNH℄T , on the spae spanned by n-order polynomials, i.e., PNq 2 P3
n. Exept in very speial

ases PNq will generally be di�erent from the numerial solution, qN = [EN ;HN ℄
T , whih is the exat

solution to the disrete problem, Eqs.(22)-(23).

Before we ontinue we wish to note that a subtle onsequene of using a purely nodal basis, as opposed to

a modal basis, is the introdution of a disrete aliasing error in the interpolation of the initial onditions. One

ould avoid this by reading the nodal values of the Galerkin projetion of the initial onditions, omputed by

using a quadrature of suÆiently high order. However, if the initial onditions are smooth and well resolved

this disrete aliasing error is small and we shall not disuss it further in what follows.

As the global error is bounded by the sum of the loal, element-wise errors, it suÆes to onsider the

latter. Introduing the exat solution, q = [E;H℄, to Maxwell's equations, Eq.(3), into the semi-disrete

approximation, Eqs.(20)-(21), immediately yields

�
Li;T

E
�
D

= (Li;r�H �PNr�H)
D
+
�
Li;S

E �PNSE
�
D

;

�
Li;T

H
�
D

= � (Li;r�E �PNr�E)D +
�
Li;S

H �PNSH
�
D

;

where T q =
h
TE ;TH

iT
signi�es the trunation error assoiated with the sheme. Note in partiular that

the surfae terms of Eqs.(20)-(21) vanish identially as the exat solution always has smooth tangential

omponents as ditated by the physis.

To bound the trunation error we shall need the following result [33, 24, 25℄

Lemma 4.1. Assume that u 2 W p(D), p � 0. Then there exists a onstant, C, dependent on p and the

angle ondition of D, but independent of u, h = diam(D), and n, suh that

ku�PNukW q(D) � C
h��q

np�q
kukWp(D) ;

where � = min(p; n+ 1) and 0 � q � �.

Here we have introdued the standard Sobolev norm

kuk2Wp(D) =
X
j�j�p

 ��1

�x�1
��2

�x�2
��3

�x�3
u


2

D

;

with the multi-index, � = (�1; �2; �3).

With this result and the use of the Cauhy-Shwarz inequality we immediately reover the onsisteny

result

Theorem 4.2. Assume that the exat solution, q = [E;H ℄
T 2 W p(D), p � 1 and that the body fores,

Sq =
h
SE ;SH

iT
2W p(D), p � 0. Then there exists a onstant, C, dependent on p and the angle ondition

of D, but independent of q, h = diam(D), and n, suh that
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kT qk
D
� C

�
h��1

np�1
kqkWp(D) +

h�

np
kSqkWp(D)

�
;

where � = min(p; n+ 1).

Hene, if the solution is loally smooth we an expet very rapid onvergene in the order of the approx-

imation as well as by dereasing the element size. In partiular, if the solution is analyti we an expet to

reover full spetral onvergene provided the sheme is stable.

4.3. Stability. Let us attend to the issue of semi-disrete stability and de�ne the loal energy

Ek =
1

2

Z
D
k

�
�jH j2 + "jEj2� dx ;

and the assoiated global energy, E =
P

k E
k.

Loal elementwise semi-disrete stability is stated as follows

Lemma 4.3 (Loal Stability). Assume that a solution to Maxwell's equations exists on the domain D.

If the faes of the element reside away from a perfet ondutor, stability of the semi-disrete approximation

to Maxwell's equations, Eqs.(22)-(23), is guaranteed provided

� � 1

3
:

In ase one of the faes oinides with a perfet ondutor, stability of the semi-disrete approximation is

guaranteed if

� = 1 :

Proof. For loal stability away from metalli boundaries, it suÆes to onsider the question of stability for

homogeneous boundary onditions, i.e., E+
N =H+

N = 0. Consider Maxwell's equations on the semi-disrete

form, Eqs.(20)-(21), multiply from the left with (Ej ;Hj) and sum over all the nodes in D to obtain

1

2

d

dt
(EN ; "EN )D = (EN ;r�HN )D +

�
EN ;S

E
�
D

�
I
ÆD

�EN �
�
n̂� Z+HN � n̂�EN

Z+ + Z�

�
dx ;

and

1

2

d

dt
(HN ; �HN )D = � (HN ;r�EN )D +

�
HN ;S

H
�
D

+

I
ÆD

�HN �
�
n̂� Y +EN + n̂�HN

Y + + Y �

�
dx :

Adding the two ontributions and applying the the divergene theorem yields

d

dt
Ek =

I
ÆD

(1� �)n̂ � (HN �EN ) dx

+

I
ÆD

�
�

Z
EN � n̂� n̂�EN +

�

Y
HN � n̂� n̂�HN

�
dx

+
�
EN ;S

E
�
D

+
�
HN ;S

H
�
D

:
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Using standard vetor identities this simpli�es as

d

dt
Ek =�

I
ÆD

�
(1� �)HN � n̂�EN +

�

Z
jn̂�EN j2 + �

Y
jn̂�HN j2

�
dx

+
�
EN ;SE

�
D

+
�
HN ;SH

�
D

:

To ensure semi-disrete stability it suÆes to require that

(1� �)HT
NREN +

�

Z
ET
NR

TREN +
�

Y
HT

NR
TRHN � 0 ;(24)

where we have introdued the rotation matrix

R = R(n̂) =

2
64

0 �nz ny

nz 0 �nx
�ny nx 0

3
75 :

Expressing the quadrati form, Eq.(24), as qTNAqN with A reeting Eq.(24), one reovers the �rst two

eigenvalues of A as �1;2(A) = 0 while the remaining are given as

�3;4 =
�(1 + Z)�

q
�2(1 + Z)2 + Z

2
(�3�2 � 2� + 1)

2Z
;

and

�5;6 =
�(1 + Y )�

q
�2(1 + Y )2 + Y

2
(�3�2 � 2� + 1)

2Y
:

Hene, a suÆient ondition for stability learly is that � � 0 and �3�2 � 2� + 1 � 0, i.e.,

� � 1

3
:

In ase a fae resides at a metalli ondutor we employ the boundary onditions

n̂�E�N = �n̂�E+
N ; n̂�H�

N = n̂�H+
N ;

and Z+ = Z� = Z, Y + = Y � = Y .

Following the exat same proedure as above, we reover the onstraint

(1� �)HT
NRE +

�

2Z
ET
NR

TREN � 0 :

Computing the eigenvalues of the orresponding quadrati form yields two pairs of the form

�1 = 0 ; �2;3 =
�

Z
� 1

Z

p
�2 + Z2(� � 1)2 :

Clearly, the only way to guarantee positivity of the eigenvalues and hene the quadrati form is to hoose

� = 1.

