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Abstract This paper introduces high-order explicit Runge–Kutta numerical schemes

in metric spaces. We show that our approach reduces to the corresponding Runge–

Kutta schemes if the ambient space is Hilbert. We apply these schemes to compute

the Nash equilibrium in a mean field vaccination game. Numerical simulations show

improvement in the speed of convergence towards the Nash equilibrium; the numerical

scheme has high order (2–4) in time.
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games · SIR model
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1 Introduction

1.1 State of the art and motivation

The games with a continuum of agents have been widely studied during the last decade

thanks to the mean field games (MFG) theory, introduced by Lasry–Lions [34–36] and

Huang–Caines–Malham [26–28]. An application of this framework is the modeling of
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the vaccination decision in a population where an individual has the choice between

only two pure strategies: to get vaccinated or not.

This decision is a part of the behavioral epidemiology, which takes into account

the interplay between human behavior and spread of infectious diseases (see [38] for

a detailed presentation and [30,40,47] for other examples). In particular, risk percep-

tion and spread of information (on vaccination risk or probability of infection) can

influence at a large scale the population behavior and thus the spread of the disease.

As detailed in [38], a well-known example is Measles–Mumps–Rubella (MMR) vac-

cination coverage decrease between 1998 and 2003. This caused a decline in herd

immunity and a measles resurgence after the publication of an hypothesis linking

MMR vaccination and autism. Behavioral responses to the threat of a pandemic event

can influence the spread of the disease in several ways: people can choose preventive

protection (by vaccination as presented below) or limit the disease spread by isolation

and quarantine (e.g., school closures). Since then, many epidemiological models have

been developed to include individual response (see [47] for a review); on the contrary

see [1,6,39,42] for the treatment of compulsory (as opposed to voluntary) vaccination.

We use the family of compartmental models in order to describe the spread of

the disease in the population. This supposes that all individuals are the same and the

population is divided into several exclusive classes; the transmission between two

classes is modeled through a time-dependent rate. As each compartment represents

the status of an individual, it means that the structure of model with immunity is not

the same as that of a disease without immunity. SIR terminology usually represents a

disease with immunity against re-infection, indicating that the passage of an individual

is from the susceptible class S to the infectious class I and then to the recovered class R.

If the re-infection is possible, then the terminology used can be SIS, which means that

an individual in the infected class I goes back to the susceptible class S. If temporary

immunity is given by the disease, the compartmental structure can be SIRS, meaning

that after infection, individual stays in R class before going back to the susceptible

class. Other well-known compartmental models can include an exposed class (E)

that represents the period between being infected and becoming contagious, like in

the SEIR or SEIS models. The evolution of the size of the compartments is given by

ordinary differential equations (for more details see for instance [10,15,25]).

In order to model individual vaccination decision in the spread of the disease,

vaccination coverage can depend on available information (see [11,18,19]) or be

determined by a vaccination game. The evolution of the vaccination coverage could

be determined by an imitation dynamics depending (or not) of the available information

(see [3,16,16,17,32,41]), or be the solution of a Nash equilibrium determined at the

beginning of the game, as described below. The Nash–MFG equilibrium corresponds

in this case to a strategy where nobody has interest to change his own vaccination

strategy. Therefore the existence and the determination of an equilibrium is central.

Before the development of the Nash–MFG theory, some work have been proposed

to couple game and epidemiology. Three well-known methods that introduced specific

models are presented in the next paragraph with their advantages and limitations. The

compartmental model used in [5] includes five classes (susceptible, exposed, infected,

recovered, vaccinated), the dynamics is presented in Eq. (1) where the population

is divided into the following classes: S (susceptible), I (infected), R (recovered) and
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V (vaccinated). In this case preventive vaccination for the smallpox is available: the

model is used to determine the probability of an individual to choose preventive vac-

cination. To do so, explicit individual payoffs for the two pure strategies (vaccination

before or after the outbreak) are defined. Then the existence and uniqueness of the

Nash equilibrium is obtained using properties of such payoffs.

dS

dt
= −βSI − f (S, t),

d E

dt
= βSI − ρE,

dI

dt
= ρE − γ I,

dR

dt
= γ I,

dV

dt
= f (t, S),

(1)

Another method introduced in [5] uses the same methodology as previously but on

the stationary state of the system (2) (or equivalently system (2bis) that distinguishes

immunity given by the disease and immunity given by the vaccine) because of the

possible non extinction of the disease. This allows to determine the probability of

vaccination when disease is already present in the population with a compartmental

system where vital dynamics is considered. As in previous case, the probability p to

vaccinate is not time dependent and properties of payoff are used to prove existence

and uniqueness of the equilibrium. Finally, solutions for other incidence rate (term β I

is replaced by a function λ(I )) are given in [43] by using Markov decision process.

Analytical solutions for the vaccination probability at the Nash equilibrium can be

found with these approaches but it supposes constant probability of vaccination.

dS

dt
= μ(1 − p) − βSI − μS

dI

dt
= βSI − γ I − μI

dR

dt
= μp + γ I − μR

(2)

dS

dt
= μ(1 − p) − βSI − μS

dI

dt
= βSI − γ I − μI

dR

dt
= γ I − μR

dV

dt
= μp − μV

(2bis)
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The third and last model being detailed here describes numerical approach when

two SEIR models (see for example (1)) are used in order to separate two age classes

(see [24]) to obtain the vaccination probability of each age class. The evolution of the

probability of vaccination can be modeled by introducing a rule of thumb (see [3,4]) to

study the epidemiological stationary state and the role of parameters like vaccination

and infection costs. But reaching the stationary state of the epidemiological system

can take a long time as explained in [29]. To avoid this problem, [20] considers a SIRS

model where the transmission rate β is a periodic function, causing the same property

for the incidence. Economic approach (see [21]) based on the epidemiological model

(3) (where notations are the same as above and V(t) is the instantaneous vaccination

rate) allows to determine the vaccination and no vaccination region (depending on the

state of the disease) by equalization of the two payoffs but no proofs of optimality

(existence or uniqueness) are provided.

dS(t)

dt
= −βS(t)I (t) − V(t)

dI(t)

dt
= βS(t)I (t) − γ I (t)

dR(t)

dt
= γ I (t)dt

dV(t)

dt
= V(t)

(3)

Within the MFG framework, article [33] proposes analytic solutions in some par-

ticular cases. Furthermore, finding an equilibrium becomes more complicated if the

model has specific behaviour with network interaction or epidemic spread for exam-

ple [14,23]. Thus finding the equilibrium can quickly become time consuming. One

commonly used method is based on finding a fixed point of some function, which can

be formulated as the attractor of an evolution system.

