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Abstract Spatially distributed and varying natural phenomena encountered in geo-

science and engineering problem solving are typically incompatible with Gaussian

models, exhibiting nonlinear spatial patterns and complex, multiple-point connec-

tivity of extreme values. Stochastic simulation of such phenomena is historically

founded on second-order spatial statistical approaches, which are limited in their ca-

pacity to model complex spatial uncertainty. The newer multiple-point (MP) simula-

tion framework addresses past limits by establishing the concept of a training image,

and, arguably, has its own drawbacks. An alternative to current MP approaches is

founded upon new high-order measures of spatial complexity, termed “high-order

spatial cumulants.” These are combinations of moments of statistical parameters that

characterize non-Gaussian random fields and can describe complex spatial infor-

mation. Stochastic simulation of complex spatial processes is developed based on

high-order spatial cumulants in the high-dimensional space of Legendre polynomi-

als. Starting with discrete Legendre polynomials, a set of discrete orthogonal cumu-

lants is introduced as a tool to characterize spatial shapes. Weighted orthonormal

Legendre polynomials define the so-called Legendre cumulants that are high-order

conditional spatial cumulants inferred from training images and are combined with

available sparse data sets. Advantages of the high-order sequential simulation ap-

proach developed herein include the absence of any distribution-related assumptions

and pre- or post-processing steps. The method is shown to generate realizations of

complex spatial patterns, reproduce bimodal data distributions, data variograms, and

high-order spatial cumulants of the data. In addition, it is shown that the available

hard data dominate the simulation process and have a definitive effect on the sim-

ulated realizations, whereas the training images are only used to fill in high-order

relations that cannot be inferred from data. Compared to the MP framework, the pro-
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posed approach is data-driven and consistently reconstructs the lower-order spatial

complexity in the data used, in addition to high order.

Keywords Conditional sequential simulation · High-order spatial cumulants ·

Legendre polynomials

1 Introduction

Spatial uncertainty in the attributes of geological and other natural phenomena is

frequently modeled using stochastic simulation of stationary and ergodic random

fields, conditional to available data. Today’s trends, developments, and applica-

tions in this area of problem solving focus on the so-called multiple-point simula-

tion algorithms, such as the snesim (Strebelle 2002), filtersim (Zhang et al. 2006;

Wu et al. 2008), and simpat (Arpat and Caers 2007) algorithms, and related ex-

tensions (Boucher 2009; Chugunova and Hu 2008; Mirowski et al. 2008; Remy et

al. 2009; and others). Additional related new developments include Markov ran-

dom field-based multiple-point type approaches (Daly 2004; Tjelmeland and Ei-

dsvik 2004), kernel approaches (Scheidt and Caers 2009), and multiscale simula-

tions based on discrete wavelet decomposition (Gloaguen and Dimitrakopoulos 2009;

Chatterjee et al. 2009).

The development of multiple-point (or multipoint) models stems from the prag-

matic need to tackle the effective modeling of complex nonlinear spatial patterns,

deal with the noncompliance of natural phenomena with Gaussian models and, in

general, distributional assumptions, and/or replicate the multiple-point connectivity

of extreme values present in geological formations. These are all recognized impor-

tant issues with substantial practical ramifications in most fields of application in

geosciences and engineering. Conventional simulation methods (Goovaerts 1998;

Chilès and Delfiner 1999; Remy et al. 2009; and others) are limited in their ef-

fectiveness of dealing with spatial complexity, largely because they are also lim-

ited to the two-point or second-order spatial statistical moments of the correspond-

ing random field models employed. This limit has been recognized and docu-

mented since the early 1990s (Guardiano and Srivastava 1993; Tjelmeland 1998;

Journel 1997). By spatial complexity, one may refer to, for example, curvilinear fea-

tures in geologic domains controlling physical properties of rocks (such as ore con-

centrations) or overprints of successive geological events (such as high-grade ore in

complex vein geometries), among others. Interestingly, efforts in the 1980s in dealing

with geological complexity focused on the multiple-point covariance, or generalized

covariance of linear combinations of locations in the context of nonstationary random

fields with stationary increments of order k and their simulation (Dimitrakopoulos

1990). However, the lack of the concept of a “training image” and the mathematical

complexity of the related simulation methods limited the application of these devel-

opments.

The multiple-point methods noted above substantially address many of the lim-

its of conventional methods; see, for example, the simulation of complex patterns in

Boucher (2009). The ability to deal with complexity by MP methods is related to the
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introduction of the so-termed training images (TI) or analogues of the phenomenon

under study; these serve as the source of underlying patterns, and a simulated real-

ization should reproduce their probability of occurrence. Arguably, the conventional

random field model is, in a sense, replaced by one where the TI is one of its para-

meters (Remy et al. 2009). Despite the advances in spatial modeling and simulation

offered by the existing multiple-point approaches, there are interrelated drawbacks,

which may be outlined as follows: (i) multiple-point algorithms are, arguably, some-

what ad hoc and lack a general mathematical framework; thus, theoretical questions

of consistency may be raised; (ii) the choice of the training image is subjective and

may be intrinsically unrealistic, while it overwrites the underlying spatial relations

in data available. As a result, in the presence of a reasonable amount of hard data,

conflicts between simulated realizations and the statistics of the data can become

apparent; and (iii) to utilize information from a training image, MP algorithms use

templates as a basis for modeling underlying spatial relations and patterns, that is,

the spatial high-order moments of some corresponding non-Gaussian random field.

