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HIGH-ORDER/SPECTRAL METHODS ON UNSTRUCTURED GRIDS

I. TIME-DOMAIN SOLUTION OF MAXWELL'S EQUATIONS �

J.S. HESTHAVENy AND T. WARBURTONz

Abstra
t. We present an ab initio development of a 
onvergent high-order a

urate s
heme for the

solution of linear 
onservation laws in geometri
ally 
omplex domains. As our main example we present a

detailed development and analysis of a s
heme suitable for the time-domain solution of Maxwell's equations

in a three-dimensional domain. The fully unstru
tured spatial dis
retization is made possible by the use of a

high-order nodal basis, employing multivariate Lagrange polynomials de�ned on the triangles and tetrahedra.

Careful 
hoi
es of the unstru
tured nodal grid points ensure high-order/spe
tral a

ura
y, while the equations

themselves are satis�ed in a dis
ontinuous Galerkin form with the boundary 
onditions being enfor
ed weakly

through a penalty term. A

ura
y, stability, and 
onvergen
e of the semi-dis
rete approximation to Maxwell's

equations is established rigorously and bounds on the global divergen
e error are provided. Con
erns related

to eÆ
ient implementations are dis
ussed in detail.

This sets the stage for the presentation of examples, verifying the theoreti
al results, as well as illustrating

the versatility, 
exibility, and robustness when solving two- and three-dimensional ben
hmarks in 
omputa-

tional ele
tromagneti
s. Pure s
attering as well as penetration is dis
ussed and high parallel performan
e of

the s
heme is demonstrated.

Subje
t 
lassi�
ation. Applied Mathemati
s

Key words. high-order/spe
tral a

ura
y, stability, 
onvergen
e, unstru
tured grids, Maxwell's equa-

tions

1. Introdu
tion. The ability to a

urately and reliably model wave-dominated problems 
ontinues

to be an essential, and in many 
ases an enabling, te
hnology in the development and analysis of emerging

te
hnologies su
h as stealth te
hnology, noise redu
tion, subsurfa
e exploration and opti
al 
ommuni
ation to

name a few. These are all problems 
hara
terized by being very large in terms of a 
hara
teristi
 wavelength,

geometri
ally extremely 
omplex, often 
omposed of a heterogeneous 
olle
tion of di�erent materials and all

requiring a high �delity solution with a rigorous 
ontrol of the numeri
al errors. Even for linear problems

su
h 
onditions for
es one to look beyond standard 
omputational te
hniques and seek new 
omputational

frameworks enabling the a

urate, eÆ
ient, and robust modeling of wave-phenomena over long times in

settings of a realisti
 geometri
 
omplexity.

The requirement that one 
an a

urately propagate waves over many periods of time naturally suggests

that high-order/spe
tral methods be 
onsidered [1℄. On the other hand, the use of su
h methods is tra-

ditionally in 
on
i
t with the need for signi�
ant geometri
 
exibility by being restri
ted to fairly simple

geometries. The standard approa
h to over
ome this restri
tion is to introdu
e a multi-element formulation
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in whi
h the basi
 building blo
k is parametri
ally mapped 
ubes in the spirit of �nite element methods.

This approa
h has been very su

essfully applied to the solution of problems in 
uid me
hani
s [2, 3, 4℄,

gasdynami
s [5, 6, 7, 8, 9, 10℄, and ele
tromagneti
s [11, 12, 13, 14, 15℄.

While su
h te
hniques, when appli
able, are powerful they do su�er from the need to tile the 
omputa-

tional using only hexahedral elements. Unfortunately, automated grid generation using only su
h elements

for general three-dimensional 
omputational problems of a realisti
 
omplexity remains a very nontrivial

task and is typi
ally very time-
onsuming. Furthermore, spatial adaptation, while 
ertainly possible, is

quite a 
hallenge with a method based solely on hexahedral elements. On the other hand, automated grid

generation employing a fully unstru
tured grid is signi�
antly more mature, due mainly to extensive devel-

opments within the �nite-element 
ommunity. Spatial grid adaptation is also 
onsiderably easier within a

fully unstru
tured grid formulation.

It is with these issues in mind that we present an ab initio development of a 
omputational framework

that 
ombines the strengths of a high-order/spe
tral formulation with the 
exibility of a fully unstru
tured

grid. The formulation relies on the resolution of two 
entral issues. On one hand we shall dis
uss in detail

how to represent fun
tions de�ned on triangles and tetrahedra to high a

ura
y and how this translates into

the 
onstru
tion of basi
 operators needed to solve partial di�erential equations. On the other hand we need

to address the issue of how to use su
h a high-order representation to formulate a 
onvergent s
heme suitable

for solving systems of linear hyperboli
 problems in general and Maxwell's equations in parti
ular.

Mu
h in the spirit of the original work on spe
tral element methods [2, 3℄ we shall fo
us on the formulation

of eÆ
ient and 
exible unstru
tured grid methods using nodal elements. This is in 
ontrast to past attempts

to develop high-order unstru
tured grid methods, suitable for solving time dependent problems, whi
h have

been fo
used on the use of high-order modal expansions, e.g., [16, 17, 18, 19, 20, 21℄. In these works, modal

expansions of orthogonal polynomials de�ned on the simplex are utilized while a straightforward monomial

basis is used in [22℄ (see also [23℄ and referen
es therein) mu
h in the tradition of 
lassi
al high-order �nite

element methods for ellipti
 problems [24, 25℄.

In 
ontrast to the 
lassi
al spe
tral element approa
h, however, we do not seek a globally 
ontinuous

solution but rather require that the equations be satis�ed in a dis
ontinuous Galerkin/penalty fashion. This

is related to the 
lassi
 dis
ontinuous Galerkin �nite element method [23℄ although the present approa
h

represents a more general formulation, 
ontaining the 
lassi
 dis
ontinuous Galerkin formulation as a spe
ial


ase. Su
h more general te
hniques have been known in the 
ontext of spe
tral methods as penalty meth-

ods [26℄ for a while and re
ently stable formulations on general one-dimensional [27℄, triangular [28℄, and

tetrahedral domains [29℄ have been dis
ussed. These methods all share the great advantage of a 
omplete

de
oupling of all elements, hen
e enabling high parallel eÆ
ien
y, and allows for dis
ontinuous solutions

between elements in a natural way. As we shall see later, this is essential in allowing for the in
lusion of

material interfa
es in a natural and straightforward manner.

While the majority of what we shall dis
uss is of a very general nature we have 
hosen to dis
uss in detail

the development and analysis of a high-order/spe
tral a

ura
y unstru
tured grid s
heme for the solution

of Maxwell's equations in the time-domain. This is not only a 
hallenging problem but also a problem of

signi�
ant 
ontemporary interest due to emerging te
hnologies su
h as broad-band target illumination and

penetration, advan
ed materials and di�ra
tion based modern opti
s, all 
hara
terized by being ele
tri
ally

large, having a signi�
ant separation of s
ales and requiring substantial geometri
 
exibility of the 
ompu-

tational framework. On the other hand, Maxwell's equations serve as an ex
ellent example of numerous

other linear hyperboli
 systems of equations in, e.g., elasti
ity, a
ousti
s, solid me
hani
s et
, for whi
h
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the presented framework 
an be adapted with little e�ort. In part II of this work [30℄ we shall dis
uss in

detail generalizations of the proposed 
omputational framework with an emphasis on the solution of general

systems of 
onservation laws.

What remains of the paper is organized as follows. In Se
. 2 we set the stage by brie
y des
rib-

ing the physi
al setting, Maxwell's equations, their normalized and s
attered �eld formulations, as well as

boundary 
onditions at material interfa
es and metalli
 boundaries. The �rst step in the 
onstru
tion of

a high-order/spe
tral unstru
tured grid s
heme for the solution of Maxwell's equations is taken in Se
. 3

where we introdu
e a Lagrangian high-order basis on the general 
urvilinear simplex. In the appendix we

in
lude a dis
ussion of te
hniques allowing for eÆ
ient and a

urate implementations of the basi
 operators,

e.g., di�erentiation, �ltering, and high-order integration in volumes and on fa
es. By providing the basi


building blo
k for the spatial approximation, this development sets the stage for the formulation of a high-

order/spe
tral 
onvergent s
heme for solving Maxwell's equations as dis
ussed in Se
. 4. The 
onvergen
e

of the s
heme, being a generalized dis
ontinuous Galerkin/penalty method, is established in the 
lassi
 way

through 
onsisten
y as well as lo
al and global stability. A stronger and optimal result is furthermore estab-

lished by showing the s
heme to be error-bounded, guaranteeing at most linear growth in time and 
ontrol

over the growth rate. This result is also used to establish bounds on the behavior of the divergen
e error.

Veri�
ation and performan
e of the 
omplete s
heme is the topi
 of Se
. 5 where we present a number of

simple tests, verifying the theoreti
al results, prior to illustrating the eÆ
ien
y, versatility, and robustness

of the 
omputational framework for the solution of two- and three-dimensional s
attering and penetration

problems. We shall also brie
y dis
uss measures taken in the implementation of the s
heme to ensure eÆ
ient

exe
ution on large s
ale 
ontemporary parallel 
omputational platforms. In Se
. 6 we 
on
lude by o�ering

a few remarks and guidelines for future work within the present framework.

2. The Physi
al Setting and Maxwell's Equations. We shall 
on
ern ourselves with the dire
t

solution of Maxwell's equations on di�erential form

� ~D

�~t
= ~r� ~H + ~J ;

� ~B

�~t
= � ~r� ~E ;(1)

~r � ~D = ~� ; ~r � ~B = 0 ;(2)

within the general three-dimensional domain, 
, with the 
harge distribution, ~�(~x; ~t). The ele
tri
 �eld,
~E(~x; ~t), and the ele
tri
 
ux density, ~D(~x; ~t), as well as the magneti
 �eld, ~H(~x; ~t), and the magneti
 
ux

density, ~B(~x; ~t), are related through the 
onstitutive relations

~D = ~" ~E ; ~B = ~� ~H :

The permittivity tensor, ~", as well as the permeability tensor, ~�, are in general anisotropi
 and may depend

on spa
e and time as well as the strength of the �elds themselves. The 
urrent, ~J , is typi
ally assumed to

be related to the ele
tri
 �eld, ~E, through Ohms law, ~J = ~� ~E, where ~� measures the �nite 
ondu
tivity,

although more 
omplex relations are possible.

In this work, we shall restri
t the attention to materials whi
h 
an be assumed isotropi
, linear and

time-invariant, in whi
h 
ase the 
onstitutive relations take the form

~D = ~"0"r ~E ; ~B = ~�0�r
~H :
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Here ~"0 = 8:854�10�12 F/m and ~�0 = 4��10�7 H/m represent the va
uum permittivity and permeability,

respe
tively, and "r(x) and �r(x) refers to the relative permittivity and permeability, respe
tively, of the

materials.

Taking the divergen
e of Eq.(1) and applying Eq.(2) in 
ombination with Gauss' law for 
harge 
onser-

vation immediately 
on�rms that if the initial 
onditions satisfy Eq.(2), and the �elds are evolved a

ording

to Maxwell's equations, Eq.(1), the solution will satisfy Eq.(2) at all times. Hen
e, one 
an view Eq.(2) as a


onsisten
y 
ondition on the initial 
onditions and limit the solution to the time-dependent part of Maxwell's

equations, Eq.(1).

To simplify matters further, we shall 
onsider the non-dimensionalized equations for whi
h we introdu
e

the normalized quantities

x =
~x
~L

; t =
~t

~L=~
0
;

where ~L is a referen
e length, and ~
0 = (~"0~�0)
�1=2 represents the dimensional va
uum speed of light. The

�elds themselves are normalized as

E =
~Z�10

~E
~H0

; H =
~H
~H0

; J =
~J ~L
~H0

;

where ~Z0 =
p

~�0=~"0 refers to the dimensional free spa
e intrinsi
 impedan
e, and ~H0 is a dimensional

referen
e magneti
 �eld strength.

With this normalization Eq.(1) takes the nondimensional form

"r
�E

�t
= r�H + J ; �r

�H

�t
= �r�E ;(3)

whi
h is the general form of the equations we 
onsider in the following.

To solve Maxwell's equations in the vi
inity of boundaries, penetrable or not, we shall need boundary


onditions relating the �eld 
omponents on either side of the boundary.

