
High Performance Algorithms

for Multiple Streaming Time

Series

by

Xiaojian Zhao

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

New York University

January 2006

Dennis Shasha



c© Xiaojian Zhao

All Rights Reserved, 2006





“To my parents and my wife, for all they did for me”



Dedicated to all that helped me

v



Acknowledgements

This dissertation would never have materialized without the contribution of

many individuals to whom I have the pleasure of expressing my appreciation

and gratitude.

First of all, I gratefully acknowledge the persistent support and encourage-

ment from my advisor, Professor Dennis Shasha. He provided constant aca-

demic guidance and inspired many of the ideas presented here. Dennis is a

superb teacher and a great friend.

Secondly, I wish to express my deep gratitude to Professor Richard Cole. He

has been offering his generous help since the beginning of my Ph.D. study, which

is not limited to academic research. In particular, his help was indispensable

for me to go through my first semester at NYU, four extremely tough months.

I thank Professor Clifford Hurvich for serving on both my proposal commit-

tee and thesis committee. His comments on my research have been very im-

portant. I also thank the other members of my dissertation committee, Ernest

Davis and Farshid M. Asl, for their interest in this dissertation and for their

feedback. Rich interactions with colleagues have improved my research and

made it enjoyable. While I cannot list them all I would like to thank a few

members of the database group: Alberto Lerner, David Tanzer, Aris Tsirigos,

Xin Zhang and Zhihua Wang, who have lent both voices and helpful suggestions

vi



in the course of this work. Additional thanks to Lee Rhodes for his comment

on our system and Eamonn Keogh of University of California at Riverside for

his data sets.

I am thankful for many friends with whom I share more than just an aca-

demic relationship: Rosemary Amico, Anina Karmen and Maria L. Petagna

performed the administrative work required for this research. They were vital

in making my stay at NYU enjoyable.

Finally and most importantly, I would like to thank my parents for their

efforts to provide me with the best possible education.

vii



Abstract

Data arriving in time order (a data stream) arises in fields ranging from physics

to finance to medicine to music, to name a few. Often the data comes from

sensors (in physics and medicine for example) whose data rates continue to

improve dramatically as sensor technology improves. Furthermore, the number

of sensors is increasing, so analyzing data between sensors becomes ever more

critical in order to distill knowledge from the data. Fast response is desirable

in many applications (e.g. to aim a telescope at an activity of interest or to

perform a stock trade). In applications such as finance, recent information,

e.g. correlation, is of far more interest than older information, so analysis over

sliding windows is a desired operation.

These three factors – huge data size, fast response, and windowed compu-

tation – motivated this work. Our intent is to build a foundational library of

primitives to perform online or near online statistical analysis, e.g. windowed

correlation, incremental matching pursuit, burst detection, on thousands or even

millions of time series. Beside the algorithms, we also propose the concept of

“uncooperative” time series, whose power spectra are spread over all frequencies

with any regularity.

Previous work [87, 98] showed how to do windowed correlation with Fast

Fourier Transforms and Wavelet Transforms, but such techniques don’t work

viii



for uncooperative time series. This thesis will show how to use sketches (ran-

dom projections) in a way that combines several simple techniques – sketches,

convolution, structured random vectors, grid structures, combinatorial design,

and bootstrapping – to achieve high performance, windowed correlation over a

variety of data sets. Experiments confirm the asymptotic analysis.

To conduct matching pursuit (MP) over time series windows, an incremental

scheme is designed to reduce the computational effort. Our empirical study

demonstrates a substantial improvement in speed.

In previous work [87], Zhu and Shasha introduced an efficient algorithm

to monitor bursts within windows of multiple sizes. We implemented it in

a physical system by overcoming several practical challenges. Experimental

results support the authors’ linear running time analysis.

ix



Contents

Dedication v

Acknowledgements vi

Abstract viii

List of Figures xii

List of Tables xiv

List of Appendices xv

1 Introduction 1

2 Review 5

2.1 Streaming Database . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Time Series Similarity Measures . . . . . . . . . . . . . . . . . . 7

2.3 Matching Pursuit . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Statstream Over Uncooperative Time Series1 22

3.1 StatStream Revisited . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 23

x



3.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Algorithmic Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 The Issues in Implementation . . . . . . . . . . . . . . . . . . . 40

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 High Performance Incremental Matching Pursuit2 48

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Opportunities in Angle Space . . . . . . . . . . . . . . . . . . . 50

4.3 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 An Implementation of the Shifted Binary Tree 56

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 A Brief Review of Shifted Binary Tree . . . . . . . . . . . . . . 59

5.3 MILAGRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 The Challenges and Our Solutions . . . . . . . . . . . . . . . . . 63

5.5 Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusion 71

6.1 Future extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendices 74

Bibliography 88

xi



List of Figures

2.1 GEMINI Framework . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 The sketch distances and the real distances of stock returns . . . 17

2.3 GEMINI Framework . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Matching Pursuit (MP) algorithm . . . . . . . . . . . . . . . . . 21

3.1 Sliding windows and basic windows. . . . . . . . . . . . . . . . . 27

3.2 The sketch approach is superior to SVD, Wavelet and DFT . . . 29

3.3 The comparison between real distance and sketch distance . . . 31

3.4 A 2D grid structure . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Parameter continuity for recall and precision . . . . . . . . . . . 36

3.6 DFT distance versus sketch distance over empirical data . . . . 44

3.7 System performance over a variety of datasets. . . . . . . . . . . 45

4.1 Incremental Matching Pursuit (MP) algorithm . . . . . . . . . . 51

4.2 Time and approximation power comparison . . . . . . . . . . . 54

5.1 The algorithmic structure of Shifted Binary Tree(SBT) . . . . . 59

5.2 Algorithm to construct Shifted Binary Tree . . . . . . . . . . . . 60

5.3 Algorithm to search for burst . . . . . . . . . . . . . . . . . . . 61

5.4 MILAGRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii



5.5 Partition the sky into 2D grid structure . . . . . . . . . . . . . . 64

5.6 A comparison between the SBT and naive method . . . . . . . . 70

B.1 Dot products with two basic windows . . . . . . . . . . . . . . . 80

B.2 Structured convolution . . . . . . . . . . . . . . . . . . . . . . . 81

B.3 Sum up the corresponding pairs . . . . . . . . . . . . . . . . . . 81

B.4 Structured convolution procedure . . . . . . . . . . . . . . . . . 82

B.5 Dot product of every basic window . . . . . . . . . . . . . . . . 83

B.6 Structured convolution procedure every basic window . . . . . . 84

xiii



List of Tables

3.1 An example of two-factor combinatorial design. . . . . . . . . . 35

3.2 Combinatorial design vs. exhausive search . . . . . . . . . . . . 37

3.3 Combinatorial design then refinement vs. exhaustive search . . . 39

3.4 The recall and precision of disjoint sample sets . . . . . . . . . . 46

3.5 The recall and precision of empirical data sets . . . . . . . . . . 47

xiv



List of Appendices

Appendix A Theoretical Probabilistic Guarantees for Recall 74

Appendix B Structured Random Projection for Sliding Window 77

Appendix C An Upper Bound of the Grid Size 86

xv



Chapter 1

Introduction

Massive data are generated every second in various applications. For instance,

• In mission operations for NASA’s MISR Satellite, spatial samples are ac-

quired every 275 meters. Over a period of 7 minutes, a 360 km wide swath

of Earth comes into view from cameras pointed in 9 different directions.

Terabyte data are generated every day.

• In telecommunications, the AT&T long distance data stream consists of

approximately 300 million records per day from 100 million customers.

• In astronomy, the MACHO Project to investigate the dark matter in the

halo of the Milky Way monitors several million stars photometrically. The

data rate is as high as several GBytes per night.

• There are roughly 50,000 securities trading in the United States, and up

to 100,000 quotes and trades (ticks) are generated per second.

These applications share several special streaming characteristics, as pointed

out below, and demonstrate that the query processing is different from that in

1



the conventional static or slow updating database system.

• Updates come in the form of insertions of new elements rather than mod-

ifications of existing data.

• Due to its continuous nature, a query should be answered in an incremen-

tal way.

• In most cases the large volume of data make it impossible to review past

data, therefore a one pass processing algorithm is desired.

With the advance of new techniques, data rates continue to improve dramat-

ically, so multi-stream analysis between data sources becomes ever more critical

in order to distill knowledge from the data. Online response is desirable in many

applications. Our intent is to build a foundational library of primitives to per-

form online or near online multi-stream information extraction on thousands or

even millions of time series. Besides their immediate use, such primitives could

provide a first level analysis of time series for online clustering and data mining

systems.

In the second section, we will present a new sketch based data correlation

strategy. It is an extension of DFT based statstream [98]. With comparable

efficiency, the new algorithm can handle more data types. This new statstream

is a randomized algorithm. The whole algorithm is based on the Johnson-

Lindenstrauss (JL) Lemma which states that high dimensional data points can

be mapped to a low dimensional space while preserving the norm within a factor.

Our algorithm computes a synopsis vector for each time series; this is a random

mapping from the original data space to a manageable low dimension. The JL

2



lemma proves that the approximation of the original distance may achieve suf-

ficient accuracy with high probability as long as the synopsis size is larger than

a bound. This synopsis is used to filter the non-correlated time series pairs in

our algorithm. Although the lemma gives a bound, it appears to be a consider-

able overestimate in practice. We give a set of strategies to determine a good

bound on the needed synopsis size as well as other system parameters. After

the synopsis filtering, the correlation will be verified using the full time series

data on the pairs surviving the filter. Only those pairs passing the verification

will be reported as highly correlated.

We contrast this work with the considerable recent body of work on massive

data streams [37, 77, 52] where the assumption is that data can be read once

and is not stored. In our applications, we assume an initial filtering step must be

completed in one pass, but a second pass may search for data in a well-organized

and potentially growing data structure.

In the third section, we will introduce a novel incremental matching pursuit

(MP) scheme. The new scheme allows the updating of approximating vectors

every basic window. The consistency of projection space between consecutive

sliding windows enables a significant saving of computational efforts compared

to the naive approach which requires a full calculation for each window posi-

tion. To the best of our knowledge nobody has discussed how to apply MP

incrementally to a group of time series.

The fourth section is an implementation of Zhu and Shasha’s Shifted Binary

Tree (SBT) [87] in a physical system. We will give an overview of the practical

challenges encountered in the implementation and our solutions.

An empirical study of each algorithm will be given in the corresponding

section.

3



At the end of the thesis, we discuss how we intend to extend our algorithms

in future work.

4



Chapter 2

Review

2.1 Streaming Database

In many practical cases, the data set we will process is subject to dynamic

updating, that is, new data arrive continuously at a random rate. Due to its

varied applications in finance, physics, telecommunication etc, there has been a

lot of research on streaming databases.

Babcock et al. [12] discuss models and issues in designing a new type of Data

Stream Management System (DBMS). Conventional DBMS’s are inherently un-

able to support continuous queries, which are typical for streaming data. Due

to its limited memory, a traditional DBMS cannot hold continuously arriving

data. Moreover, in most if not all cases, an approximate answer is sufficient

for queries to data streams. This cannot be handled appropriately by current

DBMS’s which are normally designed to provide an exact answer. In Babcock

et al.’s paper, general schemes such as sampling, batch processing, and synopsis

data structure are discussed, focusing on how to keep up with the data stream

rate and to produce timely answers. They discuss a query language extend-

5



ing standard SQL. In their follow-up work, more technical issues are addressed

such as achieving a lower memory overhead by a careful query arrangement [13],

sharing resources among sliding windows for aggregate queries [10], and execu-

tion of joins in a memory-limited setting [88]. Several other database systems

for streaming data have also been constructed: Aurora [2], MAIDS [3], Niagara

[4], Telegraph [1], to name just a few of them.

Dater et al. [35] consider the problem of maintaining statistics such as

count, sum, and Lp−norm over a sliding window of the last N elements. Dater

and co-authors propose a scheme for the count as the fundamental technique.

To avoid inaccuracy in the case of skewed data segments, with which other

histogram algorithms fail to deal, the sliding window is divided into buckets of

pseudo-exponentially increasing sizes. The merging or creation operations are

conducted over the buckets whenever a new “1” arrives or the data element

expires. The well structured bucket sizes guarantee that the estimate of count

is within an error bound of 1+ǫ and the total number of bits of memory needed

is 1
ǫ
log2 N where prior knowledge of N is not required. The authors then extend

this basic scheme to maintain other statistics such as sum and Lp−norm.

Gehrke et al. [48] consider the computation of correlated aggregates over

multiple streams. They present a set of strategies with which such queries

as COUNT{x : x > 0.5 ∗ MAX(x)} and MAX{y : x < AV G(x)} can be

computed approximately in a single pass over the data stream. The answer to

these queries depends on low level independent information: extreme (MAX,

MIN) or average (AV G). They maintain a histogram to represent the data

distribution around the maximum, minimum or average of data seen. To avoid

degradation from the given partitioning policy with the arrival of new tuples,

two approaches, wholesale and piecemeal, were proposed. In the wholesale

6



approach, the buckets are revised from scratch, while in the piecemeal approach,

the existing bucket allocation is preserved whenever possible. Their algorithm

can handle both sliding window queries (e.g. in the past 30 mins) and landmark

queries (e.g. since last month). Many other one-pass algorithms have been

proposed by researchers to obtain median, quantiles and other statistics [52, 77],

join query [31, 7, 46], and mining [47].

Many of the sampling and histogram based algorithms make some assump-

tions regarding the data distribution such as that data come from a uniform

distribution. In some cases the central limit theorem is hypothesized in order

to tighten the bound or to reduce the sampling size.

Zhu and Shasha [87] propose a strategy for computing sliding window corre-

lations among multiple data sources. Here a sliding window is a moving window

over the time series stream. Suppose there are N time series and a sliding win-

dow size of w. In each stream, sliding windows begin at time 0, b, 2b, ... where

b < w and b is called the basic window size. Two sliding windows x1 from

stream s1 and x2 from stream s2 that begin at times t1 and t2, respectively,

are said to correlate highly if their correlation is above a threshold value. Zhu

and Shasha’s algorithm finds all highly correlated pairs of sliding windows as-

suming that each window of data can be well modeled by its first few Fourier

coefficients. Their algorithm can deal with both synchronous and asynchronous

correlation.

2.2 Time Series Similarity Measures

Given a query point, a typical query, called a similarity query, is to find the

most similar data points in the data set or its nearest neighborhood in the

7



metric space. Jagadish et al. [59] give a general discussion about similarity

queries. Das et al. [32] talked about some fundamental problems concerning

similarity queries. Many papers discussed similarity measurements such as time

warped measures [16, 95, 99], weighted measures [67, 91] and multi-dimensional

indexing [90]. See [54] for a tutorial.

