
High-Performance and Flexible Parallel Algorithms for
Semisort and Related Problems

Xiaojun Dong

University of California, Riverside

xdong038@ucr.edu

Yunshu Wu

University of California, Riverside

ywu380@ucr.edu

Zhongqi Wang

University of Maryland, College Park

zqwang@umd.edu

Laxman Dhulipala

University of Maryland, College Park

laxman@umd.edu

Yan Gu

University of California, Riverside

ygu@cs.ucr.edu

Yihan Sun

University of California, Riverside

yihans@cs.ucr.edu

Abstract

Semisort is a fundamental algorithmic primitive widely used in the

design and analysis of efficient parallel algorithms. It takes input

as an array of records and a function extracting a key per record,

and reorders them so that records with equal keys are contiguous.

Since many applications only require collecting equal values, but

not fully sorting the input, semisort is broadly applicable, e.g., in

string algorithms, graph analytics, and geometry processing, among

many other domains. However, despite dozens of recent papers

that use semisort in their theoretical analysis and the existence

of an asymptotically optimal parallel semisort algorithm, most

implementations of these parallel algorithms choose to implement

semisort by using comparison or integer sorting in practice, due to

potential performance issues in existing semisort implementations.

In this paper, we revisit the semisort problem, with the goal

of achieving a high-performance parallel semisort implementa-

tion with a flexible interface. Our approach can easily extend to

two related problems, histogram and collect-reduce. Our algorithms

achieve strong speedups in practice, and importantly, outperform

state-of-the-art parallel sorting and semisorting methods for almost

all settings we tested, with varying input sizes, distribution, and

key types. We also test two important applications with real-world

data, and show that our algorithms improve the performance over

existing approaches. We believe that many other parallel algorithm

implementations can be accelerated using our results.

CCS Concepts

•Theory of computation→Parallel algorithms; Sharedmem-

ory algorithms; Sorting and searching.

Keywords

Semisort, Collect-reduce, Histogram, Sorting, Group-by

1 Introduction

The semisort problem takes as input an array of records with as-

sociated keys, and returns a reordered array such that all records

with identical keys are contiguous. Importantly, the problem does

not require all keys to appear in sorted order in the output, nor all

records with distinct keys to be sorted. Several other important and

widely-applicable problems are closely related to semisort, such as

the histogram problem that counts the number of occurrences of

each key, and the more general collect-reduce problem that com-

putes the aggregate “sum” for each key, based on all the records.

The “sum” function can be defined based on any associative (some-

times also commutative) combine function (e.g., addition or maxi-

mum). Semisort, histogram, and collect-reduce are all widely used

in different areas, but are often referred to using different names,

e.g., groupBy/aggregation in databases [35, 56], frequency in

data analytics applications, reduceByKey/groupByKey in RDD in

Spark [76], the shuffle step in the MapReduce paradigm [26], and

others [46]. As an example of the applicability of these problems,

consider a database of sales receipts keeping the information of

each sold lineitem. Useful operations to analyze trends in this data

include quickly gathering lineitems from the same branch together

(semisort), counting the number of sold items in each month (his-

togram), and obtaining the total sale of lineitems of each brand

(collect-reduce).

Semisorting was first studied as a theoretical problem by Valiant

to efficiently simulate parallel machinemodels (e.g., the PRAM)with

other models [69]. Sequentially, it is easy to semisort in 𝑂 (𝑛) time

using a hash table, and theoretically-efficient parallel algorithms are

also known [45]. Today, in contrast to its initial development as a

theoretical tool for machine simulations, semisort is widely used in

the design and analysis of efficient and practical parallel algorithms,

for example for graph analytics [1, 2, 6, 14, 20, 22, 27–30, 32, 33,

36, 37, 52, 53, 58, 61–63, 68], geometry problems [19, 42, 60, 70, 72],

sequence algorithms and many others [13, 17, 39, 43, 48, 49, 66, 67,

75]. However, there is a disconnect between theory and practice in
these parallel applications. In all of the above-mentioned papers,

semisort is only used in theoretical analysis to obtain better bounds

by the theoretically-efficient parallel semisort algorithm [45], but

is not used in practical implementations of these algorithms. In

particular, for the papers that implement and evaluate their parallel

algorithms, a comparison sort (usually the samplesort in [9, 13,

18]) is used. Although semisorting is asymptotically simpler than

sorting, semisorting is avoided in practice in favor of sorting the

data.

The only known parallel semisort algorithm and implementa-

tion is by Gu et al. [45] in 2015 (the GSSB algorithm), with 𝑂 (𝑛)
expected work (number of operations) and space, and𝑂 (log𝑛) span
(longest dependencies) whp [17]. Despite the asymptotic guaran-

tees, the algorithm has not been widely used in practice for a few

reasons. First, the algorithm uses many random accesses and is I/O-

unfriendly since it heavily uses hash tables. Second, the algorithm

interface also incurs performance overhead. Specifically, the algo-

rithm assumes the records are associated with hashed keys with no

duplicates rather than arbitrary keys (more details in Sec. 2.3). This

assumption requires additional steps to hash the original keys and

1

ar
X

iv
:2

30
4.

10
07

8v
1

 [
cs

.D
S]

 2
0

A
pr

 2
02

3

resolve collisions subsequently, which may take time comparable to

semisort itself. Although none of these issues increase the asymp-

totic bounds, they both contribute to performance slowdowns that

are hard to avoid in a faithful implementation. Hence, the semisort

implementation in [45] is not faster than many recent sorting algo-

rithms [10, 13, 57] in practice. Meanwhile, the GSSB algorithm is

not stable or (internally-)deterministic (i.e., the result may depend

on runtime scheduling) due to the use of parallel hash tables.

In this paper, we revisit the semisort problem, with the goal
of achieving a high-performance parallel semisort implemen-
tationwith a flexible interface. Wepropose new parallel semisort

algorithms that are efficient regarding work, I/O and space usage.

Our flexible interface for semisort can also be extended to sup-

port efficient and parallel histogram and collect-reduce. Our al-

gorithm takes any key type 𝐾 , and a user-defined hash function

ℎ : 𝐾 ↦→ [1, . . . , 𝑛^] to map keys to integers. In principle, the only

extra information we need is an equality test =𝐾 : 𝐾 ×𝐾 ↦→ Boolean.
We observe that in most use cases, the key type also supports a

less-than test <𝐾 : 𝐾 × 𝐾 ↦→ Boolean to determine a total ordering,

which can be used to improve the performance. We refer to the

general semisort algorithm (only =𝐾 supported) and the version

with <𝐾 as semisort= and semisort< , respectively.

Our algorithm builds on the strengths of GSSB [45], but sub-

stantially redesigns several components to overcome the existing

performance issues of the GSSB algorithm. GSSB works in three

steps (we review more details in Sec. 2.3). It first uses samples to

determine the heavy (frequent) and light (infrequent) keys, and

constructs buckets for them based on estimated sizes from the sam-

ples. Each heavy key will be in a separate bucket, while multiple

light keys can be grouped into the same bucket. The algorithm

then scatters all records to their buckets by placing each record

to a random slot in their bucket (or linear probe when the slot is

occupied). Lastly, the algorithm refines each light bucket by radix

sorting (the hashed keys) in each light bucket. The main issue in

GSSB is that the scatter phase is implemented using a parallel hash

table, which causes excessive random memory access, some space

overhead, instability, and non-determinism.

To avoid the use of a parallel hash table, we propose an idea

inspired by the I/O-efficient parallel samplesort [18]: when con-

structing buckets and scattering records, we split the input into

consecutive subarrays, use auxiliary arrays to count the appear-

ance of each bucket in each subarray, and distribute the records in

each subarray based on the counts. This approach enables a cache-

friendly access pattern to the input, allows us to obtain the exact

size of each bucket, and is stable and race-free (and thus determin-

istic). However, since samplesort and semisort are quite different,

using the idea in [18] does not directly enable high-performance.

The challenge lies in choosing the best parameters for the number

of heavy and light buckets. At a high-level, the samplesort in [18]

creates a bucket for every sampled key. However, using too many

buckets increases the size of the auxiliary counting array, which can

greatly increase memory accesses. On the other hand, having more

buckets is useful to improve parallelism, since each bucket can be

processed independently in parallel. Specifically for semisort, we

also wish to create more heavy buckets because heavy keys do not

need to be refined and are easier to process.

To create the heavy and light buckets in the best way, we pro-

Any input type Integer input type
Ours=Ours< PLSS IPS4o Ours-i= Ours-i< PLIS GSSB RS IPS2Ra

U
ni

fo
rm

10 1.00 1.00 1.77 1.30 1.03 1.00 2.98 4.55 2.07 6.33
10! 1.00 1.00 1.38 1.04 1.00 1.01 1.97 5.89 2.18 2.45
10" 1.00 1.00 1.88 1.51 1.00 1.00 1.75 3.33 2.11 1.51
10# 1.13 1.00 1.67 1.17 1.15 1.00 1.30 2.93 1.99 1.25
10$ 1.00 1.06 1.65 1.11 1.00 1.39 1.15 2.80 1.48 1.21
AVG 1.02 1.00 1.64 1.20 1.00 1.04 1.67 3.62 1.89 1.97

Ex
po

ne
nt

ia
l 1 1.01 1.00 1.81 1.35 1.01 1.00 2.78 3.49 2.23 1.57

0.7 1.01 1.00 1.84 1.35 1.02 1.00 2.48 3.50 2.14 1.56
0.5 1.02 1.00 1.90 1.43 1.01 1.00 2.23 3.46 2.02 1.51
0.2 1.02 1.00 1.81 1.60 1.02 1.00 1.73 3.49 2.00 1.59
0.1 1.04 1.00 1.75 1.50 1.07 1.00 1.59 3.52 1.95 1.57

AVG 1.02 1.00 1.82 1.44 1.02 1.00 2.12 3.49 2.07 1.56

Zi
pf

ia
n

1.5 1.02 1.00 3.58 2.53 1.01 1.00 3.80 4.10 2.82 10.9
1.2 1.03 1.00 2.18 1.67 1.02 1.00 2.85 3.67 2.56 5.04
1 1.02 1.00 1.48 1.22 1.05 1.00 1.81 3.42 1.92 2.29

0.8 1.00 1.01 1.58 1.09 1.00 1.00 1.22 2.93 1.48 1.21
0.6 1.00 1.05 1.67 1.11 1.00 1.04 1.17 2.85 1.43 1.18

AVG 1.00 1.00 1.96 1.42 1.01 1.00 1.93 3.34 1.95 2.80
AVG 1.01 1.00 1.80 1.35 1.00 1.00 1.88 3.44 1.95 2.03

AVG = Geometric Mean4 >421.51.21.11

Figure 1: Heatmap of the relative performance of implementations

normalized to the fastest in each test (each row). 𝑛 = 10
9
. 64-bit keys

and 64-bit values. The parameters in exponential distributions are multiplied

by 10
4
. The algorithm names and details are introduced in Tab. 2.

pose novel algorithmic ideas for semisort. First, we control the

parameters to keep the number of buckets small, so that the aux-

iliary arrays fit in cache. This avoids excessive memory access to

the auxiliary arrays (see more details about the auxiliary arrays in

Sec. 3.2 and Fig. 2). Second, we deal with each light bucket recur-
sively in parallel. To enable efficient recursive calls, we carefully

design optimizations to avoid extra space in recursive calls. Our

new approach saves the main memory accesses for the auxiliary

arrays, and more interestingly, identifies more heavy keys than

GSSB with different degrees of “heaviness” using recursions. The

“relatively heavy” keys in each light bucket can be identified and

handled more efficiently and improve the overall performance.

In addition to algorithmic improvement for performance, we

also redesigned the algorithm interface. Our algorithm directly

takes the input with any key type, a user-defined hash function

ℎ, and an equality test (or less-than for semisort<). This avoids

the additional pre- and post-processing in GSSB. Due to the more

flexible interface and algorithm design, our semisort algorithm can

be easily extended to histogram and collect-reduce (see Sec. 3.5).

We tested our algorithms on a variety of benchmarks, with differ-

ent core counts, input sizes, key lengths, and distribution patterns

(uniform, exponential, and Zipfian). We summarize our results as a

heatmap in Fig. 1. We also test two applications: graph transposing

(reordering graph edge lists), and 𝑘-gram on English texts. Both our

semisort= and semisort< algorithms achieve high performance on

almost all tests. For example, on 10
9
input data with 64-bit keys and

64-bit values over 15 distributions, our algorithm is 3.4× faster than
the GSSB algorithm, and at least 1.35× faster than the best of the

previous algorithms, both on average (geometric mean). Our algo-

rithms also consistently perform well on the two applications with

real-world data. In all but one application-input combination we

tested in this paper, our algorithm is the fastest. Our code is publicly

available [38], and we plan to integrate it into ParlayLib [13].