The result on loal, elementwise stability, only supplies a neessary but not suÆient ondition for

stability. To understand the issue of global stability we must also onsider the inuene of the oupling

between the individual elements.
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Lemma 4.4 (Fae Stability). Assume that a solution to the Maxwell's equations exists on a domain on-

sisting of two elements sharing one ommon fae. Stability of the semi-disrete approximation of Maxwell's

equations, Eqs.(22)-(23), on this domain is guaranteed provided

� = 1 :

Proof. Consider Maxwell's equations on the semi-disrete form, Eqs.(20)-(21). Multiply from the left

with (Ej ;Hj) and sum over all the nodes in D to obtain

1

2

d

dt

�
E�N ; "E�N

�
D
=
�
E�N ;r�H�

N

�
D
+
�
E�N ;SE

�
D

+

I
ÆD

�E�N �
�
n̂� � Z+[HN ℄� n̂� � [EN ℄

Z+ + Z�

�
dx ;

and

1

2

d

dt

�
H�

N ; �H�
N

�
D
= � �

H�
N ;r�E�N

�
D
+
�
H�

N ;SH
�
D

�
I
ÆD

�H�
N �

�
n̂
� � Y +[EN ℄ + n̂� [HN ℄

Y + + Y �

�
dx :

Addition of the two ontributions, appliation of the divergene theorem and standard vetor identities yields

d

dt
Ek =

I
ÆD

(1� �)n̂� � �H�
N �E�N

�
+�

�
Y +

Y
E�N � �n̂� �H+

N

�� Z+

Z
H�

N � �n̂� �E+
N

��

��

�
1

Z
E�N � �n̂� � �

n̂
� � [EN ℄

��
+

1

Y
H�

N � �n̂� � �
n̂
� � [HN ℄

���
dx

+
�
E�N ;SE

�
D

+
�
H�

N ;SH
�
D

:

To understand the stability of a ommon edge, it suÆes to onsider the ase where SE = SH = 0. Adding

the ontribution from two edges, utilizing that n̂� = �n̂+, yields

d

dt
E =

I
ÆD

(1� �)
�
n̂
� �H�

N �E�N � n̂� �H+
N �E+

N

�
+

�

Z
[EN ℄ � n̂� � n̂� � [EN ℄ +

�

Y
[HN ℄ � n̂� � n̂� � [HN ℄ dx

=�
I
ÆD

(1� �)n̂� � �H+
N �E+

N �H�
N �E�N

�
� �

Z
jn̂� � [EN ℄j2 � �

Y
jn̂� � [HN ℄j2 dx :

A suÆient ondition for this to be negative is

(1� �)
��
H�

N

�T
RE�N � �

H+
N

�T
RE+

N

�
+

�

Z
[EN ℄

TRTR[EN ℄
T +

�

Y
[HN ℄

TRTR[HN ℄
T � 0 :
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Inspetion reveals that by de�ning q = [E+
N ;E�N ;H+

N ;H�
N ℄

T , the ondition may be expressed is given as a

symmetri quadrati form, i.e., it suÆes to hoose � suh that all eigenvalues of A are non-negative. Leaving

out the lengthy and purely algebrai manipulations, we onsider the resulting two sets of eigenvalues of A

given as

�1;2 = 0 ; �3;4 =
�

Z
� 1

2Z

q
4�2 + Z(� � 1)2 ;

and

�5;6 =
�

Y
� 1

2Y

q
4�2 + Y (� � 1)2 :

Clearly, the hoie of � = 1 is the only feasible solution that ensures stability of the upwind sheme used for

onneting the elements.

With these results in plae, we an now state

Theorem 4.5 (Global Stability). Assume that a unique solution to Maxwell's equations exists in the

general domain, 
. Assume furthermore that the boundary of 
 is either periodi or terminated with a

perfetly onduting boundary.

Then the semi-disrete approximation to Maxwell's equations, Eqs.(22)-(23), is globally stable in the

sense that

d

dt
E � C

�
E +

SE2


+
SH2




�
;

provided only that

� = 1 :

Proof. As eah fae is ounted only one, the result follows diretly by summation over the all the faes

and the appliation of Lemma 4.3 and Lemma 4.4

d

dt
E �

X
k

�
EN ;SE

�
D
k
+
�
HN ;SH

�
D
k

� C

�
E +

SE2


+
SH2




�
;

using that
�
EN ;SE

�
D

� C(kENk2D +
SE2

D

), kENk2D � C (EN ; "rEN )D sine " � 1. A similar line of

reasoning is appliable for
�
HN ;SH

�
D

and the result on global stability follows.

4.4. Convergene. Having established onsisteny as well as stability in equivalent norms, onvergene

follows diretly from the equivalene theorem with a bound on the loal error

"D(t) = kE(t)�EN (t)kD + kH(t)�HN (t)kD ;

of the form

"D(t) � Ce�t
�
"D(0) +

Z t

0

kT q(s)k
D
ds

�
;
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and global onvergene is hene established up to exponential growth in time as is typial for Lax-type

stability results.

As it turns out, however, we an do better and reover a sharp bound for the growth in time by

generalizing ideas �rst put forward in the ontext of �nite di�erene methods [34℄. To realize this, let us

make the natural split of the elementwise error as

"D � (kE �PNEkD + kH �PNHkD) + (kPNE �ENkD + kPNN �HNkD)
= "a

D
+ "b

D
;

where "a
D

is due to the error introdued by the polynomial approximation of the exat solution while "b
D

measures the errors assoiated with the semi-disrete approximation of Maxwell's equations.

To bound "a
D
we need only reall Lemma 4.1 to state

Lemma 4.6. Assume that q = [E;H℄
T 2 W p(D). Then there exists a onstant, C, dependent on p and

the angle ondition of D, but independent of q, h = diam(D), and n, suh that

kq �PNqkD � C
h�

np
kqkWp(D) ;

where � = min(p; n+ 1) and p � 0.

To arrive at a bound for "b
D
, let us �rst onsider the projetion of the trunation error, PNT q =h

PNTE ;PNTH
iT

, on the form

�
Li;PNTE

�
D

=(Li;PNr�H �PNr�PNH)
D

(25)

� 1

Z

�
Li; n̂�

�
Z+[PNH℄� n̂� [PNE℄

��
ÆD

;

�
Li;PNTH

�
D

=� (Li;PNr�E �PNr�PNE)
D

(26)

� 1

Y

�
Li; n̂�

��Y +[PNE℄� n̂� [PNH℄
��

ÆD
:

This is derived by introduing PNq into the semi-disrete sheme, Eqs.(20)-(21), exploiting that q satis�es

Maxwell's equations, Eq.(3).

The projetion of the trunation error an be bounded by the exat solution as

Lemma 4.7. Assume that q = [E;H℄
T 2 W p(D); p � 3=2. Then there exists a onstant, C, dependent

on p, the angle ondition of D and the loal material properties, "r; �r, but independent of q, h = diam(D),

and n, suh that

kPNT qk
D
� C

h��1

np�3=2
kqkWp(D) ;

where � = min(p; n+ 1).