The existence of an equilibrium in the general case of MFG is of utmost interest

(see for instance [7,9] for an entry point to this literature). Several approaches were

developed, inspired by the general framework of gradient flows (see [31]) where the

procedure is iterative.

1.2 Mathematical framework

Let us recall that in a gradient flow framework (which is not necessarily related to

a MFG model !) the equation to be solved is written symbolically (see [2] for an

introduction):
d

dτ
ξ + ∇F(ξ) = 0 (4)

where the function F is given but ∇F cannot be computed. The numerical counterpart

of (4) is the famous JKO numerical scheme (introduced by Jordan et al. in [31]) which,
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for ξk an approximation of ξτk
, can be written as:

ξk+1 ∈ argmin
η

{
d(ξk, η)2

2Δ
τ + F(η)

}
. (5)

This scheme can be seen as the variational implicit Euler scheme and has been used

for the heat equation as a gradient flow of the entropy in the Wasserstein space. Second

order in time methods have been proposed very recently (see [37]).

On the other hand, a MFG equilibrium has no associated function ‘F’ and it is likely

that no such function exists. For each τ, ξτ is a probability law. Rather, the search for

an equilibrium takes the form of a fixed point:

ξ = J (ξ). (6)

In practice, inspired by the fictitious game (see [12]) and Best Reply (see [8,9])

procedures, a new algorithm has been introduced in [44, Eq 3.2] and [46] with the

following form:

ξk+1 ∈ argmin
η

{
d(η, ξk)

2

2Δτ
+ P(η, ξk)

}
. (7)

In the limit τ → 0 the Eq. (7) describes a curve which under some assumptions on

P will be called a solution of the evolution equation:

d

dτ
ξτ + ∇1P(ξτ , ξτ ) = 0. (8)

On the other hand, the MFG framework provides a natural function P(·, ·) even when

ξ does not belong to a Hilbert space but only to a metric space. Thus we are led to

consider evolution equations in metric spaces with semi-explicit numerical schemes

(see [9,46]).

1.3 Scope and structure of the paper

The purpose of this work is to introduce variational Runge–Kutta explicit methods of

high order in a metric space using a generalization of linearity (presented in [13]).

These approaches are applied to the control of epidemic spread with voluntary

vaccination as in [44].

The paper is structured as follows: Sect. 2 is dedicated to the Runge–Kutta method

recalling its general form (Sect. 2.1) and then the introduction of variational Runge–

Kutta methods (Sect. 2.2). The equivalence of the two approaches in a Hilbert space is

proved in Sect. 2.3. Then Sect. 3 gives the epidemiological model used in the numerical

application given in Sect. 4. An economical application is proposed in Sect. 5. Some

considerations are discussed in Sect. 6.
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2 Runge–Kutta methods

2.1 In a Hilbert space

Let H be a Hilbert space, f : [0, T ]×H → H a regular function and y : [0, T ] → H

satisfying (in some sense to be specified):

d

dτ
y(τ ) = f (τ, y(τ )) (9)

The Runge–Kutta approach is an iterative method using temporal discretization in

order to obtain a numerical solution of an ordinary differential equation of type (9).

The time horizon T is supposed to be finite and can be discretized in (NT + 1) time

instants τ0 = 0, τ1 = Δτ, τ2 = 2Δτ, . . . , τNT
= T where Δτ is the time step. Let

yk ∈ H be an approximation of y(τk).

Runge–Kutta method is based on the evaluation at intermediate points in time.

Equation (10) presents the general form of the Runge–Kutta method for (9).

A method is defined by the values of the coefficients bi , ci and ai, j , often presented

in the Butcher tableau (see table in Fig. 1). Consistency of such a method is ensured

if and only if
∑s

i=1 bi = 1.

We will present below some particular schemes that will later be formulated in a

metric space.

2.1.1 Explicit Euler scheme

The explicit Euler (denoting EE) scheme is a Runge–Kutta method with only one step.

It is defined in Fig. 2 by the Butcher tableau or equivalently by Eq. (11). In this case,

this scheme is of order one in time.

2.1.2 Heun scheme

Heun scheme uses an approximate value p1, in order to compute yk+1, see the Fig. 3.

This scheme is of order two in time.

c1 a1,1 a1,2 . . . a1,s

c2 a2,1 a2,2 . . . a1,s

. . . . . . . . . . . . . . .

b1 b2 . . . bs

yk+1 = yk + ∆τ

s
∑

i=1

bipi,

pi = f

⎛

⎝τn + ciτ, yk + ∆τ

i−1
∑

j=1

ai,jpj

⎞

⎠.

(10)

Fig. 1 Runge–Kutta method. Left Butcher tableau. Right equation

0 0
1

yk+1 = yk + ∆τf(τk, yk). (11)

Fig. 2 Explicit Euler method. Left Butcher tableau. Right equation
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0 0 0
1 1 0

1/2 1/2

p1 = yk + ∆τf(τk, yk),

yk+1 = yk +
∆τ

2

[

f(τk, yk) + f(τk+1, p1)

]

.
(12)

Fig. 3 Heun method. Left Butcher tableau. Right equation

0 0 0 0
1/2 1/2 0 0
1 -1 2 0

1/6 2/3 1/6

yk+1 = yk +
∆τ

6

(

p1 + 4p2 + p3

)

,

p1 = f(τk, yk),

p2 = f(τk+1/2, yk +
∆τ

2
p1),

p3 = f(τk+1, yk + ∆τ(−p1 + 2p2)).

