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Abstract—We present a high-performance back-illuminated
three-dimensional stacked single-photon avalanche diode (SPAD),
which is implemented in 45-nm CMOS technology for the first time.
The SPAD is based on a P+ /Deep N-well junction with a circular
shape, for which N-well is intentionally excluded to achieve a wide
depletion region, thus enabling lower tunneling noise and better
timing jitter as well as a higher photon detection efficiency and a
wider spectrum. In order to prevent premature edge breakdown,
a P-type guard ring is formed at the edge of the junction, and it
is optimized to achieve a wider photon-sensitive area. In addition,
metal-1 is used as a light reflector to improve the detection effi-
ciency further in backside illumination. With the optimized 3-D
stacked 45-nm CMOS technology for back-illuminated image sen-
sors, the proposed SPAD achieves a dark count rate of 55.4 cps/µm2

and a photon detection probability of 31.8% at 600 nm and over
5% in the 420–920 nm wavelength range. The jitter is 107.7 ps
full width at half-maximum with negligible exponential diffusion
tail at 2.5 V excess bias voltage at room temperature. To the best
of our knowledge, these are the best results ever reported for any
back-illuminated 3-D stacked SPAD technologies.

Index Terms—Avalanche photodiode (APD), CMOS image sen-
sor, detector, Geiger-mode avalanche photodiode (G-APD), im-
age sensor, integrated optics device, integrated photonics, light
detection and ranging (LiDAR), low light level, optical sen-
sor, photodiode, photomultiplier, photon counting, photon tim-
ing, semiconductor, sensor, silicon, single-photon avalanche diode
(SPAD), single-photon imaging, standard CMOS technology,
three-dimensional fabrication, three-dimensional vision.
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I. INTRODUCTION

S
INGLE-PHOTON avalanche diodes (SPADs) in standard

CMOS technology have been receiving great attention

from both the scientific and industrial communities since they

provide high cost-effectiveness, mass-production capability,

and easiness of integration. Consequently, SPADs can play

an important role in various applications, especially LiDAR

in advanced driver-assistance systems (ADAS), autonomous

vehicles, service drones, robots, machine vision, gesture

recognition, etc. Another important class of applications in-

clude biomedical imaging and diagnostic techniques, such as

positron emission tomography (PET), single-photon emission

computed tomography (SPECT), fluorescence-lifetime imag-

ing microscopy (FLIM), super-resolution microscopy, near-

infrared optical tomography (NIROT), Raman spectroscopy, etc.

[1]–[4]. One critical limitation of monolithic SPAD systems is

the relatively low fill factor, due to pixel circuits for quenching

and recharge circuits. This problem is exacerbated whenever

advanced in situ functionality is required, such as counting,

timestamping, processing, compression, memory, etc.

In order to increase fill factor, CMOS process shrinking is

very helpful; for this reason, researchers have proposed SPADs

implemented in smaller and smaller technology nodes. An ex-

ample of this trend is shown in Fig. 1, where the fill factor

is just 1% in a 0.8 µm CMOS technology node but it is im-

proved to 35% in a 65 nm CMOS process. In addition, process

shrinking provides certain advantages in higher resolution and

low power consumption as well as more cost-effective produc-

tion. In general, however, it has negative effects on other SPAD

performance due to higher doping concentrations resulting in

a narrower depletion region. As a result, high tunneling-based

dark count rate (DCR) and lower photon detection probability

(PDP) are generally measured.

Recently, three-dimensional (3D) stacked technology has re-

ceived a great deal of attention, since it can dramatically improve

fill factor while enabling increased functionality, better timing,

lower power, and higher uniformity in all these performance

measures. In a 3D-stacked approach, SPADs are implemented

in the top-tier chip, and all the circuits for data processing, com-
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Fig. 1. Examples of SPAD’s fill factor increases according to the technology
node shrinking. The yellow circles represent the SPADs’ active areas.

pression, and communication are placed on the bottom-tier chip,

which is generally fabricated in a more advanced CMOS tech-

nology. In addition, the 3D-stacked architecture provides the

freedom to optimize both processes individually, and therefore

DCR and PDP can be improved simultaneously by using a better

technology for SPADs, whereas doping levels and profiles are

properly optimized. At the same time, a more advanced tech-

nology node may be used in the bottom tier, thus enabling ad-

vanced functionality, such as pixel-level digital memory and/or

histogram processing. Furthermore, a 3D-stacked technology

enables smaller pitch, thus achieving multi-megapixel SPADs

is becoming feasible.

