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PREFACE

This report is one of a series of studies on the behavior of
materials under stress conducted under Air Force Project RAND. The
investigation was initiated at a time when composite materials had
begun to make substantial impact on new airframe design under Air
Force sponsorship,

An important aspect of studies of the application of composite
materials is knowledge of their failure mechanisms. Theories to date
treat only part of the problem-—elastoplastic behavior of the composite
material--and have not been able to treat the actual failure mode of
the composite. The actual failures that have been observed seem to
occur with the initiation of microscopic eracks at the boumdary of
the filament and the matrix and their subsequent propagation through-
out the composite. The methodology presented in this report 18 a first
attempt to realistically model this failure. The report complements
other ongoing research and development now being sponsored by the
Alr Force, and should also be useful to the composite design commun-
ity.

Dr. Adams, an Associate Professor of Mechanical Engineering at
the University of Wyoming, {8 a consultant to The Rand Corporation.






The behavior of materials under mechanical stress can be divided
into three distinct regimes: (1) linear elastic response up to the
alastic limit, (2) inelastic behavior beyeﬁd the elastic limit and up
to that loading at which first failure occurs locally, and (3) subse-~
quent crack propagation and tetal composite fallure. The erack ini-
tiation and its sebsaguent propagatiom, described above as the third
regima, is the #ilJect of the present study.

A methed has been d&velapnd for predicting the streageh ef a
unidirectional composite material in terms of its mﬁe&mmachaaieal re-

sponse to an applied straaa.W It includes elasteplastic material be~
havior, local failure that initiates a crack, and prapagatien of the
crack to cause total failure of the composite. ‘

Although the basic methodology is applicable te the general p?b%~
lem, a specific loading condition--transverse normal loading--has been
selected for detailed analysis. It is often the transverse properties
that 1imit the performance of the composite system. Therefore, this
loading condition is of particular interest to composite materials
technology because of the inherently low transverse strength of most
high-performance composites.

The basic principles of the theory of plasticity have been com-
bined with a finite element numerical analysis technique. The result
is a rigorous analysis procedure capable of accurately modeling the
complex boundary-value problem being considered, an initial step to-
ward the ultimate goal of accurately predicting the strength of a
material. A complete digital computer program has been developed as
part of the investigation, permitting the ready application of the
analysis to practical engineering problems. Because the primary goal
of the study was to develop a method of analysis and to write an as-—
sociated computer program, only limited numerical results have been
obtained to date. These are discussed in detail, and examples dem-
onstrating the type of information which can be obtained are given.

Finally, suggestions for a number of possible refinements and
extensions of the present analysis are outlined, to encourage the
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reader to use and to further develop the very promising analysis method
discussed in this report. Problem areas for research range from im-
proving the accuracy ef the basic finite element solutien technique to

developing a more representative model of the propagating crack.
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I. INTRODUCTION

The behavior of materials can be divided into three distinct regimes:
(1) linear elastic response up to the elastic limit, (2) inelastic be-
havior beyond the elastic limit and up to that loading at which first
failure occurs locally, and (3) subsequent crack propagation and total
composite failure. Behavior within the third regime is the subject of
this report.

This investigation is a direct extension of work previously reported
in Ref. 1, which had as its main topic behavior within the second of the
regipes given above. Included in Ref. 1 is a brief review of the his-
topfical development of micromechanical analyses as applied to the impor-

ant problem of understanding the transverse normal loading behavior of
a unidirectional composite.

Transverse normal loading is of special interest in relation to uni-
directional composites because of the very low transverse stiffness and
strength characteristics of such materials relative to their stiffness
and strength in the direction of reinforcement orientation. Since com-
plex laminated composite systems are constructed of individual unidirec-
tionally reinforced laminae bonded together, this highly anisotropic
behavior exists within the individual lamina even when the laminated
system is constructed to be nearly isotropic with respect to its gross
properties. It is often the transverse properties that limit the per-
formance of the composite system. But, since these properties are very
low, there is a high potential for improvement.

For example, the transverse tenmsile strength of a unidirectionally
reinforced, epoxy matrix composite is typically only 6000 to 8000 lk/ia.z,
whereas the longitudinal tensile strength is often 150,000 to 200,000
}b/in.2 or more. The temsile strength of the epoxy matrix itself is
typically 12,000 to 15,000 1b/in.2. Thus, with respect to transverse
tensile strength, the presence of the filaments actually degrades the
matrix material.

A detailed theoretical analysis is not needed to establish these

characteristics of existing materials; they are regularly demonstrated



experimentally in the process of setting material property design allow-
ables. Rather, the purpose of this micromechanical analysis, as well as
those previously developed, is to provide a better understanding of the
complex interactions between reinforcing filaments and the surrounding
matrix material. With such an analysis, it is possible to perform a
systematic study of the many variables that influence material behavior.
Such variables include filament shape, filament packing geometry and
spacings, filament and matrix mechanical properties, interface charac-
teristics, the addition of filament coatings, and the presence of voids.
Each of these can be accurately modeled using an analysis, and their
influence on the gross behavior of the material system can be isolated.
These same variables are usually difficult, if not impossible, to con-
trol accurately in an experiment. |

This analysis of crack initiation and the subsequent propagation
that leads to total failure is particularly directed toward the goal of
predicting the ultimate strength of a composite material. There is
currently no satisfactory method of prediction. However, since the
strength of a material is governed by local effects (as opposed to com-
posite stiffness, which is a gross response averaged over the entire
material), it is reasonable to expect that a local or micromechanical
analysis will be required. This investigation represents an initial
step toward the ultimate goal of accurately predicting the strength of
a material. The analysis is based firmly on the principles of solid
mechanics. However, the specific methodology for modeling a crack and
its propagation is relatively crude. In subsequent work, methods of
applying the principles of fracture mechanics, which are rapidly being
developed and improved upon, should be introduced. The finite element
methodology that is used to obtain the numerical results given in Sec, IV
also is being developed very rapidly at the present time. Improved
element representations and larger, more economical digital computer
facilities will have a very favorable influence on the subsequent pro-
gress of micromechanical analyses of this type.

A brief discussion of the major computational aspects of the
finite element computer program and the data-plotting computer program

that were developed as part of this investigation appears in Sec. I1I.



To the author's knowledge, this investigation represents the first
attempt to predict crack initiation and propagation in a composite

material.
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II. METHOD OF ANALYSIS

PREVIOUS INVESTIGATIONS

Reference 1 gives details of the author's elastoplastic analysis

of material behavior beyond the elastic limit and up to that trans-
verse normal loading at which first failure occurs locally. The tangent
modulus method of treating nonlinear ﬁaterial behavior and the Prandtl-
Reuss flow rule are employed. A plane strain condition is assumed, and
constant strain triangular finite elements are used. The stress—strain
relationships representing each of the constituent materials are input
point by point so that any monotonically increasing stress-strain curve
can be considered; actual experiiéntal data are typically used. Normal
displacements at the boundaries must be specified in order to satisfy
symmetry conditions for the boundary-value problem to be solved. It is
usually of greater practical interest, however, to be able to specify
instead the average normal stresses on each boundary (or more precisely,
the ratio of these average normal stresses). To maintain this desired
ratio exactly for each solution increment requires solving two separate
boundary-value problems and superimposing the results in the proper ratio.
This has been a standard procedure in prior works.(z) To reduce the re-
quired computer solution time by approximately one-half, a procedure was
developed in Ref. 1 to estimate the boundary normal displacements re-
quired to produce the desired increments of average boundary normal
stresses. Any deviation from the desired stress ratio was then corrected
for in the succeeding increment. Quite satisfactory results were obtained
using this predictor-corrector approach. A separate computer program was
also written to prepare the output data for maéhine plotting of contours.
All of these features, with the exception of the predictor-corrector
method, are retained in the analysis of crack initiation and propagation
reported here. The predictor-corrector method was found to be insuf-
ficiently sensitive for the current application, as will be discussed in

more detail in a subsequent subsection.



FILAMENT PACKING GEOMETRY

The physical problem to be considered is that of transverse normal

loading of a unidirectionally reinforced composite, as illustrated in
Fig. la. Assuming that the reinforcing filaments are oriented in the
direction of the z~-axis, as indicated, the x-y Plane then represents
the transverse loading plane. A normal loading component in the x-
direction is illustrated in Fig. la.