(13)

Fig. 4 Runge–Kutta 3 method. Left Butcher tableau. Right equation

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

yk+1 = yk +
∆τ

6

(

p1 + 2p2 + 2p3 + p4

)

,

p1 = f(τk, yk),

p2 = f(τk+1/2, yk +
∆τ

2
p1),

p3 = f(τk+1/2, yk +
∆τ

2
p2),

p4 = f(τk+1, yk + ∆τp3).

(14)

Fig. 5 Runge–Kutta 4 method. Left Butcher tableau. Right equation

2.1.3 Explicit Runge–Kutta 3 scheme

In the same way, we introduce the Runge–Kutta 3 (denoted RK3) method. It calculates

two intermediate values (p2, p3) to obtain yk+1. See Fig. 4 for the value of coefficients

in the Butcher table and Eq. (13) for the explicit equations. In this case, the method is

of order three in time.

2.1.4 Explicit Runge–Kutta 4 scheme

The last method is the celebrated Runge–Kutta 4 (denoted RK4) where three interme-

diate values (p2, p3, p4) are computed to determine yk+1. The value of coefficients is

presented in Fig. 5 and its application to Eq. (9) is given in Eq. (14). This method is

of order four in time.

2.2 Variational approach

Unfortunately, none of the schemes presented in Sect. 2.1 can be used for finding a

MFG equilibrium. Firstly because the problem is not really presented that way, and

secondly because the space of the unknowns is, in general, not a vector space but a
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metric space. Therefore we need first to generalize the Runge–Kutta schemes to metric

spaces and then to apply them to the MFG setting.

Let (A, d) be a metric space. The Definition 1 below gives the properties of a

geodesic space (see [37] for additional details).

Definition 1 A curve γ : [0, 1] → A is called a (constant speed) geodesic provided

that d(γ (s), γ (τ )) = |s − τ | · d(γ (0), γ (1)) and the space is called geodesic if, for

any couple of points (X, Y ) ∈ A2, there exists at least a geodesic γ connecting them,

that is, γ (0) = X, γ (1) = Y .

From now on we assume that (A, d) is a geodesic space. Consider P : A×A → R

a function with the following properties:

(H1) ∀n ≤ 4,∀r > 0,∀ξ, Y1, . . . , Yn ∈ A, the set of vectors {(P(z, Y1), . . . ,

P(z, Yn)); z ∈ A, d(z, ξ) ≤ r} is compact as a subset of R
n ,

(H2) for any point Y ∈ A and any X0, X1 ∈ A a constant speed geodesic γ exits

such that γ (0) = X0, γ (1) = X1 and the function τ �→ P(γ (τ ), Y ) from [0, 1]

to R is linear.

Examples:

• If H is a Hilbert space, f : H → H a function then (x, y) → 〈x, f (y)〉 satisfies

hypothesis (H1) and (H2), see proof of Proposition 2.2.

• Let A be the set of probability measures on [0, T ]; F be the set of Lipschitz func-

tions with constant less than 1 and the metric of weak convergence d is defined, for

a1, a2 ∈ A by (see [45]): d(a1, a2) = sup f ∈F |
∫ T

0 f (t)a1(dt) −
∫ T

0 f (t)a2(dt)|.

For Y ∈ A, t ∈ [0, T ] we define gY (t) =

[
sin(t)

∫ T

0 cos(s)Y (ds)
]2

and for

z, Y ∈ A,Q(z, Y ) =
∫ T

0 gY (t)z(dt).

Let (zk)k∈N be a sequence of elements in A converging weakly to z ∈ A then, for

f ∈ F ,
∫ T

0 f (t)zk(dt) converges to
∫ T

0 f (t)z(dt). As (A, d) is compact (see [45])

and the application z ∈ A → (Q(z, Y1), . . . ,Q(z, Yn)) ∈ R
n continuous, Q

satisfies (H1).

Consider a1 and a2 ∈ A and for s ∈ [0, 1], γs = sa1+(1−s)a2. Then d(γs, γτ ) =

sup f ∈F |
∫ T

0 f (u)γs(du)−
∫ T

0 f (u)γτ (du)| = sup f ∈F |
∫ T

0 f (u)(τ −s)a1(du)−∫ T

0 f (u)(τ − s)a2(du)| = |τ − s| sup f ∈F |
∫ T

0 f (u)a1(du) −
∫ T

0 f (u)a2(du)| =

|τ−s|·d(γ (0), γ (1)). It shows that γ is a (constant speed) geodesic. Then, the func-

tion s → Q(γs, Y ) of the form s → s
∫ T

0 gY (u)a1(du)+ (1 − s)
∫ T

0 gY (u)a1(du)

is linear.

• Note that previous example also works with the total variation distance.

The evolution equation that we want to solve has the form of Eq. (8) (but note that

this is only a formal expression as d
dτ

ξτ does not have a well-defined meaning in a

general metric space, see [46]).

This section develops a variational Runge–Kutta method in a metric space. We

propose a method that does not assume any vector calculus but uses the hypothesis (H2)
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which defines the notion of linear application in a metric space (see also [13, Section

8, Definition 8.1, p. 480] for more details). As Δτ tends to zero Eq. (7) describes a

curve. The purpose of the scheme is to describe this evolution faster and more precisely

that is to say to obtain high order schemes.

2.2.1 Variational explicit Euler scheme

The first scheme of that form was introduced in [44, Eq 3.2]. Formally, we define the

variational explicit Euler scheme (VEE) by:

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2Δτ
+ P(η, ξk)

}
. (15)

2.2.2 Variational Heun scheme

The variational Heun scheme (VH) introduces, as in vector space, an intermediate

value ξ̃k+1 (Eq. 16a) and uses it to compute ξk+1 (Eq. 16b).

ξ̃k+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2Δτ
+ P(η, ξk)

}
, (16a)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2Δτ
+

1

2
P(η, ξk) +

1

2
P(η, ξ̃k+1)

}
. (16b)

Note that two minimizations are required in order to obtain ξk+1.

2.2.3 Variational Runge–Kutta 3 scheme

The variational Runge–Kutta 3 scheme (VRK3) is defined by Eq. (17). Two interme-

diate values are computed in this case [̃ξ1
k+1 with Eq. (17a) and ξ̃2

k+1 with Eq. (17b)]

in order to obtain ξk+1 using Eq. (17c).

