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Abstract

We demonstrated a flexible resistive random access memory device through a low-temperature atomic layer

deposition process. The device is composed of an HfO2/Al2O3-based functional stack on an indium tin oxide-coated

polyethylene terephthalate substrate. After the initial reset operation, the device exhibits a typical bipolar, reliable,

and reproducible resistive switching behavior. After a 104-s retention time, the memory window of the device is still

in accordance with excellent thermal stability, and a 10-year usage is still possible with the resistance ratio larger

than 10 at room temperature and at 85°C. In addition, the operation speed of the device was estimated to be 500

ns for the reset operation and 800 ns for the set operation, which is fast enough for the usage of the memories in

flexible circuits. Considering the excellent performance of the device fabricated by low-temperature atomic layer

deposition, the process may promote the potential applications of oxide-based resistive random access memory in

flexible integrated circuits.
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Background

Since flexible electronic system (FES) appeals to be light,

convenient, has conformal contingence with the crooked

surface, and excellent interfaces with humans, it ought

to be a prospective existing form of electronic product

to substitute its clumsy predecessors manufactured and

packaged by traditional bulk silicon technology [1,2]. Up

to now, multifarious electronic components, such as

integrated circuits (ICs) [3,4], active matrix organic light-

emitting diodes [5], sensors [6], radiofrequency identifica-

tion antennas [7], and solar cells [8,9], have been

fabricated on flexible substrates and are delved by many

researchers. As we know, among all the components used

in ICs, good and reliable memories [10,11] will maximize

the functionality of ICs, and it is also important for the

FES.

Among all the memories, nonvolatile resistive random

access memory (RRAM) is the most promising candidate

because of its low power consumption, high speed, sim-

ple structure, and high packaging density, compared

with its counterparts such as flash memory and DRAM

[12-14]. Currently, oxides, such as STO [15], HfO2 [16],

NiO [17], Al2O3 [18], ZnO [19], and GO [20], have

received much interest in resistive switching research.

Among the oxides mentioned, HfO2 has been pro-

foundly studied and contains great potentiality to be put

into applications. However, the application of HfO2-

based RRAM on flexible substrate is still rare.

In recent years, atomic layer deposition (ALD) has

emerged as a new technique for depositing films, par-

ticularly for fabricating oxide films. Owing to its self-

limiting mechanism during the process, excellent step

coverage and conformal thickness of the film can be

achieved [21]. Although the deposition of oxide film by

ALD on bulk silicon is very mature, seldom had

researchers used this method to deposit films on flexible

substrate. The main reason is that the flexible substrate

could not undergo high-temperature processing above

200°C, except in some cases such as depositing films

using plasma-enhanced atomic layer deposition under

low temperature where plasma damage and degradation

of the step coverage is unavoidable [22].* Correspondence: qqsun@fudan.edu.cn; pengzhou@fudan.edu.cn
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In this letter, we fabricated a bilayer flexible RRAM de-

vice based on HfO2/Al2O3 films under low temperature,

with resistive layers deposited using a low-temperature

ALD process at 120°C and the electrodes sputtered by dir-

ect current (DC) magnetron reactive sputtering at room

temperature. The devices fabricated by these methods ex-

hibit impressive resistive switching characteristics with re-

liable data retention properties under room temperature

and elevated temperature up to 85°C.

Methods

Flexible RRAM was fabricated on polyethylene tereph-

thalate (PET) substrate coated by indium tin oxide

(ITO) conducting film, and ITO serves as the bottom

electrode in our devices. During the process, the sub-

strate was fixed on a 3-in wafer with polyimide tapes in

order to maintain sufficient mechanical support. The

Al2O3 layer was deposited by 41 cycles of low-temperature

ALD at 120°C with trimethyl aluminum (TMA) and water

Figure 1 The XPS spectra. (a) Al 2p and O 1s peaks at the surface and in the bulk of the Al2O3 film. (b) Hf 4f and O 1s peaks at the surface and