Proof. We need only establish the result for PNTE , Eq.(25), as the derivation of the result for PNTE

following idential lines.

As PNTE 2 P3n =
P

j T
E
j Lj(x) we an multiply from the left with TE

j and sum over all the nodes to

reover
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PNTE2
D

=
�
PNTE ;PNr� (H �PNH)

�
D

� 1

Z

�
PNTE ; n̂�

�
Z+[PNH ℄� n̂� [PNE℄

��
ÆD

:

Using the Cauhy-Shwarz inequality and the estimate [25℄

kqNkÆD � C
n

h1=2
kqNkD ;

for all q 2 P3n(D), h = diam(D), we reover

PNTE
D

�C1 kPNr� (H � PNH)k
D

(27)

+C2
n

h1=2
1

Z

Z+[PNH� ℄� [PNE� ℄

ÆD

;

where we for simpliity have introdued the tangential omponents

E� = n̂�E ; H� = n̂�H :

To bound the �rst term we invoke Lemma 4.1 to obtain

kPNr� (H �PNH)k
D
� kr� (H �PNH)k

D
� C

h��1

np�1
kHkWp(D) :(28)

Consider now terms of the type

k[PNE� ℄kÆD �
PNE+

� �E+
�


ÆD

+
PNE�� �E�� ÆD ;

where E+
� = E�� = E� represents the exat solution at ÆD. Realling the trae inequality [35℄

kqk2ÆD � C
�
kqk

D
krqk

D
+ h�1 kqk2

D

�
; q 2W 1(D) ;

implies that

kq �PNqk2ÆD � C
�
kq �PNqkD kq �PNqkW 1(D) + h�1 kq �PNqk2D

�
;

and we reover by ombination with Lemma 4.1 the bound

k[PNE� ℄kÆD � C
h��1=2

np�1=2
kEkWp(D) :

Combining this with Eqs.(27)-(28) one obtains the result

PNTE
D

� C1
h��1

np�1
kHkWp(D) + C2

h��1

np�3=2

�
kEkWp(D) + kHkWp(D)

�
;

where (C1; C2) are independent of h and n but C2 depends on the loal material properties (Z�; Y �).

The result for
PNTH

D

is reovered in the same way, yielding the result

PNTH
D

� C1
h��1

np�1
kEkWp(D) + C2

h��1

np�3=2

�
kEkWp(D) + kHkWp(D)

�
;
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hene establishing the stated result.

Let us now return to the original quest for an improved onvergene estimate and onsider the error

equation

�
Li; "

�

�t
(PNE �EN )

�
D

=(Li;PNr� (PNE �EN ))
D

(29)

+
1

Z

�
Li; n̂�

�
Z+[PNH �HN ℄� n̂� [PNE �EN ℄

��
ÆD

+
�
Li;PNTE

�
D

;

for the eletri �eld and similarly for the magneti �eld

�
Li; �

�

�t
(PNH �HN )

�
D

=� (Li;PNr� (PNH �HN ))
D

(30)

� 1

Y

�
Li; n̂�

�
Y +[PNE �EN ℄ + n̂� [PNH �HN ℄

��
ÆD

+
�
Li;PNTH

�
D

:

The ombination of these expressions with Lemma 4.7 and the methodology of the stability proof in Se.

4.3 yields the improved onvergene result

Theorem 4.8. Assume that a solution, q 2 W p(D), p � 3=2 to Maxwell's equations in 
 =
S
k D

k

exists. Then the numerial solution, qN , to the semi-disrete approximation Eqs.(22)-(23) onverges to the

exat solution and the global error,
P

k kq � qNkDk is bounded as

X
k

kq(t)� qN (t)k
D
k �C

X
k

�kq(t)�PNq(t)kDk
+ kPNq(0)� qN (0)k

D
k + t max

s2[0;t℄
kT q(s)k

D
k

�

�C
X
k

�
h�

np
kq(0)kWp(Dk) + t

h��1

np�3=2
max
s2[0;t℄

kq(s)kWp(Dk)

�
;

where C depends on the material properties and the angle onditions of the elements but not on h and n.

Proof. Sine PNE �EN 2 P3
n and PNH �HN 2 P3

n we an use these as elementwise test funtions in

Eq.(29) and Eq.(30), respetively, to obtain

1

2

d

dt
((PNE �EN ; "(PNE �EN ))

D
+ (PNH �HN ; "(PNH �HN ))

D
)

=

I
ÆD

(n̂ � (PNH �HN )� (PNE �EN )

+
1

Z
(PNE �EN ) � n̂� �Z+[PNH �HN ℄� n̂� [PNE �EN ℄

�
� 1

Y
(PNH �HN ) � n̂� �Y +[PNE �EN ℄ + n̂� [PNH �HN ℄

��
dx�

PNE �EN ;T
E
�
D

+
�
PNH �HN ;T

H
�
D

;

where we have employed integration by parts one. Following the approah of Lemma 4.4 we sum over all

the faes to obtain
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1

2

d

dt

X
k

�
(PNE �EN ; "(PNE �EN ))Dk + (PNH �HN ; "(PNH �HN ))Dk

�
��

X
k

h
k[PNE �EN ℄k2Dk + k[PNH �HN ℄k2Dk

i

+
X
k

h�
PNE �EN ;PNTE

�
D
k
+
�
PNH �HN ;PNTH

�
D
k

i
:

Note that sine " and � are uniformly bounded away from zero the material weighted energy norm is L2-

equivalent. Furthermore, the term assoiated with the jump at the element interfaes is stritly negative

and we reover the bound on the error

1

2

d

dt

X
k

kPNq � qNk2Dk � C
X
k

(PNq � qN ;PNT q)
D
k ;

whih, by using the Cauhy-Shwarz inequality and integration in time yields the result

X
k

kPNq(t)� qN (t)kDk � C
X
k

�
kPNq(0)� qN(0)kDk + t max

s2[0;t℄
kPNT q(s)k

D
k

�
:

Now ombining this with Lemma 4.6 and Lemma 4.7 establishes the result and proves onvergene on weak

assumptions of loal, elementwise smoothness of the solution.

We have hene established the semi-disrete result that the error an not grow faster than linearly in

time and that we an ontrol the growth rate by inreasing the resolution. As we shall verify in Se. 5 this

linear growth is a sharp result. However, the omputations shall also verify that we an expet that the

growth rate approahes zero spetrally fast when inreasing the order of the approximation, n, provided the

solution is suÆiently smooth.

Prior to that, a few omments are in plae. A rigorous generalization of the results obtained above

to over situations with general urvilinear elements and/or spatial variation of the materials within eah

element is not straightforward. This is due to the generation of higher order polynomials from the produts

of the individual polynomial expressions of the �elds, the materials and the geometry. One an, however,

gain an intuitive understanding of how the geometry and material variations may impat the auray by

assuming that the polynomial representations are not of the �elds only but rather of the ombined funtions,p
J(
p
"rE;

p
�rH). In this ase, we are working only with n-order polynomial expansions and one an expet

that the overall piture from the results derived above will hold approximately for these new funtions.