ξ̃1
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2Δτ
+

1

2
P(η, ξk)

}
, (17a)

ξ̃2
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2Δτ
− P(η, ξ̃1

k+1) + 2P(η, ξ̃2
k+1)

}
, (17b)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2Δτ
+

1

6
P(η, ξk) +

2

3
P(η, ξ̃1

k+1)

+
1

3
P(η, ξ̃2

k+1)

}
. (17c)
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2.2.4 Variational Runge–Kutta 4 scheme

The variational Runge–Kutta 4 scheme is presented in Eq. (18). Three intermediate

values [̃ξ1
k+1 with Eq. (18a), ξ̃2

k+1 with Eq. (18b) and ξ̃3
k+1 defined by Eq. (18c)] are

computed in order to obtain ξk+1 by using Eq. (18d).

ξ̃1
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2Δτ
+

1

2
P(η, ξk)

}
, (18a)

ξ̃2
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2Δτ
+

1

2
P(η, ξ̃1

k+1)

}
, (18b)

ξ̃3
k+1 ∈ argmin

η∈A

{
d(η, ξk)

2

2Δτ
+

1

2
P(η, ξ̃2

k+1)

}
, (18c)

ξk+1 ∈ argmin
η∈A

{
d(η, ξk)

2

2Δτ
+

1

6
P(η, ξk) +

1

3
P(η, ξ̃1

k+1)

+
1

3
P(η, ξ̃2

k+1) +
1

6
P(η, ξ̃3

k+1)

}
. (18d)

Note that four minimizations are needed in order to obtain ξk+1.

See Sect. 4.2 for a numerical application and the study of the order in time of these

schemes.

2.3 Property of variational scheme

In this subsection we prove that using hypotheses (H1) and (H2), the variational

schemes introduced above are well-defined (Proposition 2.1) and correspond, when

the ambient space is Hilbert, to the Runge–Kutta method presented in Sect. 2.1 (Propo-

sition 2.2).

Proposition 2.1 Under the hypothesis (H1) and (H2), the Eqs. (15), (16), (17) and

(18) defining respectively the VEE, VH, VRK3 and VRK4 schemes admit a solution,

i.e., the schemes are well defined.

Proof As the argumentation is very similar for all schemes, we present the general

case where ξk+1 ∈ argminη∈A{F (η)} with F : A → R, for fixed ξ ∈ A,F (η) =

d(η,ξ)2

2Δτ
+ l(η) where l satisfies hypothesis (H2) and the following hypothesis (H1bis):

(H1bis) ∀r > 0,∀ξ ∈ A, the set {l(z); z ∈ A, d(z, ξ) ≤ r} is compact as a subset of

R.

We will prove that the application F attains its minimum in A.

Let (zk)k∈N ∈ A be a sequence such that limk→∞ F (zk) = m with m =

infη∈A F (η). We show that d(zk, ξ) is bounded then we find a minimizer.

Suppose d(zk, ξ) = λ > 1 and let γ be the geodesic connecting ξ and zk (γ (0) = ξ

and γ (1) = zk) satisfying (H2). Consider an element z = γ (t) on the geodesic
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γ such that d(z, ξ) = 1. By definition of a geodesic, d(z, ξ) = d(γ (t), γ (0)) =

|t − 0| · d(γ (0), γ (1)) = td(zk, ξ) = λ, implies necessarily t = 1/λ and using

hypothesis (H2), we obtain:

l(z) = l(γ (t)) = tl(γ (1)) + (1 − t)l(γ (0)),

=

(
1 −

1

λ

)
l(ξ) +

1

λ
l(zk).

(19)

For k large enough, zk is such that F (zk) < 2m that is λ2

2Δτ
+ l(zk) < 2m.

Rearranging Eq. (19) gives l(zk) = λl(z) − (λ − 1)l(ξ), note that l(ξ) is constant

and as d(z, ξ) = 1, hypothesis (H1bis) insures that l(z) is bounded, so l(zk) is also

bounded (by M ∈ R). Consequently, there exists a constant C , depending on m, τ and

M such that λ < C .

As d(zk, ξ) is bounded, there exists a converging subsequence, (xk)k∈N ∈ A such

that d(xk, ξ) → d1, and l(xk) converges to m −
d2

1
2Δτ

. Starting from some index

k, xk ∈ B(ξ, d1) (the ball with center ξ and radius d1) and if it is not the case, we

replace xk by the element at the intersection of the ball and the geodesic γ linking

xk and ξ . This operation does not change the limit of l(zk): noting temporarily x̃k the

obtained sequence, as l satisfies hypothesis (H2), we have l(x̃k) = (1− d1
d(xk ,ξ)

)l(ξ)+

d1
d(xk ,ξ)

l(xk) with d(xk, ξ) → d1. By hypothesis (H1bis), the set l(xk) is closed, so

there exists an element Z ∈ B(ξ, d1) such that l(Z) = m −
d2

1
2Δτ

with, of course,

d(Z , ξ) ≤ d1. In this case, F (Z) =
d(Z ,ξ)2

2Δτ
+ m −

d2
1

2Δτ
≤ m, so Z is a minimizer.

Let n ≤ 4, Y1, . . . , Yn ∈ A, λ1, . . . , λn ∈ R and P satisfying (H1) and (H2). We

define the linear combination l of P by: l(η) =
∑n

i=1 λiP(η, Yi ). It is immediate that

l satisfies (H2); we prove below that if P satisfies (H1) then l satisfies (H1bis). As all

elements of the sum are in a compact set, the sum is bounded. Let (zk)k∈N ∈ A be a

sequence such that limk→∞ l(zk) = α. Using (H1), there exists a subsequence of zk

(also noted zk) such that the element (P(zk, Y1), . . . ,P(zk, Yn)) ∈ R
n converges to

(α1, . . . αn) so l(zk) converges to l(z) with l(z) =
∑n

i=1 λiαi = α. ⊓⊔

Proposition 2.2 Let H be a Hilbert space, f : H → H be a function and P(x, y) =

〈x,− f (y)〉. Then the schemes VEE (Eq. 15), VH (Eq. 16), VRK3 (Eq. 17), and VRK4

(Eq. 18) correspond to Explicit Euler (Eq. 11), Heun (Eq. 12), Runge–Kutta 3 (Eq. 13)

and Runge–Kutta 4 (Eq. 14) schemes respectively for the evolution Eq. (9).

