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Abstract 

A general framework is proposed for the design of a new 
class of high-performance robust controllers. The frame- 
work is based on the recently proposed adaptive robust control 
(ARC), which effectively combines deterministic robust con- 
trol with adaptive control. The approach intends to use all 
available means in achieving high performance; robust filter 
structures are used to attenuate the effect of model uncer- 
tainties as much as possible while learning mechanisms such 
as parameter adaptation are used to reduce the model un- 
certainties. Under the proposed general framework, a simple 
new ARC controller is also constructed for a class of non- 
linear systems transformable to a semi-strict feedback form. 
The new design utilizes the popular discontinuous projection 
method in solving the conflicts between the deterministic ro- 
bust control design and the adaptive control design, which 
is much simpler than the smooth projection or the smooth 
modifications of adaptation law used in the previously pro- 
posed ARC controllers. The controller achieves a guaranteed 
transient performance and a prescribed final tracking accu- 
racy in the presence of both parametric uncertainties and 
uncertain nonlinearities while achieving asymptotic stability 
in the presence of parametric uncertainties without using a 
discontinuous control law or infinite-gain feedback. 

1 INTRODUCTION 

Control of uncertain nonlinear dynamics has been one of 
the mainstream areas of focus in control community during 
the past twenty years. Two nonlinear control methods have 
been popular: adaptive control [l, 2, 3, 41 and deterministic 
robust control (DRC) [5,6,7,8, 9, lo]. The adaptive control 
achieves asymptotic tracking for reasonably large classes of 
nonlinear systems without using discontinuous or infinite- 
gain feedback [l]. Adaptive controllers deal with the ideal 
case of constant parametric uncertainties only, and uncertain 
nonlinearities such as unmodeled nonlinear friction force and 
external disturbances itre not. considered. The adaptation 
law may lose stability even when a small disturbance appears 
[ll]. Every physical system is subject to some form of dis- 
turbance, and additional effort has to be made to implement 
such adaptive nonlinear controllers safely. One may apply 
remedies similar to those used in robust adaptive control of 
linear systems. However, such modifications [ll, 12) do not 
guarantee tracking accuracy since the steady state tracking 
error can be shown to stay within an unknown region only, 
and the size of the region depends on disturbances. Fur- 

thermore, transient performance is normally unknown and 
the actual system response may be too sluggish to be used 
in the control of high-speed/high-accuracy mechanical sys- 
tems. In contrast, in general, deterministic robust control- 
e.g., sliding mode control [5]-can be used to achieve a guar- 
anteed transient performance and final tracking accuracy in 
the presence of both parametric uncertainties and uncer- 
tain nonlinearities. However, it usually involves switching 
[5] or infinite-gain feedback [8], which introduces chatter- 
ing. Chattering may be avoided at the expense of degraded 
tracking performance by using some smoothing techniques 

1% 131. 

Recently, in [13], Yao and Tomizuka presented a system- 
atic way to combine the adaptive control and the sliding 
mode control (SMC) for the trajectory tracking control of 
robot manipulators to preserve the advantages of the two 
methods while overcoming their drawbacks. Comparative 
experimental results for the motion control of robot manipu- 
lators [14, 151 have demonstrated the improved performance 
of the suggested methods. In [16, 1’7, 151, the method- 
ology is generalized to a class of multiple-inputs-multiple- 
outputs (MIMO) nonlinear systems transformable to semi- 
strict feedback forms. The forms allow coupling and ap- 
pearance of parametric uncertainties in the input channels 
of each layer. Applications include the high performance ro- 
bust control of robot, manipulators in various applications 
such as the constrained motion and force tracking control 
[18, 191, coordinated motion and force tracking control of 
multiple robots grasping a common object [20], and motion 
and force tracking control of robot manipulators in contact 
with stiffness surfaces with unknown stiffness [21]. The ap- 
proach is also applied to the motion control of machine tools 
[22] by incorporating digital feedforward control [23]. Exper- 
imental results show that the maximum tracking errors in 
high-speed operations can be reduced to the encoder resolu- 
tion level. 