The choice of templates may be arbitrary while templates appear geologically unin-

terpretable, unlike second-order spatial moments (David 1988). In summary, a well-

defined spatial stochastic modeling framework dealing with the complex high-order

geostatistical (spatial) description of complex and/or nonlinear geological and other

natural phenomena is an avenue well worth exploring. A consistent mathematical

model should ensure that the modeling process is data-driven, not training image-

driven, and thus avoids potential conflict between the spatial statistics of the data and

simulated realizations.

Recently, Dimitrakopoulos et al. (2010) suggested the concept of high-order spa-

tial cumulants and its use to characterize complex geological patterns. High-order

cumulants are combinations of moment statistical parameters that characterize non-

Gaussian random variables (Billinger and Rosenblatt 1966) and may be seen as

an extension of the well-known covariance function. The systematic definitions of

spatial cumulants, including random variables, their moments and cumulants, non-

Gaussian spatial random fields, and their high-order spatial statistics are given in

Dimitrakopoulos et al. (2010) along with duality relations between characteristics

of cumulants as mathematical entities and the in situ spatial behavior of geological

characteristics and patterns. The algorithm to efficiently calculate high-order spatial

cumulants and additional examples can be found in Mustapha and Dimitrakopoulos

(2010). In general, spatial cumulants of orders three to five are shown to be able to

capture directional multiple-point periodicity, multiple-point connectivity (including

connectivity of extreme values), and geometric characteristics and spatial architecture

of two- and three-dimensional images and datasets. Most important in the above-

mentioned work are the specific relations shown between the order of the spatial

cumulants and the lower-order moments that can make a simulation process consis-

tent over a series of orders, that is, spatial cumulants are not some experimentally

selected moments. This consistency does not appear to be the case with the existing

MP methods. In addition, the above work shows that there is a wealth of spatial infor-

mation quantified by high-order cumulants, which can therefore be carried through

to the next step: a new high-order stochastic simulation framework such as the one

presented herein.



460 Math Geosci (2010) 42: 457–485

It is appropriate to note that the use of high-order cumulants are critical contrib-

utors to non-Gaussian and nonlinear modeling, where related developments include

cumulants for signal filtering and deconvolution (Nikias and Petropulu 1993; Sadler

et al. 1995; Delopoulos and Giannakis 1996; Zhang 2005), the estimation of the

gravitational evolution of the cosmic distribution function (Gaztanaga et al. 2000),

and conditional high-order cumulants in the high-precision astronomy (Bernardeau

et al. 2002). A key justification for the use of cumulants in these fields and others is

the wealth of information they contain compared to second-order statistical measures

(Pan and Szapudi 2005), and their ability to support non-Gaussianity and nonlinearity

in the context of modeling.

This paper contributes to the definition of the predictive aspects of non-Gaussian

random field models, and, more specifically, a new simulation framework for com-

plex nonlinear geological and other spatial patterns. This is based on the use of spa-

tial cumulants in the high-dimensional space of Legendre polynomials (e.g., Lebe-

dev 1965; Hosny 2007) and utilizes training images for information additional to the

data without utilizing data transformations. In the following sections, a sequential

simulation method using high-order spatial conditional cumulants is first introduced.

Subsequently, the proposed general algorithm is presented. Finally, several numerical

examples are presented to demonstrate the practical aspects and main features of the

high-order simulation framework proposed. Discussion and conclusions follow.

2 Sequential Simulation with High-order Spatial Cumulants

Consider a stationary and ergodic random field Z(xi) or Zi, xi ∈ � ⊆ Rr (r = 1,2,

or 3) for i = 0, . . . ,N , where N is the number of points in a discrete grid (DN )

and a set of conditioning data dn = {Z(xα), α = 1, . . . , n}. In addition, we introduce

the sets Λi such that Λ0 = {dn},Λi = Λi−1 ∪ {Z(xi−1)}. Let fZ(z0, z1, . . . , zN )

be a probability distribution function associated with a multivariate process Z =

{Z0,Z1, . . . ,ZN } at x = {x0, x1, . . . , xN }. The multivariate distribution fZ can be

decomposed, based on the Bayes relation, into the product of univariate conditional

distributions functions (Ripley 1987; Rosenblatt 1985; Rubinstein 1981; Law and

Kelton 1999)

fZ(z/Λ0) = fZ(z0, z1, z2, . . . , zN/Λ0)

= fZ0
(z0/Λ0)fZ1

(z1/Λ1) · · ·fZN
(zN/ΛN ), (1)

where fZi
(zi/Λi) is the conditional distribution of Zi , given Λi . To generate a real-

ization z = (z0, . . . , zN ) of Z, a value z0 is drawn for Z0 based on fZ0
(z0/Λ0); then,

zi, i = 1, . . . ,N , is drawn from the conditional probability function fZi
(zi/Λi). For

additional details, see Journel (1994) and Dimitrakopoulos and Luo (2004). The es-

timation of fZ in (1), given Λ0, needs the estimation of (N + 1) local conditional

probability density functions (cpdfs), as explained above; furthermore, the decom-

position of fZ in not unique. Then, the cpdfs can be estimated using the well-known

sequential conditional simulation algorithm (Alabert 1987; Journel and Alabert 1989;

Journel 1994) which follows the well-known sequence: (1) randomly choose the spa-

tial location of a node xi to be simulated; (2) estimate fZi
(zi/Λi); (3) draw a value



Math Geosci (2010) 42: 457–485 461

Fig. 1 An unknown value is at

the location x0 , and the values at

the locations x1, x2, . . . , xn in

the neighborhood of x0 are

assumed to be known

zi from fZi
(zi/Λi), which becomes a conditioning data for all subsequent drawings;

and (4) return to Step (1) until all nodes have been visited using a random path.