In most composite materials, the filament packing is either com-
pletely random or exhibits only a very slight amount of preferred orien-
tation, e.g., the nesting of filaments as the filament volume is increased.
One exception is the relatively large diameter filaments such as those of
boron (which, at approximately 0.004 in. in diameter, are an order of
magnitude larger than most glass and graphite filaments in common use).
These large diameter filaments are processed as monolayer tapes and tend
to retain this layering characteristic in the finished part. This is
particularly true when a woven—-glass scrim-cloth backing layer is used
to improve the manageability of the tépe in fabrication.

A rigorous continuum mechanicé'ég;iysis requires the establishment
of a specific filament packing array, be it a periodic regular array or
a random one. The problem of random filament packing, and a method of
analyzing its influence on material properties, was discussed in Refs. 3
and 4. The necessity (in terms of"compﬁter storage capacity and running
time) of selecting a representative material region sufficiently small
to permit a detailed finite element representation and yet be physically
meaningful makes the accurate modeling of a random array somewhat more
difficult. Thus, in the current investigation, where the primary emphasis
is on developing the concept of crack initiation and propagation, only
regular packing geometries will be considered. The influence of random—
ness can be incorporated in subsequent investigations, as desired.

Two commonly assumed periodic regular arrays of filaments (cross
sections in the x-y plane) are indicated in Figs. 1b and lc. The rec-
tangular array in Fig. 1b includes the square array as a special case
(when b = a). The diamond array (sometimes called a staggered array)

in Fig. lc includes the hexagonal array as a special case (when b = ¢§+a).



(a) Transverse normal loading of a unidirectionally
reinforced composite
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(b) Rectangular array (c) Diamond array

Fig. 1 — Filament packing geometries



Because of the assumed periodicity, a typical repeating unit can
be isolated in each case, as indicated in Figs. 1b and lc. Only one
quadrant of this repeating unit must be analyzed (two options are shown
in the case of the diamond array), because of the assumed symmetry of
the filament packing and the geometry of the individual filaments about
both the x and y axes. The boundary conditions on the sides of the
quadrant in Fig. 1b and the quadrant on the left side of Fig. lc are
identical, The sloping boundary of the element shown on the right side
of Fig. lc (solid lines) is defined as passing through the center of
that quadrant of the repeating unit, i.e., it divides the quadrant in
half. Either of the elements of Fig. lc can be used, yielding identical
results. The element on the left involves simpler boundary conditions;
however, that on the right contains only one-half as much area and only
one segment of filament-matrix interface. Thus, only one-half as many
finite elements are required to define the area with the same resolution.
This makes the use of the element on the right of Fig. lc almost man-
datory, based on economics alone. But the boundary conditions on the
sloping boundary are more complicated, particularly for an elastoplastic
analysis. This will be discussed in greater detail in Sec. VI. Only
rectangular arrays will be analyzed in detail here since, to repeat, the
main emphasis is on developing the concept of crack initiation and
propagation,

The first quadrant of a typical repeating element, as indicated in
Fig. 1b, is shown in Fig. 2. The cross-sectional geometry of the fila-
ment is arbitrary within the restriction that it must be symmetrical
about both the x and y axes. Thus, a filament region of any arbitrary
shape drawn in the first quadrant (Fig. 2) is allowable.

At one time there was considerable interest in using (glass) fila-
ments of special shapes to enhance specific composite properties. For
example, rectangular or hexagonal cross sections permit very high packing
densities (theoretically, filament volumes as close to 100 percent as |
desired). Circular filaments in square and hexagonal arrays are limited
to maximum filament volumes of 78.5 and 90.7 percent, respectively (when
filaments are touching each other). Thus, the composite axial strength

and stiffness will be higher for the specially shaped filaments. However,
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Fig.2—First quadrant of a typical repeating unit




the difficulty of accurately placing the individual small filaments
during fabrication to achieve the high packing densities, the fact that
other important composite properties such as transverse normal and
longitudinal shear strength are typically degraded, and perhaps most
importantly, the introduction of high modulus filaments such as boron
and graphite that are not produced by drawing from the melt (their
shapes being relatively fixed) have resulted in a general loss of inter-
est in shaped filaments as a method of controlling composite properties.
Boron filaments (boron deposited on a tungsten substrate) are cir-
cular in cross section. Graphite filaments produced from a PAN (poly-
acrylonitrile) precursor, which is circular, are approximately circular
also. On the other hand, graphite filaments produced from a rayon pre-
cursor retain the irregular (crenulated) cross—sectional shape of this
precursor material. Thus, there may be a renewed interest in the future
in analyzing the influence of noncircular filament cross sections. The
composite longitudinal shear strengths resulting from the use of rayon
precursor graphite fiiaments, however, are typically low relative to
PAN precursor graphite filament-reinforced composites. Whether this is
due to the irregular shape of the rayon precursor filaments (creating
unfavorable local shear stress concentrations) or to some other effect
has not been established. This is a potential future application for
an analysis similar to the one reported here. In the meantime, since
this problem of low shear strength has not been resolved, more and more
emphasis is being placed on PAN (and other) precursors, all of which
result in a graphite filament of approximately circular cross section.
An interesting new organic filament developed by the DuPont Co.,(s)
designated PRD-49-I, has very attractive dielectric as well as mechanical
properties and a low density. It is also circular in cross section.
Thus, current interest in analyzing the influence of noncircular
filaments is not very great. In this investigation, only examples of
circular filaments have been used, but it should be emphasized that the
analysis procedure is no more difficult for filaments of noncircular
cross section. The necessary triangular element grid can be constructed
just as readily, and the stress and displacement continuity requirements
across, the interface are automatically satisfied by the finite element

formulation, independent of interface shape.
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BOUNDARY CONDITIONS

Specific boundary conditions must be established along the sides

of the material region to be analyzed--the first quadrant of the typical
repeating element indicated in Fig. 2. Since a two—dimensional (plane
strain) analysis is being used, two conditions must be prescribed at

each point on the boundaries. When the entire composite body is subjected
to any combination of average transverse noFmal stresses 5x and Gy, as
indicated in Fig. 1, a complex state of stress is induced locally within
the material.. This is the result of the dissimilar material properties
of the filaments and surrounding matrix and also a result of interactions
between filaments. Thus, the stress distributions along the boundaries
of the first quadrant are unknown even though the average of the normal
stresses acting along each side must equal the corresponding applied
stress BX or Ey, from equilibrium considerations; and it is not possibile
to establish normal stress boundary conditions. Because of the assumed
symmetry, however, the rectangular repeating element and its first quad-
rant (bounded by lines of symmetry) remain rectangular when transverse
normal loads are applied; the normal component of displacement of each
point on a given boundary of the first quadrant is identical. Thus, an
arbitrary normal displacement of each boundary can be specified, and,
because of the assumed symmetry, no shear stresses exist along the boun-
daries of the first quadrant.

These then are the two conditions to be specified at each boundary
point: a uniform normal displacement and a zero shear stress.

Two boundary conditions must also be specified at each point on the
interface between dissimilar materials, e.g., at the filament-matrix
interface. Normally, it is desired to completely bond the filaments to
the surrounding matrix during the fabrication process. In the analytical
model, this corresponds to the specification of interface continuity con-

ditions for both displacements and stresses, i.e.,

uf = " uf = u"
n n’ t t
and
f m £f _ m
On = o Tat = Tat



where the superscripts f and m represent filament and matrix, the sub-
scripts n and t represent directions normal and tangent to the interface,
and 0 and T represent the normal stress and shear stress., This is usually
termed a perfect bond. When using the finite element method, these inter-
face continuity conditions are automatically satisfied during the process
of assembling elements at an interface node point.

In certain applications, interface boundary conditions other than
the above continuity conditions may be desired. For example, it may be
desired to model the effect of a lack of interface bond in a local region
(perhaps due to a poor fabrication technique) or some similar initial

defect. The interface boundary conditions can be modified accordingly.