in the bulk of HfO2 film.
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as precursors. Subsequently, the HfO2 layer was deposited

by 67 cycles within the same framework using tetrakis

(ethylmethylamino)hafnium (TEMAH) and water as

precursors. TMA was pulsed at room temperature, and

TEMAH was heated to 85°C to offer enough evaporation

pressure. Al2O3 film was deposited with a pulse time of 0.1

and 0.2 s for TMA and water, and the purging time for

TMA and water was 5 and 20 s, respectively. The depos-

ition method of HfO2 was derived from our previous work

[23]. Finally, a 50-nm TiN top electrode was sputtered on

the resistive layer by DC magnetron reactive sputtering

through a metal shadow mask with a diameter of 400 μm.

The thicknesses of the HfO2 and the Al2O3 layer were

estimated to be 10.1 and 4.9 nm by Sopra GES5E spec-

troscopic ellipsometry. X-ray photoelectron spectroscopy

(XPS) of HfO2 and Al2O3 on the PET substrate was

performed using a Kratos Axis Ultra DLD XPS (Kratos

Analytical, Ltd., Manchester, UK). Electrical properties at

room temperature and at 85°C of the device were

assayed using an Agilent B1500A (Agilent Technologies,

Inc., Santa Clara, CA, USA) semiconductor parameter

analyzer and an Agilent B1525A high-voltage semicon-

ductor pulse generator. Impedance of high and low re-

sistance states was analyzed by an Agilent 4294A

precision impedance analyzer. The device was tested

with top biased and grounded bottom electrodes.

Results and discussion

The XPS spectra of HfO2 and Al2O3 films are respect-

ively shown in Figure 1a,b. In Figure 1a, the binding en-

ergies of Al 2p in the bulk and at the surface of the

Al2O3 film are both at 73.9 eV, and the binding energies

of O 1s in the bulk and at surface of the Al2O3 film

show that the Al-O bond is at about 530.8 eV without

any shifts. In Figure 1b, the bulk and surface XPS spec-

tra of the HfO2 film illustrate that the binding energies

of the Hf 4f5/2 and 4f7/2 are at the positions of about

18.4 and 16.7 eV, respectively, with a 1.7-eV spin-orbit

splitting. From the O 1s spectrum in Figure 1b, the Hf-

O bond is at 530 eV in the interior and at the surface of

the HfO2 film [24]. However, from the surface XPS of O

1s in both Al2O3 and HfO2, the existence of -OH is

observed with a peak at around 532 eV. This is either

incorporated by residue water precursors during the

process because of the high desorption energy of water

at low temperatures or exposing the film to the atmos-

phere (CO2 and moisture) before XPS measurement

[23]. The XPS qualification report shows that the ratios

of the O/Al in the bulk of the Al2O3 film and the O/Hf

in the bulk of the HfO2 are about 1.7 and 2, respectively,

which means that our films obtained at low temperature

are almost stoichiometric.

Typical I-V characteristics of the device are shown in

Figure 2, which indicates a bipolar resistive switching.