Correlation is also a similarity metric. The most widely used statistic mea-

surement is Pearson correlation which will be defined later. Though Pearson

correlation is optimal for detecting linear relationships, it is a weak test for

highly non-linear relationships. In addition Pearson correlation can be strongly

affected by a single outlier. Therefore a non-parametric form of correlation,

called Spearman’s rank correlation is also used in many applications [89, 6].

In addition to temporal computation, the correlation can also be performed

spatially [96].

One unavoidable aspect of time series similarity measure is the high dimen-

sion. For instance, a vector longer than 50 is common in applications. However

high dimensional data pose a serious problem to those algorithms designed for

low dimensions. Therefore data reduction is the first step of many time series

techniques.

Next we give a brief general description of GEMINI and then review several

of the most popular data reduction methods, among which random projection

is emphasized due to its special role in our algorithm.

2.2.1 GEMINI Framework

GEMINI (Generic Multimedia Indexing Method) framework was first proposed

by Faloutsos in his celebrated paper [43]. In this paper, he gave a framework

8



which procudes no false negatives in the output.

In GEMINI the distance measure will be computed first in the feature space

and then in the original data space. The former has the characteristic that all

the original distances are reduced. Therefore the query for the data within a

specific distance from the query point will be returned with a superset of true

positives. In the second step, the data points passed are then verified in the

original data space.

The first step acts as a filter, while the verification in the original data space

eliminates the false positives. All and only true positives are finally returned.

The mapping functions between data space and feature space vary. The

two most popular ones are Discrete Fourier Transforms (DFTs) and Discrete

Wavelet Transforms (DWTs). Often, the first several coefficients of DFT or

DWT capture the trends of the original time series.

Figure 2.1 shows the GMINI framework.

Time series s1 Time series s2

Synopsis of s1 Synopsis of s2

Syn (s1) in index Syn (s2) in index

DFT, DWT, SVD, etc

Store in a 

multidimensional 

index structure

s1 and s2 are probably close if 

their synopses map to close 

points in the index space

Figure 2.1: GEMINI Framework

9



2.2.2 Data Reduction

High dimensional data are used in various applications e.g. multimedia similar-

ity matching, time series correlation searching, etc. However, many algorithms

or techniques that work quite well in a low dimension deteriorate when scaled

to a high dimensional space. This is the notorious “Curse of Dimensionality”.

For instance, in a 2D data space where data points are scattered evenly, the

number of the data points contained in a 2r − radius ball is four times that in

a r − radius ball. However, this ratio will increase exponentially to 2n in a n-

dimensional space. A lot of the work was done to explore this huge discrepancy

[14, 21, 62, 15, 19, 20]

Naturally, data reduction has been a topic of interest; it reduces high di-

mensional data into a manageable synoptic data structure while preserving the

characteristics of the data to a large extent. Most data reduction techniques for

time series result in reducing the dimensionality of the time series.

Linear Orthogonal Transform

In Lp distances where p can be any positive number, the Euclidean distance

(p = 2) is most used. Therefore a transform is preferred that preserves the

distance, which is met by any orthonormal transform. Among them are DFT,

Wavelet and SVD. Such data reduction techniques follow the scheme below:

• Find a set of complete, normal and orthogonal vectors V of the same size

as the time series;

• Transform the time series to the space spanned by V ;

• Keep the most significant d coordinates (d < n).

10



These first d coordinates form a vector which is used to approximate the orig-

inal time series. The choice of the user-defined threshold d depends on the

characteristics of the data sets.

Discrete Fourier Transform (DFT): The Discrete Fourier Transform was

first used in reducing the dimension of time series in Agrawal, Faloutsos and

Swami’s work [9]. It has been widely used since then in the database and data

mining community [43, 84, 94, 79, 73, 100].

DFT has its pros and cons. On the positive side, DFT possesses a good abil-

ity to compress most natural signals, especially those with obvious trends. The

computation of the DFT transform is fast (O(n logn)). It is also able to sup-

port time warped queries. However, DFT cannot deal directly with sequences

of different lengths and it does not support weighted distance measures.

Discrete Wavelet Transform (DWT): The Fourier Transform summarizes

the frequency characteristics of time series from a global view. Thus it is difficult

to maintain a high resolution in time. Although “Windowed Fourier Transform

(WFT)” was proposed to address this shortcoming, the uniform resolution in

time and frequency makes it unsuitable for a multi-scale analysis. The Wavelet

Transform, a generalized version of WFT, can avoid this difficulty by projecting

the signal to a multi-level space with a local wavelet.

There are many wavelets and comparisons are made between different

wavelets [25, 83]. As a time series representation, the wavelet is good at com-

pressing stationary signals. The approximation can be computed linearly, but

wavelet processing requires that the signals must have a length n = 2integer,

otherwise the time series have to be padded, which introduces a cost.

In addition to their use in conventional similarity searching [25, 55, 83],

wavelets are also popular in the query approximation [24, 49, 78, 86].

11



It is commonly believed that DWT works for any application in which DFT

works. However, Wu [93] compared DFT and DWT and claimed that although

the DWT based technique has several advantages, DWT does not reduce rel-

ative matching errors or increase query precision in similarity search. He sup-

ported his idea by exploring the conjugate property of DFT in the real domain;

he showed that the DFT-based and DWT-based techniques yield comparable

results on similarity search in time-series databases.

Singular Value Decomposition (SVD): SVD [69, 85] is an optimal linear

dimensionality reduction technique as we will discuss later. However, SVD is

computationally expensive. It needs O(MN2) time and O(MN) space where

M is the row number of a matrix while N is the column number. Any insertion

into the database requires recomputation of the transformation. SVD can not

support weighted distance measures or non Euclidean measures.

There is some promising research to reduce SVD’s time and space complex-

ity. Drineas [38, 37] proposed the randomized SVD approach. He claims that

the sampling of the rows or columns can form a new matrix which with high

probability shares similar singular vectors to those of the original matrix. In

Papadimitriou’s work [82], random projection is used in latent semantic index-

ing [36] to map the rows into low dimension in order to reduce the size of the

matrix.

The orthogonal transforms differ in their properties. The DFT and Wavelet

Transform are data-independent, which means that the transformation matrix

is determined a-priori, while data-dependent transforms can be fine-tuned to

the specific data set and therefore in principle can achieve better performance,

concentrating the energy into a few features in the feature vector. On the other

hand, data-dependent algorithms suffer from expensive computation time. Due

12



to the evolution of data sets over time, a recomputation of the transformation

matrix is necessary to avoid performance degradation.

Therefore data independent transforms (DFT and DWT) are mostly used

in algorithms where data change rapidly while SVD finds its application where

data is updated slowly or when the expensive computation is affordable.

2.2.3 Random Projection

Let’s first give some intuition for the random projection approach.

Imagine you are walking in an unfamiliar place and you unfortunately get

lost. The only equipment you have is a cell phone. You want to know if you are

close to your friend with whom you want to meet. The easiest way to find your

bearings in this setting is to exchange the relative location information of each

other, e.g. “Hi, I am about 100 meters from a silver building and 50 meters

from CircuitCity...”. If you two are close to each other, the similar location

information will be shared. Of course, there is the possibility that two places are

surrounded by the similar landmarks but located in NYC and LA respectively.

However if the number of the landmarks is sufficiently large and they are chosen

randomly, we may give a unique conclusion with high probability.

Next let’s examine the formal definition of random projection.

Given a vector ~t = t[1, · · · , m], its sketch vector ~S(t) is constructed as fol-

lows. We form a random vector vi[1, · · · , m] by picking each component vi[j] to

be an independent random variable with some specific distribution (e.g. normal

distribution N(0,1)). The sketches of the data vector are constructed by the dot

product with the random vector. That is,

13



~S(t)[i] = ~t · ~vi =
∑

j

t[j] · vi[j]

Example. Given ~t=(1 2 3 4) and suppose we want to construct a sketch

vector of size two. The random variables are drawn from N(0,1). The random

vectors are ~v1 and ~v2 where

~v1 = (0.13,−0.24, 0.47,−0.19)

~v2 = (−0.25,−0.64, 0.17,−0.89)

Then the sketch of ~t is (0.3, -4.58).

The sketch of a vector possesses many advantageous properties. Lots of

researchers have studied it since the following lemma was first developed by

Johnson and Lindenstrauss.

Original Johnson-Lindenstrauss Lemma. Let ~v1,~v2,· · · ,~vm be a sequence

of points in the d-dimensional space over the reals and let ǫ, F ∈ (0, 1]. Then

there exists a linear mapping f from the points of the d-dimensional space into

the points of the k-dimensional space where k = O(log(1/F )/ǫ2) such that the

number of vectors which approximately preserve their length is at least (1−F )m.

We say that a vector ~vi approximately preserves its length if:

‖~vi‖2 ≤ ‖f(~vi)‖2 ≤ (1 + ǫ)‖~vi‖2

or in a more direct form:

Johnson-Lindenstrauss (JL) Lemma. For any 0 < ǫ < 1 and any integer

n, let k be a positive integer such that,

k > 4(ǫ2/2 − ǫ3/3)
−1

log n

14



Then for any set V of n points in Rd, there is a map f : Rd → Rk such that for

all u, v ∈ V

(1 − ǫ)‖ u − v ‖2 ≤ ‖ f(u) − f(v) ‖2 ≤ (1 + ǫ)‖ u − v ‖2

Further this map can be found in randomized polynomial time

It is proven that a suitable random vector can be drawn from an order 1

stable distribution such as normal distribution.

Dimitris Achliptas extended it to more distributions by his lemma.

Dimitris Lemma. Let P be an arbitrary set of n points in Rd, represented as

an n × d matrix A. Given ǫ, β > 0, let

k0 =
4 + 2β

ǫ2/2 − ǫ3/3
log n

For integer k ≥ k0, let R be a d × k random matrix with R(i; j) = rij, where

{rij} are independent random variables from either one of the following two

probability distributions:

rij =







+1 with probability 1/2;

−1 with probability 1/2.

or

rij =



















+
√

3 with probability 1/6;

0 with probability 2/3;

−
√

3 with probability 1/6.

Let

E =
1√
k
AR

15



Let f : Rd → Rk map the ith row of A to the ith row of E. With a probability at

least 1 − n−β, for all u, v ∈ P

(1 − ǫ)‖ u − v ‖2 ≤ ‖ f(u) − f(v) ‖2 ≤ (1 + ǫ)‖ u − v ‖2

Now we present the definition of sketch distance.

Sketch distance: The Euclidean distance of the sketches of two time series,

that is

dsk = ‖xsk − ysk‖ =
√

(xsk1 − ysk1)
2 + (xsk2 − ysk2)

2 + · · ·+ (xskk − yskk)
2

Figure 2.2 shows the comparison between the sketch distance and original

distance in the form of bar and curve graph. In the figures, the sketch size is 64.

In Figure 2.2(a), the real distance is sorted in descending order, and the sketch

distance distances are ordered correspondingly; the sketch distance occurs in

a tight band around the real distance. In Figure 2.2(b) the ratio between the

sketch distance and real distance is given. The symmetric and bell-like shape

looks like a normal distribution with center at the ideal value. Figure 2.3 also

indicates the equivalence between sketch distance and real distance.

In the empirical study, more results are shown with different sketch size.

16



Sketch distance and real distance

0

5

10

15

20

25

30

1 82 163 244 325 406 487 568 649 730 811 892 973

Data Pairs

R
ea

l 
d
is

ta
n
ce

sketch

real dist

(a) The sketch distance vs. the real distance of stock return pairs

Sketch distance/real distance

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0
.8

0
.8

2

0
.8

4

0
.8

6

0
.8

8

0
.9

0
.9

2

0
.9

4

0
.9

6

0
.9

8 1

1
.0

2

1
.0

4

1
.0

6

1
.0

8

1
.1

1
.1

2

Ratio of distance

F
ra

ct
io

n
 o

f 
p
o
p
u
la

ti
o
n

ratio

(b) The ratio of sketch distance /real distance for stock return pairs

Figure 2.2: The sketch distances and the real distances of stock returns are close

17



Sketch Distance vs. Real Distance

10

13

16

19

22

25

28

10 13 16 19 22 25 28

Sketch distance

R
ea

l 
d

is
ta

n
ce

Figure 2.3: GEMINI Framework

Although the JL lemma first appeared in 1984, it was not brought to the

theoretical computer science community until date [74]. Since then many algo-

rithms have been developed based on the idea of random projection. Now it has

become a standard way to improve the complexity of approximate algorithms

by polynomial [82, 23, 50] or even exponential factors [58].

After the introduction of the JL lemma, several researchers gave simpler

proofs because of its importance, e.g. [45, 58, 11, 34, 8]. The tightest bound,

k > k0 = 4(ǫ2/2 − ǫ3/3)−1, was given in [34]. In the proof of [8], a new random

distribution is introduced.

These proofs, however, are all nondeterministic. None of them give a strat-

egy to find a mapping. In the work of Engebretsen and Indyk [41], a determin-

istic algorithm is proposed to find an embedding with the properties guaranteed

by the JL lemma.

One thing to note is that, in addition to Euclidean distance, random projec-

18



tion can be used to approximate Lp-distance [56]. It is also possible to approx-

imate the Hamming or L0-distance using stable distributions [29].

Random projection is used frequently in the dimensionality reduction ex-

plicitly or implicitly, which has been found to be a computationally efficient,

yet sufficiently accurate method. Indyk et al. [57] use it to identify the trends

of the time series. In their work a set of sketches over the time series of length

of power of two are first computed, which serve as the sketch base to produce

the sketch of time series of arbitrary length by summation. Papadimitriou et al.

[82] use random projection in the preprocessing of textual data, prior to apply-

ing Latent Semantic Indexing (LSI). In their work the columns of the random

projection matrix are required to be orthogonal to each other, which is proven

not necessary later [17]. However, it is noticed that the random vector may be

organized carefully for a specific purpose. In the paper by Kaski [61] random

projections were used on textual data in WEBSOM, a program that organizes

document collections into Self-Organizing Map (SOM). Kurimo [70] also applies

random projection to the indexing of audio documents, prior to using LSI and

SOM. Kleinberg [68] and Indyk and Motwani [58] use random projections in

nearest-neighbor search in a high dimensional Euclidean space. Dasgupta [33]

has used random projections in learning high-dimensional Gaussian mixture

models. Due to the excellent quality of its distance preservation, random pro-

jection naturally finds its application in clustering. Zhang, Fern, and Brodley

illustrate in their paper [44] that random projection can help to uncover the

natural structure in high dimensional data by multiple runs of clustering. They

exploit how to choose the dimensionality for a random projection in order to

preserve separation among clusters in general clustering applications. In addi-

tion work has been done to apply the random projection in privacy-preserving

19



data mining [75].