For the reason of simplicity and without loss of generality, assume that x0 is the

first node visited and its neighbors are found within a certain neighborhood, as shown

in Fig. 1. The cpdf fZ0
, given Λ0, is defined by

fZ0
(z0/Λ0) =

fZ(z)

fZ0
(z0)

, (2)

where z0 = (z1, . . . , zn),Z0 = (Z1, . . . ,Zn), and its marginal density fZ0
is given by

fZ0
(z0) =

∫

D

fZ(z) dx0. (3)

In the above equations, D denotes the domain of definition of fZ0
. The estimation

of fZ0
, using (2), requires the approximation of the joint probability density fZ and

the marginal density fZ0
. However, the density fZ0

can theoretically be derived from

fZ by integrating along the support of Z0. Then, only the estimation of fZ is suffi-

cient. The aim of the present work is to derive, given Λ0 = {Zα = zα, α = 1, . . . , n},

an estimation of fZ0
in the general case, without transforming the conditioning data

as, for example, made by the Gaussian-related or indicator-based algorithms. In this

paper, we utilize the high-dimensional Legendre polynomials combined with high-

order spatial cumulants to derive analytical expressions to the local conditional prob-

ability density functions fZi
(zi/Λi). The method herein developed and its related

details are discussed next.

2.1 Approximation of a Joint Probability Density using Legendre Series

The determination of a joint PDF, given its cumulants up to order n, is a well-known

problem, that is, the cumulants problem (Kendall and Stuart 1977) which has been
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Fig. 2 Legendre polynomials

up to order 4

studied extensively from a theoretical point of view. Examples of solving this type of

problem can be found in Edgeworth (1905, 1907), Daniels (1954), Lebedev (1965),

Welling (1999), Gaztanaga et al. (2000). The approximation used here is based on

Legendre series (Lebedev 1965; Liao and Pawlak 1996; Yap and Paramesran 2005;

Hosny 2007) with coefficients calculated in terms of high-order spatial cumulants.

The method is first reviewed for the univariate case; subsequently, the approximation

developed for the general multivariate case is introduced.

2.1.1 One Dimension

A square-integrable and real piecewise smooth function f defined on D = [−1,1]

can be formally written in a series of Legendre polynomials

f (z) =

∞
∑

m=0

Lm

Pm(z)

‖Pm‖
, (4)

where Pm(z) is the mth-order Legendre polynomials (Fig. 2), with norm ‖Pm‖, de-

fined as in Lebedev (1965), Spiegel (1968).

Pm(z) =
1

2mm!

(

d

dz

)

[(

z2 − 1
)m]

=

m
∑

i=0

ai,mzi, and − 1 ≤ z ≤ 1. (5)

The Legendre polynomials Pm(z) obey the following recursive relation

Pm+1(z) =
2m + 1

m + 1
zPm(z) −

m

m + 1
Pm−1(z), (6)

where P0(z) = 1,P1(z) = z, and m ≥ 1. The set of Legendre polynomials {Pm(z)}m
forms a complete orthogonal basis set on the interval [−1,1]. The orthogonality prop-

erty is defined as
∫

D

Pm(z)Pn(z) dx =

{

0, m 	= n,
2

2m+1
, m = n.

(7)
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The discrete Legendre polynomials also satisfy

k
∑

i=1

Pm(zi)Pn(zi)�z =
2

2m + 1
δmn, ∀m,n ≥ 0, (8)

where �z = zi −zi−1 = 2/k is a space step, k is the number of steps, {zi} is a uniform

discretization of [−1,1], and δmn is the delta Dirac function. To avoid numerical

instability in polynomial computation, we normalized the Legendre polynomials by

utilizing the square norm. The set of normalized Legendre polynomials is defined as

P m(z) =

√

2m + 1

2
Pm(z).

In this case, the orthogonality condition given in (7) becomes

k
∑

i=1

P m(zi)P n(zi)�z = δmn, ∀m,n ≥ 0. (9)

The coefficients Lm in (4) of the Legendre series, the so-termed Legendre cumulants,

can be determined using the orthogonality property in (7) as

Lm =

∫

D

P m(z)f (z) dz = gm(ci), i = 0, . . . ,m and m = 0,1,2, . . . , (10)

where ci is the ith-order cumulant of f . The expression of the right-hand side func-

tion gm and other details about cumulants are given in Appendix B. Theoretically, the

series (1), with coefficients Lm calculated from (5), converges to f (z) at every con-

tinuity point of f (z), as demonstrated by Lebedev (1965). Finally, if only cumulants

of order smaller than or equal to ω are given, then the function f (z) in (1) can be

approximated as follows

f (z) ≈ f̃ω(z) =

ω
∑

m=0

LmP m(z).