This paper serves for two purposes: one is to formalize and 
generalize the above ARC approach to establish a general 
theoretical framework for the design of high-performance 
robust, controllers and the other is to construct simple and 
practical ARC controllers under the framework. For the 
first purpose, the paper will focus on the fundamental issues 
and viewpoints of the proposed ARC, and present a general 
structure for the ARC controllers. To serve for the second 
purpose, the paper will present a new ARC controller for a 
class of SISO nonlinear systems transformable to the semi- 
strict feedback form [24,4]. Instead of using the smooth pro- 
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jection [24, 16, 17, 151 or the smooth modification of adap- 
tation law such as the generalized u-modification [13,4], the 
proposed ARC controller employs the widely used discontin- 
uous projection method in adaptive systems [25, 261 to solve 
the conflicts between the robust control design and adaptive 
control design. As a result, the resulting controller is sim- 
pler and the parameter adaptation process is more robust in 
the presence of uncertain nonlinearities. The discontinuous 
projection method has been successfully implemented and 
tested in the motion control of robot manipulators [13, 141 
and the motion control of machine tools [22], in which the 
design techniques for both systems are essentially for non- 
linear systems with “relative degree” of one. For nonlinear 
systems with “relative degree” of more than one, the un- 
derlining parameter adaptation laws in the previously pro- 
posed ARC controllers [24] and the robust adaptive control 
designs (4, 121 are based on the tuning function based adap- 
tive backstepping design [l], which needs to incorporate the 
adaptation law in the design of control functions at each 
step. As a result, either smooth projections [24, 17, 151 or 
smooth modifications of adaptation law [4, 131 are necessary 
since the control functions have to be smooth for backstep- 
ping design; either method is technical and is hard to be 
implemented. In contrast, this paper will show that the 
simple discontinuous projection method can also be used in 
the ARC design by strengthening the corresponding robust 
control design. 

2 GENERAL PHILOSOPHY AND STRUCTURE 
OF ARC CONTROLLERS 

The focus of the proposed ARC is to achieve high perfor- 
mance in practical situations. As such, the problem will be 
formulated under the general setting that the system is sub- 
jected to both parametric uncertainties and uncertain non- 
linearities as in DRC. Furthermore, the approach will seek 
other means to reduce model uncertainties to overcome the 
conservative design of DRC to improve performance. For 
example, the previously proposed ARC controllers differen- 
tiate between parametric uncertainties and uncertain non- 
linearities and use parameter adaptation to reduce the ef- 
fect of parametric uncertainties. In summary, the proposed 
ARC intends to seek all available means to achieve high per- 
formance: (i) robust jilter structures will be employed to 
attenuate the effect of model uncertainties as much as pos- 
sible to guarantee certain transient performance and final 
tracking accuracy in general, and (ii) mechanisms which 
will reduce model uncertainties (e.g., parameter adaptation) 
will be sought and introduced in the design whenever possible 
to further improve performance. 

The first mean is normally accomplished by robust feed- 
back control design and the second mean is normally done 
through some learning processes such as parameter adap- 
tation. In general, the two means will interact with each 
other and the design techniques associated with them may 
have serious philosophical conflicts. Thus, one of the major 
difficulties in designing ARC controllers lies in being able 
to solve the conflicts to integrate the two means. In some 
situations, some compromises have to be made. The general 
design philosophy is that nominal robust performance pro- 
vided by the first mean should not be lost when introducing 
learning mechanisms. In other words, the approach takes 
the viewpoint that a control law has to be robust first (in 

the sense of not only stability but also performance). Learn- 
ing mechanisms are introduced only when their destabilizing 
effects can be controlled. Such a design philosophy differs 
from other schemes in the literature that use both the adap- 
tation a@ control terms normally used in DRC. In all those 
schemes [27, 28, 29, 30, 311, transient performance wae not 
guaranteed. 

The new viewpoint of the utilization of parameter adaptation 
differs from that in adaptive control field. Adaptive control 
heavily relies on the on-line parameter estimation to achieve 
certain stability results. For example, the feedback control 
law used in the self-tuning regulator [32] is designed based 
on the on-line parameter estimates. As a result, the per- 
formance of the system depends heavily on the quality of 
the on-line parameter estimates. However, because of the 
occasional and unavoidable unidentifiability of the system 
caused by non-persistent excitation, the quality of param- 
eter estimates cannot be guaranteed in general. In return, 
adaptive controllers may exhibit poor transient performance 
and are not robust to disturbances. In contrast, the new 
viewpoint puts emphasis on robust feedback control design. 
As a result, transient performance and the closed-loop sys- 
tem’s robustness can be improved in general. 