Assuming that a normal unit ve
tor, n̂, to the boundary is given, the boundary 
onditions on the ele
tri


�eld 
omponents take the form

n̂� (E1 �E2) = 0 ; n̂ � (D1 �D2) = �s ;

where Ei and Di, i = (1; 2), represent the �elds on either side of the interfa
e and �s represents a surfa
e


harge. Equivalently, the 
onditions on the magneti
 �elds are given as

n̂� (H1 �H2) = Js ; n̂ � (B1 �B2) = 0 ;

where Js represents a surfa
e 
urrent density.

In the general 
ase of materials with �nite 
ondu
tivity, no surfa
e 
harges and 
urrents 
an exist, and

the simpli�ed 
onditions take the form

n̂� (E1 �E2) = 0 ; n̂� (H1 �H2) = 0 ;(4)

expressing 
ontinuity of the tangential �eld 
omponents, while the normal 
omponents of the 
ux densities

must satisfy
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n̂ � (D1 �D2) = 0 ; n̂ � (B1 �B2) = 0 ;(5)

i.e., they are likewise 
ontinuous, while the normal 
omponents of the �elds themselves are dis
ontinuous.

For the important spe
ial 
ase of a perfe
t 
ondu
tor, the 
onditions take a spe
ial form as the perfe
t


ondu
tor supports surfa
e 
harges and 
urrents while the �elds are unable to penetrate into the body, i.e.,

n̂�E = 0 ; n̂ �B = 0 :(6)

2.1. The S
attered Field Formulation. For s
attering and penetration problems involving linear

materials it is often advantageous to exploit the linearity of Maxwell's equations and solve for the s
attered

�eld, (Es;Hs), rather than for the total �eld, (E;H), whi
h are trivially related as

E = Ei +Es ; H =H i +Hs ;

where (Ei;H i) represents the in
ident �eld, illuminating the s
attering obje
t. Assuming that (Ei;Hi)

represents a parti
ular solution to Maxwell's equations, one re
overs the s
attered �eld formulation

"r
�Es

�t
= r�Hs + �Es � �

"r � "ir
� �Ei

�t
+ (� � �i)Ei ;(7)

�r
�Hs

�t
= �r�Es � �

�r � �i
r

� �Hi

�t
;(8)

where "ir(x), �
i
r(x), and �i(x) refers to the relative permittivity, permeability and 
ondu
tivity of the media

in whi
h the in
ident �eld represents a solution to Maxwell's equations. To simplify matters we have assumed

Ohms law, J = �E. We note that the important spe
ial 
ase of a va
uum �eld illuminating the s
attering

obje
t is re
overed by using "ir = �i
r = 1, �i = 0, and using a free spa
e solution in the for
ing fun
tion.

In this formulation, the boundary 
onditions along a diele
tri
 interfa
e take the form

n̂� (Es
1 �Es

2) = 0 ; n̂� (Hs
1 �Hs

2) = 0 ;(9)

for the tangential 
omponents, while the 
onditions on the s
attered �eld 
omponents be
omes

n̂�Es = �n̂�Ei ; n̂ �Bs = ��rn̂ �Hi ;(10)

in the 
ase of a perfe
tly 
ondu
ting boundary. As we shall see shortly, there is no need to 
onsider the


onditions on the normal 
omponents further.

3. The Nodal Element. We shall seek approximate solutions to Maxwell's equations in a general

domain, 
, possibly 
ontaining a heterogeneous 
olle
tion of s
attering and penetrable bodies. To fa
ilitate

the required geometri
 
exibility, we represent the 
omputational domain as the union of K non-overlapping

body-
onforming d-simpli
es, D. Hen
e, for two-dimensional problems we shall use triangles as the geometri


building blo
k while the tetrahedron is employed to �ll the 
omputational volume.
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(x,y,z)=Ψ-1
(ξ,η,ζ)

(ξ,η,ζ)=Ψ(x,y,z)

x

y

z

ξ
η

ζ

v
I

v
II

v
III

v
IVv

1

v
2

v
3

v
4

n
a

n
bn

cD I

Fig. 1. Mapping between the 
urvilinear tetrahedral, D, and the standard tetrahedral, I, in
luding the numbering and

notation employed in the text.

While this multi element formulation is essential in enabling the solution of geometri
ally 
omplex

problems, it also introdu
es new 
ompli
ations, the understanding and resolution of whi
h are at the heart

of the 
onstru
tion of the s
heme. In parti
ular, the use of simpli
es requires an understanding of how to


onstru
t high-order a

urate Lagrange interpolation polynomials on su
h elements and, subsequently, how

we 
an formulate approximations to basi
 operations su
h as interpolation, di�erentiation and integration

of fun
tions de�ned on general 
urvilinear d-simpli
es. These are issues we shall deal with in the following.

For 
ontinuity we shall postpone the dis
ussion of pra
ti
al, yet essential, te
hniques for the eÆ
ient and

a

urate implementation of the basi
 operations to the appendix.

The equally important question of how to exploit this knowledge to 
onstru
t global high-order/spe
tral

a

ura
y solution te
hniques suitable for Maxwell's equations as well as other linear hyperboli
 systems is

the 
entral issue addressed in Se
tion 4.

3.1. The Curvilinear d-Simplex. We start by assuming that the 
omputational domain, 
, is de-


omposed into 
urvilinear d-simpli
es, D � Rd, as illustrated in Fig. 1 by a 3-simplex, a tetrahedron. For

generality we shall limit mu
h of the dis
ussions to the three-dimensional 
ase and regard the two-dimensional

problem as a natural simpli�
ation.

While we shall not require that the fa
es of the tetrahedron are planar, su
h an assumption will, as we

shall see shortly, signi�
antly simplify matters in terms of analysis as well as implementation. It should also

be noted that for most 
omputational problems, the vast majority of the elements will have planar fa
es

whi
h thus supplies the single most important spe
ial 
ase.

Let us introdu
e the standard tetrahedron, I � R3, given by the verti
es

vI =

2
64
�1
�1
�1

3
75 ; vII =

2
64

1

�1
�1

3
75 ; vIII =

2
64
�1
1

�1

3
75 ; vIV =

2
64
�1
�1
1

3
75 ;

as illustrated in Fig. 1 with the 
orresponding verti
es in D termed v1-v4. To �x the notation within the

tetrahedron, let us also name the fa
e in D opposite vertex v1, i.e, spanned by the three verti
es v2, v3, and

v4, for fa
e 'a', that opposite of vertex v2 for fa
e 'b' and so forth. In general we shall name the 
oordinates

in the physi
al simplex, D, as x = (x; y; z) while the 
oordinates, � 2 I, shall be referred to as � = (�; �; �).
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To relate operations on D to those on I we need to 
onstru
t a smooth and invertible mapping, 	 : D! I,

that uniquely relates the two simpli
es as illustrated in Fig. 1. In the 
ase of a general 
urvilinear mapping,

this 
an be 
onstru
ted dire
tly by the use of linear trans�nite blending fun
tions. Although lengthy,

expressions of these mappings are straightforwardly arrived at by blending parameterized versions of fa
es,

edges, and the vertex-
oordinates. For a detailed a

ount of this we refer to [21℄.

A parti
ularly important and simple 
ase is that of D being straightfa
ed in whi
h 
ase the mapping

be
omes

x = 	(�) = �1 + � + � + �

2
v1 +

1 + �

2
v2 +

1 + �

2
v3 +

1 + �

2
v4 ;(11)

derived dire
tly by exploiting that any point in the straightfa
ed tetrahedron 
an be expressed as a 
onvex

sum of the verti
es with the weights being the bary
entri
 
oordinates (see e.g. [21℄).

On
e the mapping, 	(�), has been established, we 
an utilize this to 
ompute the 
urvilinear metri
 of

the transformation by

�x

��

��

�x
=

�	(�)

��

��

�x
=

2
64

x� x� x�

y� y� y�

z� z� z�

3
75
2
64

�x �y �z

�x �y �z

�x �y �z

3
75 =

2
64

1 0 0

0 1 0

0 0 1

3
75 :

Within this new metri
, the divergen
e of a ve
tor �eld, F = (Fx; Fy; Fz), is expressed on the well known

form

r � F =
1

J

�
�

��
(JF � r�) +

�

��
(JF � r�) +

�

��
(JF � r�)

�
;

where we have introdu
ed the transformation Ja
obian

J =

�����x��
���� = 1

r� � (r� �r�)
:

The metri
 also immediately gives outward pointing normal ve
tors at the 4 fa
es of D on the form

na = r� +r� +r� ;

nb = �r� ; n
 = �r� ; nd = �r� :

It is worth while paying attention to the spe
ial 
ase of the mapping between straightsided tetrahedra,

Eq.(11), in whi
h 
ase we realize that

�x

��
=

�	(�)

��
=

1

2

2
64
�vT1 + vT2

�vT1 + vT3

�vT1 + vT4

3
75 ;

is 
onstant. Thus, the full metri
, r�, r�, and r�, is 
onstant as is the transformation Ja
obian, J , i.e.,

every two straightsided tetrahedra are 
onne
ted through a simple linear transformation. As we dis
uss in

detail in the appendix, this observation 
an be exploited to signi�
antly simplify the implementation of the

general unstru
tured s
heme by introdu
ing template operators.

Let us �nally de�ne a number of di�erent inner produ
ts on the 
urvilinear simplex, D. Consider the

two smooth fun
tions, f [D℄ 2 C[D℄ and g[D℄ 2 C[D℄ for whi
h f(x) : D ! R and g(x) : D ! R. The global

inner produ
t, the asso
iated L2-norm and the inner produ
t over the surfa
e of D are de�ned as

7



(f; g)
D
=

Z
D

f(x)g(x) dx ; (f; f)
D
= kfk2

D
; (f; g)ÆD =

I
ÆD

f(x)g(x) dx :

These lo
al inner produ
ts and norms form the basis for the 
orresponding global broken measures as

(f; g)
 =
X
k

(f; g)
D
k ; (f; f)
 =

X
k

kfk2
D
k = kfk2
 ;

(f; g)Æ
 =
X
k

I
ÆDk

f(x)g(x) dx ;

where K represents the total number of elements used to 
over 
.

3.2. A Multivariate Polynomial Basis on the d-Simplex. With the 
urvilinear framework in pla
e

we 
an now fo
us the attention on the development of a high-order/spe
tral representation of a fun
tion

de�ned on the elemental element, I, rather than a general D.

Contrary to the approa
h taken in [17, 21℄, where a purely modal approximation is utilized, we shall em-

ploy a purely nodal s
heme. Hen
e, we assume that the unknown solutions, q(�; t), 
an be well approximated

as

qN (�; t) =

NX
j=0

q(�j ; t)Lj(�) ;

where Lj(�) is the genuine three-dimensional multivariate Lagrange interpolation polynomial, Lj(�) 2 P3n,

where

P3n = span
�
�i�j�k ; i; j; k � 0; i+ j + k � n

	
;

based on the N3
n = N + 1 nodal points, �j , given in the interior as well as on the boundary of I. It is

straightforward to see that the minimum number of nodal points that will allow this basis to be 
omplete is

N3
n =

1

6
(n+ 1)(n+ 2)(n+ 3) ;

where n signi�es the maximum order of the polynomial.

The 
ru
ial 
hoi
e of a nodal set, well suited for Lagrange interpolation within the tetrahedron, is an

issue that has re
eived some attention lately with su
h nodal sets being given in [31℄ and [29℄. The former

is derived by using an minimization pro
edure for the identi�
ation of the nodal set that minimizes an

approximation to the Lebesque 
onstant while the approa
h taken in the latter work involves the solution of

an ele
trostati
 problem within the tetrahedron. Either pro
edure results in fully unstru
tured nodal sets, an

example of whi
h is given in Fig. 2, with a large degree of symmetry, exa
tlyN3
n nodes within the tetrahedron

and a very well behaved Lagrange polynomial as measured through the growth of the asso
iated Lebesque


onstant. Furthermore, both nodal sets in
lude the 4 verti
es in I and have exa
tly 1
2 (n + 1)(n + 2) nodes

at ea
h of the four fa
es. This latter property is important as it ensures that a 
omplete two-dimensional

polynomial is supported by the nodes on ea
h fa
e.

In this work we have 
hosen to use the nodal set from [29℄ as the nodes on whi
h the Lagrange interpo-

lation polynomials are based. These nodal sets are given for n up to 10, 
orresponding to N3
10 = 286 nodal

points within ea
h tetrahedron and 66 nodal points at ea
h fa
e.