2.1.2 Two Dimensions

Taking the orthogonally principle into consideration, a piecewise function f (z0, z1)

can be written over the square D2 = [−1,1] × [−1,1] as

f (z0, z1) =

∞
∑

m=0

∞
∑

n=0

Lm,nP m(z0)P n(z1), (11)

where the coefficients Lm,n are given by

Lm,n =

∫

D2
P m(z0)P n(z1)f (z0, z1) dz0 dz1

= gm,n(cij ), i, j = 0, . . . ,m and m = 0,1,2, . . . . (12)
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If only the cumulants of order smaller or equal to ω are given, then the function

f (z0, z1) can be approximated by a continuous function which is a truncated series,

f (z0, z1) ≈ f̃ω(z0, z1) =

ω
∑

m=0

m
∑

n=0

Lm−n,nP m−n(z0)P n(z1). (13)

2.1.3 N Dimensions

The same procedure is followed to write a piecewise smooth N -dimensional function

f (z0, z1, . . . , zN ) over DN+1 = [−1,1]N+1 by

f (z0, z1, . . . , zN )

≈ f̃ω(z0, z1, . . . , zN )

=

ω
∑

i0=0

· · ·

iN−2
∑

iN−1=0

iN−1
∑

iN=0

Li0,...,iN−1
,i

N
P i

0
(z1) · · ·P i

N−1
(zN−1)P iN (zN ), (14)

where i
k
= i

k
− i

k+1
for k < N . The calculation of the coefficients Li

1
,...,i

N−1
,i

N
will

be pointed out in the next section. As explained above, an approximation of the cpdf

fZ0
(z0/Λ0) can be derived if the joint probability density fZ in (2) is estimated.

However, the expression in (14) can be used to approximate fZ. Then, the cpdf fZ0
,

given Λ0 = {dn}, can be written as

fZ0
(z0/Λ0) =

fZ(z)

fZ0
(z0)

=
1

∫

D
fZ(x) dz0

fZ(z0, z1, . . . , zn)

≈ f̃Z0,ω(z0/Λ0)

=
1

∫

D
fZ(x) dz0

ω
∑

i0=0

· · ·

iN−2
∑

iN−1=0

iN−1
∑

iN=0

Li
0
,i

1
,...,i

N−1
,i

N
P i0

(z0), (15)

where Li
0
,...,i

N−1
,i

N
= Li

0
,...,i

N−1
,i

N
P i

1
(z1) · · ·P i

N−1
(zN−1)P iN (zN ). Here, we note

that {z1, . . . , zn} are given, and they are the values of the samples around x0. Equa-

tion (15) is the main expression which is used to approximate local pdfs.

Generally speaking, and to further comment on the cpdf estimation procedure

above, note that a sequence of estimators for a parameter a is said to be (asymptoti-

cally) consistent if this sequence converges in probability to a. The proof of consis-

tency differs from method to method. For example, in the case of sequential Gaussian

simulation algorithms, the covariance of two variables at two locations separated by

a distance h is inferred from a variogram model. The variogram model also ensures

that the covariance tends to zero as the distance tends to infinity. Then, the covariance

matrix is inverted to estimate the parameters of a Gaussian distribution; this matrix

has to be symmetric positive definite. However, if the approximation developed in this

paper asymptotically converges to the true distribution (Hille 1926; Lebedev 1965),

then there is no need to invert cumulant matrices. Cumulants are not modeled and are
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calculated here experimentally. This is analogous, only in terms of calculation of the

high-order moments, to the snesim algorithm (Strebelle 2002). Then, consistency for

the developed approach is realized by the asymptotic convergence.

2.2 Approximation of the Coefficients of the Legendre Series using Spatial

Cumulants

Consider the sample case of estimating the cpdf of Z0 using the first four samples at

the locations x1, x2, x3, and x4 in Fig. 1. The coefficients of the Legendre series in

(15) combine different high-order spatial cumulants. For example, when ω = 2, the

coefficient L22111 is given by

L22111 =

∫

D5
P 2(z0)P 2(z1)P 1(z2)P 1(z3)P 1(z4)f (z0, z1, z2, z3, z4) dz

= g22111(cj0,j1,j2,j3,j4
), and {j0, j1, j2, j3, j4} ⊆ {0,1,2}, (16)

where cj0,j1,j2,j3,j4
= cum(Z

j0

0 ,Z
j1

1 ,Z
j2

2 ,Z
j3

3 ,Z
j4

4 ) is a cumulant of order n = j0 +

j1 + j2 + j3 + j4 of the true local conditional distribution.

A high-order cumulant is inferred from a TI combined with samples. The proce-

dure used can be described as follows:

1. Define a spatial template (ST) using x0 and its neighbors as shown in Fig. 1. We

first define different directions (
−→
d i) pointed from x0 toward the neighbors xi .

These directions are supported by different angles {αi} measured positive from

the north. Denote by hi the lag distance between x0 and xi .

2. Search all the replicates by scanning a given TI with samples with the ST defined

in Step 1. The set of replicates obtained is given by (considering a spatial location

x as a reference)

T h1,h2,h3,h4(h1, h2, h3, h4, α1, α2, α3, α4)

=
{

(x, x + h1, x + h2, x + h3, x + h4)/{x, x + hi, i from 1 to 4}

is a set of points in the original distribution
}

, (17)

where the point x + hi is implicitly calculated from x + hi
−→
d i , and

−→
d i is the unit

vector which determines the direction of hi .

3. Use the replicates in (17) to experimentally calculate the cumulants as, for ex-

ample, shown in Appendix A. Details on the calculation of spatial cumulants can

be found elsewhere (Dimitrakopoulos et al. 2010; Mustapha and Dimitrakopoulos

2010).