Proof We prove hypothesis (H1) in the case n = 1, the proof for the general case is

left to the reader. We show that, for ξ ∈ H,D = {〈z,− f (ξ)〉 ; z ∈ H, d(z, ξ) ≤ r}

is bounded and closed. Denoting || · || the norm of H, by the triangular inequality

when x ∈ B(ξ, r), ||x || ≤ r + ||ξ ||. For x ∈ D, || 〈x, f (ξ)〉 || ≤ ||x || · || f (ξ)|| ≤

(r +||ξ ||) · || f (ξ)|| < ∞, so D is bounded. Let z be an element of B(ξ, r) and x ∈ H

such that z = ξ+x with ||x || ≤ r , by linearity 〈z,− f (ξ)〉 = 〈ξ,− f (ξ)〉+〈x,− f (ξ)〉.

Furthermore, 〈x,− f (ξ)〉 ≤ ||x || · || f (ξ)|| ≤ r || f (ξ)|| so {〈z,− f (ξ)〉 , z ∈ B(ξ, r)}

is included in the closed interval [〈ξ,− f (ξ)〉 − r || f (ξ)||, 〈ξ,− f (ξ)〉 + r || f (ξ)||]. If

we take x = −λ
f (ξ)

|| f (ξ)||
with λ ∈ [−r, r ] then 〈x,− f (ξ)〉 = λ|| f (ξ)|| which implies
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〈z,− f (ξ)〉 = 〈ξ,− f (ξ)〉 + λ|| f (ξ)||. Therefore {〈z, f (ξ)〉 , z ∈ B(ξ, r)} is exactly

[〈ξ, f (ξ)〉 − r || f (ξ)||, 〈ξ, f (ξ)〉 + r || f (ξ)||] and is closed as a closed interval of R.

To prove hypothesis (H2), consider x0, x1 ∈ H and for t ∈ [0, 1], γ (t) = t x1 +

(1 − t)x0 the segment between x0 and x1. For t, s ∈ [0, 1], with straightforward

computation, we have d(γ (t), γ (s)) = |t − s| · d(γ (0), γ (1)), showing that γ is

a (constant speed) geodesic. In this case, we can also prove the uniqueness of the

geodesic. In fact, assume that there exists another geodesic γ2 linking x0 and x1. Let

z = γ2(t) be an element only on γ2; using the triangle inequality and that γ is the

segment linking x0 and x1 we have d(x0, z) + d(z, x1) > d(x0, x1). Furthermore as

γ2 is a geodesic, left member of previous equation is td(x0, x1) + (1 − t)d(x0, x1) =

d(x0, x1). We obtain a contradiction thus there does not exist another geodesic. The

function t → P(γ (t), Y ) has the form t → 〈t x1 + (1 − t)x0,− f (Y )〉, so is linear.

We now prove the equivalence of schemes. The scheme VEE is defined by the

following equation:

ξk+1 ∈ argmin
η∈H

{
||η − ξk ||

2

2Δτ
+ 〈η, f (ξk)〉

}
.

The application F : H → R,F (η) =
||η−ξk ||

2

2Δτ
+ 〈η, f (ξk)〉 is differentiable and

its derivative F ′ : H → H is F ′(η) =
η−ξk

Δτ
+ f (ξk). The minimizer of F is a critical

point, the minimum noted ξk+1, satisfies F ′(ξk+1) = 0. After trivial rearrangement,

we obtain ξk+1 = ξk − Δτ f (ξk), that is the Explicit Euler scheme presented in (11)

for Eq. (9). Arguments are similar for other schemes. ⊓⊔

3 Epidemiological model

From now on, all variables can have a double dependence: on the real time t which

will be subscript and on the iteration time τ (previously k in Eq. (7)) which will be a

superscript l.

This section reproduces a short presentation of the epidemiological model and of

the cost computing as introduced in [44, Sect. 2]. Please refer to the original article

for more details and proof.

3.1 Spread of the disease

The model simulates the dynamics of an epidemic in a population. The final time

period T is supposed finite, and the time horizon can be discretized in (N + 1) time

instants, noted t0 = 0, t1 = ΔT, . . . , tN = T .

The model is compartmental, and the population is divided into several classes:

susceptible individuals (Sn) is the proportion of individuals susceptible to catch the

disease at time instant tn ; infected individuals regroups individuals who are infected,

more precisely, I ω
n is the proportion of individuals who have been infected at time

instant tn−ω (with ω ∈ {0, 1, . . . ,Ω}) and In is the sum of all I ω
n ; recovered individ-

uals (Rn) is the proportion of individuals who have exited from one infected class;
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vaccinated individuals (V θ
n where θ counts the time between vaccination time instant

and current time instant with θ ∈ {0, 1, . . . , Θ}) is the proportion of vaccinated indi-

viduals at time instant tn and not infected since; failed vaccinated individuals (Fn)

is the proportion of individuals who were vaccinated at some time t ≤ tn but whose

vaccination failed and have not been infected since. As individuals can only take vacci-

nation once, V Ω represents individuals who have lost immunity. Lastly Un represents

the proportion of individuals vaccinated between tn and tn+1, a proportion f of them

will never develop any immunity and go to the failed vaccination class.

The specificities of disease are represented by the vector γ = (γ 0, . . . , γ Ω) ∈

(R+)Ω+1 (which reflects the recovery of an infected individual); the function β(t)

(which characterizes the contact between an infected individual and a susceptible one

at time t); and the vector α ∈ [0, 1] which quantifies the protection provided by the

vaccine in terms of the probability of infection.