2

2 Preliminaries

2.1 Problem Definitions

Given a sequence of records from a universe 𝑈 , we define a key

function key : 𝑈 ↦→ 𝐾 to define the key for each record, where

𝐾 is the key type. We define =𝐾 as the equality test on 𝐾 . When

applicable, we use <𝐾 as the less-than test on𝐾 . Given a sequence

of records 𝐴, its key function key𝐴 , and the equality test =𝐾 on 𝐾 ,

the semisort problem is to reorder the records in 𝐴 to 𝐴′ such that

all records with the same key are contiguous in 𝐴′. We also require

the user to provide a family of hash functions ℎ : 𝐾 ↦→ [1, . . . , 𝑛^],
for some constant ^ ≥ 1. We call ℎ(·) the user hash function.

Given𝐴, key𝐴 , =𝐾 , and ℎ𝐴 , the histogram problem is to emit an

array of key-value pairs 𝐺 consisting of the unique keys of 𝐴, with

the value for each key equal to the number of times it appears in 𝐴.

The collect-reduce function takes the same arguments as semisort

and two additional functions: a map function 𝑀 : 𝑈 → 𝐸, and a

reduce monoid (⊕𝐸 , 𝐼𝐸). The map function maps a record to a value

of some type 𝐸. The reduce operation ⊕𝐸 : 𝐸 × 𝐸 → 𝐸 combines

values of type 𝐸 with identity 𝐼𝐸 . The collect-reduce function returns

the array of key-value pairs 𝑅 ∈ 𝐾 ×𝐸 consisting of the unique keys

of𝐴, with the value associated with each key 𝑘 equal to ⊕𝑟 ∈𝑆𝑘𝑀 (𝑟),
where 𝑆𝑘 = {𝑟 ∈ 𝐴 | key𝐴 (𝑟) =𝐾 𝑘}. Note that histogram can be

expressed as collect-reduce where the map function is the constant

function 1, and the monoid is (+, 0). With clear context, we drop

the subscripts for these operations and functions.

2.2 Computational Models and Other Notations

We use the work-span (or work-depth) model for fork-join paral-

lelism with binary forking to analyze parallel algorithms [17, 25],

which is recently used in many papers on parallel algorithms [4, 5,

12, 16, 18, 19, 21, 23, 31, 33, 34, 41, 44, 73, 74]. We assume a set of

threads that share a commonmemory. A process can fork two child
software threads to work in parallel. When both children complete,

the parent process continues. The work of an algorithm is the total

number of instructions and the span (depth) is the length of the

longest sequence of dependent instructions in the computation. We

can execute the computation using a randomized work-stealing

scheduler [7, 24] in practice.

To measure the memory access cost in an algorithm, we use the

classic I/O model [3, 40]. We assume a two-level memory hierarchy.

The processor is connected to the cache of size𝑀 , and the cache is

connected to an infinite-size main memory. Both cache and main

memory are divided into blocks (cachelines) of size 𝐵, so there are

𝑀/𝐵 cachelines in the cache. The CPU can only access the memory

on blocks resident in the cache and it is free of charge. We assume

an optimal offline cache replacement policy to transfer the data

between the cache and the main memory, and a unit cost for each

cacheline load and evict. The I/O cost of an algorithm is the total

cost to execute this algorithm on this model.

We say that a sorting/semisorting algorithm is stable if the

output preserves the relative order among equal keys from the

input order, and otherwise we say that the algorithm is unstable.

We say an algorithm is race-free when no two concurrent op-

erations in the algorithm can access the same memory access and

at least one of them is a write [25]. A race-free algorithm is (inter-

nally) deterministic [15], and has many advantages including ease

Input:

𝐴 [1..𝑛] input array of records in universe𝑈

𝐾 key type of records

key (·) key : 𝑈 ↦→ 𝐾 extracts the key of a record

=𝐾 (or =) equality test on keys

<𝐾 (or <) less-than test on keys

ℎ (·) user hash function; ℎ : 𝐾 ↦→ [0, 𝑛^]
Tunable Parameters:

𝑙 subarray size

𝛼 base case threshold

𝑛𝐿 = 2
𝑏

number of light buckets

Other notations used in the algorithm and description:

𝑛′ problem size of the current recursion

𝑆 the set of samples. |𝑆 | = 𝑛𝐿 log𝑛
𝑛𝐻 number of heavy buckets, 𝑛𝐻 = 𝑂 (𝑛𝐿)
𝐻 heavy table; Maps heavy keys to bucket ids

𝐶 counting matrix

𝑋 (column-major) prefix sum of𝐶

Table 1: Notations and parameters used in our algorithms.

of reasoning about the code, verifying correctness, debugging, and

analyzing the performance. In our algorithms, all operations in the

algorithm are deterministic once we fix the random seed.

We use𝑂 (𝑓 (𝑛)) with high probability (whp) in𝑛 tomean𝑂 (𝑐 𝑓 (𝑛))
with probability at least 1 − 𝑛−𝑐 for 𝑐 ≥ 1.

2.3 The GSSB Semisort Algorithm

We first review the existing GSSB semisort algorithm [45]. As men-

tioned, the practical performance of GSSB is limited due to its

excessive random memory accesses and restrictive interface. Our

algorithm builds on the strengths of the GSSB, while overcoming

the aforementioned limitations. The GSSB algorithm assumes the

input as a sequence of hashed keys in range [0, . . . , 𝑛^] for some

constant ^ ≥ 1, and semisorts the hashed keys.

Sampling and Bucketing. This is a key technique in GSSB to

handle heavily duplicate keys. GSSB first selects a sequence 𝑆 of

samples from the input sequence𝐴with sample rate 𝑝 = 𝑂 (1/log𝑛).
The samples will be used to give an initial partition of the records

into buckets, such that the same key always goes to the same bucket.

Based on the samples, the keys are divided into heavy keys and
light keys otherwise. We call the records with heavy (light) keys

the heavy (light) records. The theory behind this idea is that if

sufficient (Ω(log𝑛)) samples for a key 𝑘 can be obtained, one can

estimate the frequency of 𝑘 (relatively) accurately. We call them

the heavy keys or heavy records. Let 𝑛𝐻 be the number of heavy

keys identified by the samples. The algorithm will construct 𝑛𝐻
heavy buckets, each for an individual heavy key. Meanwhile, a key

𝑘 with few (𝑜 (log𝑛)) samples are unlikely to appear many times

in the input, and we call them light keys or light records. The
light records are grouped into 𝑛𝐿 = Θ(𝑛/log2 𝑛) light buckets by
using the hashed value to randomly map to one of the 𝑛𝐿 buck-

ets. Our new algorithm will also use a similar technique to detect

heavy (duplicate) keys, but with different parameters for better

performance.

Size Estimation and Scattering. For a bucket with 𝑠 samples,

GSSB uses a size estimation function 𝑓 (𝑠) to upper bound bucket

size whp. The algorithm will allocate an array of size (1+𝜖) 𝑓 (𝑠) for
this bucket for some constant 𝜖 > 0. Then each record is scattered to

3

a random position in the corresponding bucket. This is performed

by using compare_and_swap, which atomically puts the record into

the position, and re-picking another position using linear probing

upon collisions or conflicts. Our new algorithms do not use this

approach.

Local Sort and Pack. After scattering, all the heavy keys are col-

lected in individual heavy buckets. Each light bucket can contain

more than one light key type. The records in a bucket may not be

contiguous due to the random scattering. GSSB then uses a radix

sort (on the hashed keys) to refine light buckets (comparison sort

is used in practice) and make them contiguous. A packing step is

needed for heavy buckets to put records in contiguous slots. Our

new algorithm also uses different approaches in this step.

The main performance issue in GSSB is the random access in the

scatter phase—each record is assigned to a random location, and

has to retry if necessary. GSSB hence needs 𝑂 (𝑛) random writes

for the scattering phase, which is I/O-inefficient. This also requires

slightly more space (and thus memory footprint) since we need

to ensure a load factor 𝑐 < 1. We will show how to overcome this

issue, as well as to make our new algorithms stable and race-free

in Sec. 3.

Another major issue of GSSB is its interface. GSSB assumes a

collision-free hash function ℎ : 𝐾 ↦→ [1, . . . , 𝑛^] that maps arbi-

trary key types to random integers (hashed keys), and the algorithm

(and implementation) directly semisort the hashed keys, which are

random integers. When using more realistic and practical hash func-

tions with possible collisions, one has to perform preprocessing

and postprocessing to deal with collisions. While such pre/postpro-

cessing do not asymptotically increase the cost of the algorithm in

theory, they can in practice incur significant time overheads com-

parable to semisort itself (𝑂 (𝑛)), and therefore make using semisort

in applications prohibitively costly, relative to sorting.

3 Our New Algorithms

In this section, we present our algorithms for semisort and related

problems. We present the useful notations in Tab. 1. For simplicity,

we first focus on semisort and then explain how to modify it to

adapt to histogram and collect-reduce in Sec. 3.5.

Our semisort algorithm follows the same framework as GSSB,

but employs novel techniques to improve the performance for all
the steps. Our new algorithm is I/O-friendly, stable, and race-

free. In contrast to GSSB, we do not require pre-hashing the keys.

Our algorithm directly handles input records of any type, and ex-

tracts the hashed keys by applying the user hash function in the

algorithm when needed. This generality in the interface also im-

proves efficiency both in time and space—it avoids the pre- and

post-processing, as well as the hash table to pre-hash keys and

resolve collisions, which can incur another 𝑂 (𝑛) random reads

and 𝑂 (𝑛) extra space. Our algorithm is stable—all records with the

same key will be kept in the same order in the output. This fea-

ture is useful for collect-reduce and histogram and increases their

generality, as discussed in Sec. 3.5. Our algorithm is also race-free,
which means no concurrent writes are needed to any shared mem-

ory position. This also makes our algorithms simple, practical, and

internally-deterministic (i.e., the output does not depend on runtime

scheduler).

Algorithm 1: The Semisort Algorithm

Input: The input array 𝐴, a user hash function ℎ, and a comparison

function comp (= or <). The original (top-level) input size is

𝑛, and the current subproblem size is 𝑛′.
Output: The semisort result in 𝐴 (in-place)

Parameters :𝑛𝐿 = 2
𝑏
: number of light buckets.

𝛼 : base case threshold.

𝑙 : subarray size.

1 if |𝐴 | < 𝛼 then return BaseCase(𝐴,ℎ, comp) // Base cases

Sampling and Bucketing:
2 𝑆 ← 𝑛𝐿 log𝑛

′
sampled keys from 𝐴

3 Count the occurrences of each key in 𝑆

4 Initialize the heavy table 𝐻

5 𝑖𝑑 ← 𝑛𝐿

// This for-loop can also be performed in parallel theoretically
6 for each distinct key 𝑘 ∈ 𝑆 do

7 if the occurrences of 𝑘 in 𝑆 is at least log𝑛 then

8 𝐻.insert(𝑘, 𝑖𝑑) // Assign bucket id 𝑖 to heavy key 𝑘
9 𝑖𝑑 ← 𝑖𝑑 + 1

10 𝑛𝐻 ← number of distinct keys in 𝐻

Blocked Distributing:
11 Initializing matrix𝐶 [] [] with size (𝑛𝐿 + 𝑛𝐻) × (𝑛′/𝑙)
12 parallel_for 𝑖 : 0 ≤ 𝑖 < 𝑛′/𝑙 do // For each subarray
13 for 𝑗 : 𝑖 · 𝑙 ≤ 𝑗 < (𝑖 + 1) · 𝑙 do
14 𝑖𝑑 ← GetBucketId(key (𝐴 [𝑗]), 𝐻,ℎ,𝑛𝐿)

//𝐶 [𝑖] [𝑖𝑑]: #records falling into bucket 𝑖𝑑 in subarray 𝑖
𝐶 [𝑖] [𝑖𝑑] ← 𝐶 [𝑖] [𝑖𝑑] + 1

15 Initialize𝑇 of size 𝑛′

// 𝑋 [𝑖] [𝑗]: offset in𝑇 for record in subarray 𝑖 going to bucket 𝑗
Compute 𝑋 [𝑖] [𝑗] ← ∑

𝑗′< 𝑗 or (𝑗′=𝑗,𝑖′<𝑖) 𝐶 [𝑖′] [𝑗 ′]
16 parallel_for 𝑖 : 0 ≤ 𝑖 ≤ 𝑛𝐿 + 𝑛𝐻 do

17 offsets [𝑖] ← 𝑋 [𝑖] [0]
18 parallel_for 𝑖 : 0 ≤ 𝑖 < 𝑛′/𝑙 do // For each subarray
19 for 𝑗 : 𝑖 · 𝑙 ≤ 𝑗 < (𝑖 + 1) · 𝑙 do
20 𝑖𝑑 ← GetBucketId(key (𝐴 [𝑗]), 𝐻,ℎ,𝑛𝐿)
21 𝑇 [𝑋 [𝑖] [𝑖𝑑]] ← 𝐴 [𝑗]
22 𝑋 [𝑖] [𝑖𝑑] ← 𝑋 [𝑖] [𝑖𝑑] + 1
23 𝐴← 𝑇 // Avoided in implementation, see Sec. 3.4

Local Refining:
24 parallel_for 𝑖 : 0 ≤ 𝑖 < 𝑛𝐿 do // Only for light buckets
25 Semisort(𝐴 [offsets [𝑖] ..offsets [𝑖 + 1]], ℎ, comp)
26 return 𝐴

27 Function GetBucketId(𝑘,𝐻,ℎ,𝑛𝐿)
28 if 𝑘 is found in 𝐻 then return the heavy id of 𝑘 in 𝐻

29 else return ℎ (𝑘) mod 𝑛𝐿 // ℎ (·) is the hash function

We start by overviewing the high-level idea, and then present

more details in Sec. 3.1 to 3.3. We discuss how to support histogram

and collect-reduce in Sec. 3.5. In Sec. 3.6, we present the theoretical

analysis of our algorithm, and discuss the choices of parameters in

theory and in practice. Finally, we discuss the improvements of our

algorithms over GSSB in Sec. 4.1, and the comparison to existing

sorting algorithms in Sec. 4.2.