To date, there have been a few attempts to build 3D-stacked

SPADs. The first successful attempt involving standard CMOS

technology was implemented in 130 nm, whereas the SPAD was

back-illuminated and the top- and bottom-tier chips were bound

using wafer-to-wafer bonding [5], [6]. As shown in Fig. 2(a)

and (c), the PDP performance obtained from these attempts

was limited in wavelength mostly due to thick silicon substrate

(about 4–5 µm). More recently, another back-illuminated 3D-

stacked SPAD was reported in 65 nm CMOS image sensor (CIS)

technology shown in Fig. 2(b) [7]; it achieves higher PDP and

a wider sensitivity spectrum thanks to improved backside thin-

ning and a deeper junction, which is thus closer to the surface.

However, all of these solutions still suffer from reduced PDP in

the visible range, and virtually zero sensitivity below 450 nm.

In addition, median DCR is generally over 250 cps/µm2 even

with moderate excess bias voltage.

In this paper, we introduce the world’s first back-illuminated

SPAD fabricated in 45 nm CIS technology. The SPAD is 3D-

stacked with a 65 nm standard CMOS technology, whereas

preliminary test results of this technology were presented in [8].

This paper presents a full characterization of the technology

with an extensive discussion of the results. The proposed SPAD

has several advantages over existing designs. The fill factor is

optimized thanks to a metal-free substrate, moreover PDP is en-

hanced at shorter wavelengths thanks to an ultra-thin substrate

minimizing carrier recombination on the surface in backside il-

lumination. In addition, a DCR of 55.4 cps/µm2 and a jitter of

107 ps full width at half maximum (FWHM) at 2.5 V excess

bias voltage are achieved, the lowest ever reported in a back-

illuminated 3D-stacked CMOS technology. This performance

was reached through optimized 3D-stacking, with a tight con-

trol of damage, improved doping profiles, and an especially de-

signed optical stack [9]–[11]. This performance was achieved

through careful analysis of the devices via extensive TCAD

Fig. 2. Simplified cross sections of the back-illuminated 3D-integrated
SPADs: (a) NSS’14 [5] and JSSC’15 [6], (b) IEDM’16 [7]. (c) PDP comparison
of the SPADs.

simulations. To demonstrate the SPAD performance, we de-

signed a complete imaging system in the bottom tier, while the

availability of even more advanced nodes will increase function-

ality further in the future, resulting in densification of in-pixel

operations. The suitability of the approach has been demon-

strated through an array of identical pixels. Each pixel comprises

a SPAD, quenching and recharge, as well as time-resolved cir-

cuitry for single-photon timestamping. The SPAD performance

is uniform across the array, whereas breakdown voltage and

PDP variability are kept to a minimum. Thanks to low dead

time, afterpulsing, and crosstalk, image sensors based on this

technology, are suitable for a wide range of exposures, involving

photon-flooded to photon-starved modalities.

This paper is organized as follows. The overall device struc-

ture and technology are outlined in Section II, and Section III

explains TCAD simulations to optimize the SPAD structure

and presents the characterization results including dark cur-

rent, breakdown voltage, fill factor, DCR, PDP, jitter, and af-

terpulsing. In Section IV, the state-of-the-art comparisons are

presented with discussions, highlighting the achieved perfor-

mance with the proposed back-illuminated 3D-stacked SPAD.

Section V concludes this paper.