CONSTITUTIVE RELATIONS

The material region of interest, as introduced in the preceding sub-

sections, is to be incrementally loaded along its boundaries. As will

be discussed quantitatively in Sec. IV, a suitable matrix material for
use in a composite is typically selected for its ability to deform ex-
tensively without failing. This permits the large strain concentrations
induced in the matrix region between adjacent filaments to be accommodated
more readily. In real materials, most of this strain-to-failure occurs
beyond the linearly elastic range of behavior. Thus, for loading beyond
the elastic limit, the elastoplastic response of the material must be
considered and a suitable constitutive relation derived.

The present analysis is not restricted to monotonic loading. Thus,
material unloading from the elastoplastic region may occur, requiring
that an unloading criterion be established also. It will be assumed that
the material unloads linearly elastically, with a modulus equal to the
initial Young's modulus. If reloading subsequently occurs, it is assumed
that the material follows this same linear stress-strain response until
it attains the state from which it began to unload. For additional load-
ing beyond this point, the response is assumed to continue along the
original elastoplastic curve.

The general constitutive relations that govern the elastoplastic
response can be derived as follows. For each loading increment beyond

the elastic limit, the corresponding increment of straim at any point in
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the material region can be separated into an elastic (recoverable) and

a plastic (irrecoverable) portion, i.e.,

(@ 4 ¢ @ &

The elastic portion follows the generalized Hooke's law,

< (e) _ 1-2v 1+v - 2
€3 T 738 %liy TTE Sij (2)
where
. . 1 .
i3 = 945 7 3 diy 3

is the deviatoric component of the rate of stress tensor 6ij’ 61j is
the Kronecker delta, and E and Vv are the material Young's modulus and
Poisson's ratio, respectively. The usual conventions of indicial nota-
tion apply. Latin indices have the range 1, 2, 3 and Greek 1, 2.

The plastic portion is assumed to obey the Prandtl-Reuss flow rule:

e3P = sy %)
where A is a positive scalar function, in general a function of both
time and the spatial coordinates, and sij bears the same relationship
to Oij as sij to Oij’ indicated in Eq. (3). The key assumption is that
the rate of change of the plastic strain is at any instant proportional
to the deviatoric stress. It is also assumed, as in most plasticity .
theories, that there is no permanent change of volume. In other words,
the plastic component of the mean normal strain is zero; the deviatoric
components of the plastic strain are identical to the plastic strain
components. The Prandtl-Reuss flow rule is particularly applicable to
the case of contained plastic flow, which is typical of the condition—

existing in the composite material geometries being considered here.
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In such a case, the region of elastoplastic material behavior is typi-
cally surrounded or contained by elastic material. Thus, the magnitudes
of the elastic and plastic components of strain are comparable.

The Prandtl-Reuss flow rule does not model viscosity, i.e., time-
dependent, effects. However, most of the composite materials in common
use, e.g., the metal matrix composites and those incorporating a high
polymer matrix such as an epoxy, do not exhibit a significant time-
dependent response at ambient temperatures. Thus, this is not usually
an important limitation.

The Prandtl-Reuss flow rule is the one most fréquently used today
primarily because of its more general applicability and ease of implemen-
tation. Other flow rules that incorporate specific restrictive assump-
tions also are occasionally used?d ﬁor example, the assumption of complete
incompressibility may greatly simplify an analysis, and provide adequate
accuracy in some problems. Also, if the plastic flow is unrestricted
rather than contained, so that the plastic strains are much larger than
the elastic strains, the latter can often be neglected, resulting in a
simpler rigid-plastic analysis.

In the applications considered in this report, however, these various
simplifying assumptions are not adequate and will not be used. Rather,
the Prandtl-Reuss flow rule as represented by Eq. (4) will be incorporated
into the ana%ysis directly.

To put A into a usable form for.present purposes, Eq. (4) can be

multiplied by itself and solved for A to give

- (p): (P)\E
A = “i " Fay _ A 5)
(s115%1) ® '

Defining the octahedral plastic shear strain rate as

i
@ =g, e )3 (6)

and the octahedral shear stress as

ol

1
TO = (3 Sijsij) (7)



-14—

Eq. (5) can be rewritten as

A =2 (8)

thus defining the positive scalar function A in Eq. (4), which becomes

(®
. @ _ 5
€., P = = S, 9
ij o i
Now a relationship must be established between éo(p) and 7,. This

can be done by applying Eq. (9) to a problem for which both éO(P) and
T, are known. For example, since we will be interested in using actual
constituent material experimental data in generating numerical results,

we can employ the results of a simple uniaxial test, for which

= = = - 10
010 # 05 0y = 9337015 =033 = 0y3 = 0 (10a)
and
- (P - @ _ = @ __1: ()
€11 F 0 €57 = ey, 2 f11 0 |
(10b)
- (p) - (P _ = (P
€127 T €13 = &3 =0
Substituting Eqs. (10b) into Eq. (6) and solving for éll(p) gives
é (P) - /E-E: (P) (11)
11 o ,

Since Gll and éll(p) are uniform throughout the test specimen, they are

functions of t only, and Eq. (11) can be rewritten as

) deo(p) deo(p) dTO 2 %o )
1 =2 g =/2_d'ro dt T 2My (12)

€
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where, by definition, ZMT = dTo/deo(P) is the tangent modulus of the
octahedral shear stress-octahedral plastic shear strain curve for the

elastoplastic material, and

T = _ijdj (13)

is obtained by differentiating Eq. (7). Substituting the rate of plastic
strain values defined by Eqs. (10b) and (12) into Eq. (6), we obtain

:® o (14)

Substituting Eq. (14) into Eq. (9) gives

. %osi.
g, P = 2 2) (15)

ij 2T M,

This is the form of the Prandtl-Reuss flow rule desired.
Substituting Eqs. (2) and (15) into Eq. (1), the constitutive re-
lations can be expressed as

.

. 1-2v - 1+v - To%14
_ 1 1+ _oij 16
€53 = 38 by TTE Siy t 2T M, (16)

Substituting Eqs. (3) and (13) into Eq. (16) and rearranging terms gives

s..8 C} ‘
58, + kLKl an
kk“ij 6 2
Ty
(o]

[
!
=<

In obtaining the last term, use has been made of the fact that no plas;ic

(6)

work is done by the hydrostatic component of the applied stress, ife.,

- _ - —!:-- - . )
$11%1 = Sk1C%1 = T %anbi1) = Sk1%a
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since

6 =0

skl mm

Equation (17) is the general flow rule relating the total strain
and stress increments.

Ideally, a full three-dimensional analysis of the boundary-value
problem outlined in the previous subsection would be preferred. This
would permit the consideration of stress and strain gradients in the
direction of filament reinforcement (the 3-direction indicated in
Fig. la) as well as in the transverse (1-2) plane. For example, it
would be possible to analyze the behavior of discontinuous reinforcements
such as whiskers and chopped fibers (as in the transfer of stresses at
the fiber ends into adjacent fibers) and particulate-reinforced com-
posites. It would also facilitate the modeling of voids, local debond-
ing, and similar manufacturing defects. The analytical formulation of
a truly three-dimensional model is straightforward, and the above deri-
vation is directly applicable. However, even for a two-dimensional
analysis, the complexity of the boundary-value problem makes a numerical
solution technique mandatory. Large amounts of digital computer storage
are required and the computer running times are relatively long. The
present generation of digital computers, e.g., the IBM Model 360 and its
counterparts, do not have sufficient storage capacity and computational
speed to make practical three-dimensional analyses feasible. The same
type of comments applied to the analysis being presented here just a »
few years ago, when computers such as the IBM Model 7094 and its counter-—
parts were typically being used--it would have been difficult to over-
come storage limitations, and computer running times required would have
been prohibitive in most cases. In the future, solutions of truly three-
dimensional practical problems will undoubtedly be routinely performed.
Now, however, certain idealizations must be made in order to make the
problem amenable to practical solution.

One way of achieving this is to reduce the problem to a two-
dimensional formulation. Since we are interested in composite materigl

response in the transverse plane, it is logical to assume that stress
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and strain gradients in the axial direction (the 3-direction in Fig. la)
are negligible relative to those in the transverse plane. This is the
classical plane stress or plane strain condition. A plane stress con-
dition assumes that the stress in the direction normal to the plane of
interest (the 045 component of stress, normal to the 1-2 plame in

Fig. la) is zero, and is usually associated with the analysis of thin
plates (thin in the 3-direction) subjected to in-plane loadings. But
for a continuous-filament-reinforced lamina, as indicated in Fig. 1la,
the dimension in the direction of reinforcement (the 3-direction) is
typically very large. This corresponds more closely to the plane strain
condition, i.e., zero displacement in the 3-direction. Since there are
assumed to be no gradients in the 3-direction, the strains €3 and cor-

respondingly the increments of strain €4 are equal to zero, i.e.,

du du

€13 = 3 1+as=°
X3 Xl

23 3x3 9%, (18)
.