The initial resistance state of the TiN/HfO2/Al2O3/ITO

flexible RRAM (schematically shown in the inset of

Figure 2) device was found (curve 1) to be even lower

than the low resistance state (LRS) of the device, and an

excess negative voltage was applied to reset the device to

high resistance state (HRS). The initial reset voltage and

current were −3 V and 10 mA, respectively. This

phenomenon was not observed in RRAMs grown at high

temperatures, except in some cases after high-temperature

annealing [25-27]. We attribute this phenomenon to the

high density of defects in the film grown at low

temperature. As with our low-temperature ALD processing

using H2O as oxidant, it is inevitable that there will be

some incomplete reactions during the process, such as re-

sidual -OH groups, fixed positive charges, and oxygen va-

cancies. It is considered that when the density of defects

exceeds the percolation theory threshold value, the resist-

ance of the insulating layer will be lower than the typical

value [26,28]. This large density of defects may be very

suitable for RRAM applications which work dependently

on the defects. After the initial reset operation, the set op-

eration was achieved by sweeping a positive voltage from 0

to 1.5 V with 1 mA of current compliance to protect the

device from a hard breakdown (curve 3). An abrupt in-

crease of current was observed at 1 V, and the device was

set to LRS (approximately 650Ω). A negative bias was then

applied to the device by a sweep from 0 to −1 V, and a sud-

den descent of current occurred at −0.6 V, indicating that

the device was reset to HRS with a reset current in the

same magnitude as the set current.

To further investigate the conduction mechanism in

the flexible RRAM, the I-V curves of the ON and OFF

states were re-plotted in a dual logarithmic plot. As

shown in Figure 3a, the logarithmic plot and linear fit-

ting of the previous I-V curve for the device in LRS show

Figure 2 The initial reset operation and the typical resistive

switching characteristics of the flexible RRAM. Inset: the

photograph and schematic structure of the device.
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a typical ohmic conduction with a slope of 0.95, which is

considered to be the formation of conductive filaments

in the memory cell during the set process. On the other

hand, the conduction mechanism of the device in HRS

seems to be more complicated, with considerable dispar-

ities in negative and positive sweepings. The fitting result

for the device in HRS under negative bias is presented in

Figure 3b, and the slopes of the curve differ from each

other under different voltages. When the electric field is

small, the I-V slope is about 1.08, which conforms to

ohmic conduction. However, when the voltage enters

into the high electric field, the relationship between

logarithm voltage and logarithm current turns to be an

aV2 + bV relation, which is the classical space charge-

limited conduction (SCLC). However, for the conduction

behavior of the OFF state in devices under positive bias

(Figure 3c), the slope is estimated to be 1.27 when the

electric field is small, and the slope raises to 3.77 when

the electric field is large enough until it approaches the

compliance current (1 mA). As it is widely accepted that

in oxide-based films the electron hops across the film

through the body oxygen vacancies or defects, we attri-

bute the conduction mechanism for the device in HRS

under positive bias to be the trap-assisted tunneling

(TAT) conduction [29]. When a negative bias was ap-

plied on the device, electrons are injected from the top

electrode (TE) to the oxide and then proceed to the bot-

tom electrode (BE). The resistance of TE to oxide is

much larger than that of oxide to BE. As a result, the

current is limited by the available electron in the oxide

and leads to SCLC conduction. On the other hand, when

a positive voltage was applied on the device, electrons

are injected from BE to the oxide and then proceed to

the TE. The current is limited by the traps available in

the oxide near TE. As a result, the conduction mechan-

ism will possibly be TAT.

Figure 4 shows the data retention characteristics of the

flexible RRAM device at room temperature and under

high temperature up to 85°C. Both HRS and LRS were

read at 0.1 V for 104 s, and a predetermination of the

long-term retention was made. At room temperature, no

significant degradation of the memory window was

Figure 3 Dual logarithmic plots of the current–voltage

characteristics. (a) ON state device, (b) OFF state device under

negative bias, and (c) OFF state device under positive bias.

Figure 4 Read disturbance test for device after 104-s retention

time under room temperature and at 85°C. No significant

degradation of resistance ratio was observed under room

temperature, and there is a slightly parallel descent of the HRS and

LRS at 85°C.
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observed, with the HRS ascending slightly. It suggests

that sufficient memory margin still exists when the

device undergoes decade employment. At elevated

temperature (85°C), even with descents of both LRS and

HRS, the memory window is still in accordance with ex-

cellent thermal stability, and a 10-year usage is still pos-

sible, with the resistance ratio larger than 10.

The speed of the set and reset operations with different

pulse widths at ±5 V is exhibited in Figure 5, and the

resistance state of the device after the pulse was read at

0.1 V. We found that the resistive switching phenomenon

occurs when the pulse width is larger than 500 ns for reset

operation and 800 ns for set operation. The operation

speed of the memory cell is a little faster than some cases

before [22,30].