II. BACK-ILLUMINATED 3D-STACKED SPAD

Fig. 3 shows a cross section of the proposed back-illuminated

3D-stacked SPAD, where an advanced 45 nm CIS technology,

featuring the back-illuminated SPAD, is stacked on top of a

65 nm standard CMOS technology. Two wafers are face-to-face
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Fig. 3. Cross section of the proposed back-illuminated 3D-integrated SPAD.

stacked, and therefore the substrate of the top wafer can be

thinned down to only a few micrometers. The SPAD is based

on the P+ /Deep N-well (DNW) junction, where the N-well is

intentionally excluded in order to achieve wider depletion re-

gion, thus resulting in lower tunneling noise and better jitter

performance as well as higher detection efficiency with wider

spectrum, and P-well (PW) guard ring (GR) is implemented

to prevent premature edge breakdown, enabling higher electric

fields at the active region, as shown in Fig. 3. The SPAD is

designed and realized in a round shape with an active-area di-

ameter of 12.5 µm, 2 µm GR, and 1 µm distance between GR

and cathode. The conservative design parameters were chosen

in this first attempt to obtain the first functional back-illuminated

SPAD in 45 nm, rather than maximizing fill factor. Based on the

achieved results, a parameter optimization can be performed in

order to achieve fill factor higher than 70% in future generations.

Metal-1 in primis, and other metals, are designed to cover all the

SPAD active region and to reflect lower energy photons back to

the active region, so as to enhance PDP at longer wavelengths.

In order to take the full advantages of the back-illuminated

3D-stacked approach, the dedicated technology development

and optimization are also crucial. The top-tier wafer is thinned

down to the target thickness, less than 3 µm, which is a very

challenging task for 300 mm bulk silicon wafer based technol-

ogy. The process includes chemical and mechanical etching,

whereas epi-wafer quality and thin-down flow have been op-

timized, with a final thickness tolerance of less than 3% [9].

In addition, the defects induced by etching, which can degrade

and even suppress SPAD operation, have been reduced by more

than 10 times with this optimization process. In addition, the

direct 3D connection technology enables smaller pitch and con-

sequently better 3D connection quality [10], and the impact

of the 3D connections have been significantly minimized with

further process improvement [11].

Fig. 4 shows a schematic diagram of the 3D-stacked SPAD

pixel. A passive quenching and recharge circuit was imple-

mented on the bottom tier, featuring a local 1-bit memory for

optical and electrical masking and dual-mode operation: Pulse

and State. In Pulse mode, upon avalanche detection, a signal

pulse is generated with fix width. After the dead time, the

SPAD is available for a new detection. In State mode, upon

Fig. 4. Schematic diagram of the back-illuminated 3D-stacked SPAD sensor.

avalanche detection, the state of the pixel is held until the next

global reset is issued.