. _ ._ii _

®33 ~ 7, 0

where ﬁi and X, represent the displacement increment components and
spatial coordinates, respectively.

For plane strain,
Oya =0,n =0 (19)

as can be verified by substitution into Eq. (17), using Eqs. (18).
Although, by definition, the axial strain increment 533 is zero
everywhere, the axial stress increment &33 is not. It is not an inde-
pendent quantity, however, and can be expressed in terms of the other
nonzero stress increment components as follows., Setting i = j = 3 in

Eq. (17), we obtain
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. . : E s
- & = 20
(1 +v) O35 = VO, + 7 S335.1% 0 (20)

where A = 6T-M;. Solving Eq. (20) for G,

. . E . E -
O33 = Wy * 7 833533933 * 7 5335y6%s = ©

oY
5o [BE syl . (B o
33 A YY A T337y87yS
or
Gun = % (AVO. . = ES,a8u005) (21)
33 D YY 33°v6 Y6
where
2
D=A+ E533

and where, as previously noted, the Greek indices have the range 1, 2.

Utilizing Eqs. (19), Eq. (21) can be substituted into Eq. (17) to

give

s 1+v PRV P A\)OYY - Es33SYGGY6
ab E 0B E “aB| vy D
N 885y .\ 5,8533 (AvOYY - ES33SY§?1§)
A A D '

Collecting terms in O__, and OY5 gives

YY

D+ Av, _ “Sap®33| .
YY

. _———- - 2
€8 T E %8 [EGOLB( D ) D g

S S
v ag"yS _ E 2 .
+ [D 6@853BSYs t =3 AD SOLBSSSSyG] GYG
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or, making use of the relation D = A + Es§3,

) s2 VS _,8
e sl fv Ad+v)  “aB733  of 337
ab E “aB E “oB D D D YY

3 g+ M(Xw/s /)]

D %ag®33%ys * T x ys

Removing the common denominator D and rearranging terms gives

. _ 14 . 1]
gOLB_——_E GOLB+D[ v(l + V) E OLBYY

. _ * 2
+ VS33(saB 3336a8)0YY (22)

+ (\)5336@B + saB)SYGGYS]

Equation (22) is equivalent to Eq. (9) of Ref. 4, as demomstrated by

Swedlow as follows. Let

Sag = tag T V533%p (23)

Equation (22) becomes

=g +%{-\)(l+\))

€8 T E a8 E ocBW

+ Vs34 [tocB = (1 + V)sg,6 ae] Oy + tagSys%ys }

Collecting terms on V(1 + V) and taB gives

e =itV l—[-v(l + v)( + s 3)

o E o8 D ‘SaBW

(24)

+ 1:@8(\)'3330ryY + SY6UY5)‘]
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Noting that Gé~+ s = 0Y56Y5’ and, as previously defined,

39 = Oy
(vs548 yo 6) = tegs the above equation reduces to

. _ l+\) . l E . .

or

_ 1t

aB " E (25)

€ (o - o <SB)+D oesyéYcS
which is Eq. (5) of Ref. 7.

The finite element numerical analysis will be formulated and solved
in terms of displacement components. Thus, the inverse of Eq. (25) is
needed so that stresses, and thus node point forces, can be readily ex-
pressed in terms of strain components, which in turn are simple functions
of the displacements.

The inverse of Eq. (25) is

S o8 E
w5 [ v o _ B y8 Y$ 26
%8 = Ty [suB 1-2v €YYGO‘B 372 4+ (1 + V)A/E )

o

Methods of obtaining this inverse are given in Appendix A. (It should
be noted that there is a minor typographical error in the inverse given
as Eq. (6) in Ref. 7; M, should be ZMT——the factor 2 is missing.)

Equation (26) will be used extensively in the subsequent development
of the finite element representation. For this purpose it is convenient
‘to expand Eq. (26) into the three equations it represents, i.e., &ll’

622, and ¢ The index notation will also be changed at thls p01nt

12°
to conventional engineering notation. Thus, 11’ 022, 012, ell’ 822,

€19 will be replaced by 0> Oy’ Txy’ ex v 3 ny, respectively. This

notation is more consistent with that used in previously published

N E

micromechanics and finite element analyses.

. l .
Note in particular that € has been replaced by E-ny’ to convert

12
from tensoral shear strain to engineering shear strain. Engineering

shear strain will be used throughout the remainder of this analysis.
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Expanding Eq. (26):

: E v S:?il : v *11°%22, -
O T At - 3% Y G T T Y
o Bt 1
B 2ny
oY
S2 S =]
. E 1-v 11, . v 11°22, -
% T 1+ [(1—2v -~ gt GOy - TR 08y
(27)
S S
11°12,
¢ B )ny]
where
2 A
B—3TO+(1+\))'E'
Correspondingly, for éy and T s
8..8 32
- _ E v 11%22. - 1-v 22
% = T [(1—2v ST %Y@ TR0
s (28)
22512 .
- G—q;——Ony]
S s S S
. E . 22712, ¢
i e e i VIS (2212
xy 14V B x B y
2 (29)

s
1 12 -
G- ny]

Equations (27), (28), and (29) can be expressed in matrix notation as

[6] = [H](E] (30)
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where
o £
X X
ol = |o , el = | ¢
[o] 0y [e] v
T Y
X
A L]
[ 32 S..8 S S |
e N _ 11°22,  _ “11712
1-2v ~ B i-2v B B
E v $11%22 1-v ng 822512
Bl=i5 | OS-——3 G 3 -5
52
(. Stz (- S22°12) & .12
B = B 2 B .

Note that [H] is a symmetric matrix.

FINITE ELEMENT REPRESENTATION

Even when the filament packing has been idealized to a periodic

regular array and the stress distribution reduced to a two-dimensional
plane strain condition, the resulting elastoplastic boundary-value _
problem is not amenable to a closed-form analytical solution. This also
was true in prior elastic micromechanics studies, which led to the ap-
plication of several different numerical analyses, including stress
function, finite difference, and finite element formulations. An his-
torical review of these developments may be found in Ref. 3. Primarily
because of the greater ease of representing the irregular material regions
and boundaries (such as those indicated in Figs. 1 and 2), the finite
element analysis has clearly emerged as the preferred method.

The basic finite element analysis methodology has become well-
developed in recent years, and has been used extensively in structural
analysis applications. A number of texts are now available, e.g., that
by Zienkiewicz,(s) which describe the method in detail. Particular
emphasis today is on the development of improved element representations,

including three-dimensional elements,
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Constant strain triangular elements have been used in this inves-
tigation. That is, the displacement field in each triangular element
is assumed to be linear. The first step is to divide the material
region of interest into triangular elements, as is indicated in Fig. 3.
As a general rule, the individual elements should be compact, i.e.,
shaped as close to equilateral triangles as is practical to best repre-
sent the assumed constant strain condition within each element.

The amount of computer solution time required is a direct function
of the number of element node points. The strain field can thus be most
accurately determined, for a given number of node points, by using small
elements in regions where gradients are expected to be high (for example,
in regions between directly adjacent filaments such as along the x and y
axes of Fig. 3), and larger elements elsewhere. However, this procedure
is not completely satisfactory for the present crack propagation analysis.
As the numerical results will indicate, it is not always readily apparent
beforehand where the crack will initiate, or where it will propagate to.

- Also, once the crack propagation process begins, there will be a sig-
nificant redistribution of strains, particularly near the crack tip. To
achieve total failure, the crack must eventually propagate across the
entire material region. Thus, it is better to keep the grid array rela-
tively uniform in size.