The approximation given by (5) may generate negative values; for that reason, let

us discuss the three different cases presented in Fig. 3. The Legendre series approx-

imation is always positive for cases 1 and 2, where y = inf{f (x)} ≥ ε, and ε is a

small positive real number. Case 3 shows that y = inf{f (x)} = 0; let x0 be the corre-

sponding x-coordinate of y. The Legendre series may be negative in a small interval

centered at x0; to solve this problem, different numerical techniques may be used:
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Fig. 3 Density profile. Three different cases are distinguished with respect to a small positive real num-

ber ε

1. Correct the density approximation around x0 by interpolation (Wilson and Wragg

1973).

2. Introduce f̂ = max{f̃ ,0}; it is evident that |f̂ − f | ≤ |f̃ − f |. Here, the small

negative part can be neglected, and f̂ is scaled by the area of the positive region

to sum to one.

In this paper, the first solution is adopted; however, the second solution was tested

and showed very similar results to the first solution.

2.3 A High Quality Approximation

The truncated Legendre series at the order n tends to the true distribution, and the

quality of the approximation stabilizes after certain order. For example, Fig. 4 shows

that the Legendre series of orders 6, 12, and 25 fit very well the true distribution.

Moreover, the Legendre series of orders 12 and 25 are too close and provide about

the same approximation.

Assume that ci (resp., mi), i = 1, . . . , n, are the first n cumulants (resp., n mo-

ments) of the true distribution f . Each cumulant order provides certain information

that may not be seen using other cumulants of other orders. Mustapha and Dimi-

trakopoulos (2010) show that additional information describing complex geological

patterns may be obtained by increasing the order of cumulants; however, some other

information may only be detected by the cumulants and/or moments of lower or-

ders. For example, if a random variable takes values in ]0,1[, then all its high-order

moments may tend to zero after certain order. Then, it is very difficult to derive a

good approximation off using only one high-order cumulant (cn) or moment (mn).

Consider, for example, the Legendre series of order 12 without using the first three

cumulants c1, c2, and c3. Now, this series does not provide a good approximation of

the true distribution, as shown in Fig. 5. Note that the quality of the approximation

may decrease more if, for example, c4 and other cumulants of order lower than 12

are not used.

Now, from a geological point of view, the quality of the approximation is, first,

strongly related to the method used and how this method employs the available data.

For example, the snesim algorithm in Strebelle (2002) calculates only one high-order

moment that corresponds in (16) to {j0 = 1, j1 = 1, j2 = 1, j3 = 1, j4 = 1}. Strebelle

(2002) shows that the TI, used to infer these moments, determines the main features
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Fig. 4 Approximations using

Legendre series

Fig. 5 Approximation using

Legendre series and without

using the first cumulants c1, c2,

and c3 of the true distribution

of the simulated images. In addition, he presented critical cases where a conflict may

occur if the number of hard data is relatively high (∼200 data in a 100 × 100 pixel

image). In conclusion, a poor reproduction of the structures of the true and the TI

is obtained. Note that the fact that snesim uses a single normal equation algorithm

leads to the data effects not being seen well when using only one high-order mo-

ment, as snesim does and was explained earlier. Similar observations are made in

actual field applications where substantial available data show that although the spa-

tial statistics of the TI are reproduced, the data statistics may not be (e.g., Volker

and Dimitrakopoulos 2007). Similar remarks are generally valid for the filtersim al-

gorithm (Zhang et al. 2006), which uses a limited number of linear filters and may

degenerate sample effects.

It follows from the above discussion that the goal of an advanced simulation al-

gorithm is to combine different orders so as to use most of the information avail-

able in the available data. This leads to generating data-driven, high-order simulation

methods, as opposed to the current TI-driven MP simulation algorithms, and thus

overcomes the limitations discussed above. It is important to note that in the present
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Fig. 6 (1) Training image;

locations of hard data in (2)

work, moments are replaced by cumulants because cumulants are superior in de-

scribing anisotropy of spatial patterns, connectivity of extreme values, and nonlinear

spatial architectures. In addition, it is further shown by Dimitrakopoulos et al. (2010)

that only a subset of all the cumulant templates has to be computed in order to char-

acterize complex spatial patterns.

3 A High-order Simulation Method

This section describes a high-order conditional simulation method (hosim) based on

spatial cumulants. A sequential procedure simulating values at unsampled locations

that are randomly visited is used here, as explained above. The conditional density

expression derived in (15) is employed to estimate the cpdfs. This expression uses

Legendre polynomials that are orthogonal on the finite interval [−1,1]. Then, the

training images and the data values are first scaled to [−1,1]d , where d is the dimen-

sion of the problem (i.e., d = 1,2, or 3).

The hosim method first combines the TI used and the samples (Fig. 6) to infer

high-order spatial cumulants. HOSIM algorithm uses both the data set and the TI

to infer the cumulants. The algorithm starts first by searching in the data available.

For a given cumulant, if the number of replicates found in the data is less than a

given number, the search continues through the TI. Mostly, the lower orders will be

reasonably inferred from the data, and the information missed to estimate higher-

order cumulants can be borrowed from a TI. Then, a global calculation procedure is

performed based on a given maximal template size (TEMP), as shown in Fig. 6(2).

This step consists of calculating all the spatial cumulants needed by the Legendre

series in (15).