The model is defined by the following system of equations:

Sn+1 =
(
1 − βn

ΔT In

)
(Sn − Un) (20a)

I 0
n+1 = βn

ΔT

[
Fn + Sn +

N−1∑

θ=0

αθ V θ
n

]
In (20b)

I ω+1
n+1 = (1 − γ ω

ΔT )I ω
n ω = 0, . . . , Ω − 1 (20c)

V 0
n+1 = (1 − f ) ·

(
1 − βn

ΔT In

)
Un (20d)

V θ+1
n+1 =

(
1 − βn

ΔT αθ In

)
V θ

n , θ = 0, . . . , Θ − 2 (20e)

V Θ
n+1 =

(
1 − βn

ΔT αΘ−1 In

)
V Θ−1

n +
(
1 − βn

ΔT In

)
V Θ

n (20f)

Fn+1 = f ·
(
1 − βn

ΔT In

)
Un + Fn

(
1 − βn

ΔT In

)
(20g)

with initial conditions:

S0 = S0− , I ω
0 = I ω

0− , V θ
0 = 0, ∀θ ≥ 0. (20h)

The continuous version of the previous discrete model is given by the following

equations:

S(t) = −βS(t)I (t) − U ′(t) (21a)

I (t) = β

[
S(t) + F(t) +

∫ +∞

0

A(θ)V (t, θ)dθ

]
I (t) − γ I (t) (21b)

∂t V (t, θ) + ∂θ V (t, θ) = −β A(θ)V (t, θ)I (t) (21c)

F ′(t) = f U ′(t) − βF(t)I (t) (21d)

with initial and boundary conditions:

S(0) = S0− , I (0) = I0− , ∀t ≥ 0 : S(t) ≥ 0, F(0−) = 0,

∀θ ≥ 0 : V (0−, θ) = 0, V (t, 0) = (1 − f )U ′(t).
(21e)

123



260 L. Laguzet

In this continuous time model, we use the following notation (refer to [44, Appendix]

for details):

– U : [0,∞] → [0, 1] represents the vaccination, U (t) is the fraction of the popu-

lation that has been vaccinated by time t ;

– constants β, γ, f and function A, have the same meaning as in the discrete model;

– V (t, θ) is the fraction of individuals who have been vaccinated at time t − θ and

have not been infected since vaccination.

3.2 Individual vaccination: as minimization of individual cost

The system (20) presents the spread of the disease at the population level. For an

individual, we consider the Markov chain Mn which describes, in terms of transition

probabilities (see [44, Eq 2.10]), the state of the individual (Mn ∈ {S, R, F, I j , V l}

with j ∈ {0, . . . ,Ω} and l ∈ {0, . . . , Θ}).

In this subsection, we look for the global decision of vaccination Un which cor-

responds to the sum of individual decisions, as shown by Eq. (24). In order to

reflect the decision of an individual, we introduce the probability law μ defined on

{t0, . . . , tN−1} ∪ ∞. In practice, before the epidemic starts, the individual chooses his

probability of vaccination at each time step tk , assuming his non-infected status.

The collection of conditional rates λ = (λn)
N
n=1 is given by the law μ:

∀n ≤ N − 1 : λn =

⎧
⎨
⎩

μn

μn + · · · + μ∞

, if μn + · · · + μ∞ > 0

0, otherwise
(22)

The individual in the susceptible class at time t0 (M0 = S) has the following

cost: Jindi (μ; U ) = 〈μ,CU 〉 where CU (the vector representing the cost of all pure

strategies “vaccination sure at time t”) is defined by:

CU (tn) =

{
rI ϕ

I
n + (1 − ϕ I

n )(rV + (1 − f )rI ϕ
V,I
n ) + rI f (ϕ I

∞ − ϕ I
n ) for n < N ,

rI ϕ
I
∞ for n = N .

(23)

Here ϕ
V,I
n = 1 −

∏Θ
k=n

(
1 − βk

ΔT αk−n−1 Ik

)
, with the convention α−1 = 1 and

ϕ I
n = 1 −

∏n
k=0

(
1 − βk

ΔT Ik

)
(for n = 0, . . . , N − 1), ϕ I

∞ = 1 −
∏N

k=0

(
1 − βk

ΔT Ik

)
.

The equilibrium between individual dynamics and global dynamics (20) is attained

when:

Un = λn Sn . (24)

The purpose of an individual is to minimize Jindi (μ; U ) under the constraint μ ∈

ΣN+1 with ΣN+1 =

{
x ∈ R

N+1
∣∣∣
∑N

k=0 xk = 1 and xk ≥ 0, 0 ≤ k ≤ N
}

.

The numerical schemes give a sequence of probability laws μl ; here the index

“l” means that μl is a numerical approximation of the solution ξ of (8) at the

time τl = l · Δτ . For instance, if we consider the discrete model (20), each

μl = (μl
0, μ

l
1, . . . , μ

l
N−1, μ

l
∞) ∈ ΣN+1 is a probability law on {t0; . . . , tN−1}∪{∞},
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while if we consider the continuous time model (21), each μl is a probability law on

[0, T ]∪ {∞}. Note that here a step of the numerical schemes increments the “l” index

in order to converge to a Nash–MFG equilibrium.

3.3 Numerical values

This section describes the numerical values used in the two cases presented in this

paper: Short persistence, large efficacy and Long persistence, 100% efficacy. These

values are sensibly similar to the ones used in [44, Subsect. 4.2 and 4.3].

For the epidemic parameters, we consider a total simulation time at 1 year (T =

1); an initial proportion of susceptibles S0 = 0.94 and infected I0 = 2.0−6; three

time instants by day (N = 365 ∗ 3); a recovery rate γ ω = 365/3.2 (Ω = 20); the

reproduction number R0 = 1.35 thus β = γ R0; t
β
2 = 1/2 such that β(t) = β for

t ≤ t
β
2 and then β(t) = βmin for t > t

β
2 where βmin = γ /S0; the relative cost of the

epidemic is rI = 1.

Finally, we introduce tα1 , tα2 and set αθ = 1−1[tα1 ,tα2 ]. For the case Short persistence,

large efficacy, tα1 = 5/365 and tα2 = 1/12 (Ω = 93). For the case Long persistence,

100% efficacy, tα1 = 0 and tα2 = 1/2 (Ω = 549). We suppose a failure rate f = 0,

and the relative cost of the vaccination rV = 0.005.