To achieve the objectives described above, an ARC con- 
troller needs the following four components: (i) adjustable 
model compensation; (ii) robust control law; (iii) learn- 
ing mechanisms; and (iv) coordination mechanisms. The 
general structure is illustrated in Fig.1. For simplicity in 
the discussion, learning mechanisms will be restricted to pa- 
rameter adaptation in this paper. 

Figure 1: General Structure of ARC controllers 

Plant Characterization: For simplicity, the following 
general MIMO nonlinear plant model will be considered 

* = f(z, 8, t) + B(z, 0, qu + D(z, t)A(z, 8, u, t) 
Y = h(l, t) (1) 

where y E R” and u E R” are the output and input vectors 
respectively, z E R” is the state vector, O(t) E RP is the vec- 
tor of unknown parameters, h(z, t), f (2, 8, t), B(z, 0, t), and 
D(z, t) are known I, and A(z, 0, u, t) E Rid represents the 
vector of unknown nonlinear functions such as disturbances 
and modeling errors. The following practical assumption is 
normally made: 

Assum 
bounde o? 

tion 1 The unknown parameters lie in a known 
region 0,s and the unknown nonlinear functions A 

are bounded by some known functions 6(x, t), i.e., 

8 E i-b 2 {e : emin < e < e,,, ) 

A 
(2) 

E 0, e {A : (lA.(z,@, u,t)ll 5 a(z,t) } 

‘A vector or matrix is called known if each of its components 
is a known function of its variables 
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where 

emin = [&&, . . . , epmin]y ema% = [Lull, - * ’ ! ePmaK 

and 6(z, t) are known. 0 

Adjustable Model Compensation: In order to track 
a reference signal r(t), model compensation is necessary to 
provide the correct desired control action. However, since 
the plant model has parametric uncertainties, exact model 
compensation is not possible. Unlike DRC design, where 
6xed parameter estimates are used in the model compensa- 
tion, here, parameter estimates will be adjusted by learning 
mechanisms to provide an improved model compensation. 

Robust Control Law: A robust control law is used to 
attenuate the effect of model uncertainties in general. The 
difficulty here is that the usual DRC design technique cannot 
be directly applied to synthesize the needed robust control 
law since DRC normally handles fixed model compensation 
only. Thus robust control techniques, which can account 
for the effect of adjustable model compensation, have to be 
sought; this will be illustrated later by specific design exam- 
ples. 

Learning Mechanisms: On-line parameter adaptation 
is necessary for Ijroviding correct model compensation to 
achieve zero tracking error in the presence of parametric un- 
certainties. The adaptation law used to update the param- 
eter estimates can be synthesized by usual adaptive control 
teclmiques. 

Coordination Mechanisms: Coordination mechanisms 
are used to solve the inherent conflicts between the robust 
control law design and the adaptive control design. The 
parameter estimates provided by adaptive control may go 
unbounded when the plant has uncertain nonlinearities and 
thus may destabilize the system since the robust control law 
cannot attenuate an unbounded model uncertainty, which 
needs infinite control strength. Intelligent utilization of the 
prior information, such as the bounds of parametric un- 
certainties, is the key to solving the destabilizing effect of 
parameter adaptation problem while retaining its nominal 
learning capability. 

The above general concept about ARC controllers has been 
partially utilized in the previously proposed ARC controllers 
[13, 24, 16, 17, 151. In the subsequent sections, the concept 
will be illustrated by specific examples and will be used to 
construct new simple and practical ARC controllers. 

3 ARC OF A FIRST-ORDER SYSTEM 

In this section, robust tracking control of a sim le first-order 
system will be used to illustrate the general phi osophy of the 7 
proposed ARC and the function of each part. The system is 
described by 

i = 9=(2, t)@ + A(z, t) + u (3) 

where x,u E R, and 0 and A satisfy Assumption 1. The 
objective is to let 3: track its desired trajectory xd(t). 