Ella Bingham and Heikki Mannila [17] show that projecting the data onto

a random lower-dimensional subspace yields results comparable to conventional

dimensionality reduction methods such as principal component analysis. In their

work the similarity of data vectors, either in terms of their Euclidean distance

or their inner product, is measured. They also note that the JL theorem and

analogous results in [8] give much larger bounds on the size of the sketch than

necessary for good results.

2.3 Matching Pursuit

Matching Pursuit (MP) is an algorithm, introduced by Stephan Mallat and

Zhifeng Zhang [76], for approximating a target vector by greedily selecting a

linear combination of vectors from a dictionary. Figure 2.4 holds pseudo-code

for the MP algorithm. MP takes as input a target vector vt and a set of vectors

V from which it quickly extracts as output a smaller subset VA along with

weights ci so that vt ≈
∑

vi∈VA
civi.

MP has many applications including in image processing [42], physics [92,

22], medicine [39, 18] and more. Several researchers have proposed fast variants

of the algorithm [53, 80, 26]. In this thesis we will give a brief description of

our incremental matching pursuit technique.

20



Given a vector pool containing n time series V = (v1, v2, · · · , vn), a target

vector vt, tolerated error ǫ, and approximating vector set VA = ∅. Define

cos θi = ~vt ∗ ~vi as the cosine between vt and a vector vi in V . Here vector

~v = v
‖v‖

.

1. Set i = 1;

2. Search the pool V and find the vector vi whose | cos θi| with respect

to vt is maximal;

3. Compute the residue r = vt − civi where ci = ‖vt‖
‖vi‖

cos θ. VA =

VA ∪ {vi}
4. If ‖r‖ < ǫ terminate, return VA

5. Else set i = i + 1 and vt = r, go back to 2

Figure 2.4: Matching Pursuit (MP) algorithm

21



Chapter 3

Statstream Over Uncooperative

Time Series1

3.1 StatStream Revisited

Zhu and Shasha [87] propose a strategy for computing sliding window correla-

tions among multiple data sources. They use DFT as a means to reduce the

dimension of data. The first a few coefficients of DFT transformation are used

to compute the “distance” between time series. Those time series pairs whose

distance in coefficient space is smaller than a certain threshold are picked out

for the second-stage verification. The above operations are performed within

each sliding window.

1This work is published in SIGKDD’05 [28]

22



3.2 Problem Statement

Correlation, over windows from the same or different streams, has many vari-

ants. This thesis focuses on synchronous and asynchronous (a.k.a. lagged)

variations, defined as follows:

• (Synchronous correlation) Given Ns streams, a start time tstart, and a

window size w, find, for each time window W of size w, all pairs of streams

S1 and S2 such that S1 during time window W is highly correlated (over

0.95 typically) with S2 during the same time window. (Possible time

windows are [tstart · · · tstart+w−1], [tstart+1 · · · tstart+w], · · · where tstart is

some start time.)

• (Asynchronous correlation) Allow shifts in time. That is, given Ns

streams and a window size w, find all time windows W1 and W2 where

|W1| = |W2| = w and all pairs of streams S1 and S2 such that S1 during

W1 is highly correlated with S2 during W2.

3.2.1 What Makes a Time Series Cooperative?

Given Ns streams and a window of size winsize, computing all pairwise correla-

tions naively requires O(winsize×(Ns)
2) time. Fortunately, extremely effective

optimizations are possible, though the optimizations depend on the kind of time

series they are.

• Category 1 (“cooperative”): The time series often exhibits a funda-

mental degree of regularity, (or in other words, its energy is concentrated

in a few frequency components) at least over the short term, allowing long

23



time series to be compressed to a few coefficients with little loss of infor-

mation using data reduction techniques such as Fast Fourier Transforms

and Wavelet Transforms. Using Fourier Transforms to compress time se-

ries data was originally proposed by Agrawal et al. [9]. This technique

has been improved and generalized by [43, 72, 84]. Wavelet Transforms

(DWT) [25, 49, 83, 93], Singular Value Decompositions (SVD) [69], and

Piecewise Constant Approximations [66, 64, 81, 94] have also been pro-

posed for similarity search. Keogh has pioneered many of the recent ideas

in the indexing of dynamic time warping databases [63, 90]. The perfor-

mance of these techniques varies depending on the characteristics of the

datasets [87].

• Category 2 (“uncooperative”): In the general case, such regularities

are absent. However, sketch-based approaches [8, 56] can still give a sub-

stantial data reduction. These are based on the idea of taking the inner

product of each time series window, considered as a vector, with a set of

random vectors (or equivalently, this can be regarded as a collection of

projections of the time series windows onto the random vectors). Thus,

the guarantees given by the Johnson-Lindenstrauss lemma [60] hold. In

time series data mining, sketch-based approaches have been used to iden-

tify representative trends [30, 57] and to compute approximate wavelet

coefficients [49], for example.

24



3.3 Our Contribution

Previous work [98, 87] shows how to solve the windowed correlation problem in

the cooperative setting using high quality digests based on Fourier transforms.

Unfortunately, many applications generate uncooperative time series. Stock

market returns (change in price from one time period (e.g., day, hour, or second)

to the next divided by initial price, symbolically (pt+1 − pt)/pt) for example are

“white noise-like.” That is, there is almost no correlation from one time point

to the next.

For collections of time series that don’t concentrate power in the first few

Fourier/Wavelet coefficients, which we term uncooperative, we proceed as fol-

lows:

1. We adopt a sketch-based approach.

2. Unfortunately, computing sketches directly for each neighboring window

is very expensive. For each new datum, for each random vector, it costs

O(sw) time where sw is the size of the sliding window. (We will be

using 25 to 60 random vectors.) To reduce this expense, we combine two

ideas: convolutions and “structured random vectors” to reduce the time

complexity to O(sw/bw) integer additions and O(log bw) floating point

operations per datum and random vetor. The length bw is the time delay

before a correlation is reported (e.g., if sw were an hour then bw might

be a minute).

3. Even with this, we obtain sketch vectors of too high a dimensionality for

effective use of multi-dimensional data structures. We combat this well-

known “curse of dimensionality” by using groups of sketches and combin-

25



ing the results as in the scheme due to [71].

4. There are four parameters to be set (two of which we introduce later).

Optimizing these parameters to achieve good recall and precision requires

a search through a large parameter space. For this we use combinatorial

design. We validate both the use of combinatorial design and the stability

of the parameter choices experimentally through bootstrapping.

The end result is a system architecture that, given the initial portions of a

collection of time series streams, will determine (i) whether the time series are

cooperative or not; (ii) if so, it will use Fourier or Wavelet methods; and (iii) if

not, it will discover the proper parameter settings and apply them to compute

sketches of the evolving data streams.

3.4 Algorithmic Ideas

Following [87, 98], our approach begins by distinguishing among three time

periods from smallest to largest.

• timepoint – the smallest unit of time over which the system collects data,

e.g., a second.

• basic window – a consecutive subsequence of timepoints over which the

system maintains a digest (i.e., a compressed representation) e.g., two

minutes.

• sliding window – a user-defined consecutive subsequence of basic windows

over which the user wants statistics, e.g., an hour. The user might ask,

26



…
…

Stock 1

Stock 2

Stock 3

Stock n

Sliding 

windowTime 

axis

Basic window

Time Point

Figure 3.1: Sliding windows and basic windows.

“which pairs of streams were correlated with a value of over 0.9 for the

last hour?”

Figure 3.1 shows the relationship between sliding windows and basic win-

dows.

The use of the intermediate time interval called the basic window yields two

advantages [87, 98],

1. (Near online response rates) Results of user queries need not be delayed

more than the basic window time. In this example, the user will be told

about correlations for the 2PM to 3PM window by 3:02 PM and correla-

tions for the 2:02 PM - 3:02 PM window by 3:04 PM.2

2. (Free choice of window size) Maintaining stream digests based on the basic

2One may wonder whether the basic window and therefore the delay can be reduced. The

tradeoff is with computation time. Reducing the size of the basic window reduces the com-

pression achieved and increases the frequency and hence expense of correlation calculations.

27



window allows the computation of correlations over windows of arbitrary

size (chosen up front) with high accuracy.

For cooperative time series, the strategy is just this: given a digest consisting

of the first few, say k, Fourier coefficients for a sliding window up to basic

window number n, recompute the digest after basic window n+1 ends as follows.

Compute a digest of basic window n + 1 and then update the sliding window

digest’s Fourier coefficients. This update takes constant time per coefficient.

Fourier Transforms do an excellent job of summarizing many time series,

as pointed out by [9] and subsequently used in [43, 51, 72, 84]. Empirical

studies [98] using both random walk and stock market price data show that the

cost savings compared to a naive approach are significant and the accuracy is

excellent (no false negatives and few false positives). Unfortunately, as pointed

out above, the Fourier Transform behaves very poorly for white noise style data.

For such data, we use sketches.

3.4.1 The Sketch Approach

The sketch approach, as developed by Kushikvitz et al. [71], Indyk et al. [56],

and Achlioptas [8], provides a very nice guarantee: with high probability a

random mapping taking points in Rm to points in (Rd)2b+1 (the (2b+1)-fold

cross-product of Rd with itself) approximately preserves distances (with higher

fidelity the larger b is).

Quantitatively, given a point x ∈ Rm, we compute its dot product with d

random vectors ri ∈ {1,−1}m. The first random projection of x is given by

y1 = (x ∗ r1,x ∗ r2, ...,x ∗ rd). We compute 2b more such random projections

y1, ...,y2b+1. If w is another point in Rm and z1, ..., z2b+1 are its projections

28



Comparison over Return Data

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800 900

Data Points

D
is

ta
n

c
e Real Dist

Sketch

SVD

Real Dist

Sketch

SVD

Figure 3.2: The sketch approach is superior to the Singular Value Decompo-

sition, Wavelet, and Discrete Fourier Transform approaches for uncooperative

time series. Of those three, Singular Value Decomposition is the best so it is

the one to which sketches are compared.

using dot products with the same random vectors then the median of ‖y1 −

z1‖, ‖y2 − z2‖, ...‖y2b+1 − z2b+1‖ is a good estimate of ‖x −w‖. It lies within

a θ(1/d) factor of ‖x − w‖ with probability 1 − (1/2)b.

Sketches work much better than SVD method (thus better than Fourier

methods) for uncooperative data. Figure 3.2, compares the distances of the

Fourier and sketch approximations for 1,000 pairs of 256 timepoint windows

having a basic window size of length 32. Here sketch size=30 and SVD coefficient

number=30. As you can see, the sketch distances are closer to the real distance.

On the other hand, the SVD approximation is essentially never correct.

For each random vector r of length equal to the sliding window length sw =

nb × bw, we compute the dot product with each successive length sw chunk

29



of the stream (successive chunks being one timepoint apart and bw being the

length of a basic window). As noted by Indyk [57], convolutions (computed via

Fast Fourier Transforms) can perform this efficiently off-line. The difficulty is

how to do this efficiently online.

Our approach is to use a “structured” random vector. The apparently oxy-

moronic idea is to form each structured random vector r from the concatenation

of nb random vectors: r = s1, ..., snb where each si has length bw. Further each

si is either u or −u, and u is a random vector in {1,−1}bw. This choice is

determined by a random binary k-vector b: if bi=1, si=u and if bi=0, si=−u.

The structured approach leads to an asymptotic performance of O(nb) integer

additions and O(log bw) floating point operations per datum and per random

vector. In our applications, we see 30 to 40 factor improvements in runtime over

the naive method.

In order to compute the dot products with structured random vectors, we

first compute dot products with the random vector u. We perform this compu-

tation by convolution once every bw timesteps. Then each dot product with r

is simply a sum of nb already computed dot products. (We explain this in more

detail in the appendix.)

The use of structured random vectors reduces the randomness, but experi-

ments show that this does not appreciably diminish the accuracy of the sketch

approximation, as we can see from Figure 3.3.

Though structured random vectors enjoy good performance, as we will

see, please note that a clever use of unstructured (that is, standard) ran-

dom vectors together with convolutions can lead to an asymptotic cost of

O(log sw log(sw/bw)) floating point multiplications per datum. Structured ran-

dom vector approaches use O(log bw) multiplications and O(sw/bw) additions

30



Stock Return Data (N=64)

0

0.02

0.04

0.06

0.08

0.1

0.12

Complete Random Vector Structured Random Vector

Random Vector Compositions

R
e
la

ti
v

e
 E

r
r
o

r

Figure 3.3: Real pairwise distance, estimated sketch distances for 64 random

vectors, and estimated sketch distances for 64 structured random vectors.

per datum. For the problem sizes we consider in this thesis, the structured ran-

dom vector approach is faster, though in principle it must be weighed against

the small loss in accuracy.

3.4.2 Partitioning Sketch Vectors

In many applications, sketch vectors are of length up to 60. (In such a case, there

are 60 random vectors to which each window is compared and the sketch vector

is the vector of the dot products to those random vectors). Multi-dimensional

search structures don’t work well for more than 4 dimensions in practice [87].

Comparing each sketch vector with every other one destroys scalability though

because the runtime is then proportional to the square of the number of windows

under consideration.

For this reason, we adopt an algorithmic framework that partitions each

31



sketch vector into subvectors and builds data structures for the subvectors. For

example, if each sketch vector is of length 40, we might partition each one into

ten groups of size four. This would yield ten data structures. We then combine

the “closeness” results of pairs from each data structure to determine an overall

set of candidate correlated windows.

Note that we use correlation and distance more or less interchangeably be-

cause one can be computed from the other once the data is normalized. Specif-

ically, Pearson correlation is related to Euclidean distance as follows:

D2(x̂, ŷ) = 2(1 − corr(x, y))

Here x̂ and ŷ are obtained from the raw time series by computing x̂ = x−avg(x)
var(x)

.

3.4.3 Algorithmic Framework

Given the idea of partitioning sketch vectors, we have to discuss how to combine

the results of the different partitions. This introduces four parameters, as we

will see. Suppose we are seeking points within some distance d in the original

time series space.

• Partition each sketch vector s of size N into groups of some size g.

• The ith group of each sketch vector s is placed in the ith grid structure

of dimension g (In Figure 3.4 g = 2 ).

• If two sketch vectors s1 and s2 are within distance c × d in more than a

fraction f of the groups, then the corresponding windows are candidate

highly correlated windows and will be checked exactly.

32



a
A

),...,( 21 k
xxx:

Figure 3.4: Grid Structure: Assume a set of data points in a 2D space, where

a 2-dimensional orthogonal regular grid is super-imposed on this space. In

practice the indexed space is bounded. Without loss of generality, we assume

each dimension is contained in [0,1] (See Appendix C for a general proof of

grid size bound). Let the spacing of the grid be a. The indexing space, a 2-

dimensional square with diameter 1 is partitioned into [1
a
]2 small cells. Each

cell is a 2-dimensional square with side length a. All the cells are stored in a

2-dimensional array in main memory. In such a main memory grid structure,

we can compute the cell to which a point belongs. Let us use (c1, c2) to denote

a cell that is the cth
1 in the first dimension and the cth

2 in the second dimension.