4 Numerical illustration

4.1 Framework

Salvarani and Turinici introduced an epidemiological model with possibility of vaccine

which has imperfect efficiency and limited persistence recalled in the previous Sect. 3.

To model the spread of the disease in the population, they use a compartmental model

and a probability distribution to reflect the individual decisions.

To find stable individual decision they define the problem as a Nash equilibrium.

They find the probability distribution μ making an individual indifferent to change his

vaccination decision if all individuals have the same μ (see [44, Theorem 2.1] for the

proof of equilibrium existence).

Let Cμ be the cost of pure strategies “vaccination happens at time t” when all

individuals choose as vaccination strategy μ. In that case
〈
η,Cμ

〉
represents the cost

of an individual with strategy η when others use strategy μ.

The definition of the mapping E(μ) as introduced in [44] is the maximum gain

obtained by an individual if he changes unilaterally his strategy and everybody else

remains with the strategy μ; with mathematical notation:

E(μ) =
〈
μ,Cμ

〉
− min

η∈ΣN+1

〈
η,Cμ

〉
.

A minimum of the mapping μ → E(μ) is a Nash equilibrium. To find it they

introduce an iterative method depending on a step Δτ (algorithm 1). In this algorithm,

Eq. (25) is used. The following intuitive interpretation is also provided: an individual
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in a population with strategy μl will, if necessary, adjust his strategy to minimize

his cost function η →
〈
η,Cμl

〉
while at the same time keeping small the distance

between the previous strategy μl and the new μl+1. But Algorithm 1 can also be seen

as numerical resolution of an evolution e.g., describing a curve in the metric space

of the admissible strategies. That is why we apply variational methods in the metric

space ΣN+1 with the standard Euclidean distance to obtain faster convergence to the

Nash equilibrium. Here P(x, y) =
〈
x,Cy

〉
and for the same reasons as in the proof

of Proposition 2.2, P satisfies hypotheses (H1) and (H2). Note that with high order

schemes VH, VRK3 and VRK4, we lose the intuitive idea but we increase the Nash

equilibrium computing.

Algorithm 1 Finding a Nash equilibrium (as introduced in [44])

1: Choose a step Δτ > 0 and a starting distribution μ0 ∈ ΣN+1.

2: Set iteration count l = 1.

3: Compute μl+1 with following formula:

μl+1 ∈ argmin
η∈ΣN+1

{
d(η, μl )2

2Δτ
+

〈
η, C

μl

〉}
. (25)

4: If E(μl+1) is smaller than a given tolerance then stop and exit, otherwise set l → l + 1 and go back to

step 3.

4.2 Results

In this section we test the variational schemes proposed in Sect. 2.2.

The reader is invited to refer to [44, Sect. 4.6] or Sect. 3 for the numerical values

of the two studied cases Short persistence, large efficacy (with vaccine persistence at

1 month with a delay of action at 5 days) and Long persistence, 100% efficacy (with

persistence of the vaccine at 6 months with no delay of action).

In order to appreciate the convergence scheme for the case Short persistence, large

efficacy the evolution of the mapping E(·) is presented (see Fig. 6 for VEE with

Δτ = 0.1), where the evolution for the four schemes with lower Δτ value is added to

stabilize result of mapping E(·).

For the Short persistence, large efficacy case, Fig. 7 presents the numerical esti-

mation of the scheme error and order: only the VEE is of order one, the others are of

order two in Δτ . Furthermore, Fig. 8 introduces the obtained errors for each schemes

depending of the number of minimizations. Recall that a high order scheme needs a

very regular functional to provide high order convergence, but in our case the regularity

of the function is completely unknown. However, this case remains very interesting

because it shows that even if the regularity of the function is not enough to obtain

order three or four, the VRK3 and VRK4 still improve the regularity of the function

and have a better order than the VEE scheme.

For the other example Long persistence, 100% efficacy, the convergence is faster:

Fig. 9 compares the evolution of mapping E(·) for the two cases. In the second case,
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Fig. 6 The evolution of the mapping E(·) for the four schemes introduced in Sect. 2.2 in the case Short

persistence, large efficacy for the model (20a)–(20h). In [44] VEE with Δτ = 0.1 is used
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Fig. 7 Numerical estimated error and order obtained for the four schemes for the case Short persistence,

large efficacy of the model (20a)–(20h). Reference solution (μ
Δτref ) is given by a VRK4 scheme with

Δτref = 0.001. Other steps used are Δτ = 0.04, 0.06, 0.08, 0.10 and 0.12. Denote μΔτ
n the probability of

vaccination at time n/N given by the last iteration (10/Δτ ) of the numerical scheme (V E E, V H, V RK 3

or V RK 4) with parameter Δτ . We plot: (left) the error

√
∑N

n=1

(
μΔτ

n − μ
Δτref
n

)2

+

(
μΔτ

∞ − μ
Δτref
∞

)2

.

Right: order of convergence

the graph in Fig. 10 shows that the scheme has high order as it was expected previ-

ously. VH is indeed of order 2 and VRK3 and VRK4 are respectively order 3 and 4.

Furthermore, Fig. 11 introduces the error for each scheme depending on the number

of minimisations: this shows the accuracy of the schemes.

5 Second application: an economical approach

5.1 Epidemiological and economic model

This numerical application is based on [22]. In order to model the spread of the disease,

three classes (as explained in Sect. 1.1) are introduced: Susceptible (S), Infected (I),

Recovered (R) with the following time evolution:
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Fig. 8 Numerical estimated

error obtained (see Fig. 7 for the

definition of the error) for the

Short persistence large efficacy

case of the model (20a)–(20h).

This figure shows for each of the

four detailed schemes the error

depending on number of

minimisations. Reference

solution is given by a VRK4

scheme with Δτref = 0.001.
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Fig. 9 Mapping E(·) for the case Short persistence, large efficacy and Long persistence, 100% efficacy (of

the model (20a)–(20h)), generated with VEE scheme and Δτ = 0.1

Ṡ(t) = −β
S(t)I (t)

N
− r(t)

İ (t) = β
S(t)I (t)

N
− γ I (t)

Ṙ(t) = r(t) + γ I (t)

(26)

where S(t), I (t), R(t) represent respectively the number of susceptible, infected and

recovered individuals at time t, N the total number of individuals and r(t) the rate of

vaccination at time t . We also introduce the utility u H of a healthy individual and the

utility uS when sick.