Hene, where we originally had an n'th order polynomial to represent the �elds, (E;H) we are now left

with an n'th order polynomial to represent the ombined variation. One onsequene of this is that we loose

auray when onsidering only the �elds as we essentially have to share the resolution power between the

�elds, the geometry as well as the material variation. In partiular, if the element is strongly distorted,

i.e., J varies signi�antly, one an expet loss of auray as ompared to the straightsided approximation.

Provided, however, that the geometry is smooth, i.e., J nonsingular, and the loal material variation is

smooth, spetral onvergene is preserved.

4.5. Convergene of Divergene Error. In the absene of soures, it is well known that the eletri

and the magneti �elds must remain solenoidal throughout the omputation. An assumption to this e�et

was indeed imposed by hoosing to solve only Maxwell's equations on the form Eq.(3) and onsidering the

divergene onditions as onsisteny onditions on the initial onditions. However, given that we an not
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expet to reover the projetion of the analyti solution but rather will ompute a di�erent, albeit onvergent,

solution we need to onsider the divergene of this numerial solution to justify the original hoie of solving

Eq.(3) only.

Using the results of Se. 4.4 we an state

Theorem 4.9. Assume that a solution, q 2 W p(D), p � 7=2 to Maxwell's equations in 
 =
S
k D

k

exists. Then there exists a onstant, C, dependent on p and the angle ondition of Dk, but independent

of q, h = diam(D), and n, suh that the divergene of the numerial solution, qN , to the semi-disrete

approximation Eqs.(22)-(23) is bounded as

X
k

kr � qN (t)kDk � C
X
k

�
h��1

np�1
kqkWp(Dk) + t

h��2

np�7=2
max
s2[0;t℄

kq(s)kWp(Dk)

�
;

where � = min(p; n+ 1) and p � 0.

Proof. Considering the loal divergene of H on any D we have

kr � (H �HN )kD � kr � (H �PNH)k
D
+ kr � (PNH �HN)kD :

The �rst term we an bound immediately through Lemma 4.1 as

kr � (H �PNH)k
D
� C

h��1

np�1
kHkWp(D) ;

where � = min(p; n+ 1) and p � 1.

Utilizing the inverse inequality [25℄

kr � uNkD �
n2

h
kuNkD ;

for all uN 2 P 3
n(D), we an bound the seond term as

kr � (PNH �HN )kD � C
n2

h
kPNH �HNkD

� Ct
n2

h
max
s2[0;t℄

PNTH(t)

D

� Ct
h��2

np�7=2
max
s2[0;t℄

�
kE(s)kWp(D) + kH(s)kWp(D)

�
;

by ombining the results of Lemma 4.7 and Theorem 4.8. An equivalent bound an be obtained for the

divergene of EN in the ase of a soure free medium whih, ombined with the above, yields the result.

As ould be expeted, the result inherits the temporal linear growth from the onvergene result and

on�rms the possibility of reovering spetral onvergene of the divergene under the assumption of suÆient

smoothness of the solutions. It should be noted that while the result on�rms high-order auray and

onvergene, the estimate for the atual onvergene rate is almost ertainly suboptimal and leaves room for

improvement.

4.6. Entr'ate on the Sattered Field Formulation. Let us briey return to an analysis of the

sattered �eld formulation disussed in Se. 2.1, with the modi�ed sattered �eld equations given in Eqs.(7)-

(8). We reall that we split the solution, q, as

q = qs + qi ;
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and exploit the linearity of Maxwell's equations to solve for the sattered �eld, qs, subjet to the foring by

the inident �eld, qi. As disussed in Se. 2.1, this does not alter the sheme in any signi�ant way exept

at metalli boundaries where the boundary ondition on the eletri �eld omponent takes the form

n�Es;+
N = �n�Es;�

N � 2PNEi ;

in the notation of Lemma 4.4, while the boundary ondition on the magneti �eld remains

n�Hs;+
N = n�Hs;�

N :

Sine this onstitutes the only di�erene, we an restrit the subsequent analysis to the ase of a metalli

objet in vauum without loss of generality as all other ompliations are overed by the analysis of the total

�eld sheme.

It suÆes to onsider the behavior of the omputed solution whih an be bounded as stated in the

following.

Theorem 4.10. Assume that a sattered �eld solution, qs 2 W p(D), p � 3=2 to Maxwell's equations

in 
 =
S
k D

k exists, and that the inident �eld qi 2 W p(D), p � 3=2. Then the energy of the numerial

sattered �eld solution, qsN , to the semi-disrete approximation of Eqs.(7)-(7) is bounded as

X
k

kqsN (t)kDk �C
X
k

�PNqi(t)Dk
+
PNqi(0) + qsN (0)Dk + t max

s2[0;t℄

T q;i(s)

D
k

�
;

where C depends on the material properties and the angle onditions of the elements but not on h and n.

Proof. The proof proeeds in a way very similar to that of Theorem 4.8. Combining the equation for the

sattered �eld solution, qsN , with the equation desribing the projetion of the inident �eld, PNqi, summing

over all the faes and using qsN + PNqi as the test funtion we reover

1

2

d

dt

X
k

qsN + PNqi
2
D
k ��

X
Interior Faes

[PNqi + qsN ℄2Dk
�4

X
PEC Faes

[PNEi +Es
N ℄
2
D
k

+
X
k

�PNqi + qsN ;PNT q;i
�
D
k ;

where the dissipative terms are gathered over the interior and PEC faes separately due to di�erent boundary

onditions, while the global sum involves the trunation error, PNT q;i, assoiated with the projetion of the

inident �eld.

This latter term an be bounded as in Lemma 4.7

PNT q;i

D
� C

h��1

np�3=2

qi
Wp(D)

;

where � = min(p; n+ 1).

Proeeding as for Theorem 4.8 we subsequently reover
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X
k

qsN (t) + PNq
i(t)

D
k �C

X
k

qsN (0) + PNq
i(0)


D
k

+t max
s2[0;t℄

X
k

PNT
q;i(s)


D
k ;

from whih

X
k

kqsN(t)kDk �C
X
k

PNq
i(t)

D
k

+
X
k

qsN (0) + PNq
i(0)


D
k + t max

s2[0;t℄

X
k

PNT
q;i(s)


D
k ;

thus establishing the result.

Hene, also the sattered �elds remain bounded up to linear growth in time. An interesting di�erene

between this result on that of Theorem 4.8 for the total �eld formulation is that the auray and growth rate

of the former is ontrolled solely by the smoothness of the inident �eld with the potential for exponential

onvergene for suÆiently smooth illuminating �elds.

5. Validation and Performane of the Sheme. Having developed the omplete formulation for

the time-domain solution of Maxwell equations, supported by a thorough onvergene analysis, it is now

time to onsider the atual performane of the omputational framework.