A point p with coordinates x1, x2 is within the cell (⌊x1

a
⌋, ⌊x2

a
⌋). We say that

point p is mapped to that cell. This can be easily extended to k-dimensions.

3.4.4 Combinatorial Design

This framework eliminates the curse of dimensionality by making the groups

small enough that multi-dimensional search structures (even grid structures)

33



can be used. The framework also introduces the challenge of optimizing the

settings of four parameters: the length N of the sketch vector, the size g of each

group, the distance multiplier c, and the fraction f .

Our optimization goal is to achieve extremely high recall (above 0.95) and

reasonable precision (above 0.02). We are satisfied with a fairly low precision

because examining 50 times the necessary pairs on the raw data is much better

than examining all pairs, as we show later in our experiments. Increasing the

size of the sketch vector improves the accuracy of the distance estimate and

therefore the precision but also increases the search time. The tradeoff between

extra filtering cost with larger N and extra verificatn cost with smaller precision

should be made. In our experiments, accuracy improved noticeably as the size

increased to about 60; beyond that, accuracy did not improve much. Larger

group sizes also improve accuracy, but increase the search time. A typical set

of possible parameter values therefore would be:

Size of Sketch (N): 30, 36, 48, 60

Group Size (g): 1, 2, 3, 4

Distance Multiplier (c): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1,

1.2, 1.3

Fraction (f): 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

As we will see, every possible selection of parameter values requires a test on

many pairs of windows (typically a few million) in order to get a robust set of

parameters. For this reason, we would like to avoid testing all possible settings

(1,560 in this example). Instead, we use combinatorial design.

Combinatorial design is effectively a disciplined sampling approach with

some guarantees [27]. The key idea of n-factor combinatorial design is that the

34



a1 a2 a3 a4

0 0 0 0

0 1 0 1

1 0 1 0

1 1 1 1

0 0 1 1

1 1 0 0

Table 3.1: An example of two-factor combinatorial design.

tests will cover all n-way combinations of parameters. For concreteness, two-

factor combinatorial design requires that for every pair of parameters (a.k.a.

factors) p1 and p2 and for every value v1 from p1 and v2 from p2, some ex-

periment will test p1.v1 and p2.v2 together. This property is not the same as

exhaustive search, of course. For example, if there were 4 binary variables, one

possible two factor combinatorial design would be the one found in table 3.1.

In our example, a two-factor combinatorial design would reduce the number

of experiments from 1,560 to only 130.

When faced with a sampling proposal like combinatorial design, one must

ask whether some global optimum is missed through sampling. This could be

a particularly significant issue if small changes in parameter values could yield

large changes in time or quality of result. We call such a situation parameter

discontinuity and the hoped-for opposite parameter continuity. Fortunately,

across a wide variety of data sets, our framework appears to enjoy parameter

continuity. Figure 3.5 illustratess this property.

Table 3.2 demonstrates that the best value found by combinatorial design

35



0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

0.1

0.60

0.2

0.4

0.6

0.8

1

Recall

f

c

Recall with different parameter groups

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

(a) Recall

0
.1

0
.3

0
.5

0
.7

0
.9

1
.1

1
.3

0.1

0.5

0.9

0

0.2

0.4

0.6

0.8

1

Precision

f

c

Precision with different parameter groups

0.8-1

0.6-0.8

0.4-0.6

0.2-0.4

0-0.2

(b) Precision

Figure 3.5: Parameter continuity for recall and precision

36



Data title precmean
cd precstd

cd precmean
ex precstd

ex

spot exrates 0.18 0.02 0.2 0.03

cstr 0.16 0.02 0.18 0.03

foetal ecg 0.22 0.01 0.25 0.008

evaporator 0.007 0.0001 0.007 0.0001

steamgen 0.32 0.02 0.34 0.01

wind 0.001 0.001 0.001 0.0001

winding 0.05 0.02 0.06 0.02

buoy sensor 0.02 0.003 0.03 0.005

eeg 0.12 0.03 0.14 0.07

price 0.11 0.04 0.14 0.03

return 0.008 0.002 0.009 0.001

Table 3.2: Combinatorial design vs. exhaustive search over a parameter search

space of size 1,560.

is close to that returned by exhaustive search. In the table, we have listed the

precision of the best parameters for each data set after doing the bootstapping

tests. Here “best” is defined as those having average recall ≥ 0.99 and standard

deviation for recall≤ 0.001 as well as reasonably high precision and low standard

deviation for precision.

In fact, we use parameter continuity in a second way: the c and f values

may take any real value. For the purposes of sampling them with combinatorial

design, however, we make them discrete. Once we find a good set of discrete

values, we may want to find better values by exploring a local neighborhood

around that good set. For example, if the optimal parameter set has c =

37



0.7, then we will search 0.63, 0.64, 0.65, 0.66, 0.67, · · · , 0.74, 0.75, 0.76, 0.77. We

call this local neighborhood search refinement. To see whether separating the

refinement step from the initial parameter search works well, we tested whether

an exhaustive search on a dense parameter space (c values having two digits of

precision in our case) would have yielded a substantially different result from a

combinatorial design followed by refinement approach.

Table 3.3 shows that the two approaches (combinatorial design then refine-

ment vs. exhaustive search over the dense parameter space) achieve very similar

results in terms of the precision (i.e. its mean and std). The table also shows

the relationship between precision and the number of pairs whose distances are

slightly greater than the target distance. Population Ratio 1 is the number of

pairs with distance value 1.1 × desired distance divided by the number of pairs

within the desired distance. Population Ratio 2 is the ratio based on 1.2 ×

the desired distance. When these ratios are high, the precisions for both the

combinatorial design and exhaustive approaches are low.

3.4.5 Bootstrapping To Determine Parameter Robust-

ness

Optimizing parameter settings for one data sample may not yield good parame-

ter settings for others. For example, suppose that we find the optimal parameter

settings for stock return data over the first month. Will those settings still work

well for a later month? Without further assumptions we cannot answer this,

but we can get an idea by using bootstrapping [40].

The goal of bootstrapping is to test the robustness of a conclusion on a sam-

ple data set by creating new samples from the initial sample with replacement.

38



Data title precmean
cd precstd

cd precmean
ex precstd

ex Popu ratio 1 Popu ratio 2

spot exrates 0.20 0.02 0.22 0.04 1.19 1.64

cstr 0.18 0.01 0.19 0.03 1.3 2.05

foetal ecg 0.23 0.04 0.26 0.06 1.12 1.43

evaporator 0.007 0.0001 0.007 0.0001 15.81 102.26

steamgen 0.35 0.01 0.36 0.02 1.13 1.44

wind 0.002 0.001 0.002 0.001 14.8 564.87

winding 0.07 0.02 0.07 0.02 1.21 2.19

buoy sensor 0.03 0.005 0.03 0.003 1.52 3.24

eeg 0.15 0.04 0.15 0.03 1.18 1.74

price 0.13 0.02 0.15 0.02 1.32 2.18

return 0.008 0.001 0.009 0.001 18.1 117.75

Table 3.3: Combinatorial design then refinement vs. exhaustive search over the

dense parameter space. Population ratios indicate the number of pairs at 1.1

and 1.2 times the target distance divided by the number at the desired distance.

39



In our case, the conclusion is that a given parameter setting with respect to

recall and precision shows good behavior. To be concrete, suppose we take a

sample S of one million pairs of windows. A bootstrapped sample would con-

sist of one million pairs drawn from S with replacement. Thus the newness of

a bootstrapped sample comes from the duplicates.

We use bootstrapping to test the stability of a choice of parameters. After

constructing each bootstrapped sample, we check the recall and precision of

that sample given our chosen parameter settings. Provided the mean recall

over all bootstrapped samples less the standard deviation of the recall is greater

than our threshold (say 0.95) and the standard deviation for precision is low,

then the parameter setting is considered to be good. This admittedly heuristic

criterion for goodness reflects the idea that the parameter setting is “usually

good” (under certain normality assumptions, roughly 3/4 of the time).

Otherwise, we take a bigger sample, perform combinatorial design, optimize,

bootstrap, and do the standard deviation test again.

3.5 The Issues in Implementation

One aspect of the sketch computation we have yet to explain is how to update

the sketch within a basic window in an online manner. The challenge comes

from the normalization of the data vector. Since the data are processed every

basic window (normalization and computing sketching), the sketch within a

sliding window should be adjusted every time a new basic window emerges.

For instance, when a basic window Xbw arrives, it’s normalized as follows.

X̂bw =
Xbw − avg(Xbw)

var(Xbw)

40



Its sketch is

Xbw
sk = X̂bw · Rbw

while the data normalization and its sketch within a sliding window are as

follows.

X̂sw =
Xsw − avg(Xsw)

var(Xsw)

Xsw
sk = X̂sw · Rsw

The difficulty lies in that avg(Xsw) and var(Xsw) change over each basic

window. So within a sliding window, we have to update the normalization of

data vectors and thus their sketches whenever a new basic window occurs.

Now we will show that the updating is trivial and the sketch needs to be

computed only once.

Update Sketch. Given random vector R = (R0, R1, · · · , Rbw−1) within a basic

window, a sliding window Xsw and the data vectors within each basic window

X0
bw, X1

bw, · · · , Xnb−1
bw , except the last one, Xnb

bw, which has not yet been processed.

Let avgsw and varsw denote the average and variance of the whole sliding win-

dow. To normalize the whole sliding window based on the same average and

variance, the sketch of the basic window X i
bw, i = 0, 1, · · · , nb will be updated as

follows.

X i
sk =

(X i
bw · R) − avgsw

∑bw−1
i=0 Ri

varsw

where

avgsw will be updated by removing the oldest basic window and adding the

new arrival Xnb, that is

avgsw =
1

sw
(
nb−1
∑

i=0

sum(X i
bw) − sum(X0

bw) + sum(Xnb
bw))

41



And varsw is analogous

varsw = EX2
sw − (EXsw)2

Here

EX2
sw =

1

sw
(

nb−1
∑

i=0

sum(X i
bw

2
) − sum(X0

bw
2
) + sum(Xnb

bw

2
)

We need to maintain only
∑nb−1

i=0 sum(X i
bw),

∑nb−1
i=0 sum(X i

bw
2
) for a sliding

window and X i
bw · R, sum(X i

bw) and sum(X i
bw

2
) for each basic window, which

costs O(1) for each datum and each sketch.

3.6 Experiments

Our approach has many moving parts. We use sketches, partition them into

groups, and then combine the results from the groups. We use an optimization

approach based on sampling (two-factor combinatorial design) of the parameter

space and of the data space. None of this can be well-justified theoretically

without some rather onerous assumptions.

Fortunately, we have several data sets from stock market data and from the

UC Riverside repository [65] that afford us an empirical test of the method.3

The Hardware is a 1.6G, 512M RAM PC running RedHat 8.0. The language

is K (www.kx.com).

3The stock data in the experiments are end-of-day prices from 7,861 stocks from the Center

for Research in Security Prices (CRSP) at Wharton Research Data Services (WRDS) of the

University of Pennsylvania [5]. All the other empirical data sets came from the UCR Time

Series Data Mining Archive [65] maintained by Eamonn Keogh.

42



3.6.1 Experiment: how common is the uncooperative

case?

In this experiment, we took a window size of 256 across 10 data sets and tested

the accuracy of the Fourier coefficients as an approximation of distance, com-

pared with structured random vector-based sketches. Figure 3.6 shows that

that the Discrete Fourier Transform-based distance performs badly on some

data types while our sketch based distance works stably across all the data sets.

This implies that many data sets spread their energy irregularly.

3.6.2 Experiment: How good is bootstrapping?

The operational claim of bootstrapping is to simulate samples across a whole

data set by repeated samples from a single initial sample with replacement. In

our case, we want the optimal parameters found in one sample (with bootstrap-

ping) to meet the recall and precision thresholds in completely disjointed sam-

ples. Table 3.4 shows that for disjointed samples, the recall still meets the 99%

threshold and the precision is as good or often higher than in the bootstrapping

experiments on the test sample (table 3.2). So, using the parameters derived

from a training sample of a data set (and confirmed by using bootstrapping)

works well across that entire data set.

3.6.3 Performance Tests

The previous subsection shows that the sketch framework gives a sufficiently

high recall and precision. The next question is what is the performance gain

of using (i) our sketch framework as a filter followed by verification of the raw

43



Sketch Distance/Real Distance

0

0.5

1

1.5

2

2.5

cs
tr ee

g
w
ind

ev
ap

or
ato

r

fo
eta

l_
ec
g

sp
ot
_e

xr
ate

s

ste
am

ge
n

w
ind

ing pr
ic
e

re
tu
rn

Practical Data Sets

R
a
ti

o

standard deviation

mean

(a) Sketch

DFT Distance/Real Distance

0

0.5

1

1.5

2

2.5

cs
tr ee

g
wind

ev
ap

or
ato

r

fo
eta

l_e
cg

sp
ot_

ex
rat

es

ste
am

ge
n

wind
ing pr

ice

re
tu
rn

Practical Data Sets

R
a
ti

o standard deviation

mean

(b) DFT

Figure 3.6: DFT distance versus sketch distance over empirical data

44



Comparison of Processing Time

0

0.2

0.4

0.6

0.8

1

1.2

pr
ice

re
tu
rn

ev
ap
or
at
or

sp
ot
_e
xr
ate

s

w
in
di
ng cs

tr ee
g

fo
et
al
_e
cg

ste
am

ge
n

w
in
d

Practical Data Sets

N
o
r
m

a
li

z
e
d

 T
im

e
sketch
dft

scan

Figure 3.7: System performance over a variety of datasets. Sliding win-

dow=3616, basic window=32 and sketch size=60

data from individual windows compared with (ii) simply comparing all window

pairs. Because the different applications have different numbers of windows, we

take a sample from each application, yielding the same number of windows.

To make the comparison concrete, we should specify our software architec-

ture a bit more. The multi-dimensional search structure we use is in fact a grid

structure. The reason we have rejected more sophisticated structures is that we

are asking a radius query: which windows (represented as points) are within a

certain distance of a given point? A multi-scale structure such as a quadtree or

R-tree would not help in this case. Moreover, the grid structure can be stored

densely in a hash table so empty cells take up no space.