(1) Sampling and Bucketing. First, the algorithm performs sam-

pling to find the heavy keys. Similar to GSSB, each heavy key

uses an individual bucket, andmultiple light keys share a bucket.

However, we pick a smaller number of buckets for a better over-

4

Sampled? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Input 𝑨 3 3 2 6 4 5 1 3 2 6 2 5 3 2 5 2

Input 𝑨 3 3 2 6 4 5 1 3 2 6 2 5 3 2 5 2
Bucket id 3 3 2 0 0 1 1 3 2 0 2 1 3 2 1 2

Subarray 0 Subarray 1 Subarray 2 Subarray 3

Bucket 0 (light): last bit=0
Bucket 1 (light): last bit=1

Bucket 2 (heavy): key=2
Bucket 3 (heavy): key=3

Step1: Sample and Bucketing. Take samples to decide heavy keys.

Count Buckets
Array 𝑪 0 1 2 3

Subarray 0 1 0 1 2
Subarray 1 1 2 0 1
Subarray 2 1 1 2 0
Subarray 3 0 1 2 1

Prefix Buckets
Array 𝑿 0 1 2 3

Subarray 0 0 3 7 12
Subarray 1 1 3 8 14
Subarray 2 2 5 8 15
Subarray 3 3 6 10 15

Step2: Blocked Distributing. Compute arrays C and 𝑋. 𝐶!" =
#records in subarray i falling into bucket 𝑗. 𝑋!" = the (column-major)
prefix-sum up to 𝐶!" (exclusive). Work on all subarrays in parallel. ⇒ 𝑇[0. . 2] : Bucket 0

𝑇 3. . 6 : Bucket 1
𝑇 7. . 11 : Bucket 2
𝑇 12. . 15 : Bucket 3

Implies the exact size
of each bucket:

(𝑋 computes the prefix sum of 𝐶 by column-major)

Step3: Local Refining. Semisort all light buckets in parallel.

E.g., 𝐴 0 = 3 is in subarray 0 and bucket 3, it will go to
index 𝑋#,% = 12 in 𝑇 Array 𝑻 6 4 6 5 1 5 5 2 2 2 2 2 3 3 3 3

Output 4 6 6 1 5 5 5 2 2 2 2 2 3 3 3 3

Samples:
×32
×33

×15
×16

Heavy keys: 2 3

Reorder by
bucket id

Figure 2: Our algorithm with a running example.We consider an input with 𝑛 = 16 records with keys given. |𝑆 | = 8 samples are taken, and keys with

more than 2 samples are heavy keys. 𝑛𝐿 = 𝑛𝐻 = 2 in this example. We have 𝑙 = 4 subarrays each with 4 records. We compute the counting matrix𝐶 and

prefix array 𝑋 as shown, and records can be distributed accordingly. Finally the local refining step recursively solves the 2 light buckets.

all memory-access pattern (see discussions in Sec. 4.1).

(2) Blocked Distributing. Next, it counts the exact number of

records in each bucket. Given the bucket sizes, the algorithm

distributes input records to their associated buckets in an I/O-
friendly manner. By performing exact counting, the temporary

arrays used are only of size𝑛, and no parallel hash tables are nec-

essary (as in GSSB). This distribution step makes the algorithm

stable and race-free.

(3) Local Refining. After Step 2, the heavy keys are at their final

positions in the heavy buckets. For light buckets, unlike GSSB,

our algorithm recursively semisorts them until the recursive

input size is small enough (i.e., fitting in cache), at which point

the keys are semisorted sequentially. This approach allows the

algorithm to detect “medium-level” heavy keys in subsequent

recursive rounds and also reduce the total number of I/Os.

The pseudocode of our algorithm is given in Alg. 1, and a running

example is given in Fig. 2. Next, we introduce the details of each

step and explain why our decisions improve the performance of

our algorithm. Since our algorithm uses recursive calls, we use 𝑛 as

the input size of the original (top-level) problem, and use 𝑛′ as the
current subproblem size in the recursive call.

3.1 Step 1: Sampling and Bucketing
The goal of the sampling and bucketing step is similar to GSSB—we

want to identify heavy and light keys, which decides the bucket id

for each record. Instead of having 𝑂 (𝑛/log2 𝑛) light buckets as in
GSSB, we use the number of heavy and light buckets (𝑛𝐻 and 𝑛𝐿)

as parameters. We use 𝑛𝐿 as a tunable parameter, and set the upper

bound of 𝑛𝐻 accordingly as 𝑂 (𝑛𝐿). We will later discuss in Sec. 3.6

about how to pick 𝑛𝐿 to achieve the best practical performance.

To determine heavy keys, we take a sequence of samples 𝑆 of size

Θ(𝑛𝐿 log𝑛) by selecting each record uniformly at random (Lines 2–

10 in Alg. 1). The light keys are keys appearing fewer than log𝑛

times, which indicates that their actual number of occurrences

is small. We group multiple light keys into one bucket based on

the hash keys. We create 𝑛𝐿 light buckets by evenly partitioning

the range of hashed keys (given by the user hash function) into 𝑛𝐿

buckets. For simplicity, we use 𝑛𝐿 = 2
𝑏
as a power of 2, and the light

bucket id of a key 𝑘 is obtained by taking the last (least significant)

𝑏 bits in the hash value of 𝑘 , i.e., the bucket id is (ℎ(𝑘)mod𝑛𝐿).
The heavy keys are those appearing at least log𝑛 times in the

samples; as in the analysis of GSSB, their actual number of occur-

rences is large whp. Given the sample size |𝑆 | = Θ(𝑛𝐿 log𝑛), the
number of heavy keys 𝑛𝐻 = 𝑂 (𝑛𝐿). We will create 𝑛𝐻 buckets with

ids in [𝑛𝐿, 𝑛𝐿 + 𝑛𝐻) (the first 𝑛𝐿 buckets are for the light keys). We

use a sequential hash table 𝐻 to store all heavy keys associated

with their bucket ids, referred to as the heavy table, so that the later
steps can look up whether a key is heavy in constant work.

3.2 Step 2: Blocked Distributing

Unlike GSSB, which uses a scattering step to place records to random
positions in the buckets, our algorithm uses a more I/O-friendly

and space-efficient approach. The goal of this step is to count the

exact number of records in each bucket, and distribute all records

to the associated buckets into contiguous slots. Since we have the

exact count, we only need an array 𝑇 of size 𝑛 for all the buckets,

making our algorithm space-efficient. This distribution step makes

our algorithm stable and race-free.

Our idea is inspired by recent sorting algorithms [10, 18, 54, 57].

We first partition the sequence evenly into 𝑛′/𝑙 subarrays, each
with 𝑙 records (recall that 𝑛′ is the current subproblem size). We

then process all the subarrays in parallel (Line 12), but sequentially

within each individual subarray (Line 13). We count the number of

records in each bucket in a (𝑛′/𝑙) × (𝑛𝐿 + 𝑛𝐻) matrix 𝐶 , which is

referred to as the counting matrix. In particular, 𝐶𝑖 𝑗 is the number

of records in subarray 𝑖 falling into bucket 𝑗 . To do this, within

each subarray 𝑖 , our algorithm determines which bucket each key 𝑘

belongs to using the GetBucketId function (Line 27). This function

first looks up the heavy table 𝐻 to check if 𝑘 is a heavy key, and if

so, it obtains the bucket id 𝑗 from 𝐻 . Otherwise, the bucket id of a

light key 𝑘 is simply given by 𝑗 = ℎ(𝑘)mod𝑛𝐿 . We then increment

the corresponding cell in 𝐶𝑖 𝑗 by one (Line 14).

We then distribute all records in the input to their corresponding

buckets, using the information in𝐶 . To do so, we compute the offset

per subarray per bucket as a prefix array 𝑋 that has the same size

as𝐶 . Array𝑋 can be computed using the prefix sum of𝐶 , but in the

column-major order (Line 15, see an illustration in Fig. 2). After the

prefix array 𝑋 is computed, we once again process each subarray

and move each record to its corresponding bucket (Line 18–22) in

the temporary array 𝑇 . This step takes 𝑂 (1) work per record—we

use𝑂 (1) work to decide which bucket a record is in, and after that,

we move the record and increment the offset counter in 𝑋 .

5

We noticed that when picking the appropriate parameters, our

approach is much faster than the corresponding step in GSSB in

practice, mainly due to smaller memory footprint and fewer mem-

ory accesses. We will later show the analysis in Sec. 3.6.

3.3 Step 3: Local Refining
After the previous step, we have all heavy keys stored contiguously

in their corresponding heavy buckets, which are also their final

positions in 𝑇 . Light keys are still unsorted. We work on each light

bucket in parallel by recursively semisorting each of them. We

stop recursing and switch to the base case when the bucket size is

small enough and fits in cache, which is decided by the parameter 𝛼

(Line 1). For our experiments with input sizes ranging from 10
8
–10

9
,

we typically need one more level of recursion before reaching the

base case, if most of the keys are light keys. Since the base-case

size fits in cache, the time to semisort the base cases is small. We

provide two solutions for the base cases: semisort= and semisort< .

semisort=. In the base case, semisort= uses a sequential hash table

with chaining. We first build a hash table of size (1 + 𝜖)𝑛′ for some

constant 𝜖 > 0. Then, we iterate over all keys and insert each key to

the hash table with separate chaining. Finally, all records are packed

to the output by looping over the hash table in order. Chaining

allows the algorithm to maintain the order of the original input for

records with the same key, and thus our algorithm is stable. Since

each base case is small, the hash table can be maintained locally by

each thread.

semisort< . In the base case, semisort< uses a standard comparison

sort. By using a stable comparison sort, we can also guarantee the

stableness of our semisort.

3.4 In-place Optimization

Before the recursive call in Alg. 1, we copy the temporary array

𝑇 back to 𝐴 (Line 23). This copy accesses the whole arrays 𝐴 and

𝑇 , which is expensive in practice. We note that we can save this

copying by swapping the two arrays 𝐴 and 𝑇 in the recursive call.

Namely, we skip Line 23 and in Line 25 we sort the light buckets in

𝑇 , and use the corresponding part in𝐴 as the other array to take the

output. For the base cases and the heavy buckets, if they happen

to reside in 𝑇 , we copy them back to 𝐴. By doing this, we avoid

the copying in Line 23. This reuses the auxiliary array 𝑇 and also

avoids allocating new memory in every recursive level. Since in

most cases the recursion will reach the base case in two levels, the

entire algorithm copies the data twice per record, first from 𝐴 to 𝑇 ,

and then from 𝑇 back to 𝐴.

Here we use “in-place” to indicate that the input and output of

semisort are in the same array. Our algorithm still uses 𝑂 (𝑛) extra
space. We will discuss how to reduce space usage in Sec. 6.

3.5 Supporting Histogram and Collect-Reduce

Using our semisort algorithm, the histogram and collect-reduce

primitives can be supported with minor modifications. Here we

will elaborate on collect-reduce since histogram can be considered

as collect-reduce with values always equal to 1 for all records.

We still use the Sampling and Bucketing step to determine the

heavy keys. Then in the Blocked Distributing step, it is unneces-

sary to distribute the heavy keys to their corresponding buckets.