Stable and reproducible switching characteristics have

been displayed in Figure 6 with a consistent 400

switching cycle without failures by DC sweeping. The

sweeping voltage was applied from 0 to 2 V for set and 0

to −2 V for reset with a reading voltage of 0.1 V at room

temperature. In Figure 6a, the result of the endurance

test shows that memory ratio remains above 10:1 all

along. Furthermore, statistics of the resistances and op-

eration voltages are conducted separately according to

the endurance test result. The resistance distributions of

the LRS and HRS have been shown in Figure 6b, and we

can find that only a small dispersion, with almost 90% of

the LRS around 0.6 kΩ and 80% of the HRS around 10

kΩ, existed during the switching. In addition, Figure 6c

shows the operation voltage distributions for set and re-

set. It can be obviously observed that almost 99% of the

reset voltages are near −2 V and almost 85% of the set

voltages are around 1 V. Through all the statistical

results and previous test result, we can conclude that

Figure 5 The behavior of the TiN/HfO2/Al2O3/ITO/PET memory

cell under different pulses. HRS and LRS are read at 0.1 V, and the

set and reset operations of the devices were achieved with different

pulsing widths at ±5 V.

Figure 6 The DC endurance test of the device. Voltage sweeping

was from 0 V to 2 V for set and from 0 V to −2 V for reset at room

temperature, with a reading voltage of 0.1 V. (a) The continuous

program and erase test, (b) the statistical result of the set and reset

voltages, and (c) the statistical result of the resistance distributions of

the LRS and HRS.
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our flexible RRAM is characterized with high uniformity

and reliability.

To inspect the equivalent circuit model of the device,

we measured the impedance of the device in HRS and

LRS in the Z-Z (θ) mode by applying 20 mV of AC small

signal (40 Hz to 110 MHz) to the device. Figure 7 shows

the Nyquist plot (Z″-Z0, Z″, and Z0 represent the abso-

lute value of imaginary parts and real parts of the im-

pedance) of the device in the LRS and HRS. In

Figure 7a, one semicircle is observed in the LRS, indicat-

ing the equivalent RC parallel circuit model. Parameters

from the fitting results reveal the existence of a tiny cap-

acitance and a big resistance, which is in consonance

with the conductive filament (CF) theory that when the

RRAM is in LRS, it is mainly a resistance formed by the

CF [10]. On the other hand, the calculated parameters

for the HRS are shown in the inset of Figure 7b, and the

device exhibits two different semicircles which indicate

the complex equivalent circuit model that contains two

RC parallel sections in series. In the LRS of the device,

conducting filaments are formed in the device, and as a

result, the device can be considered as a resistor with

small resistance and a capacitor (the area without

formed filaments) with small capacitance. On the other

hand, when the device is in HRS, conducting filaments

are ruptured at a certain position in the oxide. The

ruptured place will induce an additional tunneling

resistor with big resistance and a capacitor with big

capacitance.

Conclusions

In conclusion, a highly reliable and uniform flexible

RRAM based on the TiN/HfO2/Al2O3/ITO structure,

fabricated by a low-temperature process, was investigated.

The fresh cell shows an ultra-low resistance state, and

after the initial reset operation, a typical bipolar reliable

and reproducible resistive switching behavior was

demonstrated. It is found that the memory window is still

in accordance with excellent thermal stability after a 104-s

retention time, and a 10-year usage is still possible with

the resistance ratio larger than 10 at room temperature

and at 85°C. The resistance of the LRS and HRS exhibits a

very concentrated distribution with almost 90% of the

LRS around 0.6 kΩ and 80% of the HRS around 10 kΩ.

The developed low-temperature process for the memories

may promote the potential applications of oxide-based

RRAM in flexible ICs.
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