8



X

Y

Z

a) b)

Fig. 2. Example of nodal set for a 5th order interpolation, i.e., N3

5
= 56 nodes within the tetrahedron. In a) we show a

3D view of the nodes within the tetrahedron while b) gives a top view emphasizing the high degree of symmetry asso
iated with

the nodal set.

On
e we have identi�ed a proper nodal set, we 
an pro
eed with the formulation of the interpolation

whi
h must have the property

I3Nf(�j) = f(�j) ;

for any f 2 C[I℄. For the a
tual 
onstru
tion of the interpolation polynomials, let us introdu
e the 
omplete

polynomial basis, pi(�) 2 P3n and express the interpolation property as

8i : f(�i) =

NX
j=0

f̂jpj(�i) ;(12)

or in 
ompa
t form

Vf̂ = f ;

where f̂ = [f̂0; ::; f̂N ℄
T is the ve
tor of expansion 
oeÆ
ients, f = [f(�0); ::; f(�N )℄T is the grid ve
tor

and Vij = pj(�i) is the multi-dimensional generalization of the Vandermonde matrix. Clearly, for the

interpolation to exist, V must be nonsingular whi
h is a property that depends solely on the nodal sets. For

polynomial interpolation along the line it is well known that jVj 6= 0 provided that the nodes are distin
t.

Unfortunately, no su
h simple results are known for polynomial interpolation in I and we shall simply rely

on 
omputational veri�
ation that the nodal sets indeed allow for the 
omputation of a unique interpolation

polynomial[29℄. Under this assumption we 
an likewise express Eq.(12) as

8i : f(�i) =
NX
j=0

f(�i)Lj(�i) ;(13)

whi
h has to be true for any f 2 C[I℄, and in parti
ular pi(�) itself. Hen
e, the Lagrange polynomials 
an be

evaluated at any point, � 2 I, by solving the dual problem

VTL = p ;(14)

9



where L = [L0(�); ::; LN (�)℄
T and p = [p0(�); ::; pN (�)℄

T . This naturally enables the evaluation of I3Nf(�)
anywhere in I by 
omputing Lj(�) and applying Eq.(13).

In seeking the approximate solution to partial di�erential equations, the single most important operation

is that of 
omputing approximations to spatial derivatives. However, on
e we have identi�ed a well behaved

Lagrange basis, approximations to spatial derivatives evaluated at the grid points, �i, is obtained dire
tly

through matrix-ve
tor produ
ts as

I3n
�f

��
' �I3nf

��
= D�f ; I3n

�f

��
' �I3nf

��
= D�f ; I3n

�f

��
' �I3nf

��
= D�f ;

where the entries of the quadrati
 di�erentiation matri
es are obtained as

D�
ij =

�Lj(�i)

��
; D�

ij =
�Lj(�i)

��
; D�

ij =
�Lj(�i)

��
:

The entries 
an be 
omputed dire
tly by using Eq.(14) and the uniqueness of the polynomials as

D� = P�V�1 ; D� = P�V�1 ; D� = P�V�1 ;

where the entries of P(�;�;�) are

P�
ij =

�pj(�i)

��
; P�

ij =
�pj(�i)

��
; P�

ij =
�pj(�i)

��
:(15)

4. A Convergent S
heme for Maxwell's Equations. Having realized high-order formulations of

basi
 operations on the nodal tetrahedron, we are now in a position to develop a s
heme suitable for solving

linear systems of hyperboli
 problems in 
omplex geometries, exempli�ed by a s
heme for solving Maxwell's

equations.

To simplify matters, let us express Maxwell's equations, Eq.(3), in 
onservation form

�q

�t
+r � F (q) = S ;(16)

where we have introdu
ed the state ve
tor, q, and F (q) = [F1(q); F2(q); F3(q)℄
T , as the 
ux de�ned as

q =

"
"rE

�rH

#
; Fi(q) =

"
�ei �H
ei �E

#
;

respe
tively. Here ei signi�es the three Cartesian unit ve
tors and S = [SE ;SH ℄T represents body for
es,

e.g., 
urrents, and terms introdu
ed by the s
attered �eld formulation, Eqs. (7)-(8).

4.1. Central Elements of the S
heme. Let us begin by introdu
ing the nodal basis dis
ussed in the

previous se
tion and assume that the stateve
tor, q, 
an be represented as

qN (x; t) =

NX
j=0

q(xj ; t)Lj(x) ;

within ea
h general 
urvilinear element, Dk.

We shall 
onsider s
hemes in whi
h we require Eq.(16) to be satis�ed in the following way

Z
D

�
�qN
�t

+r � FN � SN

�
�i(x) dx =

I
ÆD
 i(x)G([qN ℄) dx :(17)
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Here �i and  i signify sequen
es of N fun
tions whileG([qN ℄) is a fun
tion of the jump [qN ℄ of the stateve
tor

at the boundary/interfa
e of the element, e.g., if the fa
e is at a solid boundary [qN ℄ re
e
ts the di�eren
e

between the pres
ribed boundary 
ondition and the a
tual value of the stateve
tor.

Let us emphasizing a few 
hara
teristi
s of this general formulation, Eq.(17). In parti
ular we see that


onsisten
y of the s
heme is immediate as the right hand side of Eq.(17) vanishes when the exa
t solution is

introdu
ed, i.e., if the inner s
heme is 
onsistent so is the full approximation. One should also observe that

boundary/interfa
e 
onditions are not imposed exa
tly but rather weakly through the penalizing surfa
e

integral. Finally we emphasize that in a multi-element 
ontext, the formulation is inherently dis
ontinuous,

enfor
ing the interfa
e 
onditions weakly through the penalizing term and giving rise to a highly parallel

formulation of the s
heme.

In 
hoosing �i,  i andG([qN ℄) one has a tremendous degree of freedom in designing s
hemes suitable for

solving di�erential equations. In [10℄ we proposed stable spe
tral 
ollo
ation methods with weakly imposed

boundary/interfa
e 
onditions for solving the adve
tion-di�usion equation and the 
ompressible Navier-

Stokes equations by 
hoosing �i(x) =  i(x) = Æ(x�xi) and de�ning G([qN ℄) to impose the 
orre
t upwind


ux 
onditions. Alternative 
hoi
es, likewise leading to stable s
hemes for solving linear 
onservation laws,

were dis
ussed in [28, 29℄. There we 
onsidered mixed Galerkin-
ollo
ation formulations by 
hoosing �i(x) =

Li(x), as in a 
lassi
 Galerkin formulation, but using  i(x) = Æ(x � xi) to impose the boundary/interfa
e


onditions. Upwind 
ux 
onditions were used to 
onstru
t G([qN ℄).

To formulate a s
heme for Maxwell's equations, let us assume that the ele
tri
, E, and magneti
, H,

�eld 
omponents 
an be represented as

EN (x; t) =

NX
j=0

E(xj ; t)Lj(x) =

NX
j=0

Ej(t)Lj(x) ;

HN (x; t) =
NX
j=0

H(xj ; t)Lj(x) =
NX
j=0

Hi(t)Lj(x) ;

within ea
h general 
urvilinear element, Dk. Here Ej(t) and Hj(t) represent the time dependent nodal

values, i.e., the unknowns of the s
heme, while xj = xj(�j) are the mapped nodal 
oordinates.

We shall require that the equations, Eq.(3), be satis�ed in the following Galerkin-like way

Z
D

�
�qN
�t

+r � FN � SN

�
Li(x) dx =

I
ÆD
�(x)Li(x)n̂ � [F+N ℄ dx ;(18)

where qN , FN , and SN refers to the approximate state ve
tor, 
ux and body for
e, respe
tively. As in Se
.

3, Li(x) represents the n'th order Lagrange interpolation polynomial, i.e., in the language of the general

formulation in Eq.(17) we have �i(x) =  i(x) = Li(x), while we have G([qN ℄) = �(x)n̂ � [F+N ℄. Here n̂ is

the outward pointing normal ve
tor, �(x) is a free parameter to be spe
i�ed later, while [F+N ℄ re
e
ts the

jump in the upwind 
ux, i.e., we have introdu
ed the splitting, FN = F+N +F�N , into the upwind, F+N , and

downwind, F�N , 
omponent of the 
ux.

It is noteworthy that the 
lassi
al dis
ontinuous Galerkin formulation [23℄ is re
overed from Eq.(18) by

a simple integration by parts and 
onsidering all 
uxes at interfa
es as upwind 
uxes, i.e., it is a spe
ial 
ase

of the mu
h more general approa
h put forward in Eq.(17).

To understand the exa
t form of the penalizing 
ux term, n̂ � [F+N ℄, it is helpful to re
all that
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n̂ � FN =

"
�n̂�HN

n̂�EN

#
;

i.e., the normal 
omponent of the 
uxes represents nothing else than the tangential �eld 
omponents and

the e�e
t of the right hand side in Eq.(18) is to impose the 
orre
t boundary/interfa
e 
onditions on the

tangential �eld 
omponents at the fa
e of the element. It is worth noti
ing that the unspe
i�ed fun
tion,

�(x), 
ontrols how strongly the 
onditions are enfor
ed, e.g. if � is very large the 
onditions are essentially

enfor
ed exa
tly.

As dis
ussed in Se
. 2 the boundary 
onditions on the tangential �eld 
omponents, be that in the

s
attered �eld or in the total �eld formulation, require 
ontinuity between any two elements regardless of

their material properties. This yields the expli
it form of the penalizing boundary term as [32℄

n̂ � �F+
N

�
=

(
Z
�1
n̂� (Z+[HN ℄� n̂� [EN ℄)

Y
�1
n̂� (�n̂� [HN ℄� Y +[EN ℄)

;(19)

where

[EN ℄ = E+
N �E�N ; [HN ℄ =H+

N �H�
N ;

measures the jump in the �eld values a
ross an interfa
e, i.e., supers
ript '+' refers to �eld values from the

neighbor element while supers
ript '-' refers to �eld values lo
al to the element. To a

ount for the potential

di�eren
es in material properties in the two elements, we have introdu
ed the lo
al impedan
e, Z�, and


ondu
tan
e, Y �, de�ned as

Z� =
1

Y �
=

s
��r

"�r
;

and the sums

Z = Z+ + Z� ; Y = Y + + Y � ;

of the lo
al impedan
e and 
ondu
tan
e, respe
tively.

The spe
ial 
ase of a perfe
tly 
ondu
ting wall is handled in the above formulation be de�ning a mirror

state within the metalli
 s
atterer as

n̂�E+
N = �n̂�E�N ; n̂�H+

N = n̂�H�
N ;

to enfor
e the 
orre
t boundary 
onditions and de�ne the material parameters by Z+ = Z�.

Now returning to the semi-dis
rete s
heme, Eq.(18), we have an elementwise expression for the ele
tri


�eld

NX
j=0

�
M"

ij

dEj

dt
� Sij �Hj �MijS

E
j

�
(20)

=
X
l

Fil

�
n̂l � Z+

l [H l℄� n̂l � [El℄

Z+
l + Z�l

�
;
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and likewise for the magneti
 �eld 
omponents

NX
j=0

�
M�

ij

dHj

dt
+ Sij �Ej �MijS

H
j

�
(21)

=
X
l

Fil

�
n̂l � �n̂l � [H l℄� Y +

l [El℄

Y +
l + Y �l

�
:

Here we have introdu
ed

M"
ij = (Li(x); "(x)Lj(x))D ; M�

ij = (Li(x); �(x)Lj(x))D ;

as the material s
aled mass-matri
es and

Mij = (Li(x); Lj(x))D ; Sij =
�
Sxij ; S

y
ij ; S

z
ij

�
= (Li(x);rLj(x))D ;

representing the lo
al mass- and sti�ness matrix. Note that in the spe
ial 
ase where "r and �r are elemen-

twise 
onstant, we re
over (M";M�) = ("rM; �rM).

We have, furthermore, introdu
ed the fa
e-based mass matri
es

Fil = (Li(x); �(x)Ll(x))ÆD ;

where the se
ond index is limited to the tra
e of the nodal set situated at the fa
es of D.