Instead, we first directly compute the reduced values (or counts for

histogram) for the heavy records in each subarray (all the subar-

rays can be processed in parallel), and then reduce the results of all

subarrays. In the base-case of the Local Refining step, we use the

version based on hash tables. When any duplication is identified,

we directly combine their values instead of chaining. Since the

algorithm is stable, it works on any associative reduce functions

(in particular, there is no need to be commutative).

Generally speaking, histogram and collect-reduce can be signifi-

cantly faster than semisort when there are many heavy duplicate

keys, as we do not need to distribute the heavy records and only

need to distribute the “locally reduced value” for each heavy key

in each subarray. When no or few duplicate keys are in the in-

put, histogram and collect-reduce can perform slightly slower than

semisort. This is because they perform almost identical computa-

tions as semisort to reorder records, but need an extra step to pack

the keys and reduced values into the output.

3.6 Analysis and Parameter Choosing

Our new semisort algorithm has three parameters: 𝑙 (subarray size),

𝑛𝐿 (light bucket number), and 𝛼 (base case size). Other parameters

(e.g., the number of heavy buckets 𝑛𝐻) are set accordingly. The

values of 𝑙 and 𝑛𝐿 are fixed for all levels of recursions. To ensure

the space usage is 𝑂 (𝑛), we will assume 𝑛𝐿 ≤ 𝑙 since the sizes of
matrices 𝐶 and 𝑋 has size Θ(𝑛𝐿 · 𝑛/𝑙). We also assume the sample

set size |𝑆 | = 𝑛𝐿 log𝑛 = 𝑂 (𝑛). In the following, we will use 𝑛 as the

original problem size, and use 𝑛′ as the current size of the recursion.
We will analyze the cost bounds and show that our semisort

algorithm is efficient under reasonable assumptions of modern multi-

core architecture. Then we will show how to select the parameters

in practice for the best practical performance.

Theoretical Analysis. We start with analyzing the number of

recursion levels in our algorithm.

Lemma 3.1. The number of recursion levels is𝑂 (log𝑛𝐿 (𝑛/𝛼)) whp
for both semisort= and semisort< .

Proof. From the same analysis from GSSB [45], the number of

records in each light bucket is 𝑂 (𝑛/𝑛𝐿) whp. Therefore, the light
bucket size shrinks by a factor of Θ(𝑛𝐿) whp in each level of recur-

sion, and the number of recursive levels is𝑂 (log𝑛𝐿 (𝑛/𝛼)) whp. □
For simplicity in stating the bounds, we use 𝒓 = 𝑂 (log𝑛𝐿 (𝑛/𝛼))

to denote the number of recursion levels. We start with the work

of the algorithms and present the result in Thm. 3.2.

Theorem 3.2. The work of semisort= is 𝑂 (𝑟𝑛) whp. The work of
semisort< is 𝑂 (𝑟𝑛 + 𝑛 log𝛼) whp.
Proof. We first show the work analysis for semisort=. We start

with considering the top level of recursion. As assumed above, the

number of samples is 𝑂 (𝑛𝐿 log𝑛) = 𝑂 (𝑛), and thus the Sampling
and Bucketing step has 𝑂 (𝑛) work. In the Blocked Distributing step,

it takes 𝑂 (1) work per record to find the bucket it belongs to. As

mentioned above, we assume 𝑛𝐿 ≤ 𝑙 so that the counting matrix 𝐶

and prefix array 𝑋 have sizes 𝑂 (𝑛), and computing prefix sum also

has 𝑂 (𝑛) work. The step to distribute the records to array 𝑇 (lines

18–22) is also 𝑂 (𝑛) since each record is processed once. For each

recursion level, this argument is still true, and the work of all the

subproblems in one level adds up to 𝑂 (𝑛). Assuming 𝑟 recursion

levels, the work before entering the base cases is 𝑂 (𝑛) for both
6

semisort= and semisort< . For semisort=, the work of each base

case is 𝑂 (𝑛′), which gives 𝑂 (𝑛) total work for all base cases. For

semisort< , the work of each base case is𝑂 (𝑛′ log𝑛′), where 𝑛′ can
be at most 𝛼 . Therefore the total base-case work is 𝑂 (𝑛 log𝛼) for
semisort< . Combining the results gives the bounds in Thm. 3.2. □

Although semisort< has a higher work, the overhead is caused

by the comparison sort in base cases. However, the base cases fit

in cache and are highly-optimized. In the experiments semisort<

shows as good performance as semisort= in most cases.

We then analyze the span of semisort= and semisort< , and show

that they are highly parallel.

Theorem 3.3. The span of semisort= is𝑂 ((𝑙 +𝑛𝐿 log𝑛)𝑟 +𝛼) whp.
The span of semisort< is 𝑂 ((𝑙 + 𝑛𝐿 log𝑛)𝑟 + log𝑛) whp.
Proof. The Sampling and Bucketing step is executed sequentially

with 𝑂 (𝑛𝐿 log𝑛) span. We note that this step can be easily paral-

lelized [45], but our implementation still performs it sequentially,

since it is cheap anyway. For the distributing step, we have two

sequential for-loops (Lines 13 and 19), leading to 𝑂 (𝑙) span. Com-

puting the prefix sum (𝑋 from 𝐶) has 𝑂 (log𝑛) span. In total, the

span of one recursive level is 𝑂 (𝑙 + 𝑛𝐿 log𝑛). Hence, considering
𝑟 recursive levels, both algorithms have 𝑂 ((𝑙 + 𝑛𝐿 log𝑛)𝑟) span
before the base cases. semisort= uses sequential hash tables in base

cases, which leads to 𝑂 (𝛼) span. semisort< uses a comparison sort

in base case, which can achieve 𝑂 (log𝑛) span whp in theory [17]

(our implementation coarsens the base case by using a sequential

sort, since the base case size is small). Combining the results above

gives the bounds in Thm. 3.3. □

Considering both work and span, the parallelism (defined by

the ratio between work and span) for both algorithms is roughly

Θ(𝑛/𝑙) (in practice we choose 𝑙 much larger than 𝑛𝐿 and 𝛼). Given

the number of processors 𝑃 in a machine, our semisort algorithm

achieves sufficient parallelism if we can set 𝑛/𝑙 = Ω(𝑃).
We analyze the I/O bound of the algorithms with our choices

of parameters to make the bound optimal (𝑂 (𝑛/𝐵)). We make the

assumption that𝑀/𝐵 = Ω(𝑛1/2) (recall that𝑀 and 𝐵 are cache size

and cacheline size, respectively). For reasonable values of 𝑛 ≤ 10
12
,

this assumption is true for both commodity machines (e.g., laptops)

as well as more powerful servers. We present our results in Thm. 3.4.

Theorem 3.4. Assume 𝑀/𝐵 = Ω(𝑛1/2), using parameters 𝑛𝐿 =

Θ(𝑛1/4),𝛼 = Θ(𝑛1/2), and 𝑙 = Θ(𝑛3/4), both semisort= and semisort<
have I/O cost of 𝑂 (𝑛/𝐵) whp.
Proof. Given the parameters in the theorem, the number of recur-

sive levels is 𝑟 = 𝑂 (1) whp. Therefore, we only analyze the top-level
recursion. Since the sizes of 𝐶 and 𝑋 are 𝑂 (𝑛𝐿 · (𝑛/𝑙)) = 𝑂 (

√
𝑛) =

𝑂 (𝑀), all memory accesses to arrays 𝐶 and 𝑋 fully fit into cache

except for the first access. When𝑀/𝐵 = Ω(𝑛1/2) and 𝛼 = Θ(𝑛1/2),
we can choose 𝛼 to fit the base cases in cache, such that the base

cases can be solved without using additional main memory ac-

cess after loading the data to the cache. The only cache misses are

when accessing the input array 𝐴 and the buckets 𝑇 . The accesses

to 𝐴 are all serial accesses. For 𝑇 , we are writing serially from

(𝑛𝐻 + 𝑛𝐿) · (𝑛/𝑙) pointers as stored in the 𝑋 matrix. Even when all

the pointers are non-consecutive, only (𝑛𝐻 + 𝑛𝐿) · (𝑛/𝑙) = 𝑂 (𝑛1/2)
cachelines are active at any time, and they all fit in cache. For every

pointer, there is one cache miss every 𝐵 accesses to the array 𝑇 .

Therefore, the total I/O cost to generate𝑇 is𝑂 (𝑛/𝐵). Note that this
analysis is true for both the root level (when input size is 𝑛), as well

as the recursive levels (the total sizes of𝐶 and𝑋 for all subproblems

in the same recursive level are still (𝑛𝐻 + 𝑛𝐿) · 𝑛/𝑙 = 𝑂 (𝑛1/2)). In
summary, both semisort= and semisort< have I/O cost𝑂 (𝑛/𝐵) whp
assuming𝑀/𝐵 = Ω(𝑛1/2), which improves the 𝑂 (𝑛) I/O bound of

GSSB by a factor of 𝑂 (𝐵). The bound is optimal, since loading the

input needs Ω(𝑛/𝐵) I/Os. □

Since I/O-efficiency is one of our main design goals, we use the

parameters in Thm. 3.4 to present the work and span bounds below.

Theorem 3.5. Assume 𝑀/𝐵 = Ω(𝑛1/2), and parameters 𝑛𝐿 =

Θ(𝑛1/4), 𝛼 = Θ(𝑛1/2), and 𝑙 = Θ(𝑛3/4). semisort= has 𝑂 (𝑛) work,
𝑂 (𝑛3/4) span, and 𝑂 (𝑛/𝐵) I/O cost. semisort< has 𝑂 (𝑛 log𝑛) work,
𝑂 (𝑛3/4) span, and 𝑂 (𝑛/𝐵) I/O cost. All bounds are whp in 𝑛.

Parameters in our Implementations. The performance of our

semisort algorithm is reasonably consistent for a large parameter

range. The best parameters of each input instance can be different,

decided by input size, heavy record ratio, etc. In our implementation

and all experiments, we pick 𝑛𝐿 = 2
10
, 𝑙 = 𝑛/5000 (at most 5000

subarrays in all subproblems in one recursive level), and 𝛼 = 2
14
.

These numbers satisfy the conditions in the theoretical analysis

in Thm. 3.5 when 𝑛 = 10
8
to 10

9
. We set the number of samples

|𝑆 | = 500 log𝑛, so we can have at most 𝑛𝐻 = 500 heavy keys. We

set up these parameters to ensure that the matrices 𝐶 and 𝑋 and

the base cases are small enough to fit in the last-level cache for

modern multicore machines.

4 Comparisons with Existing Algorithms

4.1 Improvements over GSSB

In this section, we compare and discuss the improvements of our

algorithm(s) over the existing semisort algorithm GSSB.

Flexible Interface. Recall that GSSB requires hashed keys (inte-

gers) as input, which needs a pre- and post-processing to resolve

collisions. Our algorithm supports arbitrary key types 𝐾 with =𝐾
or <𝐾 , with a user hash function. For integer keys, we provide the

option to use the identity function, resulting in semisort-i= and

semisort-i< , which can be much faster in many cases, although we

note that these versions do not admit as good theoretical bounds.

Our interface also supports histogram and collect-reduce with mi-

nor changes.

Low Space Usage. In the Blocked Distributing step, we compute the

exact counts for the buckets, so when distributing the keys, the total

size of the buckets is 𝑛, instead of Θ(𝑛) as in GSSB (their buckets

need to have a load factor smaller than 1 because of random scatter).

Other than space overhead, GSSB also needs a costly packing step.

I/O-Efficiency. Our algorithm also uses several techniques to en-

able a better memory access pattern. We pick a small number of

buckets (𝑛𝐿 = 2
10
), as opposed to 𝑂 (𝑛/log2 𝑛) of them in GSSB,

such that the counting matrix 𝐶 and its prefix sum 𝑋 in our algo-

rithms fit in cache (recall that we access them in column-major).

As such, the Blocked Distributing step incurs no random accesses

to the main memory.

Stability and Determinism. Due to avoiding using parallel hash

tables, our semisort algorithms (both semisort= and semisort<) are

7

stable and race-free. GSSB is not race-free (due to using parallel

hash tables), and is unstable (heavy keys are in random order), and

thus cannot support non-commutative operations in collect-reduce.

4.2 Relationship to Sample Sort and Integer Sort

Many ideas in our semisort algorithm are closely related to ideas

in sorting algorithms, as we will discuss in this section.

Samplesort. Samplesort is the general idea of using multiple piv-

ots in quicksort; clearly this algorithm can be used to solve the

semisort< problem. The algorithm selects 𝑝 pivots, uses them to

partition the input into 𝑝 + 1 buckets, and sorts all of the buckets

in parallel. We refer the audience to [10] for a detailed literature re-

view on samplesort. We compare to the state-of-the-art samplesorts

from ParlayLib [13] and IPS
4
o [10] in our experiments.