In the following we shall disuss the validity of the main theoretial results through a few examples

as well as exemplify the versatility and overall auray and performane of the omplete framework for a

number of benhmarks. Temporal integration of the semi-disrete approximation given in Eqs.(20)-(21) is

done using a 4th order, 5 stage low-storage Runge-Kutta sheme [36℄ and a stability limited time-step saling

as

�t � CFLmin



p
"r�rj�j�1 ;

with
p
"r�r reeting the modi�ed loal speed of light due to materials and

� =
jr�j
��

+
jr�j
��

+
jr�j
��

:

Here j � j refers to the absolute value of eah and of the vetor omponents, i.e., jr�j = [j�xj; j�yj; j�z j℄T .
Hene, � provides a measure of the loal grid-distortion as a onsequene of the mapping, 	, of I into D, and

(��;��;��) measures axial distane separating neighboring nodal points in I. In this setting CFL typially

takes values of O(1) while the time step, �t, sales as �t ' l=n2 where l is the minimum edge length on all

tetrahedra and n is the polynomial order of the approximation.

As a general measure of error we shall use the disrete Lp-norm of the error de�ned as

kÆf(t)kp =
0
�X

j;k

�
fN (x

k
j ; t)� f(xk

j ; t)
�p1A

1=p

;

where fN (x; t) is the numerial approximation to the exat value, f(x; t) summed over all nodes, j, within

eah of the k elements.
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Fig. 3. In a) is shown the temporal envelope of the maximum error on Hy(t) in the two-dimensional avity for di�erent

orders, n, of the approximation. The slope of the linear growth is plotted in b), on�rming spetral onvergene as predited

in Theorem 4.8.

5.1. Elementary Tests and Veri�ation of Theoretial Results. As a �rst veri�ation of the

theoretial estimates, and in partiular the linear growth predited in Theorem 4.8, we onsider the solution

of the two-dimensional Maxwell's equations in the TM-polarization, i.e., we solve for (Hx; Hy; Ez). There

is, however, nothing speial about this polarization.

The omputational problem is that of a simple two-dimensional vauum �lled avity, assumed to be

de�ned by (x; y) 2 [�1; 1℄� [�0:25; 0:25℄, with the walls at x = �1 taken to be perfet eletrial onduts

while the avity is assumed to be periodi in the y-diretion. The initial ondition is a simple osillatory

avity solution as

Hx(x; y; 0) = 0 ; Hy(x; y; 0) = os(�x) ; Ez(x; y; 0) = 0 ;

and the omputational domain is disretized by 8 equivalent isoseles, eah with 0.5 wavelength long sides.

In Fig. 3 we show the temporal envelope of the maximum error of Hy(t), omputed using the same

eight elements while inreasing the order of the approximation. Following the main result, Theorem 4.8, we

expet that the error an grow at most linearly in time and that the growth rate should vanish spetrally for

smooth solution. The results in Fig. 3 not only on�rm the validity of both statements but also illustrates

that Theorem 4.8 is sharp, i.e., we an not in general guarantee slower than linear error growth, although

we an ontrol the growth rate by the order of the approximation.

To further evaluate the performane of the sheme, let us briey onsider the behavior of the divergene

and the ability of the sheme to propagate waves over long distanes. For this purpose we shall ontinue to

onsider the propagation of plane waves in simple retangular domains, tiled using isoseles, eah with an

edge length of 0:5 wavelength. In Fig. 4 we show the global L2-error of the divergene ofH for a plane wave

propagating in a fully periodi domain being 2 wavelengths long and 0.5 wavelength wide, tiled using only 8

triangles. Consistent with the theoretial result in Theorem 4.9 the sheme preserves the divergene error to

the order of the sheme, i.e., the error vanishes spetrally as we re�ne the order, n, of the approximation. The

very notable even-odd behavior in the onvergene is a onsequene of the alignment with the triangulation.

The ability to propagate waves over very long distanes is likewise illustrated in Fig. 4 where we also show

the L2-error of the Hy omponent. Contrary to the small problems onsidered �rst, we are here onsidering

a 200 wavelength long domain and with the exat solution being use to trunate the omputational domain.

The domain is tiled using isoseles with an edge length of 0.5 wavelength and a total of 800 elements. We
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Fig. 4. In a) is shown the global L2-error of the divergene of H for a plane wave propagating in a fully periodi domain

as a funtion of time and order of approximation, n, on�rming that the sheme onserves divergene to the order of the

approximation, i.e., it deays spetrally with inreasing polynomial order. The L2-error of Hy as a funtion of time and order

of approximation, n, in a 200 wavelength long domain is shown in b), on�rming the ability to propagate waves over very long

periods of time using only few points per wavelength.
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Fig. 5. In a) we illustrate the prism tiled using three high-order tetrahedra while b) illustrates the maximum of Hx for a

(y; z)-polarized plane wave propagation as a funtion of time and order of the approximation, n, on�rming spetral onvergene

for the three-dimensional ase.

observe in Fig. 4 an expeted slow error growth until t = 200 after whih it settles at a maximum error

level. This level, however, deays spetrally as we inrease the order, n, of the approximation. Using as a

guideline that two edges span a wavelength, we see that with 7 points per wavelength (two n = 3 triangles)

yields about 10% error, only 9 points per wavelength (two n = 4 triangles) results in about 1% error while 11

points per wavelength (two n = 5 triangles) ensures about 0.1% error after 400 periods. This is a testament

to the advantage of using a high-order framework for wave propagation problems.

Let us �nally onsider a simple three-dimensional test ase in whih we have tiled a straightfaed prism

using three straightfaed tetrahedra as illustrated in Fig. 5. The test is that of a plane wave propagating

through the prism with the exat solution being used as the boundary onditions. As shown in Fig. 5 we

reover a rapid exponential onvergene as the order, n, of the approximation is inreased.

5.2. Two-Dimensional Examples. Having veri�ed the performane of the basi omputational setup

as well as the theoretial estimates, let us now onsider problems of a less simple and more realisti harater.

This shall not only allow us to illustrate more general features of the proposed framework but shall also be
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Fig. 6. In a) is shown the �nite element grid, onsisting of 854 triangles, used for omputing sattering by a perfet

eletrially onduting ylinder of size ka = 15�. A setion of the grid in b) illustrates the bodyonforming nature of the grid

and the nodal grid supporting the high-order approximation.

used to verify that all the properties of the high-order unstrutured grid approah, seen so onviningly in

the last setion for simple examples, arry over to the solution of more realisti problems.