Expressing Eqs.(20)-(21) in fully expli
it form yields

dEN

dt
=(M")

�1
S�HN + (M")

�1
MSE(22)

+ (M")�1 F

�
n̂� Z+[HN ℄� n̂� [EN ℄

Z+ + Z�

�����
ÆD

;

and

dHN

dt
=� (M�)

�1
S�EN + (M�)

�1
MSH(23)

� (M�)�1 F

�
n̂� n̂� [HN ℄ + Y +[EN ℄

Y + + Y �

�����
ÆD

:

The dis
rete operators that need to be initialized are, besides the mass-matri
es, M and M";�, whi
h 
an be


omputed exa
tly as des
ribed in the appendix and inverted straightforwardly. We shall also need

(M";�)�1 S = (M";�)�1 [Sx; Sy; Sz℄T ;

representing the general 
urvilinear di�erentiation matrix, as well as (M";�)�1M for sour
e terms. It is

worth noti
ing that for all straightfa
ed tetrahedra with 
onstant material parameters, the entries of S 
an

be formed dire
tly by 
ombinations of the 
lassi
al di�erentiation matri
es introdu
ed in Se
. 3, e.g.,

M�1Sx = D��x +D��x +D��x ;

and similarly for M�1Sy and M�1Sz. Hen
e, as dis
ussed in detail in the appendix, template matri
es 
an be

used for the initialization of these operators in all su
h elements while an individual initialization is required

for general 
urved elements and elements with smoothly varying material parameters.

The same holds true for the fa
e-based operators M�1F whi
h again 
an be pre
omputed for all straight-

fa
ed elements with 
onstant materials by linear s
aling from standard template operators for I. The general


urvilinear fa
es requires individual attention.
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4.2. Consisten
y. In analyzing the s
heme, Eqs.(22)-(23), it is natural �rst to 
onsider the global

a

ura
y, and hen
e 
onsisten
y, and how it depends on the size of the tetrahedra, i.e., its h-
onvergen
e

rate, as well as how it s
ales with the order, n, of the polynomial approximation. To simplify matters we

shall assume throughout that all elements involved are straightfa
ed, i.e., the transformation between D

and I is linear. We shall furthermore assume that the material parameters, "r and �r, be 
onstant on ea
h

element, but they 
an vary freely between elements. We shall later brie
y revisit the impa
t on the results

of the analysis of relaxing these assumptions.

Let us introdu
e the exa
t solution, q = [E;H℄, to Maxwell's equations, Eq.(3), as well as its proje
tion,

PNq = [PNE;PNH℄T , on the spa
e spanned by n-order polynomials, i.e., PNq 2 P3
n. Ex
ept in very spe
ial


ases PNq will generally be di�erent from the numeri
al solution, qN = [EN ;HN ℄
T , whi
h is the exa
t

solution to the dis
rete problem, Eqs.(22)-(23).

Before we 
ontinue we wish to note that a subtle 
onsequen
e of using a purely nodal basis, as opposed to

a modal basis, is the introdu
tion of a dis
rete aliasing error in the interpolation of the initial 
onditions. One


ould avoid this by reading the nodal values of the Galerkin proje
tion of the initial 
onditions, 
omputed by

using a quadrature of suÆ
iently high order. However, if the initial 
onditions are smooth and well resolved

this dis
rete aliasing error is small and we shall not dis
uss it further in what follows.

As the global error is bounded by the sum of the lo
al, element-wise errors, it suÆ
es to 
onsider the

latter. Introdu
ing the exa
t solution, q = [E;H℄, to Maxwell's equations, Eq.(3), into the semi-dis
rete

approximation, Eqs.(20)-(21), immediately yields

�
Li;T

E
�
D

= (Li;r�H �PNr�H)
D
+
�
Li;S

E �PNSE
�
D

;

�
Li;T

H
�
D

= � (Li;r�E �PNr�E)D +
�
Li;S

H �PNSH
�
D

;

where T q =
h
TE ;TH

iT
signi�es the trun
ation error asso
iated with the s
heme. Note in parti
ular that

the surfa
e terms of Eqs.(20)-(21) vanish identi
ally as the exa
t solution always has smooth tangential


omponents as di
tated by the physi
s.

To bound the trun
ation error we shall need the following result [33, 24, 25℄

Lemma 4.1. Assume that u 2 W p(D), p � 0. Then there exists a 
onstant, C, dependent on p and the

angle 
ondition of D, but independent of u, h = diam(D), and n, su
h that

ku�PNukW q(D) � C
h��q

np�q
kukWp(D) ;

where � = min(p; n+ 1) and 0 � q � �.

Here we have introdu
ed the standard Sobolev norm

kuk2Wp(D) =
X
j�j�p





 ��1

�x�1
��2

�x�2
��3

�x�3
u






2

D

;

with the multi-index, � = (�1; �2; �3).

With this result and the use of the Cau
hy-S
hwarz inequality we immediately re
over the 
onsisten
y

result

Theorem 4.2. Assume that the exa
t solution, q = [E;H ℄
T 2 W p(D), p � 1 and that the body for
es,

Sq =
h
SE ;SH

iT
2W p(D), p � 0. Then there exists a 
onstant, C, dependent on p and the angle 
ondition

of D, but independent of q, h = diam(D), and n, su
h that
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kT qk
D
� C

�
h��1

np�1
kqkWp(D) +

h�

np
kSqkWp(D)

�
;

where � = min(p; n+ 1).

Hen
e, if the solution is lo
ally smooth we 
an expe
t very rapid 
onvergen
e in the order of the approx-

imation as well as by de
reasing the element size. In parti
ular, if the solution is analyti
 we 
an expe
t to

re
over full spe
tral 
onvergen
e provided the s
heme is stable.

4.3. Stability. Let us attend to the issue of semi-dis
rete stability and de�ne the lo
al energy

Ek =
1

2

Z
D
k

�
�jH j2 + "jEj2� dx ;

and the asso
iated global energy, E =
P

k E
k.

Lo
al elementwise semi-dis
rete stability is stated as follows

Lemma 4.3 (Lo
al Stability). Assume that a solution to Maxwell's equations exists on the domain D.

If the fa
es of the element reside away from a perfe
t 
ondu
tor, stability of the semi-dis
rete approximation

to Maxwell's equations, Eqs.(22)-(23), is guaranteed provided

� � 1

3
:

In 
ase one of the fa
es 
oin
ides with a perfe
t 
ondu
tor, stability of the semi-dis
rete approximation is

guaranteed if

� = 1 :

Proof. For lo
al stability away from metalli
 boundaries, it suÆ
es to 
onsider the question of stability for

homogeneous boundary 
onditions, i.e., E+
N =H+

N = 0. Consider Maxwell's equations on the semi-dis
rete

form, Eqs.(20)-(21), multiply from the left with (Ej ;Hj) and sum over all the nodes in D to obtain

1

2

d

dt
(EN ; "EN )D = (EN ;r�HN )D +

�
EN ;S

E
�
D

�
I
ÆD

�EN �
�
n̂� Z+HN � n̂�EN

Z+ + Z�

�
dx ;

and

1

2

d

dt
(HN ; �HN )D = � (HN ;r�EN )D +

�
HN ;S

H
�
D

+

I
ÆD

�HN �
�
n̂� Y +EN + n̂�HN

Y + + Y �

�
dx :

Adding the two 
ontributions and applying the the divergen
e theorem yields

d

dt
Ek =

I
ÆD

(1� �)n̂ � (HN �EN ) dx

+

I
ÆD

�
�

Z
EN � n̂� n̂�EN +

�

Y
HN � n̂� n̂�HN

�
dx

+
�
EN ;S

E
�
D

+
�
HN ;S

H
�
D

:
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Using standard ve
tor identities this simpli�es as

d

dt
Ek =�

I
ÆD

�
(1� �)HN � n̂�EN +

�

Z
jn̂�EN j2 + �

Y
jn̂�HN j2

�
dx

+
�
EN ;SE

�
D

+
�
HN ;SH

�
D

:

To ensure semi-dis
rete stability it suÆ
es to require that

(1� �)HT
NREN +

�

Z
ET
NR

TREN +
�

Y
HT

NR
TRHN � 0 ;(24)

where we have introdu
ed the rotation matrix

R = R(n̂) =

2
64

0 �nz ny

nz 0 �nx
�ny nx 0

3
75 :

Expressing the quadrati
 form, Eq.(24), as qTNAqN with A re
e
ting Eq.(24), one re
overs the �rst two

eigenvalues of A as �1;2(A) = 0 while the remaining are given as

�3;4 =
�(1 + Z)�

q
�2(1 + Z)2 + Z

2
(�3�2 � 2� + 1)

2Z
;

and

�5;6 =
�(1 + Y )�

q
�2(1 + Y )2 + Y

2
(�3�2 � 2� + 1)

2Y
:

Hen
e, a suÆ
ient 
ondition for stability 
learly is that � � 0 and �3�2 � 2� + 1 � 0, i.e.,

� � 1

3
:

In 
ase a fa
e resides at a metalli
 
ondu
tor we employ the boundary 
onditions

n̂�E�N = �n̂�E+
N ; n̂�H�

N = n̂�H+
N ;

and Z+ = Z� = Z, Y + = Y � = Y .

Following the exa
t same pro
edure as above, we re
over the 
onstraint

(1� �)HT
NRE +

�

2Z
ET
NR

TREN � 0 :

Computing the eigenvalues of the 
orresponding quadrati
 form yields two pairs of the form

�1 = 0 ; �2;3 =
�

Z
� 1

Z

p
�2 + Z2(� � 1)2 :

Clearly, the only way to guarantee positivity of the eigenvalues and hen
e the quadrati
 form is to 
hoose

� = 1.

The result on lo
al, elementwise stability, only supplies a ne
essary but not suÆ
ient 
ondition for

stability. To understand the issue of global stability we must also 
onsider the in
uen
e of the 
oupling

between the individual elements.
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Lemma 4.4 (Fa
e Stability). Assume that a solution to the Maxwell's equations exists on a domain 
on-

sisting of two elements sharing one 
ommon fa
e. Stability of the semi-dis
rete approximation of Maxwell's

equations, Eqs.(22)-(23), on this domain is guaranteed provided

� = 1 :

Proof. Consider Maxwell's equations on the semi-dis
rete form, Eqs.(20)-(21). Multiply from the left

with (Ej ;Hj) and sum over all the nodes in D to obtain

1

2

d

dt

�
E�N ; "E�N

�
D
=
�
E�N ;r�H�

N

�
D
+
�
E�N ;SE

�
D

+

I
ÆD

�E�N �
�
n̂� � Z+[HN ℄� n̂� � [EN ℄

Z+ + Z�

�
dx ;

and

1

2

d

dt

�
H�

N ; �H�
N

�
D
= � �

H�
N ;r�E�N

�
D
+
�
H�

N ;SH
�
D

�
I
ÆD

�H�
N �

�
n̂
� � Y +[EN ℄ + n̂� [HN ℄

Y + + Y �

�
dx :

Addition of the two 
ontributions, appli
ation of the divergen
e theorem and standard ve
tor identities yields

d

dt
Ek =

I
ÆD

(1� �)n̂� � �H�
N �E�N

�
+�

�
Y +

Y
E�N � �n̂� �H+

N

�� Z+

Z
H�

N � �n̂� �E+
N

��

��

�
1

Z
E�N � �n̂� � �

n̂
� � [EN ℄

��
+

1

Y
H�

N � �n̂� � �
n̂
� � [HN ℄

���
dx

+
�
E�N ;SE

�
D

+
�
H�

N ;SH
�
D

:

To understand the stability of a 
ommon edge, it suÆ
es to 
onsider the 
ase where SE = SH = 0. Adding

the 
ontribution from two edges, utilizing that n̂� = �n̂+, yields

d

dt
E =

I
ÆD

(1� �)
�
n̂
� �H�

N �E�N � n̂� �H+
N �E+

N

�
+

�

Z
[EN ℄ � n̂� � n̂� � [EN ℄ +

�

Y
[HN ℄ � n̂� � n̂� � [HN ℄ dx

=�
I
ÆD

(1� �)n̂� � �H+
N �E+

N �H�
N �E�N

�
� �

Z
jn̂� � [EN ℄j2 � �

Y
jn̂� � [HN ℄j2 dx :

A suÆ
ient 
ondition for this to be negative is

(1� �)
��
H�

N

�T
RE�N � �

H+
N

�T
RE+

N

�
+

�

Z
[EN ℄

TRTR[EN ℄
T +

�

Y
[HN ℄

TRTR[HN ℄
T � 0 :
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Inspe
tion reveals that by de�ning q = [E+
N ;E�N ;H+

N ;H�
N ℄

T , the 
ondition may be expressed is given as a

symmetri
 quadrati
 form, i.e., it suÆ
es to 
hoose � su
h that all eigenvalues of A are non-negative. Leaving

out the lengthy and purely algebrai
 manipulations, we 
onsider the resulting two sets of eigenvalues of A

given as

�1;2 = 0 ; �3;4 =
�

Z
� 1

2Z

q
4�2 + Z(� � 1)2 ;

and

�5;6 =
�

Y
� 1

2Y

q
4�2 + Y (� � 1)2 :

Clearly, the 
hoi
e of � = 1 is the only feasible solution that ensures stability of the upwind s
heme used for


onne
ting the elements.