Similar to samplesort, our algorithm also partitions the input

into buckets and processes them in parallel. However, samplesort

is a comparison sort that requires the <𝑘 operation, and has an

Ω(𝑛 log𝑛) lower bound in work, whereas our semisort= algorithm

only requires 𝑂 (𝑛) work. The ParlayLib samplesort [13] uses one

level of partition. IPS
4
o [10] (preliminary version as [59]) also uses a

small number of samples and sort recursively. They use an implicit

search tree (breadth-first traversing the tree that stores the sorted

pivots) to find the bucket for each record, which is not required in

our approach. They also use a smart approach for the distribution

step, and we discuss this in Sec. 6. in a variety of places.

Integer sort. Integer sorting can be used to semisort integer keys

for semisort=, or to semisort the hash value of any key types with an

extra step to resolve collisions. Unlike the sequential radix sort that

starts from the least-significant bits, all parallel integer sort algo-

rithms are top-down and first look at the most-significant bits. We

refer to [57] for a detailed literature review for parallel integer sort.

We compare to the state-of-the-art integer sorts from ParlayLib [13],

RegionsSort [57], and IPS
4
Ra [10] in our experiments.

The major advantage of our semisort algorithm over integer

sorting is that our algorithm can identify heavy keys. Consider a

heavy key 𝑥 and a light key 𝑥 + 1. Our algorithm will put 𝑥 in a

separate heavy bucket, and only deal with 𝑥 + 1 in a light bucket

in the last step. For existing integer sorts [10, 13, 57], both keys

are likely kept in the same bucket for all levels and separated only

in the last round, which can result in significant wasted work and

load imbalance.

5 Experiments

Experimental Setup. We run our experiments on a 96-core ma-

chine (with two-way hyper-threading) with 4 × 2.1 GHz Intel Xeon

Gold 6252 CPUs processors (with 36MB L3 cache) and 1.5TB of main

memory. We implement our algorithms in C++ using ParlayLib [13]

for fork-join parallelism and some parallel primitives. We compile

our code using clang version 14.0.6 with -O3 flag. We always use

numactl -i all to interleave the memory on all CPUs except for

sequential tests. We run each test four times and report the median

of the last three runs. All running times are given in seconds.

Baseline Algorithms. We compare our algorithms to the state-

of-the-art comparison and integer sorting algorithms and collect-

reduce algorithms. We provide the list of the baseline algorithms

we compare our algorithms against in Tab. 2. For fairness and

Name Stable Det. 𝐾 comp Notes

Ours= Yes Yes Any = Our semisort= algorithm

Ours< Yes Yes Any < Our semisort< algorithm

Ours-i= Yes Yes Int = Our integer semisort= algorithm

Ours-i< Yes Yes Int < Our integer semisort< algorithm

Ours⊕ Yes Yes Any = Our collect-reduce algorithm

PLSS Y/N Yes Any < ParlayLib sample sort [13]

PLIS Yes Yes Int < ParlayLib integer sort [13]

IPS
4
o No No Any < IPS

4
o sample sort [10]

IPS
2
Ra No No Int < IPS

2
Ra integer sort [10]

GSSB No No Int = GSSB semisort [45]

RS No No Int < RegionsSort [57]

PLCR Yes Yes Any < Collect-reduce from ParlayLib [13]

Table 2: Algorithms tested in our experiments. “Det.” = determinism.

“𝐾” = key type. “Any” = any input key type. “Int” = only allows for integer

keys. “comp” = required comparison function. PLSS has two implementa-

tions. We use the faster but unstable version in our experiments.

consistency, we require the output to be written to the input array

(i.e., in-place). We note that this is beneficial for PLSS, IPS4o, IPS2Ra,
and RS as they are originally designed for the in-place setting.

Some of the baselines only work for integer types (integer-only),
including PLIS,GSSB, RS, and IPS2Ra. IPS4o and PLSSwork on any

input types (any-type). For the any-type algorithms, semisort< ,

PLSS and IPS4o require the less-than test <𝐾 , while our semisort=

only needs the equality-test =𝐾 . GSSB assumes the input keys are

already hashed and does not resolve collisions, so we also categorize

it as integer-only. Among all implementations, all our algorithms

and PLIS are stable. This also means that they can be applied to

collect-reduce with arbitrary (associative) reduce operations, while

the others also require the reduce operation to be commutative. We

note that there are two versions of samplesort in ParlayLib. The

stable one is slower and the unstable one is faster. Our experiments

use the unstable but faster version. When comparing the average
performance, we always use the geometric mean.
OurAlgorithms.Weuse the two versions of our algorithm semisort<

and semisort= that work on any-type. In tables and figures, we also

use “Ours=” and “Ours<” to refer to them, and use “Ours⊕” to refer
to our collect-reduce implementation. When comparing with the

integer-only implementations, we use simplified versions without

hashing (see Sec. 4.1), and call them semisort-i= and semisort-i<

(or “Ours-i=” and “Ours-i<”), where the hash function is an iden-

tity function. The choices of parameters in our algorithms are in

Sec. 3.6.

Input Distributions. We use three distributions for evaluating

our algorithms: uniform(`), exponential(_), and Zipfian(𝑠). If not
specified, the default setting is 𝑛 = 10

9
with 64-bit keys and 64-bit

values. We also include tests of our algorithm on varying input

sizes and key lengths (Figs. 3b and 4). For uniform distribution,

we test ` = 10
1, 103, 105, 107, 109. For exponential distribution, we

test _ = 1 × 10−5, 2 × 10−5, 5 × 10−5, 7 × 10−5, 1 × 10−4. For Zipfian
distribution, we test 𝑠 = 0.6, 0.8, 1, 1.2, 1.5. We use distribution-
param to denote the input distribution with parameter param (e.g.,

uniform-109). We show relevant statistics of the inputs along with

our results in Tab. 3. We present the number of distinct keys, the

maximum frequency, and the ratio of keys with more than 500 log𝑛

occurrences, which is noted as “Heavy Freq.” in Tab. 3. They are

8

Para- Dist. Max Heavy Any Type Integer Only

meter Keys Freq. Freq. Ours= Ours< PLSS IPS
4
o Ours-i= Ours-i< PLIS GSSB RS IPS

2
Ra

U
n
i
f
o
r
m

10 10 100M 100% 0.675 0.672 1.19 0.876 0.622 0.606 1.81 2.76 1.26 3.84

10
3

1K 1M 100% 0.738 0.736 1.01 0.767 0.695 0.700 1.37 4.09 1.52 1.70

10
5

100K 10K 0% 0.731 0.733 1.38 1.10 0.686 0.688 1.20 2.28 1.45 1.04

10
7

10M 100 0% 1.01 0.891 1.49 1.05 0.970 0.847 1.10 2.48 1.69 1.06

10
9

1B 1 0% 0.999 1.05 1.65 1.10 0.954 1.33 1.10 2.67 1.41 1.15

Avg. - - - 0.819 0.806 1.32 0.969 0.772 0.800 1.29 2.80 1.46 1.52

E
x
p
o
n
e
n
t
i
a
l

1 × 10−4 182K 100K 89.6% 0.724 0.719 1.30 0.974 0.686 0.678 1.88 2.37 1.51 1.07

7 × 10−5 252K 70.0K 85.2% 0.726 0.718 1.32 0.971 0.692 0.682 1.69 2.38 1.46 1.07

5 × 10−5 343K 50.0K 79.3% 0.732 0.720 1.37 1.03 0.692 0.687 1.53 2.38 1.39 1.04

2 × 10−5 789K 20.0K 48.2% 0.763 0.746 1.35 1.20 0.715 0.701 1.21 2.44 1.40 1.11

1 × 10−5 1.47M 10.0K 0.00% 0.815 0.782 1.37 1.18 0.756 0.708 1.13 2.49 1.38 1.11

Avg. - - - 0.751 0.737 1.34 1.06 0.708 0.691 1.46 2.41 1.43 1.08

Z
i
p
fi
a
n

1.5 1.79M 383M 97.7% 0.657 0.642 2.30 1.62 0.614 0.607 2.31 2.49 1.71 6.59

1.2 34.7M 181M 83.6% 0.770 0.746 1.62 1.24 0.672 0.656 1.87 2.41 1.68 3.31

1 210M 46.9M 42.2% 0.909 0.892 1.32 1.09 0.802 0.761 1.38 2.60 1.46 1.74

0.8 525M 3.22M 5.32% 1.00 1.01 1.58 1.09 0.922 0.923 1.13 2.71 1.37 1.11

0.6 756M 100K 0.10% 0.994 1.04 1.65 1.11 0.947 0.983 1.10 2.70 1.35 1.11

Avg. - - - 0.855 0.852 1.67 1.21 0.780 0.772 1.49 2.58 1.51 2.16

Overall Geometric Mean 0.807 0.797 1.44 1.08 0.753 0.753 1.41 2.59 1.46 1.53

Table 3: Running times with different input distribution with 𝒏 = 109, 64-bit keys and 64-bit values. Underlined numbers are the fastest running

time in each distribution-input type instance. “parameter” = distribution parameters (i.e., ` in uniform, _ in exponential, and 𝑠 in zipfian distribution). “Distinct

keys”, “maximum frequency”, and “heavy frequency” are statistics for each test (see details in Sec. 5). The algorithm names are described in Tab. 2. “Avg.”

means geometric mean numbers across multiple tests.

measured for each distribution to indicate skewness of the data. For

the synthetic data, we always set the value type the same as the key

type. For most of the tests, we provide figures on one representative

distribution, and provide more results in the appendix.

5.1 Overall Performance

We present the running time of all tested implementations with

𝑛 = 10
9
64-bit keys with different distributions in Tab. 3, and a

heatmap (normalizing all running times to the fastest on each test)

in Fig. 1. On all but one test, our algorithms are always the best
two implementations. Among any-type algorithms, our semisort=

and semisort< are 1.03–2.47× and 1.04–2.53× faster (respectively)

over the best of the other algorithms. For integer-only algorithms,

our semisort-i= is 1.09–2.78× faster than the other algorithms. Our

semisort-i< is about 20% slower than PLIS in one test, and is up to

2.82× faster than all baselines on all other tests.

Overall, our algorithms are always faster than the baseline algo-

rithms using geometric mean. Note that some of the baselines are

competitive on some individual tests, such as IPS4o on uniform-103

and uniform-109, PLIS on uniform-109 and Zipfian-0.6, and IPS2Ra
on Zipfian-0.6. However, their performance can be unstable over

different distributions. IPS4o is relatively fast on uniform distribu-

tions but performs worse on skewed distributions. We also compute

the geometric means in Tab. 3 and Fig. 1 to compare the perfor-

mance on each distribution. Based on these numbers, semisort= and

semisort< have very close performance (within 5%). All the other

algorithms are at least 30% slower than both of our implementations

on average. We also show relative performance for 32-bit and 128-

bit keys in Figs. 5 and 6. On average, our algorithms are consistently

the fastest. We note that not all comparisons are apple-to-apple

comparisons. PLSS and IPS4o work for general sorting which is

asymptotically harder than semisort. PLIS, RS, and IPS2Ra are for
integer sorting, which is also slightly different than semisorting.

Also, PLIS and all our implementations are stable while others are

not (see Tab. 2).

Interestingly, the integer sort algorithms can be slower than

comparison sorts on 64-bit keys. We tested on 32-bit and 128-bit

keys and show the running time in Figs. 19 to 24 in the appendix.

Unsurprisingly, integer sort algorithms are usually faster than com-

parison sort algorithms on 32-bit keys, and get worse on 128-bit

keys (PLIS is the only integer sort in Tab. 2 that supports 128-bit

keys). On average, our algorithms are still the fastest on 32- and

128-bit keys, and the gap is smaller for 32-bit keys and larger for

128-bit keys.

One advantage of our algorithms is that they can identify heavy

keys and use little further work (no local refining needed) on them.

Thus, the running time of our algorithms decreases withmore heavy

keys (see Tab. 3). Many baseline algorithms also use optimizations

on the heavy keys (e.g., PLSS), and they show a similar trend.

Parallel Scalability. We present the scalability curves using dif-

ferent number of threads in Fig. 3a on one representative distri-

bution (Zipfian-1.2, 𝑛 = 10
9
), and for other distributions in Figs. 7

to 12 in the appendix. All of our semisort algorithms, as well as

PLSS, generally achieve the top-tier (almost linear) speedup, while

other algorithms also scale well with increasing core counts. The

self-speedup of semisort= and semisort< are 50–80×, The speedup
numbers are slightly worse for semisort-i= and semisort-i<(30–50×
speedups), as they save the work for the hashing step but can lead

to unbalanced subproblem partitioning (light buckets).