Of course, one constituent material may be much stronger than the
other (or others, if more than two constituents are represented), so
that crack propagation is certain to occur only in the weaker constituent,
In this case, a coarser grid can be used in the region of strong material
in order to conserve node points. Such a grid is indicated in Fig. 3,
where the circular filament region is represented by a coarser grid than
the surrounding matrix region. The displacement of a given node point
is, however, a function of the displaceﬁents of all of the immediately
surréunding node points (and the material properties of the elements
they bound). Thus, for the local strain gradients to be reasonably
represented from element to element, it is desirable to use a transition
from small to large elements, as is indicated in Fig. 3, rather than an

abrupt change. Each node point and each element must be numbered for!
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Fig.3— Typical finite element grid: square array, 40-percent
filament volume, 176 nodes, 304 elemenis
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identification. For clarity, in Fig. 3 only the numbers of those ele-
ments that are specifically referred to in Sec. IV or Appendix B are
shown.

Having constructed a suitable finite element grid, each triangular
element is defined by the x, y coordinates of its three node points,
i, j, k, as indicated in Fig. 4--i.e., x;, ¥, Xis Yy Feo Vi Because
of the nonlinear (elastoplastic) material behavior, the loading is to
be applied in small increments beyond the elastic limit, as will be
described in the next subsection. For each load increment, the incre-
ment of displacement of any point within an element can be represented

as

= 04X + azy + Oy .
(31)

<
!

= Byx + Byy + By

where u and v are the x and y components, respectively, of the incre-
ment of displacement of any point in the element. The six constants
represented by the a and B coefficients can be evaluated by substituting
the values of ﬁ, G, x, and y for each of the three node points of the
element into Eqs. (31). The resulting three equations containing the
three unknown o constants can then be solved simultaneously to evaluate
Op5 Oy Og. The remaining three equations correspondingly yield Bl,

B,, B Substituting these values of o and B into Eqs. (31) gives

22 73°
. x.y, - x,y.) + x + ylu
2K R0 S A MRS S M B

+ [(Xkyi - Xiyk) -+ Vi3 X + xiky] ﬁj (32)

+ [(xiyj - xjyi) + yijx + iny] uk;
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v | Wi Yi
Yk
Yj
M g -0, Xi.
-
X; X | X x
Fig.4 — nth friangular element
.1 _ .
v = 2An {[(ijk xkyj) + yjkx + ijy] A2
. ]
IRy - X)) oyt Ry vy (33)

r -
+ .
_(Xiyj + xjyi) + yijx + inyJ vk}

where

A =5 Gy ¥~ X4y

N

represents the area of the triangular element n and the notationms
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have been used. These displacement increment functions, Egqs. (32) and
(33), assure continuity of displacements between adjacent elements,
because displacements are necessarily equal at common node points at
each end of the common side and vary linearly along the side.

The strain increment-displacement increment relations

© _8u
€% T Bx
e = (34)
y 9y
? - §5'+ ov

Xy 0y = Ox

can be expressed in terms of the node point displacement increments by
taking the partial derivatives of Eqs. (32) and (33). (Note that, as
previously discussed, #xy in Eqs. (34) represents the increment of engi- -

neering shear strain, and not the tensoral value.) Equations (34)

become
[€] = [8] [4] (35)
where
~a'ﬂ
i
o v,
E i
X
. . . uj
[8] = Ey ) [5] = .
. v.
YXXJ .J
Yy
v
. k..J
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Yik Vi ij

{6l = 2 1o 0 X 0 X
24 *k3 ik i1

i Vi Tk Tka %31 Yig

Element stress increments can be expressed in terms of node point

displacement increments by substituting Eq. (35) into Eq. (30):
[0 = [H] [6] [8] (36)

These stress increments, uniformly distributed in the element and
thus along its boundaries, can be replaced by statically equivalent
force increments acting at each node point of the element. These equiv-
alent force increments will be defined in terms of their x and y co-

ordinates as

e ke pae !

37)

.xw.uﬁ'u?q

<

The finite element analysis is based on the establishment of equi-
librium of the forces contributed by each surrounding element at each
node point in the element array. Thus, it is necessary to express the
node point force increments for each element in terms of the node point
displacement increments. One simple procedure is to impose arbitrary.
(virtual) node point displacements and to equate the external and inter-
nal work by the various force and stress increments acting on the

element.
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In general, such forces may include body force components dis-
tributed over the element, stress distributions due to temperature
changes, processing residual stresses, and so forth. These effects
can be introduced in a straightforward manner, if desired (see, for
example, Ref. 8 for a detaile& aiscussion); they are not included
here. R

The work done by the node point force increments (external work)
is equal to the sum of the dot products of the individual force com-

ponents and the corresponding displacement increment components, i.e.,
ok .
W = 18717+ [F] (38)

where

u

18*1 =

i
%
v,
i
ok
v,

e

Vi

e

]
. %
J
.k
o %

represents the virtual displacements at the element node points, [f]
is defined in Eq. (37), and the superscript T denotes the transpose
of the matrix.

The internal work per unit volume done by the stress increments

is
W, = 117 163 (39)
where

[£*1 = 101 [8™]
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as indicated in Eq. (35); [é*] is defined in Eq. (38). The transpose

of [6'] is
€T = (o1 18" 7T = 1817 101" (40)
Substituting Eqs. (36) and (40) into Eq. (39) gives
w, = 18717 101" ) o1 18]

The total internal work is then obtained by integrating this work per

unit volume over the volume of the finite element
W, = [é*]Tf[e]T (2] [6] [8] d(vol) (41)

Equating the external and internal work done, i.e., Eqs. (38) and (41),
[F1 = (K] [6] (42)
where

[K] =f[e]T [H] [6] d(vol)

is the element stiffness matrix. For the case considered here, where
the stresses and strains are constant throughout the element, both [8]

and [H] are constant and the integration is trivial, i.e.,
[K] = a_[6]" [H] [6] (43)

The above procedure for obtaining the required relationship between
node point force increments and node point displacement increments,
Eq. (42), is applicable for any assumed strain distribution in the ele-
ment. However, for the case where the strains (and hence stresses) are
assumed to be constant within each element, an even simpler and perhaﬁs

more physically intuitive procedure can be followed, as was done, for
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example, by Foye.(g) The triangular element of Fig. 4 is assumed to
be inscribed in a rectangular region of material, the sides of which
are parallel to the x-y coordinate axes. The stresses throughout this
rectangular region, including along its sides, are assumed to be con-
stant, as they are in the triangular element. This rectangular region
can then be divided into four free bodies, as indicated in Fig. 5; the
equivalent force increments (per unit thickness in the z-direction)
acting on the sides are as shown in the figure. Since the stresses
&x’ éy’_%xy ar?»constant along each side, the equivalent force incre-

X
ments, nyji’ £,,, etc., can be assumed to be acting at the midpoints

i3
of the sides, as indicated. Summing forces in the x and y directions
for each of the three free bodies surrounding the actual finite element

gives

15 T %51 T TxyFig

..Y = é x,. + % V.
13~ %y%i5 T Txy7sd
L] X _ . .

£ T 9%kt TxyFik

g _ . (44)
. ox,,. + 71 .
jk y ik xy kj

Hh
Il

ik nyik + Txyxki

ik T %%ki T TxyYix

Hhe
<
U

These are the statically equivalent force increment components acting
on the midpoints of the sides of the nth triangular element of area An’
as indicated in Fig. 5. These force increments can then be divided
equally between the two end points of the side on which each acts. For
example, the sum of the x-components of these divided forces at the node

point i of the nth element is, using the notation of Eq. (37),



v -1 X, X
Xi-Z(fij+f1k)
= G (e, ) F T (%, %)
2 | %31 T ViR T Ty iy T ki

Expanding the terms in parentheses, cancelling terms, and then reintro-

ducing the contracted notation gives

. _ i 0 .
Xi T2 (Oxyjk + Txyxkj) (43)

The remaining force increments of Eq. (37) are obtained in the same

manner.

c.'x Yki

Txy Yki

&ijl

Fig. 5— Force=stress relations
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It can be readily shown that these equations are equivalent to
Eq. (42). 1Integrating Eq. (39) over the volume of the nth triangular

element gives

Wy =f[é*]T [5] d(vol)
(46)
= A €97 (0]

o* . )
since [e ]T and [0] are constant throughout the element. Substituting
o
Eq. (40) for [e ]T into Eq. (46) and equating the result to Eq. (38)

gives
[F] = a_[0]" [0] (47)

where [F], [6], and [0] are defined in Eqs. (37), (35), and (30), re-

spectively. Equation (45) is the first of the set of equations repre-
sented by Eq. (47). The remaining equations are similarly equivalent.
Equationr(36) can be substitutéd into the set of equations represented
by Eq. (45) to obtain Eq. (42).