III. SIMULATION AND CHARACTERIZATION RESULTS

A. TCAD Optimization

TCAD simulation is very useful to check and analyze

SPAD characteristics in terms of doping profile, dark current,

avalanche breakdown voltage, and electric-field profile, which

provide helpful guidelines for the device design, in advance

of its fabrication [12]–[14]. In addition, it is an appropriate

method to compare different SPAD structures and identify ex-

pected results. Fig. 5 shows SPADs based on different junctions,

P+ /N-well and P+ /DNW, along with the relative doping profile,

electric field, and current-voltage characteristics, obtained by

TCAD simulations for each device. In deep submicron CMOS

technology, SPADs suffer from tunneling noise due to higher

doping concentrations, and the higher tunneling becomes crit-

ical for Geiger-mode operation especially in ultra-deep submi-

cron CMOS technology, below 90 nm. As mentioned earlier,

we intentionally removed the N-well layer at the junction in

the proposed SPAD, so as to achieve a large depletion region

of about 1 µm. Note that the DNW layer is characterized by

retrograde doping, as shown in the relative doping profile of

Fig. 5(b), which supports a thicker multiplication region and

wider PDP as well as lower DCR. In general, a SPAD imple-

mented in technology nodes below 90 nm in standard CMOS

technology shows large DCR due to tunneling caused by in-

creased doping concentrations resulting in a narrower depletion

region, and therefore achieving a large depletion region is ex-

tremely important in this kind of advanced CMOS technology

node. Although we consider the use of a better N-well for photo-

diodes provided by the CIS technology as shown in Fig. 5(a), its

breakdown voltage is lower and the depletion width is smaller

than those of the P+ /DNW junction as shown in Fig. 5(b). In ad-

dition, from the TCAD current-voltage analysis, we can check

that the P+ /N-well junction can have larger dark currents com-

pared to the P+ /DNW junction. In order to prevent premature

edge breakdown, PW GR is implemented at the edge of the

junction, and it is optimized to achieve larger photon sensitive

area. The wider depletion region based on the DNW-based junc-

tion results in higher breakdown voltage, which enables higher

electric fields at the PW GR region with the retrograde DNW.

The electric-field profile of Fig. 5(b) clearly shows that the
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Fig. 5. TCAD simulation results for back-illuminated SPADs based on
(a) P+ /NW junction and (b) P+ /DNW junction: device structures, relative
doping profiles and electric-field profiles at around each breakdown voltage,
and current-voltage characteristics.

multiplication region, represented by yellow, is extended below

the GR region, because the PW GR doping profile is carefully

selected for the retrograde DNW-based junction to have the

similar level of electric fields to the main junction.

B. Measurement Results

Fig. 6(a) shows a micrograph of the fabricated SPADs

based on the P+ /DNW junction with PW GR, and Fig. 6(b) a

Fig. 6. (a) Micrograph of the back-illuminated 3D-integrated SPAD. The inset
shows magnified micrograph indicating active and GR areas. (b) Micrograph
with the operating SPAD to check light emission area and effective fill factor.

Fig. 7. Current-voltage characteristics under dark conditions at room temper-
ature. The inset shows the breakdown voltage distribution of the SPAD at room
temperature.

micrograph at above its avalanche breakdown voltage. Since

light emission can be observed in silicon with the avalanche

multiplication process despite its indirect bandgap [13]–[15],

effective active area where the avalanche multiplication process

occurs can be checked and consequently the effective fill

factor. The image clearly shows that also the GR area exhibits

emission, thus contributing to higher fill factor up to 60.5%.

The SPAD shows very low dark current, in the pA range,

and a breakdown voltage of about 28.5 V, as depicted in Fig. 7,

matching very well with the TCAD simulation result. The inset
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Fig. 8. DCR as a function of the excess bias voltage at room temperature.
The inset shows the output pulses of the SPAD as a function of time at different
excess bias voltages at room temperature.

of Fig. 7 shows the breakdown voltage distribution obtained by

128 SPADs, showing a standard deviation of 0.11 V.

The inset of Fig. 8 shows the time-dependent outputs of the

SPAD at different excess bias voltages. The SPAD output pulses

show the exponential behavior because of the RC recharge. Due

to the fact that these results are obtained from a standalone

SPAD without an integrated quenching circuitry, the C becomes

very high because of the parasitic capacitance from the output

PAD, external components, and setup. The parasitic capacitance

is estimated to be tens of pF, which is three orders of magni-

tude larger than the expected SPAD junction capacitance that

will dominate in a fully integrated implementation. Fig. 8 shows

DCR as a function of the excess bias voltage varying over less

than one order of magnitude. The DCR at the nominal operating

condition, an excess bias voltage of 2.5 V, is 55.4 cps/µm2 . The

achievement is due to the defect-minimized technology and

also the DNW-based junction having large depletion region.

The DCR shows a sub-exponential dependence on the excess

bias voltage, which indicates a smaller tunneling contribution

to DCR at higher excess bias voltages. A test SPAD structure

based on the P+ /N-well junction is also fabricated for compar-

ison purposes, and it shows about 40 times higher DCR than

the proposed SPAD’s DCR while it also shows very low dark

current similar to the proposed one (Fig. 7), which implies that

the P+ /N-well junction SPAD suffers from high tunneling noise

as analyzed and expected from the TCAD simulations. A cu-

mulative DCR distribution with 128 SPADs is shown in Fig. 9.