We shall fous the attention on problems desribed by the two-dimensional TM-polarized Maxwell's

equations on the form

�r
�Hx

�t
= ��Ez

�y
;(31)

�r
�Hy

�t
=

�Ez

�x
;

"r
�Ez

�t
=

�Hy

�x
� �Hx

�y
;

subjet to boundary onditions between two regions with material parameters, "
(k)
r and �

(k)
r , for k = 1; 2, as

n̂�H(1) = n̂�H(2) ;

E(1)
z = E(2)

z :

Here H(k) = (H
(k)
x ; H

(k)
y ; 0)T and n̂ = (n̂x; n̂y; 0)

T represents a unit vetor normal to the interfae. For the

ase of a perfetly onduting metalli boundary the ondition beomes partiularly simple as

Ez = 0 :

The omputational domain is trunated with a Cartesian PML [37℄ using a quadrati absorption pro�le.

It is worthwhile emphasizing that results of equal quality and overall auray as the ones shown in the

following for the TM-polarized ase has been obtained for the TE-polarized ase.

As a �rst example we onsider that of plane wave sattering by a perfetly onduting irular ylinder

with a radius of a = 7:5�, i.e., ka = 15�. The surrounding medium is assumed to be vauum, i.e., "r = �r = 1.

The �nite element grid, onsisting of 854 triangles, utilized for this omputation is shown in Fig. 6 along with

a setion of the grid illustrating the full bodyonforming nature of the approximation as well as the nodal grid

supporting the high-order approximation. Maxwell's equations are solved in the sattered �eld formulation
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Fig. 7. In a) is shown the bistati radar ross setion, RCS(�), as omputed using the exat series representation as well

as the unstrutured grid method at di�erent polynomial orders, n. Evidene of high-order onvergene for the RCS-omputation

is given in b) showing exponential deay of the error in RCS(dBm) with inreasing order of the approximation.

and Prony extrapolation [38℄ is used to redue the required omputing time to reah the harmoni steady

state.

In Fig. 7 we ompare the omputed bistati radar ross setion, RCS(�), with the exat series solution

[39℄, for various orders, n, of the approximation using the �nite element grid illustrated in Fig. 6. As

expeted we observe a very rapid onvergene with inreasing n, yielding a reasonable engineering auray

omputation with the 4th order sheme while inreasing the order to n = 8 results in a perfet math. A

quantitative on�rmation of this is also shown in Fig. 7, illustrating the expeted exponential onvergene

of the RCS with inreasing n.

One of the most appealing advantages of a high-order framework on simplies is the ability to import

a strongly skewed �nite element grid and reover a fully onverged solution by inreasing the order of the

approximation rather than having to reonstrut an improved �nite element disretization. This property

is partiularly important and useful for large three-dimensional problems where the grid generation phase

an be very omplex and time-onsuming. As an illustration of this approah to onvergene, we onsider

in Fig. 8 the plane wave sattering from a PEC ylinder with a radius of one wavelength, i.e., ka = 2�. The

measure of auray and onvergene is based on the observation that the symmetry of the problem makes

one expet the sattered �elds themselves maintain a high degree symmetry.

This is indeed on�rmed in Fig. 8 where we show a deliberately hosen poor grid and the rapid reovery

of the symmetry of one of the sattered �eld omponents, Hx, as the order, n, of the approximation is

inreased without modifying the underlying �nite element grid. The detail to whih the symmetry is restored

is partiularly noteworthy.

As an illustration of the apability to handle materials let us onsider plane wave sattering by a pene-

trable irular ylinder with a radius of a = 3:5� onsisting of an ideal dieletri with "r = 2:0, i.e., similar to

that of glass. The problem is again solved in a pure sattered �eld formulation and the fully body-onforming

�nite element disretization, onsisting of a total of 1020 triangles, is illustrated in Fig. 9. We note that

the absorbing PML layer, ontaining about 2/3 of the total amount of triangles is unneessarily thik for

illustration only and an be dereased without loss of auray.

As is likewise illustrated in Fig. 9 we reover the full bistati radar ross setion, RCS(�), with exellent

orrespondene to the exat solution [40℄ and quantitative agreement over a 40 db dynami range.
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Fig. 8. Example of onvergene by inreasing the order of the approximation, n, on a deliberately hosen highly skewed

�nite element grid, illustrated in a). The onvergene is illustrated in b)-f) for inreasing the order from 4'th order to 12'th

order, showing a omplete reovery of the expeted symmetry of the sattered �eld omponent, Hx.

5.3. Three-Dimensional Examples. As a �rst veri�ation of the general three-dimensional frame-

work, let us onsider plane wave sattering by a ka = 10 perfetly onduting sphere, the analyti solution

of whih is given by a Mie-series [39℄.

We use a fully bodyonforming grid with a total of 3000 elements, having an average edge length at the

sphere of 4�=5. Contrary to the two-dimensional ase where we used a PML to trunate the omputational

domain we hoose in the three-dimensional ase to embed the sphere in a (20�)3 ube and employ strething

of the elements as one approahes the outer boundary. The grid is strethed suh that the average edge is

about 2� at the outer boundary. As in the two-dimensional ase, all examples are done using a 4th order
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Fig. 10. Plane wave sattering by a ka = 10 metalli sphere for a �xed grid and inreasing order, n, of the polynomial

approximation. In a) we show the onvergene of RCS(�,0) for vertial polarization (TM), while b) shows RCS(�,90) for

horizontal polarization (TE) of the inident �eld.

low-storage Runge-Kutta sheme to advane in time and Prony extrapolation to identify the solution.

In Fig. 10 we illustrate the onvergene of the sheme with a �xed grid when inreasing the order of

the approximation within eah tetrahedron. Even for n = 3, i.e., a third order sheme with about 5 points

per wavelength, do we ompute a reasonable solution while inreasing the order yields a rapidly onverging

solution as one would expet.

As a onsiderably more hallenging problem, let us onsider sattering by a perfetly onduting business

ard sized metalli plate as illustrated in Fig. 11. The horizontally polarized plane wave impinges at the

metalli plate at an almost grazing angle, ausing the exitation of very strong waves along the edges of the

metalli plate. These waves ontribute dramatially to the sattering proess and need to be resolved to

aurately predit the far �eld sattering.

This problem, being one of the EMCC benhmark problems [41℄ for ode validation, is addressed by

using a total of 27000 straightsided tetrahedra, eah supporting a 4th order polynomial approximation. The

average edge length at the edge of the business ard is approximately �=5. The metalli plate is embedded

in a (20�)3 ube, with the elements being strethed to about 4� at the outer boundary.
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Fig. 11. In a) we show the geometry for the plane wave sattering by a metalli business ard while b) shows the omparison

between monostati RCS experimental results [41℄ (full line) for horizontal polarization of the illuminating �eld and partiular

omputed data points (�).

In Fig. 11 we also show the omparison between the experimentally measured monostati RCS [41℄ and

a number of partiular omputed data points. Again we observe good agreement over the full azimuthal

range with results well within the experimental error. The most signi�ant disrepany of a few dB for � � 0

is onsistent with other published results [41℄.