Figure 3.7 compares the results from our system, a Fourier-based approach,

and a linear scan over several data sets. To perform the comparison we normalize

the results of the linear scan to 1. The figure shows that both the sketch-based

45



Data title recmean recstd precmean precstd

spot exrates 0.99 0.01 0.25 0.02

cstr 0.99 0.003 0.2 0.01

foetal ecg 0.99 0.001 0.26 0.02

evaporator 1 0 0.007 0.0003

steamgen 1 0 0.33 0.01

wind 1 0 0.002 0.001

winding 0.99 0.007 0.1 0.01

buoy sensor 1 0 0.03 0.008

eeg 1 0 0.13 0.02

price 0.99 0.001 0.18 0.02

return 1 0 0.008 0.002

Table 3.4: The recall and precision of disjoint sample sets

approach described here and the Fourier-based approach are much faster than

the linear scan. Neither is consistently faster than the other. However as already

noted, the sketch-based approach produces consistently accurate results unlike

the Fourier-based one.

3.6.4 Stability of Parameter Settings Across Applica-

tions

Our general approach is to find the optimal parameter settings for each data set

by sampling and bootstrapping. An interesting question is how similar these

parameter settings are. If very similar, there might be a single good default

46



Data title recmean recstd precmean precstd

spot exrates 0.99 0.007 0.47 0.06

cstr 0.99 0.01 0.26 0.02

foetal ecg 1 0 0.26 0.06

evaporator 1 0 0.007 0.0001

steamgen 0.98 0.006 0.61 0.04

wind 0.98 0.007 0.05 0.005

winding 0.98 0.06 0.13 0.04

buoy sensor 0.95 0.05 0.06 0.01

eeg 0.99 0.006 0.14 0.001

price 0.99 0.01 0.13 0.03

return 0.98 0.01 0.008 0.001

Table 3.5: The recall and precision of empirical data sets with the optimal

parameters for price data. Recall decreases as compared with choosing the

optimal parameters for each data set on its own.

to choose. This would eliminate the need for the sample-bootstrap step of our

framework. In the following experiment, we take the best parameters for stock

market prices and apply them to other data sets. The following table 3.5 shows

the recall and precision obtained. In many cases, recall is better for the per-data

set optimal parameters compared with the one-size-fits-all approach. So seeking

a set of optimized parameters for each data set is probably a better idea.

47



Chapter 4

High Performance Incremental

Matching Pursuit1

Imagine a scenario where a group of representative stocks must be chosen to

form an index e.g. Standard and Poor’s (S&P) 500. This amounts to finding a

group of stocks which dominate the whole market statistically. Mathematically

speaking, the “total” market vector is calculated by summing up all the stock

prices of the corresponding time point weighted by their market capitalization 2.

The collection of selected stocks can capture the majority of the “energy” in the

market and therefore are able to replicate the whole market. The solution lies in

the decomposition strategy. One might first think of an orthogonal decomposi-

tion scheme, such as Fourier Transform, Wavelet, etc, by which the components

selected at each step must be orthogonal to each other so that the whole spaces

are spanned without any redundancy. In practice, however, it is difficult, if not

impossible to find a group of orthogonal vectors. A greedy decomposition come

1This work is published in [97]
2Here the question is simplified for demonstration

48



into play then. People can choose the stock whose weighted price vector has the

smallest included angle with the total market vector. Then the second stock

is searched to approximate the residue between the market vector and the first

stock vector, and so forth. This can be considered as an application of Matching

Pursuit (MP) where the candidate pool consists of all the stocks in the market

and the target vector is a weighted total market vector. Besides the financial

industry, Matching Pursuit finds application in various fields. Since it was first

published by Stephan Mallat and Zhifeng Zhang [76] the MP algorithm has been

investigated intensively. In this section, we propose an incremental matching

pursuit technique.

4.1 Problem Statement

The classic Matching Pursuit algorithm is shown in Figure 2.4. The selected

group of vectors are reported at the end of the procedure. In some applica-

tions, in particular many real-time systems, the incoming time series streams

are updated dynamically, which results in the necessity of running matching

pursuit periodically (e.g. every 30 seconds). This idea motivated our incremen-

tal matching pursuit.

The incremental problem is to adjust the selected representative vector set

VA and the corresponding weights at each update. Formally, given a target

vector and a vector pool of size n, whenever an update takes place over both the

target vector and the vectors in the pool, MP is performed. Here an operation

“update” on a vector is defined such that a new basic window (bw) of data is

inserted to the head and older data of length bw is dropped off from the tail.

A naive method for the problem is straightforward. Whenever an update

49



happens, MP is run. However, recomputing MP from scratch for each new

sliding window is inefficient. A better idea is to reuse the previously computed

linear combination of vectors. We may expect a slight change of the approx-

imating vector set VA and perhaps a larger change in the weights, when the

basic window is small (reminder: A basic window is a sequence of time points

as defined in Figure 3.1). Whether this holds for an application is an empirical

question. In our experiments on stock prices, this holds for very small basic

windows only. With a relatively large basic window size (e.g. 30 time points),

only the most significantly weighted approximating vectors from VA remain im-

portant; most of the vectors vary sharply. Moreover, any perturbation may

direct the approximation to a different path and result in a different set VA.

Our solution lies in the angle space — the information given by the angle

vector (cos θ1, cos θ2, . . .) where cos θi = ~vt ∗ ~vi for each vi ∈ VA.

4.2 Opportunities in Angle Space

The empirical study shows that the angle vector (cos θ1, cos θ2, . . .) changes only

slightly over incremental vector updates. This gives us a clue to a promising,

though heuristic algorithm. The basic idea is that although the approximating

vectors vi may vary a great deal between two consecutive sliding windows, every

angle cos θi of the corresponding rounds remains relatively consistent.

Therefore, instead of searching through all of V for the vector best approx-

imating the residue or new target vector at each iteration, if a vector in the

pool is found having | cos θ| with respect to the current target vector that is

larger than a certain threshold, then it is chosen. If such a vector doesn’t exist,

the vector with largest | cos θ| is chosen as usual. This vector is selected as the

50



Given a vector pool containing n time series V = (v1, v2, · · · , vn), a

target vector vt, tolerated error ǫ, and approximating vector VA = ∅;

cache C = ∅; threshold vector T = ∅. Define cos θ = ~vt∗~vi as the cosine

between vt and a certain vector vi in V . Vector ~v = v
‖v‖

.

1. Initialization. Perform MP over the initial sliding window to ar-

rive at vt ≈ ∑

civi. Let C = VA = {vi| representative vectors

selected from V } and Tj = | cos θj | which is calculated at jth

iteration.

2. while(Update) {
3. Set i=1 and VA = ∅

4. Search the cache C. The first vector with | cos θ| ≥ Ti will be

selected as representative vector vi. If there is no such vector

in C, turn to V and do the same search. If no such vector

exists in V either, the vector in V whose | cos θ| is largest

is chosen to be representative vector vi

5. Compute the residue r = vt − civi where ci = ‖vt‖
‖vi‖

cos θ.

VA = VA ∪ {vi};

6. If ‖r‖ < ǫ

7. Terminate, set C = C ∪ VA, output VA, at next update go

back to 3

8. Else

9. Set i = i + 1 and vt = r, go back to 4

10. }

Figure 4.1: Incremental Matching Pursuit (MP) algorithm

51



representative vector and its residue with the target vector will be the new tar-

get vector for the next round of search. Here the difference from the standard

algorithm resides in the search strategy: whenever a ”good” vector is found,

the current iteration is stopped, as opposed to the exhaustive search for an op-

timal approximating vector in Figure 2.4. The gain from this new algorithm is

obvious: there is no need to compute the cos θ between the target vector and

all the vectors included in the pool V in each iteration.

One major concern with this method is the approximation power. Since the

resultant vector of each search step is not optimal — in other words, not the one

with largest | cos θ| — the overall approximation power may be compromised.

The empirical study shows that this is not a problem. We may carefully choose

a vector of thresholds to yield results comparable to those calculated by regular

MP.

Here is an example:

Given a threshold vector, say, T = {0.9, 0.8, 0.7, 0.6, 0.5, . . .}, a target vector

vt and a candidate vector pool V , the first iteration is conducted by computing

cos θ between vt and v in V one by one. The first vector found with | cos θ| ≥ 0.9

will be selected as the representative vector in this iteration, naming it v1.

Otherwise, if there is no such vector, the vector in V with largest | cos θ| is

chosen to be the representative vector v1. Then update the target vector by

vt = vt − P (vt, v1), where P (vt, v1) is the projection of vt onto v1. Test the

termination criterion; if it is not met, start the next iteration. The second

iteration is similar to the first one — the only difference being that the threshold

for comparison is 0.8. Continue the algorithm with 0.7 in the third iteration,

0.6 in the fourth iteration, etc. until the termination condition is satisfied.

Figure 4.1 gives the full pseudo-code.

52



In practical applications, we apply the regular non-incremental MP to the

initial sliding window. Its | cos θ| at each iteration will be used to initialize the

threshold vector T . When the approximation power of using this angle vector

T gets unacceptably bad due to new data characteristics, the threshold vector

is reinitialized to reflect the changes.

One bonus of this algorithm comes from the cache technique. Just as de-

scribed above, the approximating vectors VA in the present sliding window may

appear with high probability in the search launched for the following sliding

window, and we take advantage of this property by keeping track of a cache

C for the pool V . The representative vector search is therefore performed first

from the cache. If no “good” vector can be found in the cache, the rest of the

vector pool is searched.

4.3 Empirical Study

The experimental data comes from the same sources as in the last section.

Additional synthesized random walk time series are also used to illustrate gains

in other applications. Similar results also hold for data distributions such as

white noise.

Figure 4.2 compares the results from incremental MP and naive MP. The

sliding window size is fixed at sw = 200 time points. Whenever an update

event happens, both incremental and regular MP are triggered. The power

ratio in the figure is defined as ‖residue‖
‖Original target vector‖

(e.g. 5%). So a small power

ratio entails more iterations. Performance is measured in terms of average time

costs and returned approximating vector number (i.e. the average size of VA in

each sliding window). To better demonstrate the comparison, we normalize the

53



Time Comparison

0

0.2

0.4

0.6

0.8

1

1.2

2&
5%

10
&5%

50
&5%

10
0&

5%
2&

10
%

10
&10

%

50
&10

%

10
0&

10
%

2&
20

%

10
&20

%

50
&20

%

10
0&

20
%

bw&power ratio

ti
m

e 
ra

ti
o

Incremental MP

Naive MP

(a) If the basic window (bw) size is small, then an incremental approach helps sig-

nificantly

Approximation Power Comparison

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2&
5%

10
&
5%

50
&
5%

10
0&

5%

2&
10

%

10
&
10

%

50
&
10

%

10
0&

10
%

2&
20

%

10
&
20

%

50
&
20

%

10
0&

20
%

bw&power ratio

v
ec

to
r 

n
u
m

b
er

 r
at

io
 a

Incremental MP

Naive MP

(b) Incremental MP requires about 20% more vectors than the naive Matching Pur-

suit

Figure 4.2: Time and approximation power comparison

54



results of regular MP to 1.

One apparent observation in Figure 4.2(a) is the significant speed improve-

ment when bw is small compared to the sliding window size. This substantial

speedup derives largely from the vector cache. Figure 4.2(b) shows that the

number of vectors required by incremental MP is no more than 1.4 times the

number required by naive MP to achieve the same representation fidelity.

The experimental results suggest the potential application of incremental

MP in a real-time setting where rapid response is as important as discovering a

small approximating set VA.

55



Chapter 5

An Implementation of the

Shifted Binary Tree

Zhu and Shasha proposed a simple yet efficient algorithm to detect bursts within

multiple window sizes over a time series interval. In this chapter, we first review

their algorithm and then introduce an implementation of this algorithm for a

physical system.

5.1 Problem Statement

Consider the following application that motivates this research. An astronomi-

cal telescope, Milagro[1] was built in New Mexico by a group of astrophysicists

from the Los Alamos National Laboratory and several universities. This tele-

scope is actually an array of light-sensitive detectors covering a pool of water

about the size of a football field. It is used to constantly observe high-energy

photons from the universe. When a certain number of photons are observed, the

scientists can assert the existence of a Gamma Ray burst. The scientists hope

56



to find primordial black holes or completely new phenomena by the detection of

Gamma Ray bursts. The occurrences of Gamma Ray bursts are highly variable,

flaring on timescales from minutes to days. Once such a burst happens, it needs

to be reported immediately. Then other telescopes can focus on that portion of

sky to confirm the new astrophysical event. The data rate of the observation is

extremely high. Hundreds of photons can be recorded in a second from a tiny

spot in the sky.

There are also many applications in data stream mining and monitoring

when people are interested in discovering time intervals with unusually high

numbers of events. For example:

• In telecommunications, a network anomaly might be indicated if the num-

ber of packets lost within a certain time period exceeds a certain threshold.

• In finance, stocks with unusually high trading volumes would attract the

notice of the traders (or regulators). Also stocks with unusually high

price fluctuations within a short time period provide more opportunity

for speculation, calling for them to be watched more closely.

Formally, given an aggregate function F (such as sum or count), the prob-

lem of interest is to discover subsequences, s of a time series stream such that

F (s) >> F (s′) for most subsequences, s of size |x|. In the case of burst detec-

tion, the aggregate is the sum. If we know the duration of the time interval, we

can maintain the sum over sliding windows of a known window size and sound

an alarm when the moving sum is above a threshold. Unfortunately, in many

cases, we cannot predict the length of the burst period. In fact, discovering that

length is part of the problem to be solved.

57



In the above example of Gamma Ray Burst detection, a burst of photons

associated with a special event might last for a few milliseconds, a few hours,

or even a few days. There are different thresholds associated with different

durations. A burst of 10 events within 1 second could be very interesting. At

the same time, a burst that lasts longer but with a lesser density of events, say

50 events within 10 seconds, could be of interest too.

Suppose that we want to detect bursts for a time series of size n and we are

interested in all n sliding window sizes. A brute-force search has to examine

all the sliding window sizes and starting positions. Because there are Θ(n2)

windows, the lower bound of the time complexity is Θ(n2). This is very slow

for many applications. Fortunately, because we are interested only in those

few windows that experience bursts, it is possible to design a nearly linear time

algorithm. Zhu et al. [87] give a burst detection algorithm with time complexity

approximately proportional to the size of the input plus the size of the output,

i.e. the number of windows with bursts.

Now, let’s formalize the problem as follows.

Problem: For a time series x1, x2,· · · , xn, given a set of window sizes

w1, w2,· · · , wm, an aggregate function F and threshold f(wj), j = 1, 2, · · · , m

associated with each window size, the problem of monitoring elastic window

aggregates of the time series is to find all the subsequences of each window size

such that the aggregate applied to the subsequences exceeds their window size

threshold, i.e.

∀i ∈ 1 · · ·n, ∀j ∈ 1 · · ·m, s.t. F (x[i · · · i + wj − 1]) ≥ f(wj)

The threshold above can be estimated from the historical data or a model

of the time series. Elastic burst detection is a special case of monitoring data

streams within elastic windows.