The plot shows a really small population of noisy SPADs, about

4% of the population.

In order to investigate temperature-dependent characteristics

of the SPAD and identify the main contributor to its DCR further,

its breakdown voltage and DCR were measured at various tem-

peratures from −60 °C to 60 °C as shown in Fig. 10 and 11(a).

Although it is preferred to use one identical sample for all char-

acterization, these temperature-dependent measurements were

performed separately as additional tests using a different sam-

ple, resulting in a little difference in DCR at room temperature

Fig. 9. Cumulative DCR distribution obtained from 128 SPADs. The inset
shows a micrograph of the back-illuminated 3D-integrated SPAD arrays used
for the DCR distribution test.

Fig. 10. Avalanche breakdown voltage as a function of temperature. The
values are normalized to the room-temperature value.

between Fig. 8 and Fig. 11(a). Fig. 10 shows a typical break-

down voltage versus temperature characteristic: the breakdown

voltage increases with increasing temperature because higher

energy is required for avalanche at higher temperature due to

increased optical phonon scattering. In other words, higher volt-

age is needed for avalanche breakdown at higher temperature

since the ionization rate becomes smaller. The rate of increase

of the breakdown voltage with temperature is about 0.092%. In

case a SPAD sensor suffers from high temperature variation in

an application, two approaches can be considered: (i) using a

cooling system to maintain a stable temperature and (ii) using a

feedback loop to compensate for breakdown voltage variations

[16]. Fig. 11(a) shows that DCR of the SPAD is highly depen-

dent on temperature, implying that the major contributor to the

DCR is not tunneling but trap-assisted thermal generation and

the DCR performance can be greatly improved with cooling.

Fig. 11(b) shows the Arrhenius plot of the DCR, with which the

activation energy, Ea , for each excess bias voltage is calculated.

The activation energies, Ea = 0.44 eV and 0.46 eV, correspond

to single-level traps caused by the phosphorus ion implantation

[17], [18], which indicates that the main contributor to the DCR
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Fig. 11. (a) DCR versus temperature and (b) Arrhenius plot of the DCR at the
excess bias voltages of 1.5 V and 2.5 V.

Fig. 12. PDP at the excess bias voltages of 1.5 V and 2.5 V.

is Shockley-Read-Hall (SRH) thermal generation, also known

as trap-assisted thermal generation, and further DCR improve-

ment is achievable with better treatment to remove the traps

during the phosphorus ion implantation process.

The SPAD has a maximum PDP of 31.8% at 600 nm at the

excess bias voltage of 2.5 V, as shown in Fig. 12, in contrast

Fig. 13. (a) Timing jitter measurement results at the excess bias voltages of
1.5 V and 2.5 V when using a 637 nm laser. (b) FWHM and (c) FW10M and
FW1M as a function of the excess bias voltage.

to a typical PDP peak at around 500 nm in frontside illumi-

nation. The SPAD achieves higher PDP at longer wavelengths,

when compared to CMOS SPADs in frontside illumination [19].

Thanks to the large depletion region and the ultra-thin substrate,

the sensitivity in the 400–600 nm range is enhanced, reaching

a more balanced sensitivity over the visible range and opening

up more applications for which this range is of interest. With

the metal-1 light reflector, the PDP is further improved at long

wavelengths, above 700 nm.

The timing jitter is characterized using time-correlated single-

photon counting (TCSPC). A 637 nm solid-state laser source

(A.L.S. GmbH, Germany) with a pulse width of 35 ps and a rep-

etition rate of 40 MHz is used to illuminate the SPAD; the time

interval between the laser output trigger and the leading edge

of the SPAD pulse is measured using a high-performance os-

cilloscope (Teledyne LeCroy WavePro 760Zi-A, United States)

operating as a TDC. Neutral density filters are used to reduce the

SPAD firing rate, so as to prevent pile-up, and a histogram is ob-

tained from the time interval measurements repeated over very

large number of times. The normalized histograms are shown

in Fig. 13(a), while (b) and (c) show the evolution of jitter as

a function of excess bias. At an excess bias voltage of 2.5 V, a

jitter of 107.7 ps FWHM is achieved; this includes the contribu-

tions from the laser jitter of 37 ps FWHM. It’s also notable that

the SPAD achieves very good full width at 10% of maximum

(FW10M) and full width at 1% of maximum (FW1M), since

the diffusion tail becomes very small with the large depletion

region. This feature can be very useful in some applications like

quantum number generation and quantum communications.