As a �nal example of the performane of the three-dimensional framework we shall onsider plane wave

sattering from a dieletri ylinder of �nite length. As illustrated in Fig. 12, the length of the ylinder is 5�

and the non-magneti material has a permittivity of "r = 2:25, similar to that of glass. Clearly, the nature

of the �elds is less dramati than in the previous ase and we �nd that using a total of approximately 67000

elements, supporting a 4th order approximation and with an average vauum edge length at the ylinder of

�=3, suÆes to aurately predit the far �eld sattering. The full omputational domain is a ylinder of

radius 16� and length 23� with the strethed elements having a average length of 4� at the outer boundary.

In Fig. 12 we show a diret omparison between the full bistati RCS for a plane wave impinging diretly

at the end of the ylinder as omputed using the urrent framework as well as an independently veri�ed

pseudospetral multi-domain axi-symmetri ode [12℄. As expeted we �nd an almost perfet agreement

between the results of the two shemes over approximately 50 dB dynamial range.

5.4. Parallel Performane. The disontinuous element formulation of the sheme enables a highly

eÆient implementation at ontemporary large sale distributed memory mahines. While this is a lesser

onern for the two-dimensional shemes, it is essential to enable the modeling of large sale three-dimensional

problems.

The developed shemes are implemented in a ombination of Fortran and C with all omputationally

intensive part written in Fortran and taking advantage of Level 3 BLAS [42℄ where possible. The parallel

interfae is written in MPI [43℄ with METIS [44℄ used to distribute the elements over the proessors. To

ensure high ahe eÆieny, we employ bandwidth minimization [45℄ of the nodal points loally to the

proessors [46℄. For omputations maximizing the apaity of the proessors, i.e., �lling the loal memory,

this is ritial to ensure high performane.

In Table 1 we list the parallel speedup relative to the n = 2 ase as the number of proessors are

inreased. A few things are worth noting. For a �xed size problem, the parallel speedup dereases slightly

as the number of proessors inreases whih is natural as the relative ommuniation ost inreases. On
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Table 1

Parallel speedup for a 123.000 element grid, saled to timing for n = 2 on 4 proessors (- implies insuÆient memory

loal to the nodes).

Polynomial Degrees of Number of proessors

order (n) freedom (�106) 4 8 16 32 64

2 7.4 1.0 2.0 3.9 7.5 13.7

3 14.8 - 0.9 1.8 3.5 6.4

4 25.8 - - 1.0 1.9 3.6

5 41.3 - - - 0.8 1.6
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Fig. 12. In a) we show the geometry for the plane wave sattering by a dieletri �nite length ylinder while b) shows

the RCS(�,0) for vertial polarization (�) of the illuminating �eld and RCS(�,90) for horizontal polarization (�) ompared with

results obtained using a pseudospetral axi-symmetri ode (full line) [12℄

the other hand, for problem sizes utilizing the available resoures we �nd a very high parallel eÆieny,

e.g., inreasing the problem size and the number of proessors yields a lose to onstant speedup. The data

also show a minor derease in relative performane for high order on many proessors, whih we speulate

is related to ahe e�ets known to be beome important as the size of the operators inrease [29℄. We

generally observe better than 90% parallel eÆieny, onsistent with other similar studies [47℄.

6. Conluding Remarks and Outlook. The main purpose of paper has been to introdue the reader

to a new lass of high order unstrutured grid methods suitable for the time-domain solution of Maxwell's

equations. A number of entral elements separate the urrent framework from previous attempts to develop

high-order aurate methods on unstrutured grids. The use of a purely nodal basis has a number of

advantages in terms of ease of implementation by simple matrix-vetor operations as well as the promise

to yield a highly eÆient implementation. Furthermore, the generalized disontinuous penalty sheme was

introdued, o�ering an inherently parallel disontinuous formulation with a purely blok-diagonal mass

matrix whih an be inverted in preproessing.

The partiular fous on Maxwell's equations allowed us to develop a omplete, if not optimal, onvergene

theory. A similar analysis an be ompleted for other lasses of linear problems suh as aoustis and linear

elastiity. We have on�rmed the results of the analysis by thorough omputational experiments, illustrating

the exibility, versatility, and eÆieny of the proposed high-order aurate unstrutured grid framework.

While we have foused on linear systems in general and Maxwell's equations in partiular, the entral

elements of the framework allows for more general formulations that enable the solution of typial nonlinear
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systems of onservation laws. This naturally raises questions about proper formulation of the uxes at

interfaes, onservation, entropy solutions and stability of high-order shemes when approximating problems

with disontinuous solutions. We shall address these issues in [30℄ where we shall also demonstrate the

performane of suh generalized formulations for the solution of onservation laws.

Aknowledgment. The authors extend their appreiation to Prof. D. Gottlieb and Dr. A. Ditkowski,

Brown University, for many fruitful disussions.

EÆient and Aurate Implementation Tehniques. From the disussions in Se. 3.2 it is lear

that the Vandermonde matrix, V, plays a ruial role in setting up the disrete operators for interpolation

and di�erentiation. The properties of V, e.g., its onditioning, depends exlusively on the struture of nodal

set, �j , and on the way in whih we hoose to represent the basis, i.e., pi(�). While the former is hosen to

ensure well behaved Lagrange interpolation polynomials, we have signi�ant freedom in the spei�ation of

pi(�).

A partiularly simple hoie is that of the multivariate monomial basis, i.e., pi(�) = �i�j�k. However,

even for interpolation in one dimension, i.e., pi(�) = �i, is it well known that this basis leads to the lassial

Vandermonde matrix with an exponentially growing ondition number. Hene, even for moderate values of

n an we expet severe problems when attempting to ompute the ation of V�1. The well known solution

to this problem is to hoose a basis that is orthonormalized with respet to some proper inner produt to

assure the maximum degree of linear independene of the basis.

Suh a basis has been known for long [48, 49, 50℄ and takes the form

 ijk(�) = P
(0;0)
i (r)

�
1� s

2

�i

P
(2i+1;0)
j (s)

�
1� t

2

�i+j

P
(2i+2j+1;0)
k (t) ;(32)

where

r = �2(1 + �)

� + �
� 1 ; s =

2(1 + �)

1� �
� 1 ; t = � ;

and P
(�;�)
n (x) signi�es the lassial Jaobi polynomial of order n [51℄.

The tensor produt struture of the basis, Eq.(32), beomes evident when one realizes that while � is

restrited by I, the mapped oordinates, (r; s; t), overs [�1; 1℄3. Furthermore, it is easy to see that the

polynomial spae P3
n an expressed as

P3
n = span f ijk(�); i; j; k � 0; i+ j + k � ng :

An important property of the basis, Eq.(32), is its orthogonality on I [21℄ asZ
I

 ijk(�) pqr(�) d� = ijkÆijk;pqr ;

where Æijk;pqr is the multi-dimensional Dira delta and the normalization is

ijk =
2

2i+ 1

22i+2

2(i+ j) + 2

22(i+j)+3

2(i+ j + k) + 3
:

Let us introdue the index, � 2 [0; N ℄, reeting some hosen ordering of (i; j; k) and hene  ijk . We an

thus rename the polynomial basis  ijk(�) =  �(�) to simplify the notation in the subsequent disussion.