With these results in pla
e, we 
an now state

Theorem 4.5 (Global Stability). Assume that a unique solution to Maxwell's equations exists in the

general domain, 
. Assume furthermore that the boundary of 
 is either periodi
 or terminated with a

perfe
tly 
ondu
ting boundary.

Then the semi-dis
rete approximation to Maxwell's equations, Eqs.(22)-(23), is globally stable in the

sense that

d

dt
E � C

�
E +




SE


2


+



SH


2




�
;

provided only that

� = 1 :

Proof. As ea
h fa
e is 
ounted only on
e, the result follows dire
tly by summation over the all the fa
es

and the appli
ation of Lemma 4.3 and Lemma 4.4

d

dt
E �

X
k

�
EN ;SE

�
D
k
+
�
HN ;SH

�
D
k

� C

�
E +




SE


2


+



SH


2




�
;

using that
�
EN ;SE

�
D

� C(kENk2D +



SE


2

D

), kENk2D � C (EN ; "rEN )D sin
e " � 1. A similar line of

reasoning is appli
able for
�
HN ;SH

�
D

and the result on global stability follows.

4.4. Convergen
e. Having established 
onsisten
y as well as stability in equivalent norms, 
onvergen
e

follows dire
tly from the equivalen
e theorem with a bound on the lo
al error

"D(t) = kE(t)�EN (t)kD + kH(t)�HN (t)kD ;

of the form

"D(t) � Ce�t
�
"D(0) +

Z t

0

kT q(s)k
D
ds

�
;
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and global 
onvergen
e is hen
e established up to exponential growth in time as is typi
al for Lax-type

stability results.

As it turns out, however, we 
an do better and re
over a sharp bound for the growth in time by

generalizing ideas �rst put forward in the 
ontext of �nite di�eren
e methods [34℄. To realize this, let us

make the natural split of the elementwise error as

"D � (kE �PNEkD + kH �PNHkD) + (kPNE �ENkD + kPNN �HNkD)
= "a

D
+ "b

D
;

where "a
D

is due to the error introdu
ed by the polynomial approximation of the exa
t solution while "b
D

measures the errors asso
iated with the semi-dis
rete approximation of Maxwell's equations.

To bound "a
D
we need only re
all Lemma 4.1 to state

Lemma 4.6. Assume that q = [E;H℄
T 2 W p(D). Then there exists a 
onstant, C, dependent on p and

the angle 
ondition of D, but independent of q, h = diam(D), and n, su
h that

kq �PNqkD � C
h�

np
kqkWp(D) ;

where � = min(p; n+ 1) and p � 0.

To arrive at a bound for "b
D
, let us �rst 
onsider the proje
tion of the trun
ation error, PNT q =h

PNTE ;PNTH
iT

, on the form

�
Li;PNTE

�
D

=(Li;PNr�H �PNr�PNH)
D

(25)

� 1

Z

�
Li; n̂�

�
Z+[PNH℄� n̂� [PNE℄

��
ÆD

;

�
Li;PNTH

�
D

=� (Li;PNr�E �PNr�PNE)
D

(26)

� 1

Y

�
Li; n̂�

��Y +[PNE℄� n̂� [PNH℄
��

ÆD
:

This is derived by introdu
ing PNq into the semi-dis
rete s
heme, Eqs.(20)-(21), exploiting that q satis�es

Maxwell's equations, Eq.(3).

The proje
tion of the trun
ation error 
an be bounded by the exa
t solution as

Lemma 4.7. Assume that q = [E;H℄
T 2 W p(D); p � 3=2. Then there exists a 
onstant, C, dependent

on p, the angle 
ondition of D and the lo
al material properties, "r; �r, but independent of q, h = diam(D),

and n, su
h that

kPNT qk
D
� C

h��1

np�3=2
kqkWp(D) ;

where � = min(p; n+ 1).

Proof. We need only establish the result for PNTE , Eq.(25), as the derivation of the result for PNTE

following identi
al lines.

As PNTE 2 P3n =
P

j T
E
j Lj(x) we 
an multiply from the left with TE

j and sum over all the nodes to

re
over
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PNTE


2
D

=
�
PNTE ;PNr� (H �PNH)

�
D

� 1

Z

�
PNTE ; n̂�

�
Z+[PNH ℄� n̂� [PNE℄

��
ÆD

:

Using the Cau
hy-S
hwarz inequality and the estimate [25℄

kqNkÆD � C
n

h1=2
kqNkD ;

for all q 2 P3n(D), h = diam(D), we re
over




PNTE



D

�C1 kPNr� (H � PNH)k
D

(27)

+C2
n

h1=2
1

Z



Z+[PNH� ℄� [PNE� ℄



ÆD

;

where we for simpli
ity have introdu
ed the tangential 
omponents

E� = n̂�E ; H� = n̂�H :

To bound the �rst term we invoke Lemma 4.1 to obtain

kPNr� (H �PNH)k
D
� kr� (H �PNH)k

D
� C

h��1

np�1
kHkWp(D) :(28)

Consider now terms of the type

k[PNE� ℄kÆD �


PNE+

� �E+
�




ÆD

+


PNE�� �E�� 

ÆD ;

where E+
� = E�� = E� represents the exa
t solution at ÆD. Re
alling the tra
e inequality [35℄

kqk2ÆD � C
�
kqk

D
krqk

D
+ h�1 kqk2

D

�
; q 2W 1(D) ;

implies that

kq �PNqk2ÆD � C
�
kq �PNqkD kq �PNqkW 1(D) + h�1 kq �PNqk2D

�
;

and we re
over by 
ombination with Lemma 4.1 the bound

k[PNE� ℄kÆD � C
h��1=2

np�1=2
kEkWp(D) :

Combining this with Eqs.(27)-(28) one obtains the result




PNTE



D

� C1
h��1

np�1
kHkWp(D) + C2

h��1

np�3=2

�
kEkWp(D) + kHkWp(D)

�
;

where (C1; C2) are independent of h and n but C2 depends on the lo
al material properties (Z�; Y �).

The result for



PNTH




D

is re
overed in the same way, yielding the result




PNTH



D

� C1
h��1

np�1
kEkWp(D) + C2

h��1

np�3=2

�
kEkWp(D) + kHkWp(D)

�
;
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hen
e establishing the stated result.

Let us now return to the original quest for an improved 
onvergen
e estimate and 
onsider the error

equation

�
Li; "

�

�t
(PNE �EN )

�
D

=(Li;PNr� (PNE �EN ))
D

(29)

+
1

Z

�
Li; n̂�

�
Z+[PNH �HN ℄� n̂� [PNE �EN ℄

��
ÆD

+
�
Li;PNTE

�
D

;

for the ele
tri
 �eld and similarly for the magneti
 �eld

�
Li; �

�

�t
(PNH �HN )

�
D

=� (Li;PNr� (PNH �HN ))
D

(30)

� 1

Y

�
Li; n̂�

�
Y +[PNE �EN ℄ + n̂� [PNH �HN ℄

��
ÆD

+
�
Li;PNTH

�
D

:

The 
ombination of these expressions with Lemma 4.7 and the methodology of the stability proof in Se
.

4.3 yields the improved 
onvergen
e result

Theorem 4.8. Assume that a solution, q 2 W p(D), p � 3=2 to Maxwell's equations in 
 =
S
k D

k

exists. Then the numeri
al solution, qN , to the semi-dis
rete approximation Eqs.(22)-(23) 
onverges to the

exa
t solution and the global error,
P

k kq � qNkDk is bounded as

X
k

kq(t)� qN (t)k
D
k �C

X
k

�kq(t)�PNq(t)kDk
+ kPNq(0)� qN (0)k

D
k + t max

s2[0;t℄
kT q(s)k

D
k

�

�C
X
k

�
h�

np
kq(0)kWp(Dk) + t

h��1

np�3=2
max
s2[0;t℄

kq(s)kWp(Dk)

�
;

where C depends on the material properties and the angle 
onditions of the elements but not on h and n.

Proof. Sin
e PNE �EN 2 P3
n and PNH �HN 2 P3

n we 
an use these as elementwise test fun
tions in

Eq.(29) and Eq.(30), respe
tively, to obtain

1

2

d

dt
((PNE �EN ; "(PNE �EN ))

D
+ (PNH �HN ; "(PNH �HN ))

D
)

=

I
ÆD

(n̂ � (PNH �HN )� (PNE �EN )

+
1

Z
(PNE �EN ) � n̂� �Z+[PNH �HN ℄� n̂� [PNE �EN ℄

�
� 1

Y
(PNH �HN ) � n̂� �Y +[PNE �EN ℄ + n̂� [PNH �HN ℄

��
dx�

PNE �EN ;T
E
�
D

+
�
PNH �HN ;T

H
�
D

;

where we have employed integration by parts on
e. Following the approa
h of Lemma 4.4 we sum over all

the fa
es to obtain
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1

2

d

dt

X
k

�
(PNE �EN ; "(PNE �EN ))Dk + (PNH �HN ; "(PNH �HN ))Dk

�
��

X
k

h
k[PNE �EN ℄k2Dk + k[PNH �HN ℄k2Dk

i

+
X
k

h�
PNE �EN ;PNTE

�
D
k
+
�
PNH �HN ;PNTH

�
D
k

i
:

Note that sin
e " and � are uniformly bounded away from zero the material weighted energy norm is L2-

equivalent. Furthermore, the term asso
iated with the jump at the element interfa
es is stri
tly negative

and we re
over the bound on the error

1

2

d

dt

X
k

kPNq � qNk2Dk � C
X
k

(PNq � qN ;PNT q)
D
k ;

whi
h, by using the Cau
hy-S
hwarz inequality and integration in time yields the result

X
k

kPNq(t)� qN (t)kDk � C
X
k

�
kPNq(0)� qN(0)kDk + t max

s2[0;t℄
kPNT q(s)k

D
k

�
:

Now 
ombining this with Lemma 4.6 and Lemma 4.7 establishes the result and proves 
onvergen
e on weak

assumptions of lo
al, elementwise smoothness of the solution.

We have hen
e established the semi-dis
rete result that the error 
an not grow faster than linearly in

time and that we 
an 
ontrol the growth rate by in
reasing the resolution. As we shall verify in Se
. 5 this

linear growth is a sharp result. However, the 
omputations shall also verify that we 
an expe
t that the

growth rate approa
hes zero spe
trally fast when in
reasing the order of the approximation, n, provided the

solution is suÆ
iently smooth.

Prior to that, a few 
omments are in pla
e. A rigorous generalization of the results obtained above

to 
over situations with general 
urvilinear elements and/or spatial variation of the materials within ea
h

element is not straightforward. This is due to the generation of higher order polynomials from the produ
ts

of the individual polynomial expressions of the �elds, the materials and the geometry. One 
an, however,

gain an intuitive understanding of how the geometry and material variations may impa
t the a

ura
y by

assuming that the polynomial representations are not of the �elds only but rather of the 
ombined fun
tions,p
J(
p
"rE;

p
�rH). In this 
ase, we are working only with n-order polynomial expansions and one 
an expe
t

that the overall pi
ture from the results derived above will hold approximately for these new fun
tions.

Hen
e, where we originally had an n'th order polynomial to represent the �elds, (E;H) we are now left

with an n'th order polynomial to represent the 
ombined variation. One 
onsequen
e of this is that we loose

a

ura
y when 
onsidering only the �elds as we essentially have to share the resolution power between the

�elds, the geometry as well as the material variation. In parti
ular, if the element is strongly distorted,

i.e., J varies signi�
antly, one 
an expe
t loss of a

ura
y as 
ompared to the straightsided approximation.

Provided, however, that the geometry is smooth, i.e., J nonsingular, and the lo
al material variation is

smooth, spe
tral 
onvergen
e is preserved.