The individual cost introduced is represented by the expected loss if individual is

falling ill
(

E L =
u H −uS

γ

(
1 −

S(∞)
S(0)

))
and the cost of vaccination θ .

The computation that follows, taken from [22], is valid when the dynamics (26)

traverses at most two regions of vaccination/non vaccination. Under this assumption,

the expected payoff of the two pure strategies (vaccination or not) is equal on the

frontier of the vaccination/non vaccination region, that is: θ =
u H −uS

γ

(
1 −

S(∞)
S(0)

)
.
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Fig. 10 Numerical estimated error and order obtained for the four schemes and the case Long persistence,

100% efficacy of the model (20a)–(20h). Reference solution is given by a VRK4 scheme with Δτref = 0.005.

Other steps used are Δτ = 0.04, 0.06, 0.08, 0.10 and 0.12. Denote μ
Δτ,l
n the probability of vaccination at

time n/N given by the lth iteration of the numerical scheme (V E E, V H, V RK 3 or V RK 4) with parameter

Δτ . We plot: (left) the error maxl≤10/Δτ

√
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(
μ

Δτ,l
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n
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+

(
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∞ − μ
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∞

)2

. Right:

order of convergence

Fig. 11 Numerical estimated

error obtained (see Fig. 10 for

the definition of the error) for the

Long persistence, 100% efficacy

case of the model (20a)–(20h).

This figure shows for each of the

four detailed schemes the error

depending on number of

minimisations. Reference

solution is given by a VRK4

scheme with Δτref = 0.005.

Other steps used are

0.04, 0.06, 0.08, 0.10 and 0.12
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Set w = θγ /(u H − uS). Rewrite previous equation under the following form:

w = 1 − S(∞)/S(0), that gives S(∞) = S(0)(1 − w). Using that, with ρ =

Nγ /β, d
dt

S(t)eR(t)ρ = 0 for r(t) = 0 ∀t ≥ 0, S(0)eR(0)ρ = S(∞)eR(∞)ρ (see [1]),

and after replacing of S(∞) by S(0)(1−w), we obtain: R(0) = ρ ln(1−w)+ R(∞).

As the total number of the population is constant equal to N , we obtain Eq. (27). This

last equation can be seen as a “switching curve” in the plane (S, I ):

Γ =

{
(S, I )

∣∣∣∣I = −N
γ

β
ln

(
1 −

θγ

u H − uS

)
−

θγ

u H − uS

S

}
, (27)

where the individual is indifferent between being vaccinating and doing nothing.
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With this economical approach, there is no insurance that the curve Γ generates a

Nash–MFG equilibrium. In fact, [22] does not use Nash–MFG framework but assumes

equality between two payoffs, false in general cases (see for example [24]).

Nevertheless we seek to replicate these results in order to benchmark the per-

formance of our numerical schemes. For each initial point, the algorithm reports if

vaccination is optimal or not, which can be compared to the region given by the

switching curve Γ .

We use the same approach as in Sect. 3.2 to determine the global vaccination

response r(t). The proportion of individuals vaccinated up to time t is the cumulative

function V (t) defined by:

V (t) =

∫ t

0

r(u)du, (28)

where r(u) is the instantaneous vaccination rate at time u with r(u) ∈ [0, rmax] and

rmax < ∞.

5.2 Numerical values

For the simulation, we use the following numerical values: an initial proportion of

susceptibles S0 = 0.75 and infected I0 = 0.1; a cost of the vaccine θ = 0.5; an

expected utility loss associated if illness
γ

u H −uS
= 1; a recovery rate for an infected

individual γ = 365/10 and a transmission rate of the disease β = 73. As in the Sect. 4,

total simulation time is 1 year (T = 1) with L = 365 × 3 total time steps.
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Fig. 12 Numerical error and order for the four schemes and the model (26). Reference solution (μ
Δτref )

is given by a VRK4 scheme with Δτref = 0.005. Other steps used are Δτ = 0.04, 0.06, 0.08, 0.10

and 0.12. Denote μ
Δτ,l
n the probability of vaccination at time n/N given by the lth iteration of

the numerical scheme (V E E, V H, V RK 3 or V RK 4) with parameter Δτ . We plot: (left) the error

maxl≤10/Δτ

√
∑N

n=1

(
μ

Δτ,l
n − μ

Δτref ,l
n

)2

+

(
μ

Δτ,l
∞ − μ

Δτref ,l
∞

)2

. Right: order of convergence
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Fig. 13 Numerical error

obtained (see Fig. 12 for the

definition of the error) for the

four schemes depending on the

number of minimizations for the

model (26). Reference solution

is given by a VRK4 scheme with

Δτref = 0.005. Other steps used

are 0.04, 0.06, 0.08, 0.10 and

0.12
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5.3 Results

We obtain coherent results with the analytic solution by using the same approach as

in Sect. 4.1. The equilibrium individual strategy is a mixed strategy with ξ0 = 66%

and ξ∞ = 33% and its cost is 0.51. This results are coherent with the analytic result

that provides a mixed strategy with ξ0 = 34%, ξ∞ = 66% and a cost at 0.5. Figure 12

presents the numerical estimation errors and order for the four schemes and Fig. 13

the errors for each schemes depending of the number of minimizations.

6 Perspectives

This work introduces three high order schemes to find a Nash equilibrium and illus-

trates their use in an epidemiological application.

We show numerically that the schemes VH, VRK3 and VRK4 exhibit better order

than VEE and we can obtain, depending on the regularity of the function, up to order

four convergence. The approach based on the Runge–Kutta method can be applied

for other numerical schemes, for instance Mid Point, Leap–Frog or Adams–Bashford

methods. The presented algorithms are not optimized, as minimizations can take a long

time and need a high numerical precision, so the time execution can be significant. A

perspective of this work is to provide an extension to bi-dimensional or tri-dimensional

problems.
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