Input Size Scalability. We test all algorithms on input sizes from

10
7
to 10

9
on different distributions. A representative one (Zipfian-

9

1 2 4 8 24 48 96 96h

Number of hyper-threads (logscale)

1

2

4

8

24

48

96

S
el

f-
sp

ee
du

p
(l

og
sc

al
e)

Ours=

Ours<
Ours-i=
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

(a)

10 20 50 100 200 500 1000

Input size ×106 (logscale)

0.01
0.02

0.1
0.2

1
2

R
un

ni
ng

ti
m

e
(l

og
sc

al
e) Ours=

Ours-i=
Ours<
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

(b)

0.60.81.01.21.5
Distribution Parameter

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
un

ni
ng

ti
m

e

Fewer heavy keysMore heavy keys

Ours⊕
Ours=

PLCR

(c)

Figure 3: (a). Self-speedup of all tested implementations with increasing hyper-thread counts on Zipfian-1.2. 𝑛 = 10
9
. (b). Scalability with

increasing input size (𝑛) of all tested implementations on Zipfian-1.2. (c). Performance of collect-reduce with various Zipfian distributions.

𝑛 = 10
9
. Ours⊕ is our collect-reduce algorithm. Ours= is our semisort= algorithm. PLCR is the collect-reduce in ParlayLib [13]. All three cases are on 64-bit

keys and 64-bit values.

O
urs=

O
urs-

i =
O

urs<

O
urs-

i<
PLSS

PLIS

GSSB RS
IP

S
4 o

IP
S
2 Ra

0

2

4

6

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

x x

32-bit
64-bit
128-bit

Figure 4: Running time of our semisort implementations and other

implementations with different key-lengths on Zipfian-1.2. 𝑛 = 10
9
.

We put crosses on RS and IPS
2
Ra because they do not support 128-bit keys.

1.2 is given in Fig. 3b), and others are given in appendix (Figs. 13

to 18). For very small test cases 𝑛 ≤ 2 × 107, PLSS is the fastest on

certain tests. However, in those cases, the running time is below

0.05s. For 𝑛 ≥ 5×107, our algorithms are consistently faster than all

baselines. These results indicate that our algorithms perform well

on reasonably small size and scale favorably well to large inputs.

Varying Key Lengths. In addition to 64-bit keys, we also tested

32-bit and 128-bit keys for𝑛 = 10
9
. We always set the value to be the

same type as the key. Full results are given in the appendix (Figs. 19

to 24), and the running times on one representative distribution

are shown in Fig. 4 (Zipfian-1.2). Firstly, integer sort algorithms

are sensitive to key lengths. RS and IPS2Ra do not support 128-bit

keys, and PLIS’s performance on 128-bit keys is usually the slowest

based on our testing. On 32-bit keys, integer sort algorithms can

achieve much better (relative) performance than on 64-bit keys.

Also, integer sort algorithms generally perform poorly on highly-

skewed data (see discussion in Sec. 4.2). Other algorithms, including

semisort (ours and GSSB) and comparison sort (PLSS and IPS4o), are
less sensitive to key lengths. Hence, the trends on 32- and 128-bit

are similar to that on 64-bit. Our new algorithms generally perform

well since semisort is simpler than sorting, and we can apply special

optimizations (e.g., for heavy keys). In certain cases when not many

special optimizations can be used (e.g., uniform-109), PLSS and

IPS4o perform similarly to our algorithms.

5.2 Collect-Reduce

We test our collect-reduce algorithm (histogram is a special case

for collect-reduce) and show the results on Zipfian distribution in

Fig. 3c. The full results for other distributions are given in Figs. 25

to 27. Recall that our collect-reduce algorithm is similar to semisort=,

but directly combines values for keys. The values of the heavy keys

are combined in the Blocked Distributing step (no need to distribute),
and the values of the light keys are combined in the Local Refining
step. The only existing parallel implementation of collect-reduce

that we know of is in ParlayLib [13] (PLCR), and we compare with it.

We also show the performance of semisort= as a baseline in Fig. 3c.

The operator that we test for the reduce (on the values) is addition.

We use Zipfian distributions with varying parameters as it smoothly

covers different amounts of skew in the input. First, our collect-

reduce is consistently faster than ParlayLib’s implementation, and

the gap is larger when the distribution is more skewed. Furthermore,

when heavy keys occur more, collect-reduce is significantly faster

than semisort=. This is because we reduce the values for each bucket

in the Blocked Distributing step, and then combine them without

moving them. However, when few heavy keys exist, collect-reduce

incurs more work than semisort, because some additional work is

needed in the Local Refining step to pack the output since some keys

are combined, while in semisort the input size equals to output size

and no packing is needed. In conclusion, when the input is more

skewed (more heavy keys), collect-reduce is faster than semisort=,

and vice versa on more evenly-distributed data (more light keys).

5.3 Applications

We integrate our algorithms into two real-world applications—

graph transposing, where the input is edges, and n-grams, where

the input is strings—to test our algorithm in more realistic set-

tings. Unlike our previous experiments with synthetic distributions

for performance study, here we benchmark these applications on

real-world datasets and derive a more realistic understanding of

semisorting performance in practice.

Graph transposing. Our first application is to transpose a di-

rected graph 𝐺 = (𝑉 , 𝐸), i.e., to generate 𝐺⊺ = (𝑉 , 𝐸⊺), where
𝐸⊺ = {(𝑢, 𝑣) : (𝑣,𝑢) ∈ 𝐸}. This is a widely used primitive in

graph algorithms. For example, parallel algorithms for strongly

connected components [20, 30, 47, 65] require running reachability

10

𝒏 𝒎 𝒏dist 𝒇max 𝒓heavy Ours-i= Ours-i< PLSS IPS
4
o PLIS GSSB RS IPS

2
Ra

LJ [11] 4.85M 69.0M 4.49M 13.9K 62.8K 0.042 0.045 0.075 0.101 0.039 4.56 0.062 s.g.

TW [50] 41.7M 1.47B 35.7M 770K 74.8M 0.714 0.834 1.57 0.814 0.900 t.o. 1.06 2.94

CM [51, 71] 321M 1.61B 320M 17 0 0.791 1.04 1.84 1.10 0.903 3.58 1.09 1.44

SD [55] 89.2M 2.04B 72.8M 2.34M 456M 0.916 1.08 2.10 1.16 1.24 s.g. 1.37 2.82

Overall geometric mean 0.385 0.452 0.821 0.569 0.446 - 0.559 -

Table 4: Running time on graph transposing (in seconds). 𝑛 = number of vertices.𝑚 = number of edges. 𝑛dist = number of distinct keys. 𝑓max =

maximum frequency. 𝑟heavy = ratio of keys with more than 500 log𝑛 occurrences. “t.o.” = did not finish in one minute. “s.g.” = segmentation fault.

𝒏 𝒏dist 𝒇max 𝒓heavy Ours= Ours< PLSS IPS
4
o

2-gram 68.0M 3.12M 2.18M 28.0% 0.312 0.332 0.346 0.753

3-gram 224M 47.5M 319K 4.43% 1.44 1.80 2.00 3.26

Overall geometric mean 0.671 0.772 0.832 1.57

Table 5: Running time on semisorting n-grams [8] (in seconds). 𝑛 =

number of records. 𝑛dist = number of distinct keys. 𝑓max = maximum

frequency. 𝑟heavy = ratio of keys with more than 500 log𝑛 occurrences.

searches both “forwards” and “backwards”. The backward reacha-

bility searches can be performed by running forward reachability

query on𝐺⊺ . In many existing graph libraries, the edges are stored

in the Compressed Sparse Row (CSR) format, where for each vertex

𝑣 , the other endpoints of edges from 𝑣 are stored contiguously. Thus,

transposing the graph is exactly semisorting the CSR input using

the other endpoint. In some existing parallel graph libraries such

as Ligra [64] and GBBS [30], stable comparison sorts are used for

graph transposing to preserve the ordering of the first endpoint.

We evaluate transpose on four real-world directed graphs, soc-

LiveJournal (LJ) [11], twitter (TW) [50], Cosmo50 (CM) [51, 71], and

sd_arc (SD) [55], where the largest input has 2.04 billion directed

edges. For the social networks (LJ, TW) and web graph (SD), the

degree distributions are more skewed. For the 𝑘-NN graph CM, the

degrees are more evenly-distributed. We give more details about

these datasets in Tab. 4. We use the initial CSR versions of these

graphs and use our semisort< and semisort= algorithms to trans-

pose the graphs. We compare with all the baseline algorithms and

show the relative performance in Tab. 4. On all the graphs, the keys

(vertex id) are 32-bit. Since the input data are integers, we use our

integer version (identity hashing function).

Our semisort-i= is the fastest on three graphs (TW, CM, and SD),

and is within 15% slower than the fastest on the other graph (LJ).

Our semisort-i< is competitive, and is within 20% slower than the

fastest on the other graphs. PLIS has relatively good performance on

all graphs; it is the fastest on LJ (the smallest graph) and within 35%

on the others. On the average performance across the four graphs,

semisort-i= is significantly better than the others (1.15–2.13× faster).
semisort-i< and PLIS have similar performance on average (within

1%). They are at least 25% faster than other implementations.

N-Gram. Our second application is to process 𝑛-grams, where an

𝑛-gram is a consecutive sequence of 𝑛 items from a given sequence

(e.g., text or speech). We use the 2-gram and 3-gram datasets from

Wikipedia [8], and clean the data by only keeping alphabetical

characters and converting them to lowercase. Each 𝑛-gram record

consists of 𝑛 consecutive words in the document. We use the first

𝑛 − 1 words of a record as the key, and use the last word as the

value. We note that in our algorithms, we compute the hash val-

ues of the words on the fly. Semisorting 𝑛-grams can be used to

identify all possible words after a given context, and to provide

recommendations for text inputs, and to learn the pattern of the

input sequences. Our results are shown in Tab. 5. On both 2-gram

and 3-gram, our semisort= is the fastest, while semisort< (within

25% slower) is competitive. The average performance of semisort=

is 15% faster than semisort< , 24% faster than PLSS, and 2.3× faster

than IPS4o.

6 Conclusions and Future Work

In this paper, we designed flexible and high-performance algorithms

for semisort and related problems. We presented two implementa-

tions, semisort= (only the equality-test is required), and semisort<

(the less-than-test is also available). Compared to previous semisort

algorithms, our new algorithms yield improvements in terms of

space-efficiency and I/O-friendliness, ensure stability and deter-

minism, and importantly, increase the flexibility of the interface.

On different input distributions, input sizes and key lengths, our

implementations achieve high performance, and outperform exist-

ing sorting and semisorting algorithms in most of the tests. For

example, on 10
9
64-bit keys, on all the tested distributions, (one of)

our algorithms are always the fastest among all tested algorithms,

and the other one always performs similarly.

Based on our experiments, in-place versions of the sorting algo-

rithms (e.g., IPS4o) are competitive and sometimes more efficient

than the non-in-place versions (e.g., PLSS). The good performance

for the in-place algorithms is due to the I/O savings in the distribut-

ing step—they use the same array for both the input and the buckets

(𝐴 and 𝑇 in Alg. 1). We note that the new techniques proposed in

this paper are independent of this distribution step. An interesting

future direction is to redesign this step (e.g., borrowing ideas from

IPS4o) to improve the overall performance and reduce the extra

space usage.

Acknowledgement

This work is supported by NSF grants CCF-2103483, IIS-2227669,

NSF CAREER award CCF-2238358, and UCR Regents Faculty Fel-

lowships. We thank anonymous reviewers for the useful feedbacks.

11

References

[1] U. A. Acar, D. Anderson, G. E. Blelloch, and L. Dhulipala. Parallel batch-dynamic

graph connectivity. In ACM Symposium on Parallelism in Algorithms and Archi-
tectures, pages 381–392, 2019.

[2] U. A. Acar, D. Anderson, G. E. Blelloch, L. Dhulipala, and S. Westrick. Paral-

lel batch-dynamic trees via change propagation. In European Symposium on
Algorithms (ESA), 2020.

[3] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related

problems. Commun. ACM, 31(9), 1988.

[4] K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan, J. Sukha, and R. Utterback. Provably

good scheduling for parallel programs that use data structures through implicit

batching. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2014.

[5] Z. Ahmad, R. Chowdhury, R. Das, P. Ganapathi, A. Gregory, and M. M. Javanmard.

Low-span parallel algorithms for the binary-forking model. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 22–34, 2021.

[6] D. Anderson, G. E. Blelloch, and K. Tangwongsan. Work-efficient batch-

incremental minimum spanning trees with applications to the sliding-window

model. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
2020.

[7] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multi-

programmed multiprocessors. Theory of Computing Systems (TOCS), 34(2), Apr
2001.

[8] J. Artiles and S. Sekine. Tagged and cleaned wikipedia (tc wikipedia) and its

ngram. https://nlp.cs.nyu.edu/sekine/, 2008.