In an MP approach (e.g., the snesim algorithm) the template shape is centered at

the unsampled location with branches directed from the center to the data (or the

closer nmax data) found within the neighborhood utilized. Similarly, in the hosim

algorithm, the global template shape is defined by the unsampled locations and the

data within a certain neighborhood. The difference between the two algorithms is that

not only the global (or large) template is used by hosim, as done by snesim, but with

all the subtemplates (unlike snesim), including those of one branch (unsampled–data:

two-point statistics), two branches (usampled–data–data: three-point statistics), and

so on (up to (nmax + 1)-point statistics). In hosim, the different subtemplates refer

to different cumulants or moments. The use of only one template (we mean here the

global one) refers to only one high-order moment in the snesim algorithm.
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Fig. 7 Training image in (1).

The template in (2) is used for a

global calculation of spatial

cumulants

The main steps of the hosim method are as follows:

1. Scan the training image and the sample data (Fig. 7(1)) and store the spatial cu-

mulants calculated using (A.1) in a global tree.

2. Define a random path visiting once all unsampled nodes.

3. Define the template shape T for each unsampled location x0 using its neighbors.

The conditioning data available within TEMP are then searched (Fig. 7). The high-

order spatial cumulants are read from the global tree in Step 1 and are used to

calculate the coefficients of the Legendre series, as in (16). These coefficients are

used to build the cpdf of Z0 using (15).

4. Draw a uniform random value in [0,1] to read from the conditional distribution a

simulated value, Z(x0), at x0.

5. Add x0 to the set of sample hard data and the previously simulated values.

6. Repeat Steps 4 and 6 for the next points in the random path defined in Step 3.

7. Repeat Steps 3 to 7 to generate different realizations using different random paths.

The random path defined in Step 5 concerns only the unsampled locations. Thus,

the realizations obtained after Step 6 honor the conditioning data.

4 Examples and Comparisons

The method developed and detailed above is validated by simulating 2D horizontal

sections of a 3D fluvial reservoir. The data sets used are available in the Stanford V

Reservoir Data Set (Mao and Journel 1999). In one of the examples, we studied the

sensitivity of the method to the TI used. We rotated the TI by 90 degree to get another

TI. Obviously, we did this because we observed that in the 3D fluvial reservoir, the

large channels may completely change directions from NS in a horizontal section to

EW in another horizontal section as shown in Fig. 8.

Figure 9(1) shows the exhaustive image to be simulated from different sample

data sets. This image is a horizontal section located at z = 8 m. From this section,

three different sample data sets have been selected. The first set (DS-1) contains 361

data on a regular sampling grid as shown in Fig. 9(2). The second and third sets are,
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Fig. 8 2D horizontal sections of a fluvial reservoir

Fig. 9 A horizontal 2D section of a 3D fluvial reservoir. (1) Exhaustive image: true image, (2) DS-1: 361

sample data, (3) DS-2: 85 sample data, (4) DS-3: 25 sample data. (1) is used in all examples to validate

hosim algorithm
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Fig. 10 Two different training images. A 2D horizontal section of the reservoir is on the left (TI-1), and

its 90° rotation is on the right (TI-2)

respectively, generated randomly with 85 (DS-2) and 25 (DS-3) data as shown in

Figs. 8(3) and (4).

Each of these data sets is combined with two different training images, TI-1 and

TI-2, as shown in Fig. 10, to infer the high-order spatial cumulants that are needed

for the estimation of the local pdfs. The TI-1 in Fig. 10(1) is a horizontal section

located at z = 7 m and is rotated in Fig. 10(2) for a sensitivity analysis of hosim

to the TIs used. In addition, unconditional realizations and a comparison with other

algorithms are presented. All the images used are of size 100 × 100 = 10,000 pixels.

Ten realizations are generated using hosim for each of the cases studied, and about 14

nearby data are selected in average for the simulation of any single node. The main

features of our approach are illustrated through various examples as shown by the

following. All runs are performed on a 3.2 GHz Intel(R) Xeon (TM) PC with 2 GB

of RAM.

4.1 Example 1: Simulation of the Exhaustive Image Using DS-1

This example consists of reproducing the exhaustive image in Fig. 9(1) using DS-1,

and the high-order cumulants are inferred from the exhaustive image. Figure 11

shows two generated realizations; these realizations show that the main channels in

the exhaustive image are reproduced. Moreover, the small details in the exhaustive

image have been reflected by the realizations, as shown in the zones 80 < x < 100

and along y of Figs. 20(1) and (2).

The 2D sections presented here have particular and complex distributions as shown

by the bimodal histogram in Fig. 12(1). This figure shows the comparison between

the ten (hosim) realizations histograms and the DS-1 histogram. The left and right

heads of the data histogram are well reproduced by the realizations. In addition, the

realizations reproduced the variograms along the EW and NS directions DS-1 as

shown in Figs. 11(2) and (3).
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Fig. 11 Realizations (1) and (2) obtained by hosim. Example 1, DS-1

Fig. 12 Histograms (1), NS (2), and EW (3) variograms of 10 hosim realizations. The circles refer to the

data set 1, and the solid lines refer to the realizations. Example 1, DS-1

The proposed method is also validated by comparing the high-order statistics of

the DS-1, exhaustive image and the different realizations obtained. For example, the

third-order spatial cumulant maps of the exhaustive image, DS-1, realizations (1)

and (2), are very close, as shown in Fig. 13. As explained in the above discussion,

we stress here that using different cumulants orders in the Legendre series (15) will

guarantee the reproduction of not only the histogram and variograms of the sample

data, but also their high-order statistics.

Note that the reproduction of thin channels is, in another word, a reconstruction

of the very local properties and/or spatial variability of the attribute. In general, this

is strongly related to the spatial distribution of the available data. Moreover, hosim

is a conditional simulation algorithm and the information borrowed from the TI is

conditional to data available in a neighborhood of the simulated point. Then, local

information (that is, width of thin channels) can only be described if a certain quantity

of information from the data is available; in this case, the image can be completed by

the information from the TI.