58



Level 0

Level 1

Level 2

Level 3

Level 4

base level

shifted level

Figure 5.1: The algorithmic structure of Shifted Binary Tree(SBT)

5.2 A Brief Review of Shifted Binary Tree

In a Shifted Binary Tree (SBT) (Figure 5.1), the adjacent windows of the same

level are half overlapping. We can see that the size of a SBT is approximately

double that of a normal wavelet tree, because at each level, there is an addi-

tional line of windows. These additional windows provide valuable overlapping

information for the time series. They can be maintained either explicitly or im-

plicitly. If we keep only the aggregates for a traditional wavelet data structure,

the aggregates of the overlapping windows at level i can be computed from the

aggregates at level i−1 of the wavelet data structure. To build a SBT, we start

from the original time series and compute the pairwise aggregates (sum) for each

two consecutive data items. This will produce the aggregates at level 1. A down-

sampling on this level will produce the input for the higher level in the SBT.

Downsampling is simply sampling every second item in the series of aggregates.

In figure 5.1, downsampling will retain the upper consecutive non-overlapping

windows in each level. This process is repeated until we reach the level where

a single window includes every data point. Figure 5.2 gives the pseudo-code to

59



build a SBT. Like wavelet trees, an SBT can also be constructed in O(n) time.

For a subsequence starting and ending at arbitrary positions, there is always a

window in the SBT that tightly includes the subsequence

Given: x[1..n], n = 2a

Return: Shifted Binary Tree SBT [1..a][1..]

b = x;

FOR i = 1 TO a //remember a = log2 n

//merge consecutive windows and form level i of the Shifted

//Binary Tree

FOR j = 1 TO size(b) − 1 STEP 2

SBT [i][j] = b[j] + b[j + 1];

ENDFOR

//downsampling, retain a non-overlapping cover

FOR j = 1 TO size(SBT [i])/2

b[j] = SBT [i][2 ∗ j − 1];

ENDFOR

ENDFOR

Figure 5.2: Algorithm to construct Shifted Binary Tree

Because for time series of non-negative numbers the aggregate sum is mono-

tonically increasing, the sum of the time series within a sliding window of any

size is bounded by the sum of its surrounding window in the Shifted Binary

Tree. This fact can be used as a filter to eliminate those subsequences whose

sums are far below their thresholds.

60



Given: time series x[1..n], n = 2a Shifted Binary Tree

SBT [1..a][1..], window size w, threshold f(w)

Return: Subsequence of x with burst

i = [log2 w];

FOR j = 1 TO size(SBT [i + 1])

IF (SBT [i + 1][j] > f [w])

//possible burst in subsequence x[(j − 1)2i + 1..(j + 1)2i]

//first we compute the moving sums with window size 2i

//within this subsequence.

FOR c = (j − 1)2i TO j2i

y=sum(x[c..c − 1 + 2i]);

IF y > f [w]

detailed search in x[c..c − 1 + 2i]

ENDIF

ENDFOR

ENDIF

ENDFOR

Figure 5.3: Algorithm to search for burst

61



Figure 5.3 gives the pseudo-code for spotting potential sub-sequences of size

w, w ≤ 2 with sums above its threshold f(w). The algorithm will search for

bursts in two stages. First, the potential burst is detected at the level i + 1 in

the SBT, which corresponds to the subsequence x[(j−1)2i +1..(j +1)2i] In the

second stage, those subsequences of size 2i within x[(j−1)2i +1..(j +1)2i] with

sum less than f(w) are further eliminated. The moving sums of sliding window

size 2i can be reused for burst detection of other window sizes w′ 6= w, w′ ≤ 2i.

A detail search for bursts on the surviving subsequences is then performed. A

detail search in a subsequence computes the moving sums with window size w

in the subsequence and verifies if there are bursts there.

5.3 MILAGRO

Various energetic processes in the universe, such as swallowing of matter by

black holes, eject fast moving particles. MILAGRO (Multiple Institution Los

Alamos Gamma Ray Observatory) was designed to detect high energy particles

of light (photons), called ”VHE gamma rays”, and measure their arrival direc-

tion and energy. The arrival direction tells the observer where in the sky the

particle came from, and the energy tells something about the physical mecha-

nisms in the source which accelerated the particle.

MILAGRO (Figure 5.4) consists of a large man-made pond filled with de-

tectors. When a VHE gamma ray enters the earth’s atmosphere, it interacts

producing new particles which in turn interact themselves producing even more

particles. When the particles in this ”shower” hit the pond, they emit light

which is measured by the pond detectors. The time difference between different

detectors being hit allows determination of the original particle’s direction. The

62



Figure 5.4: MILAGRO:Multiple Institution Los Alamos Gamma Ray Observa-

tory

number of detectors hit and how much light they measure gives an indication

of the original particle’s energy.

More technically, physicists partition the sky into a 1800×900 grid structure

And within each cell time windows of different sizes are maintained. A burst of

hits within each grid may signal an unusual physical event of interest. Whenever

the number of hits within a time window exceeds the threshold, this area of sky

will be examined in detail. The time windows slide forward as time goes on.

5.4 The Challenges and Our Solutions

The burst detection system used in MILAGRO possesses the following several

characteristics:

• There are in total 1800 × 900 cells. Within each of them, burst detection

is conducted;

63



1800

900

Figure 5.5: Partition the sky into 2-D grid structure. A hit at any cell will affect

the surrounding cells

• Seven time window sizes are of interest: they range from O(10−1) second

to O(101) seconds;

• A hit on any cell will affect its surrounding cells as well. In the current

resolution, whenever a cell is hit by a particle, this will amount to hitting

each cell within the 5 × 5 square around it;

• The particle arrival is modeled as a Poisson distribution. However, the

mean arrival ratio is updated dynamically. This is explained by the fact

that physicists are only interested in a sudden increase of particle arrival.

Therefore a background particle hit rate is maintained dynamically across

the sky. Whenever a hit is observed, the probability that this is a special

event is calculated by looking at the average arrival ratio from the past 5

seconds to the next 5 seconds.

64



The system in use detects the burst within each cell with the naive method,

i.e. shift a time window of the smallest size from the beginning to the end, then

examine the second window size across the time length. The whole procedure

is performed for each time window size at each cell of sky. This is inefficient

because the computational effort of the previous step is wasted which otherwise

could be saved for the later steps.

The Shifted Binary Tree (SBT) is designed precisely to detect the event

bursts within multiple time windows. In the previous sections we showed that

the construction time of a half-overlapping multi-layer structure (SBT) is linear

over which multi-scale windowed burst detection can be done efficiently. How-

ever, to apply SBT scheme to this physical system, we are faced with several

practical challenges.

• Vast amounts of data (1800× 900 time series) mean that any trivial over-

head may accumulate to become a nontrivial expense. Even frequent

dynamic memory allocation can aggregate to a large expense of time, not

to mention frequent secondary storage access.

• Unavoidable overheads of data management. Data pre-processing (i.e.

fetching and storage) requires much work. Due to the huge data size,

even one pass traversal over the whole data set is expensive. And we can

not control the arrival of data. What we can do is to run a program which

will pull the data from somewhere, then store the data in the memory and

return a pointer.

• Thresholds are updated for each sky cell over time due to the different

background noises as stated above. So even for the same layer of the same

tree, the thresholds at different time periods are different. To guarantee no

65



false negatives, the thresholds over each time window needs to be chosen

carefully.

We propose the following solutions.

1. Algorithmic level

• Build the SBT tree only including those levels covering the sliding

windows. For example in one cell, a hit lasts 600 seconds. Consid-

ering that the time resolution is 0.01 second, its SBT tree has to

cover 60, 000 time points which amounts to 16 (= log2 60000) levels.

Constructing the entire tree will be a waste if we only care about 7

time scales. Due to its intrinsic characteristic, a SBT tree can give

some fringe benefits: adding one more level to a SBT tree is trivial

compared to the cost devoted to adding one more level in the naive

brute-force method (see the empirical study). For physicists, more

window sizes mean more information.

• Combine neighboring cells into a single super cell to save processing

time. A SBT tree is constructed for this aggregated cell and its

threshold is set to be the minimum of its sub-cells’ threshold. If

there is an alarm reported for this large bucket, go down to each

small component (i.e. a two-stage search). One natural question is

how large this super cell should be. The answer lies in the overhead

of the extra search. If it is too large, burst detection will frequently

return false positives. Since a SBT tree has to be built for this big

cell, this tree will be a net waste. In our final system, we combine

nine cells.

66



2. Software design level

• Use dense storage. The raw data is stored in a file which is an array of

the coordinates and the hit time. To perform burst detection within

each cell, data have to be distributed to each cell. One intuitive data

structure is a three dimensional array. The first two dimensions store

the X and Y coordinates and each element of the third dimension

corresponds to a small time interval. A boolean variable is stored

indicating if a hit is observed at that moment. For example, if the

time length observed covers 50 seconds and our resolution is 0.01

seconds, this 3d array will be data[1800][900][5000] (most of which is

empty though). For example, all the hit time for cell (1000, 400) is

stored at data[1000][400]. Suppose at the time 0.00s (i.e. the first

time point) a hit is received, data[1000][400][0] will be 1, otherwise

it will be 0. However this storage scheme is unrealistic due to its

huge size. If we use a byte (unsigned char in C1) to store a boolean

variable, the total space needed (1800× 900 × 5000 × 1 byte) would

be more than 1KG Thus data cannot be stored in main memory.

To avoid page faults, instead, we store the data explicitly in a one

dimension array ebuffer, each element of which contains a hit time.

The data for each sky cell is stored contiguously. In this way each

sky cell only needs to keep the index of the first and last data point

in this array. For example, for cell (1000, 400) its time data is stored

from, say 120000 to 126000 in ascending order.

• Use low-cost algorithms. Since we conduct burst detection along the

1A bit map will not help considering its masking cost when an individual bit is accessed.

67



time axis continuously, many operations can be done incrementally.

For example a background noise map is updated every 0.01 seconds,

and the sum of all the hits occurring in the past 5 seconds and next 5

seconds is needed to construct the new map. We don’t re-sum all the

hits every time a threshold is updated. Instead, adding the head (new

data) and removing the tail can reduce the updating cost to O(1).

Some other techniques also help. For example, avoid accessing a data

point far from the one being processed, since this may lead to a page

faults with our sequential storage strategy. Move the computational

intensive codes out of the loop, use low strength operations such as

bit shift instead of power, late evaluation, and so on.

3. Compiler/Hardware level

• Switch on the optimization flag of the compiler −o. But don’t be too

greedy. −o2 is a good tradeoff between performance and robustness.

• Run a GNU Profiler to obtain the statistical data of the running cost

at each step. This turns out to be very helpful. We found that a

large amount of time was spent on memory allocation for each sky

cell, which may not be a problem on other platforms. We solved this

problem by reusing the memory, A 10% improvement was thus made.

Generally, the most significant improvement comes from the algorithmic

optimization; searching over a SBT tree is nearly linear in the size of the time

series if the event rate is not high, which is the case in this physical system. A

profiler squeezes out the last bit of the performance.

68



5.5 Empirical Study

The performance of the system was improved significantly with the Shifted

Binary Tree. We compare the performance for two scenarios.

In the first experiment, we compared the running time of the naive method

and the SBT. Both of them run in each sky cell. Instead of monitoring seven

window sizes, 14, 28 and 42 time scales are looked at. As you may see in Figure

5.6(a), the extra cost incurred by increasing the number of monitoring windows

is trivial for SBT tree while the running time is roughly doubled and tripled for

the naive method.

In the second experiment, we combined nine cells in a square into one to

conduct a two step search. The first step is done in this 9-in-1 big cell. If no

burst is observed in this combined cell, we can claim for sure there is no burst in

each sub-cell. Otherwise, the second finer search is conducted in each sub-cell.

Due to the sparseness of hit bursts, this coarse-to-fine strategy saves substantial

computational effort. Again we tested the system further by adding more time

windows. Similar results were obtained (Figure 5.6(b)).

In both of the experiments, the same alarms were reported.

We can conclude from the experiments that the Shifted Binary Tree outper-

forms the naive method by a factor of 2 to 10, the factors increasing with more

windows.

69



The Performance Comparison of Burst

Detection

0

200

400

600

800

1000

1200

14 28 42

The number of Time Windows

R
u

n
n

in
g

 T
im

e 
(S

ec
o

n
d

s)

SBT

Naive

(a) Perform the burst detection within each cell separately

The Performance Comparison of Burst

Detection

0

50

100

150

200

250

14 28 42

The number of Time Windows

R
u
n
n
in

g
 T

im
e 

(S
ec

o
n
d
s)

SBT

Naive

(b) Combine near nine cells into one

Figure 5.6: The performance comparison between Shifted Binary Tree (SBT)

and the original quadratic algorithm

70



Chapter 6

Conclusion

In this thesis, two high performance algorithms and one implementation for

a physical system are introduced. We propose the concept of “uncooperative”

data first. This is important in time series processing since spectral-based meth-

ods may fail when people deal with this type of data. This is the motivation for

the sketch based statstream algorithm, which is distribution-independent and

then can be used as an extension of Zhu and Shasha’s DFT statstream [87].

The detailed algorithmic procedures are given and the implementation issue are

also addressed. The codes are available upon request.

Incremental matching pursuit can report the approximation incrementally

in every basic window. The efficiency can be improved significantly by taking

advantage of the redundancy between consecutive sliding windows. We tested

this algorithm both on real data sets and synthesized data sets and obtained

satisfactory results.

Some algorithms published may not work in practice as well as claimed

because of various practical challenges. In this thesis we also describe an im-

plementation of Zhu and Shasha’s Shifted Binary Tree [87] in the astrophysical

71



system MILAGRO. The challenge and our solutions are presented. The empir-

ical study shows a substantial improvement of speed while the same accuracy

(no false negatives) is attained.

6.1 Future extensions

6.1.1 Lagged Correlation

The sketch-based statstream can be easily extended to incorporate lagged cor-

relation which is defined as the correlation between pairs of the same length

but they need not be synchronized. For instance, a sliding window Xt1 contains

the data points at time points from t1 to t1 + sw from time series X while the

other sliding window Yt2 from time series Y covers the data points from t2 to

t2 + sw. Here dt = |t1 − t2| ≥ 0. The length of the time lag dt may depend on

the user’s preference.

The algorithm will be slightly more complicated than the one previously

described.

A parameter ts is used as a timestamp to record the time points at which

the sliding window is hashed into a grid structure. In the case of a typical

nearest neighborhood query of X, the neighborhood searching step will include

only those points Y with |tsX − tsy| ≤ Tmax. Tmax is a user-defined time-delay

threshold.

To free the space, the grid structure will periodically remove old data points.