Equation (47) will be used later when the problem of accounting
for failed elements is discussed.

Equation (42) relates the node point force increment equivalents
of the stress increments iﬁ each element to the node point displacement
increments. If body forces are present (a situation not included in
this investigation), an additional set of node point force increment
equivalents would exist. Also, if the boundaries of the material region
represented by the finite element array are subjected to distributed
external loadings, the equivalent force increment components acting on
the individual boundary nodes must be included. This will result in
an additional set of node point force increments [ﬁ].

Having defined all of the equivalent node point forces acting on
each element, the next step is to reassemble the individual elements in
the array. The net force at each node point in the array is then ob-
tained by summing up the force increment components contributed by the

surrouhding elements:



7

[F] = (K] [§] (48)

where the bars represent summations in each coordinate direction at
every node point in the array. Thus, [ﬁ] and [éj will be column vectors,
each with 2N entries, where N is the total number of node points in the
array. The entries in [ﬁj are the sum of the components of force at each
node point in the array contributed by the stresses in the elements sur-—
rounding that node point, i.e., the sum of the equivalent force components
represented by Eq. (42) for each surrounding element. Because each node
point must remain in equilibrium, this sum must equal the externally
applied force component at that node point, or the corresponding entry
in [ﬁ]. Thus, for interior node points (where no boundary force com-
ponents are acting, and the entry in [ﬁ] is therefore zero), the sum of
these equivalent force components must be zero, resulting in a zero entry
in [é] For node points on the boundary, the sum of the equivalent force
components from Eq. (42) must equal the component of the equivalent boun-
dary force acting there, the corresponding entry in [R] At boundary
node points where an equivalent boundary force increment component of
known magnitude is applied, the sum of the equivalent force increment
components due to element stresses must equal this magnltude in order to
maintain equilibrium, i.e., the corresponding entry in [F] must equal
this known value. At boundary node points where a displacement increment
component of known magnitude is applied, the associated boundary force
component increment is an unknown quantity, to be evaluated as part of
the solution process. The corresponding entry in [éj is, then, an un-
known. Thus, the 2N entries in the column vector [i] represent the
sum of the x and y components of the equivalent force increments at the
N nodes of the array contributed by each of the surrounding elements.:
Since most of the nodes in a typical array are interior nodes, most of
the entries in [éj will be zero.

The [K] in Eq. (48) is a 2N x 2N symmetric positive definite matrix.
Each entry in [K] is the sum of terms arising from the application of
Eq. (42) for each element surrounding a given node. Since the total num-
ber of nodes N is typically large relative to the number of elements (and

therefore the number of nodes) surrounding a given node, [K] will be a
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sparse matrix, i.e., most of its entries will be zero. Advantage will
be taken of this sparseness later when discussing details of the pro--
cedure for solving Eq. (48) for the unknown displacement increments.
As will be discussed in the next subsection, the boundary-value

. problems to be solved here are of the mixed-mixed type; at most of the
boundary node points, a force increment in one coordinate direction and
a displacement increment in the other is prescribed. (Note that corre-
sponding components of force and displacement cannot both be prescribed.)

*
Equation (48) can be rearranged so that it may be partitioned in the

form
— .k..._‘ e | — - .u—\
SN IR DU HS P (49)
]
‘u i .k
F K K S8
L~ | =21 f —~22 4 L ]

where [ﬁ?] and [EF] are the known and unknown node point force incre-
ments, respectively, and [é?] and [é}] are the corresponding unknown
and known node point displacement increments. The unknown force incre-
ments [EF] can be evaluated directly from Eq. (49) once the unknown

displacement increments [QF] are solved for:

(] = [K,,] 18] + [K,,] [§°] (50)

[éﬁ] remains to be solved. From Eq. (49),

[F*] = [K

: "
1) 1871 + [Kp,1 [87]

which can be rewritten as

(8% = 1k, 17 [ 171 - 1x;,1 189 (51)

* .

Note that if two rows of [K] are interchanged, the corresponding
columns are also interchanged. Thus, the symmetry of the matrix is
preserved. '
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where [_15;]_1]_—l is the inverse of [K In practice, the challenging

1l]'
problem is to develop an efficient computational procedure for obtain-
ing this inverse, since the order of Lgll] is typically large.

The solution of Eq. (51) for the unknown node point displacement
increment components is the key step in the solution procedure, The
unknown force increment components (at node points where the corre-
sponding displacement increment components are known initially) can
then be computed, if required, from Eq. (50). Strain increment com-
ponents within each finite element are computed by substituting the
node point displacement increments into Eq. (35). The corresponding
element stress increment components can be computed either by substi-
tuting the node point displacement increment components into Eq. (36)
or by substituting the computed strain increment components into Eq.
(30). Thus, the complete solution is obtained for the given applied
stress increment at the boundary.

The detailed computational procedure for assembling these incre-

mental solutions into a complete analysis can now be introduced.

INCREMENTAL ANALYSIS METHODOLOGY

The constitutive relations for elastoplastic material behavior

(which were derived in a previous subsection) are piecewise linear if
the slope of the octahedral shear stress-octahedral plastic shear strgin
curve (the tangent modulus ZMT in Eq. (12)) can be approximated to be
constant during each (small) increment of loading. Thus, the full load-
ing of a material well into the nonlinear (elasfoplastic) region can be
treated as a sequence of linear loading increments.

Two general approaches have been developed for treating this incre-
mental loading problem: the method of initial strains and the tangent
modulus method. Each has advantages and disadvantages as applied to
the composite materials problem.

The method of initial strains is based on the fact that plastic
strain components do not cause a change in stress. At the beginning of
each load increment, an initial guess of the increments of plastic strain

that will occur in each element is made. (For simplicity, zero values
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may be assumed.) Treating these values as initial strains, a linear ‘
elastic analysis is performed for the prescribed increment of boundary
loading. After obtaining the resulting stress increments for each |
element, a revised estimate of the plastic strain increments in each
element can be computed using these stress increments, the material con-
stitutive relations (Eq. (15)), and the value of ZMT appropriate to the
current level of accumulated stress in each element. These revised
estimates of the plastic strain increments are them used as initial
strains and the iterative procedure is repeated as many times as is
necessary to achieve adequate convergence. A common criterion of ade-
quacy is that the currént estimates differ by not more than a prescribed
amount from those obtained in the previous iteration.

The principal advantage of the method of initial strains is asso-
ciated with the fact that only linear elastic boundary-value problems;
need to be solved. The eiéétic stiffness matrix, analogous to the '
elastoplastic stiffness ggfrix [K] in Eq. (48), involves only the elastic
material constants E and V, which are known constants. Thus, the stiff-
ness matrix does not change throughout the loading process, which means
that its inverse need only be computed once. The displacement increments
for each iteration are computed directly from a set of equations anal-
ogous to those of Eq. (51). Terms similar to those in parentheses in
Eq. (51) change from iteration to iteration and increment to increment,
but the stiffness matrix does not. ;

A potential disadvantage of the method of initial strains is the
possible slow convergence of the iteration process. In practical appli-
cations this is particularly likely to occur for loadings well beyond
the elastic limit, where the slope of the material stress~strain curve
(the tangent modulus ZMT) usually becomes small. In such cases, a small
increase in stress in the element corresponds to a large increment of
plastic strain, causing the iteration process to converge very slowly,
or possibly not at all. Since in the current investigation we are
interested in accurately representing the material response within each
finite element to full failure (crack initiation and propagation), this

can become a very serious problem.
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The tangent modulus method of analysis of elastoplastic material
behavior uses the same general solution techniques that were developed
previously for linear elastic analyses. The elastoplastic constitutive
relations, Eq. (17); replace the simpler linear elastic relations (and
reduce to them as a special case when the plastic strain is zero, i.e.,
when the last term in Eq. (17) is zero, corresponding to ZMT = «), This
slope of the governing octahedral shear stress-octahedral plastic shear
strain curve (ZMT in Eq. (17)), is assumed to remain constant during
each load increment. A new value is aetermined for each element at the
beginning of each load increment. Thus, the strain increments given
by Eq. (17) are a linear function of the stress increments during each
load increment.