Math Geosci (2010) 42: 457–485 473

Fig. 13 Third-order spatial cumulant maps of (1) the true image, (2) the hard data set 1, (3) and (4) the

realizations 1 and 2, respectively. Values 0.01, 0.015, and 0.020 are the isovalue contours. Example 1,

DS-1

4.2 Example 2: Simulation of the Exhaustive Image Using TI-1, DS-1, and DS-2

In this example, the TI-1 in Fig. 10(1) is combined with DS-1 and DS-2 to infer the

high-order spatial cumulants. First, DS-1 is used, and the realizations generated in

example 1 have been repeated. The results are presented in Fig. 14 and are excel-

lent compared to the realizations and the exhaustive image in Example 1. Similarly,

the comparison between the histograms, NS and EW variograms, third-order cumu-

lants of hosim realizations, and DS-1 is shown in Figs. 15 and 16, showing excellent

results.

Using a smaller number of hard data (DS-2), excellent results are obtained as

shown in Fig. 17. The main characteristics of the exhaustive image are reproduced

using a sparse data set (about 0.85% of the total number of points). In addition, ex-

cellent results are obtained by comparing the statistics of the realizations and the

exhaustive image, as shown in Figs. 18 and 19.
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Fig. 14 Realizations (1) and (2) obtained by hosim. Example 2, TI-1, DS-1

Fig. 15 Histograms (1) and variograms NS (2) and EW (3) of 10 hosim realizations. The circles refer to

the data set 1, and the solid lines refer to the realizations. Example 2, TI-1, DS-1

Fig. 16 Third-order spatial cumulant maps of the realizations 1 and 2, respectively. Example 2, TI-1,

DS-1
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Fig. 17 Realizations (1) and (2) obtained by hosim. Example 2, TI-1, DS-2

Fig. 18 Histograms (1), NS (2) and EW (3) variograms of 10 hosim realizations. The circles refer to the

data set 1, and the solid lines refer to the realizations. Example 2, TI-1, DS-2

Fig. 19 Third-order spatial cumulant maps of the realizations 1 and 2, respectively. Example 2, TI-1,

DS-2
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Fig. 20 Unconditional realizations obtained by hosim using TI-1

Fig. 21 Histograms (1) and variograms NS (2) and EW (3) of 10 unconditional hosim realizations. The

circles refer to TI-1, and the solid lines refer to the realizations

4.3 Example 3: Unconditional Simulation of the Exhaustive Image Using TI-1

This example presents unconditional realizations generated with hosim. The training

image TI-1 is used to infer the different high-order spatial cumulants. Figure 20 de-

picts two realizations and shows that the realizations reproduce the main features of

TI-1. The absence of data lets the TI’s underlying characteristics dominate. Compar-

isons of statistics show that the statistics of TI-1 are reproduced by the realizations,

as shown in Fig. 21.

Up to this point, the examples have shown that the proposed method is data-driven,

and as the data decreases, their effect on the simulated realizations decreases, leading

to finally generating unconditional realizations.

4.4 Example 4: Sensitivity of the Simulation Algorithm to the TI Used

The TI controls the generation of realizations when the number of samples is too

small and vice versa. Then, the quantity of information borrowed from a TI decreases

for a corresponding increase in the number of samples. In this context, the effects
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Fig. 22 Realizations (1) and (2) obtained by hosim. Example 3, TI-2, DS-2

Fig. 23 Histograms (1) and variograms NS (2) and EW (3) of 10 hosim realizations. The circles refer to

the data set 1, and the solid lines refer to the realizations. Example 3, TI-2, DS-2

of the number of data and TIs on the final realizations obtained using hosim are

examined. In the above examples, the channels in the true image and in the TIs have

the same orientation. However, Fig. 8 shows two different channel configurations

orientations along one direction of the fluvial reservoir. To cover this case, TI-1 is

rotated by 90° to obtain TI-2 in Fig. 10(2). First, using TI-2 and DS-2, the realizations

in Fig. 22 are obtained. These results still show a good reproduction of the exhaustive

image. The statistics of the realizations are extremely close to the sample data and

exhaustive image as shown in Figs. 23 and 24.

Now, using TI-2 and DS-3, a clear conflict between the effects of the samples and

the training image is obtained, as shown in Fig. 25(2). Here, the channels deviated

and are now more related to the heterogeneities of the training image. In contrast,

the TI-1 combined with DS-3 provided good approximation of the channels in the

exhaustive image, as shown in Fig. 25(1).

In relation to the discussion in the section above, first the estimation of the high-

order cumulants is constrained by the knowledge of certain values of the true distrib-

ution. In that discussion, we can clearly see that the estimation of the moments and/or
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Fig. 24 Third-order spatial cumulant maps of the realizations 1 and 2, respectively. Example 3, TI-2,

DS-2

Fig. 25 Realizations obtained by hosim using TI-1 (left) and TI-2 (right) with DS-3

cumulants of an unknown distribution f can be better inferred, using, for example,

a Riemann integration method, if the number of points at which f is known increases.

Now, if the cumulants of f are only inferred from another auxiliary distribution (i.e.,

here the TI), the final realizations, as shown in snesim for example, will strongly de-

pend on the TI used. Combining a TI with known values of the distribution (i.e., the

sample data) may first adjust the auxiliary distribution and then modify its statistics

to be closer to the statistics of the true distributions. In this case, the TI will have less

of an effect on the generated realizations. Moreover, the use of different orders of

cumulants contributes to a better description of the connectivity of the sample values.