[9] M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders. In-place parallel super scalar

samplesort (ipsssso). In European Symposium on Algorithms (ESA), 2017.
[10] M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders. Engineering in-place (shared-

memory) sorting algorithms. ACM Transactions on Parallel Computing (TOPC),
9(1):1–62, 2022.

[11] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in

large social networks: membership, growth, and evolution. In ACM International
Conference on Knowledge Discovery and Data Mining (SIGKDD), pages 44–54,
2006.

[12] N. Ben-David, G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, C. McGuffey,

and J. Shun. Implicit decomposition for write-efficient connectivity algorithms.

In IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018.
[13] G. E. Blelloch, D. Anderson, and L. Dhulipala. Parlaylib — a toolkit for parallel

algorithms on shared-memory multicore machines. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 507–509, 2020.

[14] G. E. Blelloch, L. Dhulipala, P. B. Gibbons, Y. Gu, C. McGuffey, and J. Shun. The

read-only semi-external model. In SIAM Symposium on Algorithmic Principles of
Computer Systems (APOCS), pages 70–84. SIAM, 2021.

[15] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun. Internally deterministic

parallel algorithms can be fast. In ACM Symposium on Principles and Practice of
Parallel Programming (PPOPP), pages 181–192, 2012.

[16] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and H. V. Simhadri. Scheduling

irregular parallel computations on hierarchical caches. In ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 355–366, 2011.

[17] G. E. Blelloch, J. T. Fineman, Y. Gu, and Y. Sun. Optimal parallel algorithms in

the binary-forking model. In ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pages 89–102, 2020.

[18] G. E. Blelloch, P. B. Gibbons, and H. V. Simhadri. Low depth cache-oblivious

algorithms. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2010.

[19] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallel write-efficient algorithms and

data structures for computational geometry. In ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2018.

[20] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Parallelism in randomized incremental

algorithms. J. ACM, 67(5):1–27, 2020.

[21] G. E. Blelloch, Y. Gu, J. Shun, and Y. Sun. Randomized incremental convex hull is

highly parallel. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

[22] G. E. Blelloch, Y. Gu, Y. Sun, and K. Tangwongsan. Parallel shortest paths using

radius stepping. InACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), pages 443–454, 2016.

[23] G. E. Blelloch and M. Reid-Miller. Pipelining with futures. Theory of Computing
Systems (TOCS), 32(3):213–239, 1999.

[24] R. D. Blumofe and C. E. Leiserson. Space-efficient scheduling of multithreaded

computations. SIAM J. on Computing, 27(1), 1998.
[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms

(3rd edition). MIT Press, 2009.

[26] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large

clusters. Commun. ACM, 2008.

[27] L. Dhulipala. Provably Efficient and Scalable Shared-Memory Graph Processing.
PhD thesis, Carnegie Mellon University, 2020.

[28] L. Dhulipala, G. E. Blelloch, and J. Shun. Julienne: A framework for parallel graph

algorithms using work-efficient bucketing. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 293–304, 2017.

[29] L. Dhulipala, G. E. Blelloch, and J. Shun. Low-latency graph streaming using com-

pressed purely-functional trees. In ACM Conference on Programming Language
Design and Implementation (PLDI), pages 918–934, 2019.

[30] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph

algorithms can be fast and scalable. ACM Transactions on Parallel Computing
(TOPC), 8(1):1–70, 2021.

[31] L. Dhulipala, D. Eisenstat, J. Łącki, V. Mirronki, and J. Shi. Hierarchical agglom-

erative graph clustering in poly-logarithmic depth. arXiv preprint:2206.11654,
2022.

[32] L. Dhulipala, C. Hong, and J. Shun. Connectit: a framework for static and

incremental parallel graph connectivity algorithms. Proceedings of the VLDB
Endowment (PVLDB), 14(4):653–667, 2020.

[33] L. Dhulipala, C. McGuffey, H. Kang, Y. Gu, G. E. Blelloch, P. B. Gibbons, and

J. Shun. Semi-asymmetric parallel graph algorithms for NVRAMs. Proceedings of
the VLDB Endowment (PVLDB), 13(9), 2020.

[34] D. Dinh, H. V. Simhadri, and Y. Tang. Extending the nested parallel model to the

nested dataflow model with provably efficient schedulers. In ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pages 49–60, 2016.

[35] T. Do, G. Graefe, and J. Naughton. Efficient sorting, duplicate removal, grouping,

and aggregation. ACM Transactions on Database Systems (TODS), 47(4):1–35,
2023.

[36] X. Dong, Y. Gu, Y. Sun, and Y. Zhang. Efficient stepping algorithms and imple-

mentations for parallel shortest paths. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 184–197, 2021.

[37] X. Dong, L. Wang, Y. Gu, and Y. Sun. Provably fast and space-efficient parallel

biconnectivity. ACMSymposium on Principles and Practice of Parallel Programming
(PPOPP), pages 52–65, 2023.

[38] X. Dong, Y. Wu, Z. Wang, L. Dhulipala, Y. Gu, and Y. Sun. Parallel semisort

and related problems implementations. https://github.com/ucrparlay/Parallel-

Semisort, 2023.

[39] J. Ellert, J. Fischer, and N. Sitchinava. Lcp-aware parallel string sorting. In

European Conference on Parallel Processing (Euro-Par), pages 329–342. Springer,
2020.

[40] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious

algorithms. In IEEE Symposium on Foundations of Computer Science (FOCS), 1999.
[41] M. Goodrich, R. Jacob, and N. Sitchinava. Atomic power in forks: A super-

logarithmic lower bound for implementing butterfly networks in the nonatomic

binary fork-join model. In ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2141–2153. SIAM, 2021.

[42] Y. Gu. Write-Efficient Algorithms. PhD thesis, Carnegie Mellon University, 2018.

[43] Y. Gu, Z. Napier, Y. Sun, and L. Wang. Parallel cover trees and their applications.

In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
259–272, 2022.

[44] Y. Gu, O. Obeya, and J. Shun. Parallel in-place algorithms: Theory and practice. In

SIAM Symposium on Algorithmic Principles of Computer Systems (APOCS), pages
114–128, 2021.

[45] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 24–34,
2015.

[46] T. Henriksen, S. Hellfritzsch, P. Sadayappan, and C. Oancea. Compiling gen-

eralized histograms for gpu. In International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC), pages 1–14. IEEE, 2020.

[47] Y. Ji, H. Liu, and H. H. Huang. ispan: Parallel identification of strongly connected

components with spanning trees. In International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC), pages 731–742. IEEE, 2018.

[48] T. Kaler, T. B. Schardl, B. Xie, C. E. Leiserson, J. Chen, A. Pareja, and G. Kollias.

Parad: A work-efficient parallel algorithm for reverse-mode automatic differ-

entiation. In SIAM Symposium on Algorithmic Principles of Computer Systems
(APOCS), pages 144–158. SIAM, 2021.

[49] H. Kang, P. B. Gibbons, G. E. Blelloch, L. Dhulipala, Y. Gu, and C. McGuffey. The

processing-in-memory model. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 295–306, 2021.

[50] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a social network or a news

media? In International World Wide Web Conference (WWW), pages 591–600,
2010.

[51] Y. Kwon, D. Nunley, J. P. Gardner, M. Balazinska, B. Howe, and S. Loebman.

Scalable clustering algorithm for n-body simulations in a shared-nothing cluster.

In International Conference on Scientific and Statistical Database Management,
pages 132–150. Springer, 2010.

[52] Q. Liu, J. Shi, S. Yu, L. Dhulipala, and J. Shun. Parallel batch-dynamic 𝑘-core

decomposition and related graph problems. ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2022.

[53] Q. C. Liu. Scalable and Efficient Graph Algorithms and Analysis Techniques for
Modern Machines. PhD thesis, Massachusetts Institute of Technology, 2021.

[54] D. Merrill. Cub: A library of warp-wide, block-wide, and device-wide gpu parallel

primitives, 2017.

12

https://nlp.cs.nyu.edu/sekine/
https://github.com/ucrparlay/Parallel-Semisort
https://github.com/ucrparlay/Parallel-Semisort

[55] R. Meusel, O. Lehmberg, C. Bizer, and S. Vigna. Web data commons — hyperlink

graphs. http://webdatacommons.org/hyperlinkgraph, 2014.

[56] I. Müller, P. Sanders, A. Lacurie, W. Lehner, and F. Färber. Cache-efficient ag-

gregation: Hashing is sorting. In ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 1123–1136, 2015.

[57] O. Obeya, E. Kahssay, E. Fan, and J. Shun. Theoretically-efficient and practical

parallel in-place radix sorting. In ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pages 213–224, 2019.

[58] J. Qiu, L. Dhulipala, J. Tang, R. Peng, and C. Wang. Lightne: A lightweight

graph processing system for network embedding. In ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 2281–2289, 2021.

[59] P. Sanders and S. Winkel. Super scalar sample sort. In European Symposium on
Algorithms (ESA), pages 784–796. Springer, 2004.

[60] Z. Shen, Z. Wan, Y. Gu, and Y. Sun. Many sequential iterative algorithms can

be parallel and (nearly) work-efficient. In ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), 2022.

[61] J. Shi, L. Dhulipala, and J. Shun. Parallel clique counting and peeling algorithms.

pages 135–146. SIAM, 2021.

[62] J. Shi and J. Shun. Parallel algorithms for butterfly computations. In SIAM
Symposium on Algorithmic Principles of Computer Systems (APOCS), pages 16–30.
SIAM, 2020.

[63] J. Shun. Practical parallel hypergraph algorithms. In ACM Symposium on Princi-
ples and Practice of Parallel Programming (PPOPP), pages 232–249, 2020.

[64] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing framework

for shared memory. In ACM Symposium on Principles and Practice of Parallel
Programming (PPOPP), pages 135–146, 2013.

[65] G. M. Slota, S. Rajamanickam, and K. Madduri. Bfs and coloring-based parallel

algorithms for strongly connected components and related problems. In IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 550–
559. IEEE, 2014.

[66] Y. Sun. Join-based Parallel Balanced Binary Trees. PhD thesis, Carnegie Mellon

University, 2019.

[67] K. Tangwongsan and S. Tirthapura. Parallel streaming random sampling. In

European Conference on Parallel Processing (Euro-Par), pages 451–465. Springer,
2019.

[68] T. Tseng, L. Dhulipala, and G. Blelloch. Batch-parallel euler tour trees. In

2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 92–106. SIAM, 2019.

[69] L. G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science (Vol. A), pages 943–973. MIT Press,

1990.

[70] Y. Wang, Y. Gu, and J. Shun. Theoretically-efficient and practical parallel dbscan.

In ACM SIGMOD International Conference on Management of Data (SIGMOD),
pages 2555–2571, 2020.

[71] Y. Wang, S. Yu, L. Dhulipala, Y. Gu, and J. Shun. Geograph: A framework for

graph processing on geometric data. ACM SIGOPS Operating Systems Review,
55(1):38–46, 2021.

[72] Y. Wang, S. Yu, Y. Gu, and J. Shun. Fast parallel algorithms for euclidean minimum

spanning tree and hierarchical spatial clustering. In ACM SIGMOD International
Conference on Management of Data (SIGMOD), pages 1982–1995, 2021.

[73] Y. Xu, K. Singer, and I.-T. A. Lee. Parallel determinacy race detection for futures.

In ACM Symposium on Principles and Practice of Parallel Programming (PPOPP),
pages 217–231, 2020.

[74] Y. Xu, A. Zhou, G. Q. Yin, K. Agrawal, I.-T. A. Lee, and T. B. Schardl. Efficient

access history for race detection. In Algorithm Engineering and Experiments
(ALENEX), pages 117–130. SIAM, 2022.

[75] W. Yang, V. Harsh, and E. Solomonik. Optimal round and sample-size complexity

for partitioning in parallel sorting. arXiv preprint:2204.04599, 2022.
[76] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:

Cluster Computing with Working Sets. In USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud), 2010.