.44iu$ated in Fig.1, the control law consists of two parts 

u = u, + u, 
u, = *d(t) - $78 (t) lr (4) 
ua = U.1 + UUaZ, u., = -kr 

where z = x - zd is the tracking error, 8, is the adjustable 
parameter needed for achieving correct model compensation, 

uf represents the adjustable model compensation, and 1~~ is 
the robust control law consistin 
stabilize the nominal system, w %* 

of two parts: usi is used to 
ich is a simple proportionel 

feedback in this case; and us2 represents robust feedback 
used to attenuate the effect of model uncertainties, which 
will be synthesized later. Substituting (4) into (3), the error < 
equation is 

i + kz = -9=& + A(x, t) + 11.2 (5) 

where &=& - ~9 represents the parametric uncertainties. It 
is thus clear that if we can design a robust feedback uLsz such 
that the following condition is satisfied 

- 
condition i +9=(s>t)&(t) + A(x,t) + uaz] 5 e (6) 

where E is a design parameter, then, the derivative of V. = 
32 is 

ti, = -ksa + z[-9=& + A + U,Z] < -kta + E 5 -2kV + B (7) 

so 
1~1’ 5 exp(-2kt)lz(0)12 + f[l - exp(-2kt)] 00 

Thus the tracking error exponentially decays to a ball. The 
exponential converging rate 2k and the size of the final track- 
ing error (]z(oo)] 5 fi) can be freely adjusted by the con- 
troller parameters E and k in a known form. In other words, 
transient performance is guaranteed. 

In the above development, urz is synthesized to dominate the 
model uncertainties coming from both the parametric uncer- 
tainties and uncertain nonlinearities to guarantee transient 
performance as seen from (6). For any given uJz, the actual 
tracking error z will be proportional to the extent of actual 
model uncertainties as seen from (5). So in the following, 
we will use parameter adaptation to reduce the model un- 
certainties to further improve the tracking performance. 

Conventionally, the adaptation law synthesized by adaptive 
control [l] is given by 

8 = l-9% 

where I’ is any p.d. matrix. If we let 8, = 8 in (4), such an 
adaptation law will eliminate the effect of parametric uncer- 
tainties (i.e., (pT& + 0 in (5) as t + oo) in the presence of 
parametric uncertainties only and asymptotic tracking can 
be achieved [15]. However, such an adaptation law can go 
unbounded even in the presence of a small disturbance [ll]. 
As a result, it cannot be directly used in the robust control 
law (4) since no finite robust control term us2 can be found 
to attenuate an unbounded model uncertainty in (6). To 
solve this conflict, several coordination mechanisms can be 
used. The first one is to use the bounded smooth projection 
of the estimated parameter ip the robust control law only as 
done in [24, 17, 151, i.e., let 8, = r(e) where ?r is a bounded 
smooth projection map defined in [24, 331. Such a modifi- 
cation ensures that 8, stays in a known bounded range all 
the time no matter if the estimated parameter will go un- 
bounded or not. As a result, a finite robust control law can 
be determined from (4) and (6) to guarantee the transient 
performance and final tracking accuracy in general. Fur- 
thermore, in the presence of parametric uncertainties only, 
the smooth projection will not interfere with the normal 
identification process of the adaptation law and the nomi- 
nal performance of adaptive control-asymptotic tracking-is 
preserved. However, this method suffers from the drawback 
that the internal parameter 8 may still go unbounded al- 
though it does not affect the stability of the actual system. 
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The second coordination mechanism is to modify the adap- 
tation law to make it robust to uncertain nonlinearities so 
that we can let & = &l in (4). This can be done by either 
the variation of a-modification [13], which is a smooth mod- 
ification, or the discontinuous projection method [13]. The 
variations of o-modification method used in [13, 41 suffers 
from the problem that the bound on the estimated parame- 
ter 4 can not be known in advance. Thus, the robust control 
law cannot be determined from (6) for a predetermined e. 
As a result, transient performance cannot be pre-specified. 
In contrast, the discontinuous projection method used in [13] 

guarantees that e^ stays in a known bounded region all the 
time [25, 261. Thus, it does the same job as the smooth pro- 
jection but does not have the problem associated with the 
smooth projection mentioned before. The resulting adapta- 
tion law for 8, = e^ is 

B = Proj@pz) (10) 

where the projection mapping Pro&(o) is defined by [25, 261 
(for simplicity, assume that I’ is a diagonal matrix in the 
following) 

Ptoj,(.) = O 

I 

if 
i 

ii = iho. and l >0 
ii = iimin and . <0 

. othetwiee 

(11) 
It can be shown [25, 26, 131 that the projection mapping has 
the following nice properties 

PI iEil,={i: e,;,<i<e,,,) 
P2 BT(l-‘Proj,(r.) - 0) 5 0, v* w 

The last step in ARC design is to make sure that the robust 
control term will not interfere with the nominal identifica- 
tion recess of parameter adaptation. This can be easily 
satis ed b puttin a trivial passive-like constraint on the 

5 P selection 0 ~$2 as 0110~s: 

condition ii Z&Z < 0 (13) 

which can be satisfied easily as shown in the later’s design. 