Consequently, the effects of the TI on the realizations decrease. In this context, the
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Fig. 26 Simulation of the 2D section presented in Fig. 9(1). (1) 30 sample data, (2) one sgsim realization,

(3) one filtersim realization, and (4) one hosim realization

realizations generated by hosim are very close to the exhaustive image using either

DS-2 (85 samples) or any of the above training images. However, spatial connectivity

in the exhaustive image may not be well captured when using DS-3; in this case, the

estimated cumulants and, then, the generated realizations would be more related to

the TI used.

4.5 Example 5: A Comparison of hosim, sgsim, and fitersim

The numerical examples presented above aimed to present the main features of the

proposed method. In this last example, we provide a small comparison between

hosim, sequential Gaussian simulation (sgsim), and filtersim algorithms. Different

realizations are generated by the different algorithms to simulate the exhaustive im-

age using 30 sample data, as shown in Fig. 26(1); TI-1 is used by hosim and filtersim.

An ellipsoid of size (20,20), a spherical variogram of range 40, sill 1, and nugget
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0 are used to calculate the covariance by sgsim; a template with size 15 × 15 and 5

multigrids are used by filtersim. Figures 26(2) to (4) present the realizations gener-

ated by sgsim, filtersim, and hosim, respectively. This figure shows the superiority

of filtersim and hosim over sgsim in producing continuity of the NS channels. The

effects of data are evidently larger in the realizations generated with hosim than with

filtersim; firstly, the couple of data in the range [60–80] along x and [0–60] y clear

that area from the TI-1 to reproduce the corresponding area in the exhaustive image;

in addition, about two large channels are very well reproduced and characterize the

direction of the anisotropy presented in the exhaustive image. Lastly, the information

in the range [80–100] along x and [0–100] y better describe the small channels seen

in the exhaustive image.

5 Conclusions

This paper presented a new high-order sequential simulation method using the con-

cept of high-order spatial cumulants. The sequential algorithm developed is based on

a high-order approximation of the local probability density function using continu-

ous multivariate Legendre series, with coefficients calculated from spatial cumulants.

The approach developed uses different orders of cumulants, contrary to the present

MP-based algorithms. The algorithm presented herein is tested in simulating a 2D

horizontal section from a channel complex using 361 samples. Different realizations

are generated showing an excellent reproduction of data statistics and high-order sta-

tistics, that is, the histogram, experimental variograms, and high-order spatial statis-

tics of the sample data. The concept of TI is used in a second example with different

sparser sample data. In this case, realizations which honor the data and their statistics

are generated as well. Unconditionally simulated realizations are generated to bet-

ter demonstrate the effects of the available data. An additional example assesses the

sensitivity of the method developed to the TIs used. The results show that the newly

proposed method is much less sensitive to the TIs than the existing MP methods due

to the data-driven approach of the method. Finally, a comparison between sgsim and

filtersim shows a better performance of the algorithm developed. In future work, we

will consider the extension of the method to the simulation directly at block sup-

port, the development of a cumulant-based method to simulate categorical data, and

improve the efficiency of the method.
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Appendix A: Calculation of High-order Spatial Cumulants

The translation of high-order moments to high-order cumulants, and vice versa, can

be obtained recursively (Dimitrakopoulos et al. 2010; Mustapha and Dimitrakopoulos
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2010) as
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Assuming that Z(x) is a zero-mean ergodic stationary random field indexed

in Rn, then the r th-order moment of the random field is defined as E(Z(x)Z(x +

h1) · · ·Z(x + hr−1)). The moments depend only on h1, . . . , hr−1. Similarly, the r th-

order cumulant can be denoted as ci1,...,in(h1, . . . , hr−1), where r = i1 + · · ·+ in. For

example, the second-order cumulants of a noncentered random function Z(x), known

as the covariance, is given using (A.2) by

c1,1(h) = E
(

Z(x)Z(x + h1)
)

− E
(

Z(x)
)2

. (A.3)

Its third-order cumulant is given by
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where h3 is along the difference between the vectors supporting h1 and h2. The cu-

mulants are invariant to additive constants; thus, if a given process Z(x) is not zero-

mean, its cumulants can be computed as the cumulants of Z(x) − E(Z(x)) (Nikias

and Petropulu 1993). It can be computationally convenient to consider zero-mean ran-

dom functions as some of the terms vanish. Then, the following expression is used by

Mustapha and Dimitrakopoulos (2010) to calculate the (j0 + j1 + j2 + j3)-th-order

cumulant
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where N is the number of elements in the set T h1,h2,h3,h4 defined by (17).

Appendix B: Formula for Legendre Coefficients

In this appendix, we derive an expression of Legendre series coefficients in terms of

cumulants. The method is shown in 1D and can be easily generalized. Consider the

coefficient of order m in (10). The coefficient Lm, given by

Lm =

∫

D

P m(z)f (z) dz, (B.1)

can be written using (5) as

Lm =
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Then, by permuting the integral and the sum in (B.2), we get
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√

2m + 1

2

m
∑

i=0

ai,m

∫

D

zif (z) dz. (B.3)

Using (A.2), (B.3) can be expressed as

Lm =
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∑
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∑
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i = 0, . . . ,m and m = 0,1,2, . . . . (B.4)
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