72



6.1.2 Anomaly Detection

Anomaly detection is helpful in financial fraud monitoring, system maintenance

and physical experiments towards discovering the novel events. There is not a

specific definition of the anomaly. A general definition says that any unusual

events are anomalous. Here we define anomaly as follows: any data points

failing to have at least three supporters. The supporter, for instance, may be

those points nearest to the objective point whose distance is smaller than a

threshold. Our Statstream system can find the nearest neighbors for any points

and is able to report anomalies in an online fashion incrementally.

73



Appendix A

Theoretical Probabilistic

Guarantees for Recall

Whereas any approximation technique can give poor precision if most distances

are near the target distance, recall can be bounded using Chernoff and Cheby-

shev bounds. The analysis gives a bound on the probability of a false dismissal,

i.e., the sketch estimate of the distance between a pair is larger than the real

distance between the pair. Intuitively, Chebyshev’s inequality gives a probabil-

ity of false dismissal for a group. Chernoff bounds show us how to combine the

sometimes erroneous returns from the groups to get a less erroneous final result.

For concreteness, we assume that we want a recall of 99% and no more than

200 sketches. (In our experiments, we never exceeded 70.) Here is the analysis.

Let v be a length 1 vector whose length is being approximated (So ‖v‖ is

the L2 distance between two time series windows in our case.). We obtain a

bound on the probability that ‖v‖ will be overestimated.

Consider a group of {r1, r2, · · · , rg} of g random vectors.

74



Lemma 1 E[‖(v ∗ r1, v ∗ r2, · · · , v ∗ rg)‖2] = g.

Lemma 2 Let f(v) = ‖(v∗r1, v∗r2, · · · , v∗rg)‖2. Then the variance E[(f(v)−

E[f(v)])2] ≤ 2g.

Chebyshev’s inequality states that Pr[‖X − E[X]‖ ≥ tσX ] ≤ 1/(t2), where

σX is the square root of the variance.

We apply this with X = f(v) and t = 2 say (we set several constants in this

analysis to reasonable but ultimately arbitrary values; this is the first).

Then Pr[X ≥ E[X] + 2σX ] ≤ 1/4. Substituting g for E[X] and 2g for the

square of σX , we obtain Pr[X ≥ g(1 + 2
√

2/
√

g)] ≤ 1/4.

Setting the group size g to 4 (arbitrary setting again), we get a c of 1 +
√

2

or about 2.4.

Let the third arbitrary setting be that f , the fraction of groups that must

report that the pair is within the threshold 2.4 g, is 1/2. Now we look at the

influence of having multiple groups.

Lemma (Chernoff) Let Y1, Y2, · · · , Yk be independent random trials with

Pr[Yi = 1] = pi and Pr[Yi = 0] = 1 − pi. Let Y =
∑k

i=1 Yi and let µ = E[Y ] =
∑k

i=1 pi.

Then, for any δ > 0, Pr[Y > (1 + δ)µ] < ((eδ)/((1 + δ)1+δ))µ.

For our problem, we let Xi be the estimated length for v in the ith group

and Yi is defined by

Yi =







+1 if Xi ≥ c × g;

0 otherwise

When Yi = 1, a group has overestimated the distance. The Chernoff bounds

allow us to bound how likely it is that this will happen for (1 − f) of the k

groups, where k will be chosen to achieve a recall of 99%. Because we had set t

to 2 above, each group will be wrong with probability pi ≤ 1/4. The expected

75



value of the sum is therefore k/4. Because we have set f to be 1/2, a bad

case would arise when Y > k/2 (that is more than half the groups declare the

distance to be too high). Therefore δ = 1. So

Pr[Y > k/2] < ((eδ)/((1 + δ)1+δ))µ = (e/4)k/4.

This false dismissal error probability is less than 1% (equivalently, recall ≥

99%) only when (k/4) ≥ 12, so the number of groups has to be 48. Because

each group contains four sketches, this gives a total of 48 × 4 = 192 random

vectors, more than three times what we need in practice.

Notice that there are other ways to get a recall ≥ 99%. For example if

f is 1/4, δ = 2 (more than 3/4 of the groups must be wrong). Therefore

Pr[Y > 3k/4] < (e2/27)k/4. This requires only fifteen groups or 60 random

vectors.

Of course there are many other possibilities given c = 2.4 and g = 4. One

interesting compromise is to set f = 0.35. In this case, the theoretical analysis

indicates that the needed number of groups is 21 (84 sketches).

The empirical study indicates that this theoretical analysis is conservative

for our data sets. For our empirical data sets, with these settings, a recall of

99% could be achieved with 16 or fewer sketches (4 groups).

76



Appendix B

Structured Random Projection

for Sliding Window

Given a sliding window length sw and a basic window length bw, we show how

to compute the sketches for the sliding windows starting at each timepoint.

Naively, this can be done by computing the inner product of the length sw

window ending at each data point with each of the random vectors. This involves

much redundant computation, however, so is extremely inefficient. Instead,

we will use a far more efficient approach based on the convolution between a

“structured random vector” and a data vector of length sw.

Recall that sliding windows consist of an integral number of basic windows,

so sw = nb∗ bw, where nb = bw
sw

is the number of basic windows within a sliding

window. A random vector rbw is constructed as follows.

rbw = (r0, r1, · · · , rbw)

77



where

ri =







+1 with probability 1
2
;

−1 with probability 1
2
.

To form a random vector of length sw, another random vector b is constructed

of length nb (= sw/bw). We call the second vector the control vector.

That is,

b = (b0, b1, · · · , bnb)

where

bi =







+1 with probability 1
2
;

−1 with probability 1
2
.

The random vector r for a sliding window is then built as follows.

r = (rbw · b0, rbw · b1, · · · , rbw · bnb)

Please note that the fully random unit here is of size bw and the structured

random vector is made up of a concatenation of nb instances of the random unit

or its negation. This reduction of randomness does not noticeably diminish the

accuracy of the sketch estimation as we showed in the body of the thesis.

The choice of sw and bw depends on the application under consideration,

because bw is the delay before results are reported. For instance, a trader may

ask which pairs of stock returns have been correlated with a value of over 0.9

for the last three hours and want the correlation information reported every 30

seconds. Here the sliding window size is 3 hours and the basic window size 30

seconds.

Example:

We are given a time series X = (x1, x2, · · · ), sliding window size sw = 12,

and a basic window size bw = 4.

78



If the random vector within a basic window is rbw = (1, 1,−1, 1), the control

vector b = (1,−1, 1), the random vector for a sliding window will be rsw =

(1, 1,−1, 1,−1,−1, 1,−1, 1, 1,−1, 1).

End of example

To obtain the sketch, we will not compute the inner product between the

random vector rsw and a given data sliding window. Instead we use a “struc-

tured convolution”. To see why this might help, let’s continue the example from

above.

Example

X1
sw = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12)

X5
sw = (x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16)

The sketches are the following dot products.

X1
sk = rsw ·X1

sw = b1 · rbw · (x1, x2, x3, x4) + b2 · rbw · (x5, x6, x7, x8) + b3 · rbw ·

(x9, x10, x11, x12)

=b · (rbw · (x1, x2, x3, x4), rbw · (x5, x6, x7, x8),

rbw · (x9, x10, x11, x12))

X5
sk = rsw · X5

sw = b1 · rbw · (x5, x6, x7, x8) + b2 · rbw · (x9, x10, x11, x12) + b3 ·
rbw · (x13, x14, x15, x16)

=b · (rbw · (x5, x6, x7, x8), rbw · (x9, x10, x11, x12),

rbw · (x13, x14, x15, x16))

The computation of rbw · (x5, x6, x7, x8) occurs many times. That repeated

computation is eliminated in the structured convolution.

End of Example

Thus we see the computation of xi
sk entails calculating nb dot products with

rbw, followed by a dot product of these results with b.

As we have seen, we want to take the dot product of rbw with each length bw

79



1

bw
X

2

bw
X

3

bw
X

4

bw
X

rbw

Compute:

(1). The partial dot product of rbw with X over interval a

(2). The partial dot product of rbw with X over interval b

a b

xi

Figure B.1: Dot products with two basic windows

window of X. For efficiency, we will be computing convolutions with successive

disjoint windows of X of length bw. This yield dot products of initial and final

portions of rbw with corresponding pieces of these disjoint windows, which we

call partial dot products. Appropriate pairs of partial dot products then need

to be added together to construct a sketch.

Figure B.1 illustrates the partial dot products computed over basic window

X1
bw and X2

bw. nb such computations are needed to form a dot product of length

sw.

Figure B.2 shows the convolution of a basic window of data with a random

vector.

Figure B.3 shows the addition of corresponding pairs of partial dot products.

Each line represents a sum e.g. x4 + (x5 − x6 + x7).

The final step is to compute the dot product with b of the results of the dot

products with rbw.

The full procedure is shown in Figure B.4.

80



1   1   -1   1

x1 x2 x3 x4

x1+x2-x3+x4

x4

x3+x4

x2+x3-x4

x1-x2+x3

-x1+x2

x1

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

x1 x2 x3 x4

=

V1[4]

V1[3]

V1[2]

V1[1]

V1[7]

V1[6]

V1[5]

Figure B.2: Structured convolution

+

First Convolution Second Convolution Third Convolution

x4

x3+x4

x2+x3-x4

x1+x2-x3+x4

x1-x2+x3

-x1+x2

x1

x8

x7+x8

x6+x7-x8

x5+x6-x7+x8

x5-x6+x7

-x5+x6

x5

x12

x11+x12

x10+x11-x12

x9+x10-x11+x12

x9-x10+x11

-x9+x10

x9

+

v[i]

v[i+bw]

Figure B.3: Sum up the corresponding pairs

81



Given time series X = (x1, x2, · · · , xn), random vector rbw =

(r1, r2, · · · , rbw), and control vector b = (b1, b2, · · · , bnb),

1. Convolve rbw with (x1, x2, ..., xbw) without wraparound. This yields

a vector v1 of length 2 ∗ bw − 1:







v1[i] =
∑bw

j=i xj · rj−i+1 1 ≤ i ≤ bw;

v1[i + bw] =
∑i−1

j=1 xj · rbw+j−i+1 2 ≤ i ≤ bw.

2. Repeat Step 1 nb times over data chunks of length bw starting from

locations bw + 1, · · · , nb ∗ bw + 1 to obtain vectors vbw+1, v2bw+1,

· · · , vnb∗bw+1.

3. Compute

uh∗bw+1[i] = vh∗bw+1[i] + v(h+1)bw+1[i + bw]

for 1 ≤ i ≤ bw and h ≥ 0.

Then

uh∗bw+1[i] = (x[h∗bw+i] · · ·x[(h+1)bw+i]) · (r1, · · · , rbw)

4. Compute the inner product between control vector b and each of

(uh∗bw+1[i], u(h+1)∗bw+1[i], · · · , u(h+nb−1)∗bw+1[i])

for 1 ≤ i ≤ bw and h ≥ 0.

Figure B.4: Structured convolution procedure

82



1    1   –1    1

x1   x2   x3   x4   x5   x6   x7   x8   x9   x10   x11   x12

1    1   –1    1

1     1     –1     1

x1+x2-x3+x4 x5+x6-x7+x8 x9+x10-x11+x12

Figure B.5: Dot product of every basic window

In most cases, the point-wise computation is unnecessary since a measure

such as correlation is highly correlated for two consecutive data vector. Hence

the sketch may as well be computed every basic window by dot product, rather

than by convolution, as shown in Figure B.5. The whole updating procedure is

explained in Figure B.6.

B.0.3 Algorithmic Analysis

The structured random vector procedure eliminates the redundant computa-

tions inherent in doing a full dot product for the window of length sw starting

at every timepoint. Each basic window of data is convolved with a random

vector basic window only once, which will eliminate the redundancy existing in

the direct convolution.

Here is the performance analysis.

1. Naive algorithm:

83



Given time series X = (x1, x2, · · · , xn), random vector rbw =

(r1, r2, · · · , rbw), and control vector b = (b1, b2, · · · , bnb):

Stage 1: Compute the sketch of the first sliding window:

1. Compute the dot product between rbw and (x1, x2, ..., xbw), yielding

v1.

2. Repeat Step 1 nb− 1 times over data chunks of length bw starting

from locations bw + 1, · · · , (nb − 1) ∗ bw + 1 to obtain v2, v3, · · · ,

vnb.

3. Compute the inner product between control vector b and

(v1, v2, · · · , vnb)

thereby forming the sketch of the first sliding window.

Stage 2: Slide the computation forward:

1. Obtain the next data vector of length bw,

(xbw∗h+1, xbw∗h+2, ..., xbw∗h+bw), and compute its dot product

with rbw, yielding vh with h ≥ nb.

2. Compute the inner product between b and

(vh−nb+1, vh−nb+2, · · · , vh).

Figure B.6: Structured convolution procedure every basic window

84



For each random vector and each timepoint, the dot product requires

O(sw) integer additions.

2. New algorithm:

If the point-wise sketch is computed for each datum and random vector,

the costs consists of two parts.

(a) O(sw/bw) integer additions;

(b) O(log bw) floating point operations (using the Fast Fourier Transform

in computing the convolution).

In the case that the sketch is computed only every basic window, the time

for each datum and random vector will be:

(a) O(sw/bw2) integer additions

85



Appendix C

An Upper Bound of the Grid

Size

Now let’s examine how to embed this sketch filter in a grid structure.

At first, we assume our parameter group is (N, g, c, f) and therefore there

are totally ng = N/g groups. We will assign one grid structure to each sketch

group.

For each grid structure the critical parameter is the largest value A and

diameter a. Now let’s bound the size of A.

Upper Bound on Grid Size. Let Xsk0, Xsk1, · · · , Xskm be the sketches of a

data vector X = (x0, x1, · · · , xsw); then:

|Xski| ≤
√

sw, i = 0, 1, · · · , m

Proof.

Xski = Ri · X = (r0, r1, · · · , rsw) · (x0, x1, · · · , xsw)

86



where ri = 1 and −1 with probability 1/2 each. Let x̂i = |xi|

=> X2
ski ≤ (x̂0 + x̂1 + · · ·+ x̂sw)2

= x̂2
0 + x̂2

1+, · · · , +x̂2
sw + 2x̂0x̂1 + · · ·+ 2x̂ix̂j + · · ·+ 2x̂sw−1x̂sw

≤ x̂2
0 + x̂2

1 + · · · , +x̂2
sw + x̂2

0 + x̂2
1 + · · · + x̂2

i + x̂2
j + · · ·+ x̂2

sw−1 + x̂2
sw

= sw(x̂2
0 + x̂2

1 + · · · , +x̂2
sw)

= sw · 1

|Xski| ≤
√

sw

So A =
√

sw in our case.

87



Bibliography

[1] Adaptive dataflow for querying streams, deep web, and beyond.

http://telegraph.cs.berkeley.edu/.

[2] The aurora project. http://www.cs.brown.edu/research/aurora/.

[3] Maids overview. http://maids.ncsa.uiuc.edu/about/index.html.