4 SIMPLE ARC CONTROLLERS FOR SISO 
NONLINEAR SYSTEMS 

As seen from the above section, the discontinuous projection 
method is simple and yet solves the conflict between the 
robust control and adaptive control. In this section, it will 
be utilized to construct a sim 

P 
le ARC controller for SISO 

nonlinear systems trensformab e to the following semi-strict 
feedback form [24, 121 

2; = Zi+l + BT9pi(Z* ,..., z<,t)+A.i(z,t), i<n-1 
i, = o(z)u + 0=9,.(z, t) + An(z, t) (14) 
Y = 21 

where z = [zr, . . . , z,]r. 'pi(Zl,.. ., Xi,t)ERP, i= 

l,..., n, are the known shape functions, which are assumed 
to be sufficiently smooth. B satisfies (2) and the unknown 
nonlinearities Ai(z, t) are assumed to be bounded by 

lAi(z,t)l I &(zi,t)v i=l,...,n (15) 

where fi = [zi, . . . , zi]=, and ai(Zi, t) are known. The ob- 
jective is to design a bounded control law for the input u 
such that the system is stable and the output y tracks the 
desired output trajectory yd(t) as close as possible. 

In [24], au ARC controller was presented for (15) by using 
the smooth projection to solve the conflicts. The underlin- 
ing adaptation law was based on the standard backstepping 
tuning function design in [l]. The design needs to incorpo- 
rate the adaptation functions (or tuning functions) in the 

construction of the smooth control functions at each step, 
which prohibits the use of any discontinuous modification. 
In the following, the robust control law will be strengthened 
so that the adaptation functions will not be needed in the 
design. As a result, the discontinuous projection method can 
be used to modify the adaptation law. The design proceeds 
in the following steps. 

4.1 Step 1 
Let Ai(z, t) = Ai(z,t). The first equation of (14) can be 
rewritten as 

il = 52 + BT91(z1, t) + dl(S, t) w 

Noticing that ]&(z, t)l 5 d(zi, t) g 6(zi, t), the ARC de- 
sizn in section 3 can be aDDlied to (16) to svnthesize a virtual 
c&trol law LYE for 22 so ‘that zi tracks itshesired trajectory 
xld(t) with the desired properties mentioned in section 3. If 
22 were the actual control input, then the adaptation law 
would be given by (10) and the control law would be given 
by (4). Since it is not the case, we postpone the specification 
of the adaptation law and use the first tuning function [l] 

n(z1,t) = h(21, t)zl, 61blrt)~ 91(z1,t) (17) 

to denote the essential part of the adaptation law (lo), where 
z1 = Xl - zld is the tracking error. However, in contrast 
with [24, l], the adaptation function 71 will NOT be used in 
the control law design at each step to allow for the use of 
discontinuous 
be strengthene B 

rejection later. The control law has thus to 
to compensate for the loss of information as 

follows. The new control function is 

a1(s1 Id, t) = Qlf + Ql# 

a11 = &d(t) - iT(t)91(z1, t) (18) 
&la = 01.1 + a1a2, as1 = -@1+!3lllrh l12)z* 

. 
where Ici > 0, gi 2 0, and crisz(xirO, t) is any function 
satisfying the similar conditions as (6) and (13), i.e., 

i z~[-P~~+& +~1~.~(2~,i,t)] 5 cl, vi E 0, 
ii ZlQl‘2 50 

(19) 

in which ~1 is a design parameter. Define zz = x2 - 
~i(zi, 8, t). Substituting (18) into (16), the first error sub- 
system Si becomes 

il + (h + gl wlVh = z2 -i=h +A1 +a,2 (20) 

Choose val = 3~:. From (20), its time derivative is 

kl = zlz2 - h+glilrhi12)~: +z~[& +~.~j - tF~1 (21) 