4.5. Convergen
e of Divergen
e Error. In the absen
e of sour
es, it is well known that the ele
tri


and the magneti
 �elds must remain solenoidal throughout the 
omputation. An assumption to this e�e
t

was indeed imposed by 
hoosing to solve only Maxwell's equations on the form Eq.(3) and 
onsidering the

divergen
e 
onditions as 
onsisten
y 
onditions on the initial 
onditions. However, given that we 
an not

22



expe
t to re
over the proje
tion of the analyti
 solution but rather will 
ompute a di�erent, albeit 
onvergent,

solution we need to 
onsider the divergen
e of this numeri
al solution to justify the original 
hoi
e of solving

Eq.(3) only.

Using the results of Se
. 4.4 we 
an state

Theorem 4.9. Assume that a solution, q 2 W p(D), p � 7=2 to Maxwell's equations in 
 =
S
k D

k

exists. Then there exists a 
onstant, C, dependent on p and the angle 
ondition of Dk, but independent

of q, h = diam(D), and n, su
h that the divergen
e of the numeri
al solution, qN , to the semi-dis
rete

approximation Eqs.(22)-(23) is bounded as

X
k

kr � qN (t)kDk � C
X
k

�
h��1

np�1
kqkWp(Dk) + t

h��2

np�7=2
max
s2[0;t℄

kq(s)kWp(Dk)

�
;

where � = min(p; n+ 1) and p � 0.

Proof. Considering the lo
al divergen
e of H on any D we have

kr � (H �HN )kD � kr � (H �PNH)k
D
+ kr � (PNH �HN)kD :

The �rst term we 
an bound immediately through Lemma 4.1 as

kr � (H �PNH)k
D
� C

h��1

np�1
kHkWp(D) ;

where � = min(p; n+ 1) and p � 1.

Utilizing the inverse inequality [25℄

kr � uNkD �
n2

h
kuNkD ;

for all uN 2 P 3
n(D), we 
an bound the se
ond term as

kr � (PNH �HN )kD � C
n2

h
kPNH �HNkD

� Ct
n2

h
max
s2[0;t℄




PNTH(t)




D

� Ct
h��2

np�7=2
max
s2[0;t℄

�
kE(s)kWp(D) + kH(s)kWp(D)

�
;

by 
ombining the results of Lemma 4.7 and Theorem 4.8. An equivalent bound 
an be obtained for the

divergen
e of EN in the 
ase of a sour
e free medium whi
h, 
ombined with the above, yields the result.

As 
ould be expe
ted, the result inherits the temporal linear growth from the 
onvergen
e result and


on�rms the possibility of re
overing spe
tral 
onvergen
e of the divergen
e under the assumption of suÆ
ient

smoothness of the solutions. It should be noted that while the result 
on�rms high-order a

ura
y and


onvergen
e, the estimate for the a
tual 
onvergen
e rate is almost 
ertainly suboptimal and leaves room for

improvement.

4.6. Entr'a
te on the S
attered Field Formulation. Let us brie
y return to an analysis of the

s
attered �eld formulation dis
ussed in Se
. 2.1, with the modi�ed s
attered �eld equations given in Eqs.(7)-

(8). We re
all that we split the solution, q, as

q = qs + qi ;
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and exploit the linearity of Maxwell's equations to solve for the s
attered �eld, qs, subje
t to the for
ing by

the in
ident �eld, qi. As dis
ussed in Se
. 2.1, this does not alter the s
heme in any signi�
ant way ex
ept

at metalli
 boundaries where the boundary 
ondition on the ele
tri
 �eld 
omponent takes the form

n�Es;+
N = �n�Es;�

N � 2PNEi ;

in the notation of Lemma 4.4, while the boundary 
ondition on the magneti
 �eld remains

n�Hs;+
N = n�Hs;�

N :

Sin
e this 
onstitutes the only di�eren
e, we 
an restri
t the subsequent analysis to the 
ase of a metalli


obje
t in va
uum without loss of generality as all other 
ompli
ations are 
overed by the analysis of the total

�eld s
heme.

It suÆ
es to 
onsider the behavior of the 
omputed solution whi
h 
an be bounded as stated in the

following.

Theorem 4.10. Assume that a s
attered �eld solution, qs 2 W p(D), p � 3=2 to Maxwell's equations

in 
 =
S
k D

k exists, and that the in
ident �eld qi 2 W p(D), p � 3=2. Then the energy of the numeri
al

s
attered �eld solution, qsN , to the semi-dis
rete approximation of Eqs.(7)-(7) is bounded as

X
k

kqsN (t)kDk �C
X
k

�

PNqi(t)

Dk
+


PNqi(0) + qsN (0)

Dk + t max

s2[0;t℄



T q;i(s)



D
k

�
;

where C depends on the material properties and the angle 
onditions of the elements but not on h and n.

Proof. The proof pro
eeds in a way very similar to that of Theorem 4.8. Combining the equation for the

s
attered �eld solution, qsN , with the equation des
ribing the proje
tion of the in
ident �eld, PNqi, summing

over all the fa
es and using qsN + PNqi as the test fun
tion we re
over

1

2

d

dt

X
k



qsN + PNqi


2
D
k ��

X
Interior Fa
es



[PNqi + qsN ℄

2Dk
�4

X
PEC Fa
es



[PNEi +Es
N ℄


2
D
k

+
X
k

�PNqi + qsN ;PNT q;i
�
D
k ;

where the dissipative terms are gathered over the interior and PEC fa
es separately due to di�erent boundary


onditions, while the global sum involves the trun
ation error, PNT q;i, asso
iated with the proje
tion of the

in
ident �eld.

This latter term 
an be bounded as in Lemma 4.7



PNT q;i



D
� C

h��1

np�3=2



qi


Wp(D)

;

where � = min(p; n+ 1).

Pro
eeding as for Theorem 4.8 we subsequently re
over
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X
k



qsN (t) + PNq
i(t)



D
k �C

X
k



qsN (0) + PNq
i(0)




D
k

+t max
s2[0;t℄

X
k



PNT
q;i(s)




D
k ;

from whi
h

X
k

kqsN(t)kDk �C
X
k



PNq
i(t)



D
k

+
X
k



qsN (0) + PNq
i(0)




D
k + t max

s2[0;t℄

X
k



PNT
q;i(s)




D
k ;

thus establishing the result.

Hen
e, also the s
attered �elds remain bounded up to linear growth in time. An interesting di�eren
e

between this result on that of Theorem 4.8 for the total �eld formulation is that the a

ura
y and growth rate

of the former is 
ontrolled solely by the smoothness of the in
ident �eld with the potential for exponential


onvergen
e for suÆ
iently smooth illuminating �elds.

5. Validation and Performan
e of the S
heme. Having developed the 
omplete formulation for

the time-domain solution of Maxwell equations, supported by a thorough 
onvergen
e analysis, it is now

time to 
onsider the a
tual performan
e of the 
omputational framework.

In the following we shall dis
uss the validity of the main theoreti
al results through a few examples

as well as exemplify the versatility and overall a

ura
y and performan
e of the 
omplete framework for a

number of ben
hmarks. Temporal integration of the semi-dis
rete approximation given in Eqs.(20)-(21) is

done using a 4th order, 5 stage low-storage Runge-Kutta s
heme [36℄ and a stability limited time-step s
aling

as

�t � CFLmin



p
"r�rj�j�1 ;

with
p
"r�r re
e
ting the modi�ed lo
al speed of light due to materials and

� =
jr�j
��

+
jr�j
��

+
jr�j
��

:

Here j � j refers to the absolute value of ea
h and of the ve
tor 
omponents, i.e., jr�j = [j�xj; j�yj; j�z j℄T .
Hen
e, � provides a measure of the lo
al grid-distortion as a 
onsequen
e of the mapping, 	, of I into D, and

(��;��;��) measures axial distan
e separating neighboring nodal points in I. In this setting CFL typi
ally

takes values of O(1) while the time step, �t, s
ales as �t ' l=n2 where l is the minimum edge length on all

tetrahedra and n is the polynomial order of the approximation.

As a general measure of error we shall use the dis
rete Lp-norm of the error de�ned as

kÆf(t)kp =
0
�X

j;k

�
fN (x

k
j ; t)� f(xk

j ; t)
�p1A

1=p

;

where fN (x; t) is the numeri
al approximation to the exa
t value, f(x; t) summed over all nodes, j, within

ea
h of the k elements.
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Fig. 3. In a) is shown the temporal envelope of the maximum error on Hy(t) in the two-dimensional 
avity for di�erent

orders, n, of the approximation. The slope of the linear growth is plotted in b), 
on�rming spe
tral 
onvergen
e as predi
ted

in Theorem 4.8.

5.1. Elementary Tests and Veri�
ation of Theoreti
al Results. As a �rst veri�
ation of the

theoreti
al estimates, and in parti
ular the linear growth predi
ted in Theorem 4.8, we 
onsider the solution

of the two-dimensional Maxwell's equations in the TM-polarization, i.e., we solve for (Hx; Hy; Ez). There

is, however, nothing spe
ial about this polarization.

The 
omputational problem is that of a simple two-dimensional va
uum �lled 
avity, assumed to be

de�ned by (x; y) 2 [�1; 1℄� [�0:25; 0:25℄, with the walls at x = �1 taken to be perfe
t ele
tri
al 
ondu
ts

while the 
avity is assumed to be periodi
 in the y-dire
tion. The initial 
ondition is a simple os
illatory


avity solution as

Hx(x; y; 0) = 0 ; Hy(x; y; 0) = 
os(�x) ; Ez(x; y; 0) = 0 ;

and the 
omputational domain is dis
retized by 8 equivalent isos
eles, ea
h with 0.5 wavelength long sides.

In Fig. 3 we show the temporal envelope of the maximum error of Hy(t), 
omputed using the same

eight elements while in
reasing the order of the approximation. Following the main result, Theorem 4.8, we

expe
t that the error 
an grow at most linearly in time and that the growth rate should vanish spe
trally for

smooth solution. The results in Fig. 3 not only 
on�rm the validity of both statements but also illustrates

that Theorem 4.8 is sharp, i.e., we 
an not in general guarantee slower than linear error growth, although

we 
an 
ontrol the growth rate by the order of the approximation.

To further evaluate the performan
e of the s
heme, let us brie
y 
onsider the behavior of the divergen
e

and the ability of the s
heme to propagate waves over long distan
es. For this purpose we shall 
ontinue to


onsider the propagation of plane waves in simple re
tangular domains, tiled using isos
eles, ea
h with an

edge length of 0:5 wavelength. In Fig. 4 we show the global L2-error of the divergen
e ofH for a plane wave

propagating in a fully periodi
 domain being 2 wavelengths long and 0.5 wavelength wide, tiled using only 8

triangles. Consistent with the theoreti
al result in Theorem 4.9 the s
heme preserves the divergen
e error to

the order of the s
heme, i.e., the error vanishes spe
trally as we re�ne the order, n, of the approximation. The

very notable even-odd behavior in the 
onvergen
e is a 
onsequen
e of the alignment with the triangulation.

The ability to propagate waves over very long distan
es is likewise illustrated in Fig. 4 where we also show

the L2-error of the Hy 
omponent. Contrary to the small problems 
onsidered �rst, we are here 
onsidering

a 200 wavelength long domain and with the exa
t solution being use to trun
ate the 
omputational domain.

The domain is tiled using isos
eles with an edge length of 0.5 wavelength and a total of 800 elements. We
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Fig. 4. In a) is shown the global L2-error of the divergen
e of H for a plane wave propagating in a fully periodi
 domain

as a fun
tion of time and order of approximation, n, 
on�rming that the s
heme 
onserves divergen
e to the order of the

approximation, i.e., it de
ays spe
trally with in
reasing polynomial order. The L2-error of Hy as a fun
tion of time and order

of approximation, n, in a 200 wavelength long domain is shown in b), 
on�rming the ability to propagate waves over very long

periods of time using only few points per wavelength.
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Fig. 5. In a) we illustrate the prism tiled using three high-order tetrahedra while b) illustrates the maximum of Hx for a

(y; z)-polarized plane wave propagation as a fun
tion of time and order of the approximation, n, 
on�rming spe
tral 
onvergen
e

for the three-dimensional 
ase.

observe in Fig. 4 an expe
ted slow error growth until t = 200 after whi
h it settles at a maximum error

level. This level, however, de
ays spe
trally as we in
rease the order, n, of the approximation. Using as a

guideline that two edges span a wavelength, we see that with 7 points per wavelength (two n = 3 triangles)

yields about 10% error, only 9 points per wavelength (two n = 4 triangles) results in about 1% error while 11

points per wavelength (two n = 5 triangles) ensures about 0.1% error after 400 periods. This is a testament

to the advantage of using a high-order framework for wave propagation problems.