The principal advantage of the tangent modulus method is that the
solution for each load increment is obtained directly rather than by
iteration. However, the stiffness matrix [K] in Eq. (48) contains a
nonzero value of ZMT for each element that has exceeded its material
elastic limit, and these values usually change from one load increment
to the next. Thus, it is necessary to construct a new [K] at the begin-
ning of each load increment, and invert the corresponding submatrix [511]
for use in Eq. (51). It is particularly the inversion of [511] that con-
sumes computer time.

In actual practice, the determination of which method will require
less computation time will depend upon the rate of convergence of the
method of initial strains solution. For example, Marcal(lo) has cited
a typical problem for which the computing time required to achieve equal
accuracy using the method of initial strains was twice as long as for
the tangent modulus method. A similar trend can be expected for the
composite material problem, discussed here, since large strains (to
failure) are of principal interest.

As is generally true when employing iterative schemes, it is very
difficult to estimate beforehand the amount of computation time required
when using the method of initial strains. Conversely, the time required
per load increment when using the tangent modulus method can be accurately
estimated in advance, because it is directly proportional to the number

of unknown node point displacements to be solved for (and the bandwidth
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of the diagonalized stiffness matrix to be inverted, as will be discussed
later).

Considering the various advantages and disadvantages of the two
approaches discussed in this subsection, the tangent modulus method, as
developed for use in the previously reported inelastic analysis,(l) has
been retained for this investigation of crack initiation and propagation.
An example of the application of the method of initial strains to in-

elastic composite material behavior has been given by Foye and Baker.(ll)

INCREMENTAL LOADING TO FIRST FAILURE
Elastoplastic material behavior beyond the elastic limit and up to
that transverse normal loading at which the stress in any element reaches
(L)

its ultimate strength value is the subject of a previous report. Be—-

cause the problem is not formulated there in detail and because a number

of refinements have been made during the present investigation, a fuller
discussion will be included here.

The general boundary conditions on the sides of the rectangular
first quadrant (the region over which the solution is to be obtained;
see Fig. 2) and the continuity conditions at the filament-matrix inter-
face were defined in a previous subsection. A perfect interface bond will
be assumed, this being the condition of predominant interest. These inter-
face continuity conditions are automatically satisfied under a standard
finite element formulation and need not be considered explicitly.

In the usual transverse normal loading problem (and loading problems
in general), it is desirable to be able to specify the magnitude of the
applied normal loading (applied stress) increments, i.e., increments of
BX and ay (see Fig. 1 or 2). But the boundary conditions to be satis-
fied at each boundary node point for the problem under study must be
expressed in terms of normal displacements rather than normal stresses,
as previously explained. This is significant because it complicates the
solution process and increases the amount of computation required.

One method of achieving specified applied stress increments at the
boundaries while satisfying the normal displacement conditions is to
solve more than one boundary-value problem for each applied stress in-

crement. Since the material response is approximated to be linear within
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each increment, these individual solutions then can be superposed to
obtain the desired result. The procedure is basically the same as that
used in previous linear elastic analyses;(z) To permit the specifica-
tion of arbitrary applied stress increments AEX and A&&, two separate
boundary-value problems must be solved for each increment, They are

(referring to Fig. 2):

Problem 1

ATxy = 0 along all four rectangular boundaries

Au = 0 along x = O (boundary node points remain on the
coordinate axis because of symmetry)

Au = 1 along x = a (arbitrarily specified uniform dis-
placement increment)

Av = 0 along y = 0O (boundary node points remain on the
coordinate axis because of symmetry)

Av = 0 along y = b (any uniform displacement increment

is admissible)

Problem 2

Same as problem 1 except:

[
[}

Au
Av

0 along x = a

1 along y

For each problem, having solved for the displacement increment fields
Aul and Avi (Eq. (51)), where i = 1, 2 represent the results of Problems
1 and 2, respectively, the unknown normal force increment components at
each node point along the boundaries x = a and y = b can be computed k
from Eq. (50). The sums of these force increment components along each
boundary, divided by the corresponding boundary length b or a, represent
the average applied stress increments Aaxi and Aayi associated with each
problem.

Problems 1 and 2 then can be combined as follows to obtain the
solution for arbitrarily specified applied stress increments Aax and

AEy. Multiply the results of Problem 2 by a constant a such that the
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ratio K of the desired stress increments is obtained. (K is permitted

to vary from increment to increment in this analysis.)

s 85t 4+ o 2
Y ¥

K= —* = 1 -2 (52)
Ao AG T + aAd
X X X
Solving for a:
ks b - a5 ! 55
o = 53
A5 % - w52

The sum of the Problem 1 results plus the Problem 2 results multiplied
by o then can be multiplied by a constant Y to obtain the specific

values of AEX and Aay desired, e.g.,

A5 =y Y + abs %) (54)
X X X
which defines v,
AE}X )
Y=—T -3 (55
Ao 1 + oo 2
X X

Specifically, it is the node point displacement fields of Problems 1 and

2 that are to be combined in the above ratio, i.e.,

Au Y(Aul + uAuz)

(56)

I

Av = y(OvE + abdv?)

All other quantities of interest are then computed using these node point
displacement increments. For example, the strain increment components in
each finite element can be obtained from Eq. (35). The corresponding

stress increment components can be obtained by substituting the node point



displacement increment components into Eq. (36), or, if the strain in-
crement components have already been computed, by substituting these
strain increment components into Eq. (30).

In this analysis, the components A&x and AE& for each applied stress
increment can be specified arbitrarily, rather than only in a fixed ratio
as in Ref. 1. Because of this nonproportional loading, local unloading
may occur even if the applied stresses are increased monotonically; and,
of course, widespread element unloading will occur if the applied stress
increments are reversed in sign from previous increments. Thus, it is
necessary to provide for unloading response.

The plastic component of the total strain is assumed to be non-
recoverable and hence material unloading will be linearly elastic. Com-
putationally, the procedure is as follows. At the end of each load
increment, the computed octahedral shear stress T in each element is
compared with the corresponding value from the previous load increment.
If T has decreased in magnitude, the element is unloading. The element
material properties are set equal to the elastic values for the next and
subsequent load increments, and held constant until the computed value
of T, at the end of any load increment again equals or exceeds the value
computed for the increment in which unloading was detected. If this
occurs, the element is again assigned an appropriate value of the elasto-
plastic material parameter ZMT (as defined in Eg. (12)) for the next load
increment. Since the load increments are assumed to be small and the
element stress-strain response is constrained to follow closely the
specified piecewise linear curve, errors due to overshoot and similar
response lags are negligible. |

The above procedure for combining Problems 1 and 2 is used for all
applied stress increments except the first, up to first failure. Since
the initial material response is linearly elastic, an applied stress in-
crement of arbitrary magnitude is permissible within this region. Thus,
rather than solve for a number of small stress increments within the
elastic region, one increment just large enough to stress the material
of any one of the elements to its elastic limit value is computed as part
of the solution for the first increment, The procedure is as follows.

Problems 1 and 2 are solved as outlined above, and a value of o is computed
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(Eq. (53)) for the specified ratio K (Eq. (52)) for the first (elastic
limit) load increment. The displacement fields of Problems 1 and 2 are
combined using Eq. (56) with y deleted (i.e., as if y = 1). The éorre—
sponding element stresses are then computed as outlined previously. The
octahedral shear stress Ty in each element can now be computed from

Eq. (7). The material of each element has an elastic limit value of
octahedral shear stress Ti defined by its stress-strain curve. Thus,
the ratio TO/Ti can be computed for each element and that element having
the highest ratio identified. Note that, in general, this highest ratio
may be greater or less than unity depending upon the magnitude of the
assumed boundary displacement increments used in Problems 1 and 2 (indi-
cated as unity here). The displacement increment fields from Eq. (56)
(with v = 1) are divided by this ratio to give the displacement incre-
ments corresponding to the elastic limit loading of the composite. The
applied stress increments AGX and Aay are then computed from these dié-
placement increments as previously outlined, as are the other quantities
of interest,

Thus, to summarize, for the first applied stress increment, only
the desired ratio K of the applied stress components is specified; the
specific values of Aax and Aay corresponding to the elastic limit are
computed as part of the solution process. For subsequent applied stress
increments up to first failure, values of A5x and Aay are specified and
solved for.