13

http://webdatacommons.org/hyperlinkgraph

AVG = Geometric Mean4 >421.51.21.11

Any input type Integer input type
Ours= Ours< PLSS IPS4o Ours-i= Ours-i< PLIS GSSB RS IPS2Ra

U
ni

fo
rm

10 1.00 1.07 2.75 1.28 1.02 1.00 2.30 6.87 1.41 3.53
10! 1.11 1.12 2.03 1.00 1.02 1.00 1.34 7.19 1.65 1.50
10" 1.00 1.08 2.24 1.31 1.00 1.01 1.40 4.20 1.83 1.64
10# 1.08 1.21 1.91 1.00 1.00 1.02 1.05 3.73 1.43 1.17
10$ 1.00 1.27 1.88 1.04 1.00 1.31 1.05 4.02 1.42 1.31
AVG 1.00 1.11 2.07 1.08 1.00 1.05 1.36 4.96 1.53 1.67

Ex
po

ne
nt

ia
l 1 1.00 1.01 2.30 1.17 1.01 1.00 1.64 4.47 1.92 1.58

0.7 1.00 1.02 2.34 1.24 1.02 1.00 1.55 4.48 1.92 1.67
0.5 1.00 1.02 2.28 1.26 1.00 1.00 1.47 4.34 1.90 1.70
0.2 1.00 1.00 2.04 1.29 1.02 1.00 1.37 4.24 1.86 1.54
0.1 1.00 1.04 1.86 1.18 1.01 1.00 1.19 3.77 1.64 1.34

AVG 1.00 1.02 2.16 1.23 1.01 1.00 1.43 4.25 1.84 1.56

Zi
pf

ia
n

1.5 1.00 1.04 4.03 2.48 1.02 1.00 2.81 4.71 2.14 5.78
1.2 1.00 1.03 1.98 1.32 1.00 1.00 1.78 3.90 1.69 2.53
1 1.28 1.35 1.77 1.00 1.00 1.05 1.10 3.33 1.28 1.19

0.8 1.13 1.29 1.84 1.00 1.00 1.20 1.01 3.83 1.37 1.19
0.6 1.00 1.19 1.82 1.00 1.00 1.26 1.03 3.98 1.41 1.26

AVG 1.00 1.09 2.01 1.18 1.00 1.09 1.41 3.91 1.54 1.91
AVG 1.00 1.07 2.08 1.16 1.00 1.04 1.39 4.33 1.63 1.70

Figure 5: Heatmap of the relative performance of all imple-

mentations normalized to the fastest in each test. 𝑛 = 10
9
.

32-bit keys and 32-bit values. The parameters in exponential

distributions are multiplied by 10
4
.

Any input type Integer input type
Ours= Ours< PLSS IPS4o Ours-i= Ours-i< PLIS GSSB

U
ni

fo
rm

10 1.00 1.08 2.18 1.29 1.04 1.00 4.38 3.29
10! 1.00 1.00 1.50 1.01 1.02 1.00 3.22 5.07
10" 1.00 1.00 1.88 1.48 1.00 1.00 3.86 2.90
10# 1.15 1.00 1.57 1.22 1.18 1.00 1.81 2.55
10$ 1.09 1.00 1.47 1.13 1.12 1.00 1.69 2.57
AVG 1.03 1.00 1.67 1.20 1.07 1.00 2.78 3.16

Ex
po

ne
nt

ia
l 1 1.01 1.00 1.72 1.23 1.00 1.00 6.00 2.99

0.7 1.00 1.00 1.76 1.26 1.01 1.00 5.43 3.01
0.5 1.01 1.00 1.81 1.35 1.01 1.00 5.13 2.99
0.2 1.03 1.00 1.85 1.51 1.02 1.00 3.73 3.02
0.1 1.05 1.00 1.85 1.54 1.05 1.00 3.12 3.06

AVG 1.02 1.00 1.80 1.37 1.02 1.00 4.55 3.01

Zi
pf

ia
n

1.5 1.01 1.00 3.86 2.51 1.00 1.00 5.04 3.41
1.2 1.03 1.00 2.50 1.77 1.03 1.00 4.09 3.16
1 1.08 1.00 1.67 1.37 1.09 1.00 2.72 2.93

0.8 1.10 1.00 1.52 1.23 1.11 1.00 1.88 2.63
0.6 1.08 1.00 1.48 1.15 1.13 1.00 1.74 2.57

AVG 1.06 1.00 2.05 1.54 1.07 1.00 2.84 2.92
AVG 1.03 1.00 1.83 1.36 1.05 1.00 3.30 3.03

AVG = Geometric Mean4 >421.51.21.11

Figure 6: Heatmap of the relative performance of all imple-

mentations normalized to the fastest in each test. 𝑛 = 10
9
.

128-bit keys and 128-bit values. The parameters in exponential

distributions are multiplied by 10
4
. RS and IPS

2
Ra do not support

128-bit keys, so we remove them from this heatmap.

14

Self-speedup with Varying Thread Counts (𝑛 = 10
9
, 64-bit keys)

Uniform Distribution

1 2 4 8 24 48 96 96h

Number of hyper-threads (logscale)

1

2

4

8

24

48

96

S
el

f-
sp

ee
du

p
(l

og
sc

al
e) Ours=

Ours<
Ours-i=
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 7: Self-speedup with varying thread counts of all

tested implementations on uniform-103.

1 2 4 8 24 48 96 96h

Number of hyper-threads (logscale)

1

2

4

8

24

48

96

S
el

f-
sp

ee
du

p
(l

og
sc

al
e)

Ours=

Ours<
Ours-i=
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 8: Self-speedup with varying thread counts of all

tested implementations on uniform-107.

Exponential Distribution

1 2 4 8 24 48 96 96h

Number of hyper-threads (logscale)

1

2

4

8

24

48

96

S
el

f-
sp

ee
du

p
(l

og
sc

al
e)

Ours=

Ours<
Ours-i=
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 9: Self-speedup with varying thread counts of all

tested implementations on exponential-.00002.

1 2 4 8 24 48 96 96h

Number of hyper-threads (logscale)

1

2

4

8

24

48

96
S

el
f-

sp
ee

du
p

(l
og

sc
al

e)
Ours=

Ours<
Ours-i=
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 10: Self-speedup with varying thread counts of all

tested implementations on exponential-.00007.

Zipfian Distribution

1 2 4 8 24 48 96 96h

Number of hyper-threads (logscale)

1

2

4

8

24

48

96

S
el

f-
sp

ee
du

p
(l

og
sc

al
e)

Ours=

Ours<
Ours-i=
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 11: Self-speedup with varying thread counts of all

tested implementations on Zipfian-0.8.

1 2 4 8 24 48 96 96h

Number of hyper-threads (logscale)

1

2

4

8

24

48

96

S
el

f-
sp

ee
du

p
(l

og
sc

al
e)

Ours=

Ours<
Ours-i=
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 12: Self-speedup with varying thread counts of all

tested implementations on Zipfian-1.2.
15

Varying Input Sizes (64-bit keys)

Uniform Distribution

10 20 50 100 200 500 1000

Input size ×106 (logscale)

0.01
0.02

0.1
0.2

1
2

R
un

ni
ng

ti
m

e
(l

og
sc

al
e) Ours=

Ours-i=
Ours<
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 13: Scalability with increasing input size (𝑛) of

all tested implementations on uniform-103.

10 20 50 100 200 500 1000

Input size ×106 (logscale)

0.01
0.02

0.1
0.2

1
2

R
un

ni
ng

ti
m

e
(l

og
sc

al
e) Ours=

Ours-i=
Ours<
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 14: Scalability with increasing input size (𝑛) of

all tested implementations on uniform-107.

Exponential Distribution

10 20 50 100 200 500 1000

Input size ×106 (logscale)

0.01
0.02

0.1
0.2

1
2

R
un

ni
ng

ti
m

e
(l

og
sc

al
e) Ours=

Ours-i=
Ours<
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 15: Scalability with increasing input size (𝑛) of

all tested implementations on exponential-.00002.

10 20 50 100 200 500 1000

Input size ×106 (logscale)

0.01
0.02

0.1
0.2

1
2

R
un

ni
ng

ti
m

e
(l

og
sc

al
e) Ours=

Ours-i=
Ours<
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 16: Scalability with increasing input size (𝑛) of

all tested implementations on exponential-.00007.

Zipfian Distribution

10 20 50 100 200 500 1000

Input size ×106 (logscale)

0.01
0.02

0.1
0.2

1
2

R
un

ni
ng

ti
m

e
(l

og
sc

al
e)

Ours=

Ours-i=
Ours<
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 17: Scalability with increasing input size (𝑛) of

all tested implementations on Zipfian-0.8.

10 20 50 100 200 500 1000

Input size ×106 (logscale)

0.01
0.02

0.1
0.2

1
2

R
un

ni
ng

ti
m

e
(l

og
sc

al
e) Ours=

Ours-i=
Ours<
Ours-i<
PLSS

PLIS
GSSB
RS
IPS4o
IPS2Ra

Figure 18: Scalability with increasing input size (𝑛) of

all tested implementations on Zipfian-1.2.

16

Scalability with Varying Key Lengths (𝑛 = 10
9
, 64-bit keys)

Uniform Distribution

O
urs=

O
urs-

i =
O

urs<

O
urs-

i<
PLSS

PLIS

GSSB RS
IP

S
4 o

IP
S
2 Ra

0.0

2.5

5.0

7.5

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

x x

32-bit
64-bit
128-bit

Figure 19: Scalability with different key lengths of all

tested implementations on uniform-103.We put crosses on

RS and IPS
2
Ra because they do not support 128-bit keys.

O
urs=

O
urs-

i =
O

urs<

O
urs-

i<
PLSS

PLIS

GSSB RS
IP

S
4 o

IP
S
2 Ra

0

2

4

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

x x

32-bit
64-bit
128-bit

Figure 20: Scalability with different key lengths of all

tested implementations on uniform-107.We put crosses on

RS and IPS
2
Ra because they do not support 128-bit keys.

Exponential Distribution

O
urs=

O
urs-

i =
O

urs<

O
urs-

i<
PLSS

PLIS

GSSB RS
IP

S
4 o

IP
S
2 Ra

0

2

4

6

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

x x

32-bit
64-bit
128-bit

Figure 21: Scalability with different key lengths of all

tested implementations on exponential-.00002. We put

crosses on RS and IPS
2
Ra because they do not support 128-bit

keys.

O
urs=

O
urs-

i =
O

urs<

O
urs-

i<
PLSS

PLIS

GSSB RS
IP

S
4 o

IP
S
2 Ra

0.0

2.5

5.0

7.5
R

un
ni

ng
T

im
e

(s
ec

on
ds

)

x x

32-bit
64-bit
128-bit

Figure 22: Scalability with different key lengths of all

tested implementations on exponential-.00007. We put

crosses on RS and IPS
2
Ra because they do not support 128-bit

keys.

Zipfian Distribution

O
urs=

O
urs-

i =
O

urs<

O
urs-

i<
PLSS

PLIS

GSSB RS
IP

S
4 o

IP
S
2 Ra

0

2

4

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

x x

32-bit
64-bit
128-bit

Figure 23: Scalability with different key lengths of all

tested implementations on Zipfian-0.8. We put crosses on

RS and IPS
2
Ra because they do not support 128-bit keys.

O
urs=

O
urs-

i =
O

urs<

O
urs-

i<
PLSS

PLIS

GSSB RS
IP

S
4 o

IP
S
2 Ra

0

2

4

6

R
un

ni
ng

T
im

e
(s

ec
on

ds
)

x x

32-bit
64-bit
128-bit

Figure 24: Scalability with different key lengths of all

tested implementations on Zipfian-1.2. We put crosses on

RS and IPS
2
Ra because they do not support 128-bit keys.

17

Performance for Collect-Reduce (𝑛 = 10
9
, 64-bit keys)

Uniform Distribution

10 103 105 107 109

Distribution Parameter

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
un

ni
ng

ti
m

e

More heavy keys Fewer heavy keys

Ours⊕
Ours=

PLCR

Figure 25: Performance comparison between our collect-

reduce (Ours⊕), ParlayLib collect-reduce (PLCR), and

semisort= (Ours=).

Exponential Distribution

0.10.20.50.71
Distribution Parameter

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
un

ni
ng

ti
m

e

Fewer heavy keysMore heavy keys

Ours⊕
Ours=

PLCR

Figure 26: Performance comparison between our collect-

reduce (Ours⊕) , ParlayLib collect-reduce (PLCR), and

semisort= (Ours=). The parameters are multiplied by 10
4
.

Zipfian Distribution

0.60.81.01.21.5
Distribution Parameter

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
un

ni
ng

ti
m

e

Fewer heavy keysMore heavy keys

Ours⊕
Ours=

PLCR

Figure 27: Performance comparison between our collect-

reduce (Ours⊕), ParlayLib collect-reduce (PLCR), and

semisort= (Ours=).

18

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definitions
	2.2 Computational Models and Other Notations
	2.3 The GSSB Semisort Algorithm

	3 Our New Algorithms
	3.1 Step 1: Sampling and Bucketing
	3.2 Step 2: Blocked Distributing
	3.3 Step 3: Local Refining
	3.4 In-place Optimization
	3.5 Supporting Histogram and Collect-Reduce
	3.6 Analysis and Parameter Choosing

	4 Comparisons with Existing Algorithms
	4.1 Improvements over GSSB
	4.2 Relationship to Sample Sort and Integer Sort

	5 Experiments
	5.1 Overall Performance
	5.2 Collect-Reduce
	5.3 Applications

	6 Conclusions and Future Work
	References