[4] Niagara query engine. http://www.cs.wisc.edu/niagara.

[5] Wharton research data services (wrds). http://wrds.wharton.upenn.edu/.

[6] Understanding alraworks panorama’s metric correlation engine. Technical

report, Altaworks Corporation, 2004.

[7] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy. Join synopses

for approximate query answering. SIGMOD, 1999.

[8] D. Achlioptas. Database-friendly random projections. Santa Barbara,

CA, May 2001. SIGMOD.

[9] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity searching in

sequence databases. In Proceedings of the 4th International Conference of

Foundations of Data organization and Algorithms (FODO), pages 69–84,

Chicago, Illinois, MN, 1993. Springer Verlag.

88



[10] A. Arasu and J. Widom. Resource sharing in continuous sliding-window

aggregates. VLDB, 2004.

[11] R. I. Arriaga and S. Vempala. Algorithmic theories of learning. Founda-

tions of Computer Science, 1999.

[12] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and

issues in data stream systems. Madison, Wisconsin, 2002. ACM SIGMOD-

PODS.

[13] B. Babcock, S. Babu, and M. D. R. Motwani. Chain: Operator scheduling

for memory minimization in data stream systems. SIGMOD, 2003.

[14] S. Berchtold, C. Bohm, D. A. Keim, and H.-P. Kriegel. A cost model for

nearest neighbor search in high-dimensional data space. PODS, 1997.

[15] S. Berchtold, K. D., and K. H. P. The x-tree: An index structure for

high-dimensional data. VLDB, 1996.

[16] D. J. Berndt and J. Clifford. Finding patterns in time series: a dynamic

programming approach. Advances in Knowledge Discovery and Data Min-

ing, 1996.

[17] E. Bingham and H. Mannila. Random projection in dimensionality re-

duction: Applications to image and text data. KDD, 2001.

[18] K. Blinowska, P. Durka, and W. Szelenberger. Time-frequency analysis

of nonstationary eeg by matching pursuit. World Congress of Medical

Physics and Biomedical Engineering, August 1994.

89



[19] C. Bohm. Efficient indexing high-dimensional databases. Ph.D. thesis,

University of Munich, Germany, 1998.

[20] C. Bohm. A cost model for query processing in high-dimensional data

spaces. ACM Trans. Database System, 2000.

[21] C. Bohm, S. Berchtold, and D. A. Keim. Searching in high-dimensional

spaces-index structures for improving the performance of multimedia

databases. ACM Computing Surveys, 33(3), September 1995.

[22] L. Borcea, J. G. Berryman, and G. C. Papanicolaou. Matching pursuit for

imaging high-contrast conductivity. Inverse Problems, 15:811–849, 1999.

[23] A. Borodin, R. Ostrovsky, and Y. Rabani. Subquadratic approximation

algorithms for clustering problems in high dimensional spaces. Symposium

on Theory of Computing, 1999.

[24] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. Shim. Approximate

query processing using wavelets. VLDB, 2000.

[25] K.-P. Chan and A. W.-C. Fu. Efficient time series matching by wavelets.

ICDE, 1999.

[26] K. Cheung and Y. Chan. A fast two-stage algorithm for realizing matching

pursuit. In IEEE ICIP, pages 431–434, Thessaloniki Greece, October

2001.

[27] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. The combi-

natorial design approach to automatic test generation. IEEE Software,

1996.

90



[28] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over uncoop-

erative time series. Chicago, August, 2005. SIGKDD.

[29] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan. Comparing data

streams using hamming norms(how to zero in). VLDB, 2002.

[30] G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan. Fast mining

of massive tabular data via approximate distance computations. ICDE,

2002.

[31] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over

data streams. SIGMOD, 2003.

[32] G. Das, D. Gunopulos, and H. Mannila. Finding similar time series.

Lecture Notes In Computer Science in the First European Symposium on

Principles of Data Mining and Knowledge Discovery, 1997.

[33] S. Dasgupta. Learning mixtures of gaussians. In In 40th Annual IEEE

Symp. on Foundations of Computer Science, pages 634–644, 1999.

[34] S. Dasgupta and A. Gupta. An elementary proof of the Johnson-

Lindenstrauss Lemma. Technical Report TR-99-006, Berkeley, CA, 1999.

[35] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream

statistics over sliding windows. SIAM, 31(6), September 2002.

[36] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and

R. Harshman. Indexing by latent semantic analysis. Journal of the Amer-

ican Society for information Science, 41(6), 1990.

91



[37] E. Drinea, P. Drineas, and P. Huggins. A randomized singular value

decomposition algorithm for image processing. Panhellenic Conference on

Informatics (PCI), 2001.

[38] P. Drineas, E. Drinea, and P. S. Huggins. An Experimental Evaluation

of a Monte-Carlo Algorithm for Singular Value Decomposition in Lecture

Notes in Computer Science. Springer-Verlag, 2003.

[39] P. Durka and K. Blinowska. Analysis of eeg transients by means of match-

ing pursuit. Ann.Biomed.Engin., 23:608–611, 1995.

[40] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman

& Hall/CRC, 1994.

[41] L. Engebretsen, P. Indyk, and R.O’Donnell. Derandomized dimensionality

reduction with applications. SODA, 2002.

[42] O. D. Escoda and P. Vandergheynst. Video coding using a deformation

compensation algorithm based on adaptive matching pursuit image de-

compositions. In IEEE ICIP, pages 77–80, Barcelona, Spain, September

2003.

[43] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence

matching in time-series databases. Minneapolis, MN, May 1994. SIG-

MOD.

[44] X. Z. Fern and C. E. Brodly. Random projection for high dimensional data

clustering: A cluster ensemble approach. Int. Conf. on Machine Learning,

2003.

92



[45] P. Frankl and H. Maehara. The johnson-lindenstrauss lemma and the

sphericity of some graphs. Journal of Combinatorial Theory B, 1988.

[46] S. Ganguly, M. Garofalakis, and R. Rastogi. Processing data-stream join

aggregates using skimmed sketches. International Conference on Extend-

ing Database Technology(EDBT), 2004.

[47] V. Ganti, J. Gehrke, and R. Ramakrishnan. Mining very large databases.

IEEE Computer, (8), 1999.

[48] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated aggre-

gates over continual data streams. SIGMOD, 2001.

[49] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surf-

ing wavelets on streams: One-pass summaries for approximate aggregate

queries. VLDB, 2001.

[50] A. Goel, P. Indyk, and K. Varadarajan. Reductions among high dimen-

sional proximity problems. Symposium on Discrete Algorithms, 2001.

[51] D. Q. Goldin and P. C. Kanellakis. On similarity queries for time-series

data: constraint specification and implementation. The 1st Int’l Confer-

ence on the Principles and Practice of Constraint Programming, 1995.

[52] M. Greenwald and S. Khanna. Space-efficient online computation of quan-

tile summaries. SIGMOD, 2001.

[53] R. Gribonval. Fast matching pursuit with a multiscale dictionary of gaus-

sian chirps. IEEE Transaction on Signal Processing, 49(5):994–1001, MAY

2001.

93



[54] D. Gunopulos and G. Das. Time series similarity measures. SIGKDD

Tutorial, 2000.

[55] Y. Huhtala, J. Krkkinen, and H. T. Toivonen. Mining for similarities in

aligned time series using wavelets. Data Mining and Knowledge Discovery:

Theory, Tools, and Technology,SPIE Proceedings Series, 1999.

[56] P. Indyk. Stable distributions, pseudorandom generators, embeddings and

data stream computation. In Proceedings of the 41st Annual Symposium

on Foundations of Computer Science, page 189. IEEE Computer Society,

2000.

[57] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative

trends in massive time series data sets using sketches. VLDB, 2000.

[58] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards re-

moving the curse of dimensionality. 30th Annu. ACM Symposium. Theory

Computing, 1998.

[59] H. Jagadish, A. O. Mendelzon, and T. Milo. Similarity-based queries.

PODS, 1995.

[60] W. Johnson and J. Lindenstrauss. Extensions of lipschitz mapping into

hilbert space. Contemporary Mathematics, 26, 1984.

[61] S. Kaski. Dimensionality reduction by random mapping. Int. Joint Conf.

on Neural Networks, 1998.

[62] N. Katayama and S. Satoh. The sr-tree: An index structure for high-

dimensional nearest neighbor queries. ACM SIGMOD, 1997.

94



[63] E. Keogh. Exact indexing of dynamic time warping. VLDB, 2002.

[64] E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzani. Locally adaptive

dimensionality reduction for indexing large time series databases. SIG-

MOD, 2001.

[65] E. Keogh and T. Folias. The ucr time series data mining archive. Riverside

CA. University of California - Computer Science & Engineering Depart-

ment, 2002. http://www.cs.ucr.edu/∼eamonn/TSDMA/index.html.

[66] E. Keogh, M. P. K. Chakrabarti, and S. Mehrotra. Dimensionality reduc-

tion for fast similarity search in large time series databases. Knowledge

and Information Systems, 2000.

[67] E. J. Keogh and M. J. Pazzani. Relevance feedback retrieval of time series

data. SIGIR, 1999.

[68] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimen-

sions. In In Proc. 29th ACM Symp. on Theory of Computing, pages 599–

608, 1997.

[69] F. Korn, H. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc

queries in large datasets of time sequences. SIGMOD, 1997.

[70] M. Kurimo. Indexing audio documents by using latent semantic analysis

and SOM. 1999.

[71] E. Kushikvitz, R. Ostrovsky, and Y. Ranbani. Efficient search for approx-

imate nearest neighbors in high dimensional spaces. STOC, 1998.

95



[72] C. S. Li, P. S. Yu, and V. Castelli. Hierarchyscan: A hierarchical similarity

search algorithm for databases of long sequences. ICDE, 1996.

[73] R. A. K. Lin, H. Sawhney, and K. Shim. Fast similarity search in the

presence of noise, scaling and translation in time-series databases. VLDB,

1995.

[74] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and

some of its algorithmic applications. Foundations of Computer Science,

1994.

[75] K. Liu, H. Kargupta, and J. Ryan. Multiplicative noise, random pro-

jection, and privacy preserving data mining from distributed multi-party

data. Communication, 2003.

[76] S. Mallat and Z. Zhang. Matching pursuit with time-frequency dictionary.

IEEE Transactions on Signal Processing, 12(41):3397–3415, 1993.

[77] G. Manku, S. Rajagopalan, and B. Lindsay. Random sampling techniques

for space efficient online computation of order statistics of large datasets.

SIGMOD, 1999.

[78] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based histograms for

selectivity estimation. SIGMOD, 1998.

[79] Y. Moon, K. Whang, and W. Loh. Duality based subsequence matching

in time-series databases. SIGMOD, 1997.

[80] F. Moschetti, L. Granai, P. Vandergheynst, and P. Frossard. New dictio-

nary and fast atom searching method for matching pursuit representation

96



of displaced frame difference. In IEEE ICIP, pages 685–688, Rochester,

NY, September 2002.

[81] T. Palpanas, M. Vlachos, E. Keogh, D. Gunopulos, and W. Truppel.

Online amnesic approximation of streaming time series. ICDE, 2004.

[82] C. H. Papadimitriou, P. Raghavan, and H. Tamaki. Latent semactic in-

dexing: A probabilitic analysis. PODS, 1998.

[83] I. Popivanov and R. Miller. Similarity search over time series data using

wavelets. ICDE, 2002.

[84] D. Rafier and A. Mendelzon. Similarity-based queries for time series data.

ACM SIGMOD, 1997.

[85] L. S. Singular value decomposition-a primer. Technical report, Depart-

ment of Computer Science, Brown University, 1999.

[86] C. Shahabi, X. Tian, and W. Zhao. Tsa-tree: A wavelet-based approach

to improve the efficiency of multi-level surprise and trend queries on time-

series data. 12th International Conference on Scientific and Statistical

Database Management(SSDBM), 2000.

[87] D. Shasha and Y. Zhu. High Performance Discovery in Time Series:

Techniques and Case Studies. Springer, 2003.

[88] U. Srivastava and J. Widom. Memory-limited execution of windowed

stream joins. VLDB, 2004.

97



[89] A. Tucker, S. Swift, and X. Liu. Variable grouping in multivariate time

series via correlation. IEEE Transactions on Systems, Man & Cybernetics,

2001.

[90] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E. Keogh. Indexing

multi-dimensional time-series with support for multiple distance measures.

SIGKDD, 2003.

[91] L. Wu, C. Faloutsos, K. P. Sycara, and T. R. Payne. Falcon: feedback

adaptive loop for content-based retrieval. VLDB, 2000.

[92] Y. Wu and V. S. Batista. Quantum tunneling dynamics in multidimen-

sional systems: A matching-pursuit description. The Journal of Chemical

Physics, 121:1676–1680, 2004.

[93] Y. L. Wu, D. Agrawal, and A. E. Abbadi. A comparison of dft and dwt

based similarity search in time-series databases. The 9th ACM CIKM

Int’l Conference on Information and Knowledge Management, 2000.

[94] B.-K. Yi and C. Faloutsos. Fast time sequence indexing for arbitrary lp

forms. VLDB, 2000.

[95] B.-K. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time

sequences under time warping. ICDE, 1998.

[96] P. Zhang, Y. Huang, S. Shekhar, and V. Kumar. Correlation analysis of

spatial time series datasets: A filter-and-refine approach. SIGKDD, 2003.

[97] X. Zhao, X. Zhang, T. Neylon, and D. Shasha. Incremental methods for

simple problems in time series: algorithms and experiments. Montreal,

98



Canada, July, 2005. The 9th International Databases Engineering & Ap-

plications Symposium.

[98] Y. Zhu and D. Shasha. Statstream: Statistical monitoring of thousands

of data streams in real time. Hong Kong, China, August 2002. VLDB.

[99] Y. Zhu and D. Shasha. Warping indexes with envelop transforms for query

by humming. SIGMOD, 2003.

[100] Y. Zhu, D. Shasha, and X. Zhao. Query by humming - in action with its

technology revealed. UCSD, June, 2003. SIGMOD.

99


	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	List of Appendices
	Introduction
	Review
	Streaming Database
	Time Series Similarity Measures
	Matching Pursuit

	Statstream Over Uncooperative Time SeriesThis work is published in SIGKDD'05 Uncooperative05
	StatStream Revisited
	Problem Statement
	Our Contribution
	Algorithmic Ideas
	The Issues in Implementation
	Experiments

	High Performance Incremental Matching PursuitThis work is published in IDEAS05
	Problem Statement
	Opportunities in Angle Space
	Empirical Study

	An Implementation of the Shifted Binary Tree
	Problem Statement
	A Brief Review of Shifted Binary Tree
	MILAGRO
	The Challenges and Our Solutions
	Empirical Study

	Conclusion
	Future extensions

	Appendices
	Bibliography