4.2 Step i 
Mathematical induction will be used to explain the remain- 
ing intermediate design ste 
used in the above step will B 

s. At step i, the ARC design 
e emplo ed to construct a con- 

trol function oi for zi+i SO that zi wi 1 track its desired ARC I 
control law ai- synthesized at step i - 1 (for simplicity, de- 
note two(t) = zid(t)) with a desired transient performance. 
Let zj = zj - oj - 1 and recursively define the following func- 
tions for step j from those in the previous steps 

+j(zj,i,t) = 9j(Zjtt)-~,~~: -9, 

dj(3J.t) = Aj(Z, t) - C:i: wAr(zv t) (22) 
Tj(fj,b,t) = Tj-1 + WjZj@j 
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Lemma 1 At step j 5 i, choose the desired control function 
Qj((fj, 8, t) as 

aj = (Ijj(Zj,i,t)+aj*(Zj*d*t), a'* = ajal + aj.2 

ajj = -iTgj + cfi: $+,I+* + * (23) 

aj*l = -sZj-l 
, - (kj + djIl~l12 + gj llrbjl12)zj 

where kj > 0, dj,gj 2 0, wj > 0 is a weighting factor, and 
(YjJ2(Zj, 8, t) is any function satisfying 

i zj[-JT#j(Z2, I, t) + dj(Z, t) + aj*2] 5 Sj, Vll E Sr, 
ii Zjaja2 5 0 (24) 

Then, the j-th error subsystem is 

ij = Zj+l - YZj-1 -(kj +djIl~l12+gjllr6jI12)zj 

+[-iTdj + dj + aj*2]- vi 

and the derivative of the augmented p.d. function 
(25) 

V.j = Va(j-1) + *Wj%; (26) 

is given by 

Qaj = Wjzjzj+l +~f=,wr{-(kr +d1II~ll~+g1llr9rll~)~~ 

+z,[& + (11.21 - ZI -&$-- 8-r-1 ($1 _ JTfj 

(27) 

Proof: It is easy to check that step 1 satisfies the Lemma. 
So let us assume that the Lemma is valid for step 1, VJ I 
i - 1, and show that it is also true for step i to camp ete the 
induction process. Prom (15) and (22) 

I&(Z,t)l 5 &(Zi,i,t) g6i +Cji: I*l6j (28) 

This insures that there exists an aiaz(Zi, 6, t) satisfying (24). 
The control law (23) can then be formed. Viewing the as- 
sumption of (14) and (23) for step j < i, 

i; = zi+l + eT9i + Ai - 
i 1 8-i-l 

C,,, T[Zj+l+ eT9j + Ajl 
; “yj++l} 

.~ 
(29) 

Substituting x;+i = Zi+i + Qi and (23) into (29), it is 
straightforward to verify that (25) and (27) are satisfied for 
i. This completes the induction process. 0 

Remark 1 One ezample of a smooth Lyjd2 sati:fying (24) 

can be found in the following way. Let hj(gj, 0, t) be any 
smooth function satisfying 

hj Z lIemom -e,i,Illl~j(~j,i,t)ll+~j(~j,i,t) (30) 

Then, using the same technique as in [24], it can be shown 
that 

aja2 = hj tanh ( o’27,j’j) (31) 

satisfies (24). Other smooth or continuous examples of ojsz 
can be found in [17, 151. 0 

4.3 Step n 
This is the final design step. By letting x,,+i = u(x)u, the 
actual control input u can be chosen as 

u= -+n(5n,irt) (32) 

where cr, is given by (23). 

Lemma 2 With the following adaptation law 

d = hj,p,) (33) 

iezller parameters dj and gj are chosen such that gj 2 

4x I 
I=1 F, the control law (32) guarantees that 

V.,(t) 5 eep(-%t)K,(O) + $$-[I - e=p(-2&t)] (34) 

where k,, 2 min{kt,. . . , k,}, cv fi ~~=, Wjej. 0 

Proof: From (32), ~n+i = 0. From (22), rn = Cy=, wjtj#j. 