The afterpulsing probability was measured to be 1.5% and

2.2% at 1.5 V and 2.5 V of excess bias, respectively, with a
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Fig. 14. Afterpulsing probability: inter-arrival time histogram measured at the
excess bias voltages of 1.5 V and 2.5 V at room temperature along with a fitted
exponential curve.

Fig. 15. DCR comparison of the state-of-the-art back-illuminated SPADs in
3D-stacked CMOS technologies.

100 ns dead time as shown in Fig. 14. As described with Fig. 8,

these values are significantly overestimated with huge parasitic

capacitance due to the lack of integrated quenching and recharge

circuits for this characterization. Therefore, we can assume that

the afterpulsing is negligible in a SPAD sensor array at compa-

rable dead times.

IV. STATE-OF-THE-ART COMPARISONS AND DISCUSSIONS

Figs. 15–18 show comparisons of the proposed SPAD with

the state-of-the-art back-illuminated SPADs fabricated in 3D-

stacked CMOS technologies. The comparison parameters are

normalized DCR, PDP, and jitter. In an advanced CMOS tech-

nology, SPADs suffer from high tunneling noise due to narrow

depletion widths caused by high doping concentrations. There-

fore, the DCR of other SPADs is highly dependent on the excess

bias voltage, and in addition, their exponential dependence also

indicates their DCRs are dominated by tunneling, as can be seen

in Fig. 15. The proposed SPAD, however, can effectively reduce

the contribution of the tunneling assisted DCR thanks to the

large depletion region, thus achieving a modest upward sloping

curve and the lowest DCR at the operating condition.

Fig. 16. PDP comparison of the state-of-the-art back-illuminated SPADs in
3D-stacked CMOS technologies.

Fig. 17. Performance comparison of the state-of-the-art back-illuminated
SPADs in 3D-stacked CMOS technologies: peak PDP versus area-normalized
DCR.

Fig. 16 shows a PDP comparison. The SPADs based on

130 nm CMOS technology show lower PDP peaking at around

700 nm, which corresponds to the light penetration depth of

about 5 µm and indicates that the quality of the backside thin-

ning process was insufficient. The SPAD fabricated in 65 nm

CIS technology shows a maximum PDP at 640 nm with al-

most zero PDP at 350–450 nm, which implies that the backside

thinning was improved, but it was not sufficiently shallow. Com-

pared to other back-illuminated 3D-stacked CMOS SPADs, the

proposed SPAD achieves the best maximum PDP and a wider

sensitivity spectrum, along with relatively high violet and blue

sensitivities thanks to a more aggressive backside thinning and

an optimized SPAD design, including the metal-1 light reflector.

The state-of-the-art comparison of SPADs in terms of peak

PDP and area-normalized DCR is depicted in Fig. 17. As can

be seen from the figure, the proposed SPAD achieves superior

DCR and PDP simultaneously among all back-illuminated 3D-

stacked CMOS SPADs. In addition, as shown in Fig. 18, it

also exhibits better jitter performance, which is very useful in

many applications using the time-of-arrival technique. Table I

summarizes the performance measures of the proposed device
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Fig. 18. Jitter comparison of the state-of-the-art back-illuminated SPADs in
3D-stacked CMOS technologies.

TABLE I
PERFORMANCE SUMMARY AND COMPARISON WITH BACK-ILLUMINATED

SPADS IN 3D-STACKED CMOS TECHNOLOGY

and also reports a performance comparison with the state-of-

the-art back-illuminated 3D-stacked CMOS SPADs.