34



With this mahinery in plae, let us address how to initialize the basi operations and the assoiated

operators needed for solving partial di�erential equations with the urrent ontext in an eÆient and aurate

manner.

Using the orthogonal basis,  �, it is natural to de�ne the Vandermonde matrix to have the entries

Vij =
1p
j
 j(�i) :

The relation between the nodal and the modal representation of a funtion, f , follows diretly from Eq.(12)

as

f = Vf̂ ; f̂ = V�1f :

Furthermore, we an ompute the entries of the di�erentiation matries diretly by de�ning the entries of

P(�;�;�), Eq.(15), using the derivatives of  i(�) expressed expliitly by the identity [51℄

d

d�
P (�;0)
n (�) =

1

2
(n+ 1+ �)P

(�+1;1)
n�1 (�) :

In an equally simple and straightforward way we an de�ne spatial �ltering matries, F, as

F = V�(i; j; k)V�1 ;

where the order p �lter itself is de�ned as

�(i; j; k) = exp

�
��

�
(i+ j + k)(i+ j + k + 3)

n

�p�
;

suh that �ltering is aomplished through a straightforward matrix multiply at a ost equivalent to that of

omputing a spatial derivative.

While the interpolation, di�erentiation, and �ltering operators will play a ruial role in the solution of

the partial di�erential equations, we shall also need to evaluate inner produts on the general urvilinear

tetrahedron, i.e., we shall need an eÆient and aurate proedure for omputing

(fN ; gN)D =

Z
I

fN (�)gN(�)J(�)d� ;

where J refers to the transformation Jaobian for the mapping between D and I and fN 2 P 3
n , gN 2 P 3

n .

To evaluate this inner produt, we exploit that fN and gN are expressed uniquely by their expansion in

Lagrange polynomials as

(fN ; gN)D =

NX
i;j=0

figj

Z
I

Li(�)Lj(�) J(�) d� :

Furthermore, using the basis itself,  �(�), we an express the Lagrange polynomials themselves using Eq.(14)

on the form

Li(�) =

NX
k=0

V�1ik  k(�) :

This immediately yields the expression
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(fN ; gN)D =
NX

i;j=0

figj

NX
k;l=0

V�1ki V
�1
lj

Z
I

 k(�) l(�)J(�) d�(33)

=

NX
i;j=0

figj

NX
k;l=0

V�1ki V
�1
lj Wkl ;

where the symmetri matrix of weights, W, has the entries

Wkl =

Z
I

 k(�) l(�)J(�) d� :

On matrix form Eq.(33) beomes

(fN ; gN)D =
�
V�1f

�T
WV�1g :

For all elements we may preompute (V�1)TWV�1 in a preproessing stage, storing only the upper half of

the operator due to symmetry. In the partiularly important ase where D is a straightsided tetrahedron,

i.e., J is a onstant, the orthonormality of  � implies that W = JI, where I represents the identity matrix.

Hene, through a simple linear saling one reovers the weights for all tetrahedra with planar faes. For the

general ase where J(�) is non onstant, the entries of W are omputed exatly through over-integration by

produt rules based on Legendre Gauss quadratures [52℄.

A �nal key operation needed for the implementation of the sheme is surfae integration, i.e.,

(fN ; gN )ÆD =

I
ÆI
fN(�)gN (�)J(�) d� ;

where J(�) refers to the surfae Jaobian only. While one ould proeed as for the volume integral disussed

above, it is more natural to exploit the uniqueness and ompleteness of the Lagrange interpolation. To

illustrate the proedure, let us restrit attention to one of the faes, fae 'd' (see Fig. 1), and term those

Nd
n = 1

2 (n + 1)(n+ 2) nodes positioned at that fae for �d. Clearly, using the exat same proedure as for

the three-dimensional Lagrange polynomial disussed above, we an ompute a two-dimensional Lagrange

polynomial, ldj (�; �) based on �d. As for Lj(�), we an reover ldj as the solution to the dual problem

�
Vd
�T

ld = pd ;

where the entries of the Vandermonde matrix is

Vd
ij = pdj (�

d
i ) :

The proper basis to use is the two-dimensional version of Eq.(32) given diretly as pdj (�; �) =  ij0(�; �;�1).
This allows us to proeed exatly as for the volume integration and express the integration over fae 'd' asZ

fae d

fN (�; �;�1)gN(�; �;�1)J(�; �;�1) d� d� =
��
Vd
��1

f
d
�T

Wd
�
Vd
��1

gd ;

where fd = [fN(�
d
0); :::; fN (�

d
Nd
n
)℄T is the trae of fN at the fae. A similar de�nition is used for gd. The

matrix of surfae weights are given as

Wd
ij =

Z
fae d

 i(�; �;�1) j(�; �;�1)J(�; �;�1) d�d� :
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In the important speial ase where the fae is planar and has straight edges, orthonormality of the poly-

nomials immediately implies that Wd = JdI as for the volume ase. For the general ase we shall use a

ubature rule [53, 54, 55℄ of suÆiently high order to evaluate the inner produt, i.e., we need to interpolate

the polynomials, fN and gN , onto the M ubature nodes, �d;ub; situated at the fae. This is done by the

introdution of the interpolation operator

H = PT
�
Vd
��1

; Pij = pdi (�
d;ub
j ) ;

i.e., P is an Nd �M operator. The evaluation of the inner produt is then aomplished asZ
fae d

fN (�; �;�1)gN(�; �;�1)J(�; �;�1) d� d� =
�
fd
�T

HTWHgd ;

where the entries of the diagonal M �M matrix of weights are given as

Wii = wi

Nd

nX
k=0

HikJ(�
d
k) ;

ontaining the weights wi of the ubature as well as the interpolation of the transformation Jaobian of the

urvilinear fae. While this formulation leads to the most ompat sheme it proves advantageous to operate

diretly on the values at the ubature nodes as they do not inlude the edges and verties, i.e., we an

establish a lean fae based onnetion between elements without onsidering the multipliity of solutions at

verties and the added omplexity this introdues for the implementation and performane. Needless to say,

the whole disussion for the evaluation of the integral over fae 'd' arries over diretly to the other faes,

hene ompleting the evaluation of the full surfae integral.

It is important to realize that all the operators introdued in the above an be initialized during a

preproessing phase. Furthermore, it is worth realling the disussion in Se. 3.1 in whih we found that any

two straightfaed tetrahedra are onneted through a linear transformation. Hene, for any straightfaed D

we an form any of the operators disussed in the above diretly by a linear saling of hard-oded template

operators de�ned on I. This saves not only preproessing time but also redues the required storage spae

very substantially.
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