Thus, from (27), 

p.la = c;=, wj{-(kj + djll~l12 +gjllr9jl12)zj2 

+Zj[-iTOj + Aj + aj,2] - Zj *b} 

Noting (33)) 

(35) 

:2 II~II = iIpwe_(wl12 I ihi 
5 (cJxI ll~~j~j~j11)2 = nCy=, IlWl12~j’z~ 

(36) 
Thus, if gj L 7 Cy=, 2, 

1 c;=* wjzj*BI < ~~El(wjdjIl~l12z~ + ~Il”ll”) 

5 cj”=, wjdjlI~I12z~ + ~~zl wjgjIlr4jl12~~ 
(37) 

Noting Pl of (12), (37), and the condition i of (24), (35) 
becomes 

ri.” 5 ci”=, Wj(-kjZi +Ej) 5 -2kvVam +E” (33) 

which leads to (34). 

4.4 Guaranteed Transient Performance 

cl 

The same as in [24], the idea of trajectory initialization in 
[l] will be used to render Z(O) = 0 independent of the choice 
ofk=[ki,...,kn]Tand.s=[ci,...,s,]Ttoachieveaguar- 
anteed transient performance. The detail is omitted and can 
be worked out in the same way as in [24]. Basically, z&) 
will be created by an n-th order stable system 

zg +/312y) +...+&Zld = $' +...+ ljngd (39) 

where yd(t) is the desired output trajectory. Then, by plac- 

ing the initial conditions x(‘)(O), i = 0,. . . , n - 1 at the best 
estimate o,f the initials y dP (0), which is obtained by sub- 
stituting e(O) for 0 and neglecting ah uncertainties in the 
calcuiation of yCi), we can guarantee that z(O) = 0. 

Theorem 1 Given the desired trajectory zld(t) generated 
by (39) with the initial conditions chosen as in [24/, the fol- 
lowing results hold if the control law (32) with the adaptation 
law (33) is applied: 

A. In general, all signals are bounded. Furthermore, 

K,(t) I ZP - ezd-%t)l (40) 

and the output tracking error is guaranteed to have 
any prescn’bed transient performance by increasing k 

and/or decreasing E. 

B If after a finite time to, A; = O,Vi, i.e., in the presence 
of parametric uncertainties only, in addition to results 
in A, asymptotic output tracking is also obtained for 
any gains k and E. A 
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Proof : From the trajectory initialization, V&(O) = 0: 
From Lemma 2, (40) is true and thus z is bounded. Since 19 
is always bounded, all control functions (Yj and the control 
input u are bounded, which leads to the boundedness of the 
state x. Furthermore, from (40), zl(t) is within a ball whose 
size can be made arbitrarily small by increasing Ic and/or 
decreasing E in a known form. From (39) and the nature 
of the trajectory initialization, the trajectory planning er- 
ror, cd(t) = xld(t) - yd(t), can be guaranteed to possess any 
good transient behavior by suitably choosing the Hurwitz 
polynomial Gd(s) = s” + &sn-’ + . . . + pn without being 
affected by k and E. Therefore, any good transient perfor- 
mance of the output tracking error e = y - yd = ~1 (t) + cd(t) 
can be guaranteed by selecting the controller parameters k 
and B in a known form, which proves A of Theorem 1. 

Now consider the situation that A;(%, t) = 0, t 2 to, Vi. 
From (22), &(x, t) = 0, Vi. Choose a p.d. function V,, as 

V = v,, + $#l-‘e (41) 

Noticing (35), (37), (i), condition ii of (24), and P2 of (12, 

C’an = Ps, + JTr-‘B = ~~zl wj{-(kj + djllwlla 

+gjIlr~jl12)Z~ + tjaj.2 - %j *i} + BTr-‘(8 - rr,) 
5 -C,?=, Wjkjl~ + BT(r-lPrOj,(rT,) - 7,) 5 - cy=l Wjkjl; 

(42) 
Therefore, z = [zl, . . . , z,,]= E Lt. It is also easy to check 
that 2 is bounded. So, z + 0 as t + 00 by the Barbalat’s 
lemma, which leads to B of Theorem 1. cl 

5 Conclusions 

A general structure of the proposed adaptive robust control 
has been presented for the design of high-performance ro- 
bust controllers. Under the proposed general framework, a 
simple new ARC controller, which is based on the widely 
used discontinuous projection method, was also constructed 
for a class of nonlinear systems transformable to the semi- 
strict feedback form. Simulation results will be presented to 
illustrate the proposed method. 
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