V. CONCLUSION

We demonstrate and fully characterize the world’s first back-

illuminated 3D-stacked SPAD in 45 nm CIS technology. The de-

tector enables significant benefits beyond the state-of-the-art. A

P+ /DNW junction enabling wider depletion is used, along with

an optimized guard ring structure and metal-1 light reflector, so

as to facilitate lower DCR, higher and wider PDP, better jitter,

and higher fill factor. The SPAD, that was optimized a priori

using extensive TCAD simulations, has a DCR of 55.4 cps/µm2 ,

a maximum PDP of 31.8% at 600 nm wavelength with signif-

icant blue and NIR sensitivity, and a timing jitter of 107.7 ps

FWHM and 290 ps FW1M at room temperature and 2.5 V excess

bias voltage. To the best of our knowledge, the proposed SPAD

exhibits the best performance among all back-illuminated 3D-

stacked CMOS SPADs, to date. In the near future, large arrays

of this SPAD will be implemented for a number of applications

requiring low noise, high efficiency, and high timing resolution.
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oratory, École Polytechnique Fédérale De Lausanne,
Lausanne, Switzerland. During her Master’s study, in

the summer of 2015, she worked as an analog circuit designer in Advanced
Detector Arrays, Systems, and Nanoscience Group with NASA’s Jet Propulsion
Laboratory (JPL), Pasadena, CA, USA, where she implemented a CMOS read-
out circuit for UV avalanche photodiodes. The results from this work also led
to a Best Poster Award at the International Image Sensors Workshop in May
2017, Hiroshima, Japan. Her current research interests include analog and dig-
ital circuit design for SPAD-based TOF image sensors in LiDAR applications.

Tzu-Jui Wang received the Ph.D. degree in electrical engineering from Na-
tional Cheng Kung University, Tainan, Taiwan, in 2008. Since 2009, he was
with the CMOS Image Sensor group for pixel device development, Taiwan
Semiconductor Manufacturing Company, Hsinchu, Taiwan.

Kuo-Chin Huang received the Master’s degree from the Department of Elec-
trical Engineering, National Chiao Tung University, Hsinchu, Taiwan. Since
2011, he has been a CMOS Image Sensor engineer, Taiwan Semiconductor
Manufacturing Company, Hsinchu, Taiwan. He is currently working on CIS
related characterizations, image quality analysis, and device developments.

Yuichiro Yamashita (M’xx) received the B.S. and
M.S. degrees in electrical engineering from Tohoku
University, Sendai, Japan, in 1995 and 1997, respec-
tively, and the Engineering degree from Stanford Uni-
versity in 2003. He was with Canon Inc., Japan, in
1997, where he engaged in the R&D of the CIS pixel
devices and readout circuits and the design of the
CIS products. Since 2012, he has worked in TSMC,
Taiwan, Hsinchu, where he has been responsible
for simulation, characterization and exploratory re-
searches of sensing devices. He has authored and

coauthored more than 100 granted patents. He is a Member of ITE.

Dun-Nian Yaung received the M.S. and Ph.D.
degrees from the Institute of Microelectronics, Na-
tional Cheng Kung University, Tainan, Taiwan, in
1994 and 2000, respectively. He was with the Taiwan
Semiconductor Manufacturing Company (TSMC) in
1995 and dedicated in process integration and SRAM
development. From 1999, he led CMOS Image Sen-
sor RD team in 0.25–0.11 µm FSI development,
0.11 µm/N65 BSI, and stack technology initiation.
He was a Subcommittee Member of “Display, Sen-
sor and MEMS” session of IEDM from 2012 to 2014,

and a Member of the technical program committee of IISW since 2015. He has
authored and coauthored more than 250 patents and 45 papers. He is currently
the Director of CMOS Image Sensor Divisions in TSMC R&D.

Edoardo Charbon (SM’00–F’17) received the
Diploma degree from ETH Zurich, Zürich,
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