Let us �nally 
onsider a simple three-dimensional test 
ase in whi
h we have tiled a straightfa
ed prism

using three straightfa
ed tetrahedra as illustrated in Fig. 5. The test is that of a plane wave propagating

through the prism with the exa
t solution being used as the boundary 
onditions. As shown in Fig. 5 we

re
over a rapid exponential 
onvergen
e as the order, n, of the approximation is in
reased.

5.2. Two-Dimensional Examples. Having veri�ed the performan
e of the basi
 
omputational setup

as well as the theoreti
al estimates, let us now 
onsider problems of a less simple and more realisti
 
hara
ter.

This shall not only allow us to illustrate more general features of the proposed framework but shall also be
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Fig. 6. In a) is shown the �nite element grid, 
onsisting of 854 triangles, used for 
omputing s
attering by a perfe
t

ele
tri
ally 
ondu
ting 
ylinder of size ka = 15�. A se
tion of the grid in b) illustrates the body
onforming nature of the grid

and the nodal grid supporting the high-order approximation.

used to verify that all the properties of the high-order unstru
tured grid approa
h, seen so 
onvin
ingly in

the last se
tion for simple examples, 
arry over to the solution of more realisti
 problems.

We shall fo
us the attention on problems des
ribed by the two-dimensional TM-polarized Maxwell's

equations on the form

�r
�Hx

�t
= ��Ez

�y
;(31)

�r
�Hy

�t
=

�Ez

�x
;

"r
�Ez

�t
=

�Hy

�x
� �Hx

�y
;

subje
t to boundary 
onditions between two regions with material parameters, "
(k)
r and �

(k)
r , for k = 1; 2, as

n̂�H(1) = n̂�H(2) ;

E(1)
z = E(2)

z :

Here H(k) = (H
(k)
x ; H

(k)
y ; 0)T and n̂ = (n̂x; n̂y; 0)

T represents a unit ve
tor normal to the interfa
e. For the


ase of a perfe
tly 
ondu
ting metalli
 boundary the 
ondition be
omes parti
ularly simple as

Ez = 0 :

The 
omputational domain is trun
ated with a Cartesian PML [37℄ using a quadrati
 absorption pro�le.

It is worthwhile emphasizing that results of equal quality and overall a

ura
y as the ones shown in the

following for the TM-polarized 
ase has been obtained for the TE-polarized 
ase.

As a �rst example we 
onsider that of plane wave s
attering by a perfe
tly 
ondu
ting 
ir
ular 
ylinder

with a radius of a = 7:5�, i.e., ka = 15�. The surrounding medium is assumed to be va
uum, i.e., "r = �r = 1.

The �nite element grid, 
onsisting of 854 triangles, utilized for this 
omputation is shown in Fig. 6 along with

a se
tion of the grid illustrating the full body
onforming nature of the approximation as well as the nodal grid

supporting the high-order approximation. Maxwell's equations are solved in the s
attered �eld formulation
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Fig. 7. In a) is shown the bistati
 radar 
ross se
tion, RCS(�), as 
omputed using the exa
t series representation as well

as the unstru
tured grid method at di�erent polynomial orders, n. Eviden
e of high-order 
onvergen
e for the RCS-
omputation

is given in b) showing exponential de
ay of the error in RCS(dBm) with in
reasing order of the approximation.

and Prony extrapolation [38℄ is used to redu
e the required 
omputing time to rea
h the harmoni
 steady

state.

In Fig. 7 we 
ompare the 
omputed bistati
 radar 
ross se
tion, RCS(�), with the exa
t series solution

[39℄, for various orders, n, of the approximation using the �nite element grid illustrated in Fig. 6. As

expe
ted we observe a very rapid 
onvergen
e with in
reasing n, yielding a reasonable engineering a

ura
y


omputation with the 4th order s
heme while in
reasing the order to n = 8 results in a perfe
t mat
h. A

quantitative 
on�rmation of this is also shown in Fig. 7, illustrating the expe
ted exponential 
onvergen
e

of the RCS with in
reasing n.

One of the most appealing advantages of a high-order framework on simpli
es is the ability to import

a strongly skewed �nite element grid and re
over a fully 
onverged solution by in
reasing the order of the

approximation rather than having to re
onstru
t an improved �nite element dis
retization. This property

is parti
ularly important and useful for large three-dimensional problems where the grid generation phase


an be very 
omplex and time-
onsuming. As an illustration of this approa
h to 
onvergen
e, we 
onsider

in Fig. 8 the plane wave s
attering from a PEC 
ylinder with a radius of one wavelength, i.e., ka = 2�. The

measure of a

ura
y and 
onvergen
e is based on the observation that the symmetry of the problem makes

one expe
t the s
attered �elds themselves maintain a high degree symmetry.

This is indeed 
on�rmed in Fig. 8 where we show a deliberately 
hosen poor grid and the rapid re
overy

of the symmetry of one of the s
attered �eld 
omponents, Hx, as the order, n, of the approximation is

in
reased without modifying the underlying �nite element grid. The detail to whi
h the symmetry is restored

is parti
ularly noteworthy.

As an illustration of the 
apability to handle materials let us 
onsider plane wave s
attering by a pene-

trable 
ir
ular 
ylinder with a radius of a = 3:5� 
onsisting of an ideal diele
tri
 with "r = 2:0, i.e., similar to

that of glass. The problem is again solved in a pure s
attered �eld formulation and the fully body-
onforming

�nite element dis
retization, 
onsisting of a total of 1020 triangles, is illustrated in Fig. 9. We note that

the absorbing PML layer, 
ontaining about 2/3 of the total amount of triangles is unne
essarily thi
k for

illustration only and 
an be de
reased without loss of a

ura
y.

As is likewise illustrated in Fig. 9 we re
over the full bistati
 radar 
ross se
tion, RCS(�), with ex
ellent


orresponden
e to the exa
t solution [40℄ and quantitative agreement over a 40 db dynami
 range.
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Fig. 8. Example of 
onvergen
e by in
reasing the order of the approximation, n, on a deliberately 
hosen highly skewed

�nite element grid, illustrated in a). The 
onvergen
e is illustrated in b)-f) for in
reasing the order from 4'th order to 12'th

order, showing a 
omplete re
overy of the expe
ted symmetry of the s
attered �eld 
omponent, Hx.

5.3. Three-Dimensional Examples. As a �rst veri�
ation of the general three-dimensional frame-

work, let us 
onsider plane wave s
attering by a ka = 10 perfe
tly 
ondu
ting sphere, the analyti
 solution

of whi
h is given by a Mie-series [39℄.

We use a fully body
onforming grid with a total of 3000 elements, having an average edge length at the

sphere of 4�=5. Contrary to the two-dimensional 
ase where we used a PML to trun
ate the 
omputational

domain we 
hoose in the three-dimensional 
ase to embed the sphere in a (20�)3 
ube and employ stret
hing

of the elements as one approa
hes the outer boundary. The grid is stret
hed su
h that the average edge is

about 2� at the outer boundary. As in the two-dimensional 
ase, all examples are done using a 4th order
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tri
 
ir
ular 
ylinder with a relative permittivity "r = 2:0. In a) we

show the �nite element dis
retization while b) shows a 
omparison between the 
omputed bistati
 radar 
ross se
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obtained with a 10'th order approximation and that re
overed by evaluating the exa
t solution.
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Fig. 10. Plane wave s
attering by a ka = 10 metalli
 sphere for a �xed grid and in
reasing order, n, of the polynomial

approximation. In a) we show the 
onvergen
e of RCS(�,0) for verti
al polarization (TM), while b) shows RCS(�,90) for

horizontal polarization (TE) of the in
ident �eld.

low-storage Runge-Kutta s
heme to advan
e in time and Prony extrapolation to identify the solution.

In Fig. 10 we illustrate the 
onvergen
e of the s
heme with a �xed grid when in
reasing the order of

the approximation within ea
h tetrahedron. Even for n = 3, i.e., a third order s
heme with about 5 points

per wavelength, do we 
ompute a reasonable solution while in
reasing the order yields a rapidly 
onverging

solution as one would expe
t.

As a 
onsiderably more 
hallenging problem, let us 
onsider s
attering by a perfe
tly 
ondu
ting business


ard sized metalli
 plate as illustrated in Fig. 11. The horizontally polarized plane wave impinges at the

metalli
 plate at an almost grazing angle, 
ausing the ex
itation of very strong waves along the edges of the

metalli
 plate. These waves 
ontribute dramati
ally to the s
attering pro
ess and need to be resolved to

a

urately predi
t the far �eld s
attering.

This problem, being one of the EMCC ben
hmark problems [41℄ for 
ode validation, is addressed by

using a total of 27000 straightsided tetrahedra, ea
h supporting a 4th order polynomial approximation. The

average edge length at the edge of the business 
ard is approximately �=5. The metalli
 plate is embedded

in a (20�)3 
ube, with the elements being stret
hed to about 4� at the outer boundary.
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Fig. 11. In a) we show the geometry for the plane wave s
attering by a metalli
 business 
ard while b) shows the 
omparison

between monostati
 RCS experimental results [41℄ (full line) for horizontal polarization of the illuminating �eld and parti
ular


omputed data points (�).

In Fig. 11 we also show the 
omparison between the experimentally measured monostati
 RCS [41℄ and

a number of parti
ular 
omputed data points. Again we observe good agreement over the full azimuthal

range with results well within the experimental error. The most signi�
ant dis
repan
y of a few dB for � � 0

is 
onsistent with other published results [41℄.

As a �nal example of the performan
e of the three-dimensional framework we shall 
onsider plane wave

s
attering from a diele
tri
 
ylinder of �nite length. As illustrated in Fig. 12, the length of the 
ylinder is 5�

and the non-magneti
 material has a permittivity of "r = 2:25, similar to that of glass. Clearly, the nature

of the �elds is less dramati
 than in the previous 
ase and we �nd that using a total of approximately 67000

elements, supporting a 4th order approximation and with an average va
uum edge length at the 
ylinder of

�=3, suÆ
es to a

urately predi
t the far �eld s
attering. The full 
omputational domain is a 
ylinder of

radius 16� and length 23� with the stret
hed elements having a average length of 4� at the outer boundary.

In Fig. 12 we show a dire
t 
omparison between the full bistati
 RCS for a plane wave impinging dire
tly

at the end of the 
ylinder as 
omputed using the 
urrent framework as well as an independently veri�ed

pseudospe
tral multi-domain axi-symmetri
 
ode [12℄. As expe
ted we �nd an almost perfe
t agreement

between the results of the two s
hemes over approximately 50 dB dynami
al range.

5.4. Parallel Performan
e. The dis
ontinuous element formulation of the s
heme enables a highly

eÆ
ient implementation at 
ontemporary large s
ale distributed memory ma
hines. While this is a lesser


on
ern for the two-dimensional s
hemes, it is essential to enable the modeling of large s
ale three-dimensional

problems.

The developed s
hemes are implemented in a 
ombination of Fortran and C with all 
omputationally

intensive part written in Fortran and taking advantage of Level 3 BLAS [42℄ where possible. The parallel

interfa
e is written in MPI [43℄ with METIS [44℄ used to distribute the elements over the pro
essors. To

ensure high 
a
he eÆ
ien
y, we employ bandwidth minimization [45℄ of the nodal points lo
ally to the

pro
essors [46℄. For 
omputations maximizing the 
apa
ity of the pro
essors, i.e., �lling the lo
al memory,

this is 
riti
al to ensure high performan
e.

In Table 1 we list the parallel speedup relative to the n = 2 
ase as the number of pro
essors are

in
reased. A few things are worth noting. For a �xed size problem, the parallel speedup de
reases slightly

as the number of pro
essors in
reases whi
h is natural as the relative 
ommuni
ation 
ost in
reases. On
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Table 1

Parallel speedup for a 123.000 element grid, s
aled to timing for n = 2 on 4 pro
essors (- implies insuÆ
ient memory

lo
al to the nodes).

Polynomial Degrees of Number of pro
essors

order (n) freedom (�106) 4 8 16 32 64

2 7.4 1.0 2.0 3.9 7.5 13.7

3 14.8 - 0.9 1.8 3.5 6.4

4 25.8 - - 1.0 1.9 3.6

5 41.3 - - - 0.8 1.6
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Fig. 12. In a) we show the geometry for the plane wave s
attering by a diele
tri
 �nite length 
ylinder while b) shows

the RCS(�,0) for verti
al polarization (�) of the illuminating �eld and RCS(�,90) for horizontal polarization (�) 
ompared with

results obtained using a pseudospe
tral axi-symmetri
 
ode (full line) [12℄

the other hand, for problem sizes utilizing the available resour
es we �nd a very high parallel eÆ
ien
y,

e.g., in
reasing the problem size and the number of pro
essors yields a 
lose to 
onstant speedup. The data

also show a minor de
rease in relative performan
e for high order on many pro
essors, whi
h we spe
ulate

is related to 
a
he e�e
ts known to be be
ome important as the size of the operators in
rease [29℄. We

generally observe better than 90% parallel eÆ
ien
y, 
onsistent with other similar studies [47℄.

6. Con
luding Remarks and Outlook. The main purpose of paper has been to introdu
e the reader

to a new 
lass of high order unstru
tured grid methods suitable for the time-domain solution of Maxwell's

equations. A number of 
entral elements separate the 
urrent framework from previous attempts to develop

high-order a

urate methods on unstru
tured grids. The use of a purely nodal basis has a number of

advantages in terms of ease of implementation by simple matrix-ve
tor operations as well as the promise

to yield a highly eÆ
ient implementation. Furthermore, the generalized dis
ontinuous penalty s
heme was

introdu
ed, o�ering an inherently parallel dis
ontinuous formulation with a purely blo
k-diagonal mass

matrix whi
h 
an be inverted in prepro
essing.

The parti
ular fo
us on Maxwell's equations allowed us to develop a 
omplete, if not optimal, 
onvergen
e

theory. A similar analysis 
an be 
ompleted for other 
lasses of linear problems su
h as a
ousti
s and linear

elasti
ity. We have 
on�rmed the results of the analysis by thorough 
omputational experiments, illustrating

the 
exibility, versatility, and eÆ
ien
y of the proposed high-order a

urate unstru
tured grid framework.

While we have fo
used on linear systems in general and Maxwell's equations in parti
ular, the 
entral

elements of the framework allows for more general formulations that enable the solution of typi
al nonlinear

33



systems of 
onservation laws. This naturally raises questions about proper formulation of the 
uxes at

interfa
es, 
onservation, entropy solutions and stability of high-order s
hemes when approximating problems

with dis
ontinuous solutions. We shall address these issues in [30℄ where we shall also demonstrate the

performan
e of su
h generalized formulations for the solution of 
onservation laws.

A
knowledgment. The authors extend their appre
iation to Prof. D. Gottlieb and Dr. A. Ditkowski,

Brown University, for many fruitful dis
ussions.

EÆ
ient and A

urate Implementation Te
hniques. From the dis
ussions in Se
. 3.2 it is 
lear

that the Vandermonde matrix, V, plays a 
ru
ial role in setting up the dis
rete operators for interpolation

and di�erentiation. The properties of V, e.g., its 
onditioning, depends ex
lusively on the stru
ture of nodal

set, �j , and on the way in whi
h we 
hoose to represent the basis, i.e., pi(�). While the former is 
hosen to

ensure well behaved Lagrange interpolation polynomials, we have signi�
ant freedom in the spe
i�
ation of

pi(�).

A parti
ularly simple 
hoi
e is that of the multivariate monomial basis, i.e., pi(�) = �i�j�k. However,

even for interpolation in one dimension, i.e., pi(�) = �i, is it well known that this basis leads to the 
lassi
al

Vandermonde matrix with an exponentially growing 
ondition number. Hen
e, even for moderate values of

n 
an we expe
t severe problems when attempting to 
ompute the a
tion of V�1. The well known solution

to this problem is to 
hoose a basis that is orthonormalized with respe
t to some proper inner produ
t to

assure the maximum degree of linear independen
e of the basis.

Su
h a basis has been known for long [48, 49, 50℄ and takes the form

 ijk(�) = P
(0;0)
i (r)

�
1� s

2

�i

P
(2i+1;0)
j (s)

�
1� t

2

�i+j

P
(2i+2j+1;0)
k (t) ;(32)

where

r = �2(1 + �)

� + �
� 1 ; s =

2(1 + �)

1� �
� 1 ; t = � ;

and P
(�;�)
n (x) signi�es the 
lassi
al Ja
obi polynomial of order n [51℄.

The tensor produ
t stru
ture of the basis, Eq.(32), be
omes evident when one realizes that while � is

restri
ted by I, the mapped 
oordinates, (r; s; t), 
overs [�1; 1℄3. Furthermore, it is easy to see that the

polynomial spa
e P3
n 
an expressed as

P3
n = span f ijk(�); i; j; k � 0; i+ j + k � ng :

An important property of the basis, Eq.(32), is its orthogonality on I [21℄ asZ
I

 ijk(�) pqr(�) d� = 
ijkÆijk;pqr ;

where Æijk;pqr is the multi-dimensional Dira
 delta and the normalization is


ijk =
2

2i+ 1

22i+2

2(i+ j) + 2

22(i+j)+3

2(i+ j + k) + 3
:

Let us introdu
e the index, � 2 [0; N ℄, re
e
ting some 
hosen ordering of (i; j; k) and hen
e  ijk . We 
an

thus rename the polynomial basis  ijk(�) =  �(�) to simplify the notation in the subsequent dis
ussion.
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With this ma
hinery in pla
e, let us address how to initialize the basi
 operations and the asso
iated

operators needed for solving partial di�erential equations with the 
urrent 
ontext in an eÆ
ient and a

urate

manner.

Using the orthogonal basis,  �, it is natural to de�ne the Vandermonde matrix to have the entries

Vij =
1p

j
 j(�i) :

The relation between the nodal and the modal representation of a fun
tion, f , follows dire
tly from Eq.(12)

as

f = Vf̂ ; f̂ = V�1f :

Furthermore, we 
an 
ompute the entries of the di�erentiation matri
es dire
tly by de�ning the entries of

P(�;�;�), Eq.(15), using the derivatives of  i(�) expressed expli
itly by the identity [51℄

d

d�
P (�;0)
n (�) =

1

2
(n+ 1+ �)P

(�+1;1)
n�1 (�) :

In an equally simple and straightforward way we 
an de�ne spatial �ltering matri
es, F, as

F = V�(i; j; k)V�1 ;

where the order p �lter itself is de�ned as

�(i; j; k) = exp

�
��

�
(i+ j + k)(i+ j + k + 3)

n

�p�
;

su
h that �ltering is a

omplished through a straightforward matrix multiply at a 
ost equivalent to that of


omputing a spatial derivative.

While the interpolation, di�erentiation, and �ltering operators will play a 
ru
ial role in the solution of

the partial di�erential equations, we shall also need to evaluate inner produ
ts on the general 
urvilinear

tetrahedron, i.e., we shall need an eÆ
ient and a

urate pro
edure for 
omputing

(fN ; gN)D =

Z
I

fN (�)gN(�)J(�)d� ;

where J refers to the transformation Ja
obian for the mapping between D and I and fN 2 P 3
n , gN 2 P 3

n .

To evaluate this inner produ
t, we exploit that fN and gN are expressed uniquely by their expansion in

Lagrange polynomials as

(fN ; gN)D =

NX
i;j=0

figj

Z
I

Li(�)Lj(�) J(�) d� :

Furthermore, using the basis itself,  �(�), we 
an express the Lagrange polynomials themselves using Eq.(14)

on the form

Li(�) =

NX
k=0

V�1ik  k(�) :

This immediately yields the expression
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(fN ; gN)D =
NX

i;j=0

figj

NX
k;l=0

V�1ki V
�1
lj

Z
I

 k(�) l(�)J(�) d�(33)

=

NX
i;j=0

figj

NX
k;l=0

V�1ki V
�1
lj Wkl ;

where the symmetri
 matrix of weights, W, has the entries

Wkl =

Z
I

 k(�) l(�)J(�) d� :

On matrix form Eq.(33) be
omes

(fN ; gN)D =
�
V�1f

�T
WV�1g :

For all elements we may pre
ompute (V�1)TWV�1 in a prepro
essing stage, storing only the upper half of

the operator due to symmetry. In the parti
ularly important 
ase where D is a straightsided tetrahedron,

i.e., J is a 
onstant, the orthonormality of  � implies that W = JI, where I represents the identity matrix.

Hen
e, through a simple linear s
aling one re
overs the weights for all tetrahedra with planar fa
es. For the

general 
ase where J(�) is non 
onstant, the entries of W are 
omputed exa
tly through over-integration by

produ
t rules based on Legendre Gauss quadratures [52℄.

A �nal key operation needed for the implementation of the s
heme is surfa
e integration, i.e.,

(fN ; gN )ÆD =

I
ÆI
fN(�)gN (�)J(�) d� ;

where J(�) refers to the surfa
e Ja
obian only. While one 
ould pro
eed as for the volume integral dis
ussed

above, it is more natural to exploit the uniqueness and 
ompleteness of the Lagrange interpolation. To

illustrate the pro
edure, let us restri
t attention to one of the fa
es, fa
e 'd' (see Fig. 1), and term those

Nd
n = 1

2 (n + 1)(n+ 2) nodes positioned at that fa
e for �d. Clearly, using the exa
t same pro
edure as for

the three-dimensional Lagrange polynomial dis
ussed above, we 
an 
ompute a two-dimensional Lagrange

polynomial, ldj (�; �) based on �d. As for Lj(�), we 
an re
over ldj as the solution to the dual problem

�
Vd
�T

ld = pd ;

where the entries of the Vandermonde matrix is

Vd
ij = pdj (�

d
i ) :

The proper basis to use is the two-dimensional version of Eq.(32) given dire
tly as pdj (�; �) =  ij0(�; �;�1).
This allows us to pro
eed exa
tly as for the volume integration and express the integration over fa
e 'd' asZ

fa
e d

fN (�; �;�1)gN(�; �;�1)J(�; �;�1) d� d� =
��
Vd
��1

f
d
�T

Wd
�
Vd
��1

gd ;

where fd = [fN(�
d
0); :::; fN (�

d
Nd
n
)℄T is the tra
e of fN at the fa
e. A similar de�nition is used for gd. The

matrix of surfa
e weights are given as

Wd
ij =

Z
fa
e d

 i(�; �;�1) j(�; �;�1)J(�; �;�1) d�d� :
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In the important spe
ial 
ase where the fa
e is planar and has straight edges, orthonormality of the poly-

nomials immediately implies that Wd = JdI as for the volume 
ase. For the general 
ase we shall use a


ubature rule [53, 54, 55℄ of suÆ
iently high order to evaluate the inner produ
t, i.e., we need to interpolate

the polynomials, fN and gN , onto the M 
ubature nodes, �d;
ub; situated at the fa
e. This is done by the

introdu
tion of the interpolation operator

H = PT
�
Vd
��1

; Pij = pdi (�
d;
ub
j ) ;

i.e., P is an Nd �M operator. The evaluation of the inner produ
t is then a

omplished asZ
fa
e d

fN (�; �;�1)gN(�; �;�1)J(�; �;�1) d� d� =
�
fd
�T

HTWHgd ;

where the entries of the diagonal M �M matrix of weights are given as

Wii = wi

Nd

nX
k=0

HikJ(�
d
k) ;


ontaining the weights wi of the 
ubature as well as the interpolation of the transformation Ja
obian of the


urvilinear fa
e. While this formulation leads to the most 
ompa
t s
heme it proves advantageous to operate

dire
tly on the values at the 
ubature nodes as they do not in
lude the edges and verti
es, i.e., we 
an

establish a 
lean fa
e based 
onne
tion between elements without 
onsidering the multipli
ity of solutions at

verti
es and the added 
omplexity this introdu
es for the implementation and performan
e. Needless to say,

the whole dis
ussion for the evaluation of the integral over fa
e 'd' 
arries over dire
tly to the other fa
es,

hen
e 
ompleting the evaluation of the full surfa
e integral.

It is important to realize that all the operators introdu
ed in the above 
an be initialized during a

prepro
essing phase. Furthermore, it is worth re
alling the dis
ussion in Se
. 3.1 in whi
h we found that any

two straightfa
ed tetrahedra are 
onne
ted through a linear transformation. Hen
e, for any straightfa
ed D

we 
an form any of the operators dis
ussed in the above dire
tly by a linear s
aling of hard-
oded template

operators de�ned on I. This saves not only prepro
essing time but also redu
es the required storage spa
e

very substantially.
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