A slightly different procedure was used in the earlier investigation
described in Ref, 1. The intent there was to avoid the need for solving
two boundary-value problems for each loading increment beyond the first.
The solution of these individual boundary-value problems constitutes the
dominant part of the total computational time required (whether it be the
two matrix inversions with the tangent modulus method, or the two iter-
ation processes with the method of initial strains). Thus, the total
computational time required can be cut almost in half if only one
boundary-value problem per increment is necessary.

The first (elastic limit) increment was obtained as outlined here,
solving for a specified ratio of the applied stress components]

K = AGy/AEX. However, unlike this analysis, in which Aaiyand AEY can
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be arbitrarily specified positive or negative values for each loading
increment, the ratio K was held constant for all loading increments,

i.e., proportional loading was assumed. Thus, only a value of AEX needed
to be specified for each loading increment. This proportional loading and
an additional assumption of monotonically increasing applied stresses
(positive values of Aak only) insured that no local material unloading
occurred. On these bases, a predictor-corrector technique was developed
in which the boundary displacement increment Av was estimated in terms of
the assumed value of Au and the results of the previous load increment
(thus providing the reason for solving for the first load increment in the
usual manner), The ratio of the corresponding average boundary stress
increments A5y/A5x will differ, in general, from the desired ratio K, in-
dicating the error in the approximation of Av. By making a suitable
correction in the estimated Av of the next increment, however, this error
was kept negligibly small. Full details of the procedure and the equa-
tions used are presented in Ref. 1. L

This procedure worked well, being adequately stable in loading the
composite to first failure. However, several subsequent attempts to
adopt a similar procedure for post—first—-failure applied stress increments
and the related adjustment increments (which will be described in the
next subsection) were unsuccessful. Attempts to correct for even small
errors in Av resulted in serious instabilities. The amount of computa-
tion time required and the possible errors introduced in attempting to
switch from a predictor—-corrector method before first failure to a two-
problem solution after first failure led to the abandonment of this
approach. The slight savings in computation time were more than offset
by the errors and uncertainties introduced. Thus, a two-problem incre-
mental solution has been adopted in the current investigation, for all
applied stress (and adjustment) increments, .

At some point as the incremental lbading procedure is continued, the
octahedral shear stress and/or the octahedral plastic shear strain in one
or more elements will exceed the ultimate values Ts and Eo(p)u for that
element as defined by the material stress-strain curve. Note that in
theory the material response should follow the stress-strain curve

exactly, and thus Tg and Eo(p)u would be reached simultaneously. When
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approximating the curve by linear segments as is done here, however, it
is possible that one limiting value may be exceeded without exceeding
the other. The criterion for element failure used here will be that

both T_ and € (P)u

If both T and e (p)u are exceeded in at least one element for a

must be reached.

given applied stress increment, the specified values of AG and Agy for
that increment are then reduced to values just sufficient to cause fail-
ure of only one element. If Tu or € (p)u (but not both) is exceeded in
at least one element, the spec1fied values of Ad and Aay for that in-
crement are then reduced to values just suff1c1ent to cause either T

or Eo(p)u to be reached in just one element. In this latter case, an
element failure has not occurred, however, and the next load increment
is applied and the process repeated.

This reduction of the applied stress increments AEX and Aay for
load increments beyond the first (ldnearly elastic) increment cannot be
achieved by a simple linear adjustment such as was used in obtaining the
elastic limit values in the first load increment. For an applied stress
increment, both T and £, (® (Egs. (7) and (6), respectively) are func-
tions of terms of the form (0 + Ao ) , where Oy is a stress component
in an element at the beglnnlng of the increment and Adx represents the
"incremental increase. Thus, terms of the form 02 + 20,A04 + Aoz must
be scaled down to achieve the desired value of Ty or EO(P)U. That is,

a quadratic equation must be solved in determining the scale factor in
each case.

These quadratic equations reduce to a single linear relation for
the first load increment since the stress components at the beginning
of the increment (those represented by o, in the above expression) are
zero, making the previously discussed linear scaling procedure (Egs.
(54) and (55)) valid.

Equaling or exceeding both Tz and So(p)u for one element defines
first failure of the composite body. This local failure must then be

accounted for, as will be discussed in the next subsection.



—-4iH=-

CRACK INITIATION AND PROPAGATION TO TOTAL FAILURE

When the material in a local region is stressed to its ultimate

value, as defined by the stress—-strain response for that constituent
material, it will fail. TIf this occurs in a region of high stress
gradients such as typically exist in a composite material, the surround-
ing material may be able to absorb the redistribution of stresses caused
by the local failure without additional failure occurring at that level
of applied stress. If this is the case, the initial failure becomes a
local discontinuity--a crack--within the material. As additional load-
ing is applied, this crack may grow in size (propagate), or additional
cracks may be initiated in other regions of high stress within the
material. Eventually, the remaining material will be unable to carry
the applied loads and total failure-—-a crack completely across the
material cross section--will result.

Thus, it is first necessary to model the crack. Since the material
region is represented by elements of finite size, in each of which the
stresses and strains are assumed constant, the imminence of a local
failure is identified with a particular finite element. An obvious
method, and that used here, is to subsequently set the material proper-
ties of that element equal to zero, i.e., the stresses and the stiffness
properties within the element are reduced to zero. Thus, the crack is
assumed to have the dimensions of the failed element. In an actual
material, the width of the crack will typically be considerably smaller.

This "failed element approximation of a crack has two implications.
A finite amount of material is assumed to be removed from the system,
which is not actually the case, and the crack is not likely to completely
close up under subsequent loadings because of its exaggerated width.
Should an actual crack subsequently close up, it could support compres-
sive normal forces and shear forces across its surfaces. Of course, as
the finite elements are made smaller and smaller, the model representa-
tion of an actual crack improves.

There are alternative methods of modeling the crack that do not
involve the undesirable features noted above; one of them is outlined
in Appendix B, However, practical difficulties in implementing such

methods have thus far prevented their use. In this investigation, we
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use the "failed element" concept of setting the element material proper-
ties equal to zero and defining the resulting void as the crack. As
will be demonstrated in Secs. IV and V, this method has proven to be
quite satisfactory.

The finite element method involves the maintenance of force equi-
librium at each node point in the array. Each element surrounding a
given node point exerts a force on that node, and the magnitude of these
forces is proportional to the stresses in the elements, as given by
Eq. (47). Thus, to represent the unloading due to failure of an ele-
ment, equal and opposite force components are applied at the correspond-
ing three node points. This reduces the node point force contribution
of that element to zero; since the material stiffness properties of the
element are simultaneously set equal to zero, no stresses will be de-
veloped within the element during subsequent applied stress increments.

These negating node point forces will cause a complete redistribu-
tion of displacements, strains, and stresses through the composite
material. Thus, after each applied stress increment in which an element
failure is indicated, an "adjustment" increment must be performed to
apply these negating force components. The effect of an element failure
during an applied stress increment is hence accounted for in the sub-
sequent adjustment increment.

As in the case of the applied stress increments, certain boundary
conditions must be satisfied during the adjustment increment. These
conditions are zero shear stresses and uniform displacements along the
rectangular boundaries of the first quadrant (see Fig. 2).

A choice can be made at this point between maintaining constant
average boundary stresses (Ac-rX = Agy = 0) during the adjustment incre-
ment, constant boundary displacements (M1 = Av = 0), or a combination
of these conditions. In this study, a combination has been used that
simulates the conditions of a typical uniaxial test using a constant
deformation testing machine. The test specimen is held fixed in the
loading direction (along the x-axis) during the adjustment process,
with its lateral dimension (along the y-direction) free to expand or
contract while maintaining a constant average stress (which, by defi-.

nition, is zero for the special case of uniaxial loading). This
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combination requires the{solution of two separate boundary-value prob-
lems, as does the applieg stress increments. The required boundary ‘
conditions are different, but the method of combining them is basically
the same. The previously defined Problem 2 is unchanged. However,

Problem 1 is replaced by Problem 3, defined as follows:

Problem 3

ATXy = 0 along all four rectangular boundaries
Au = 0 along x = 0 and x = a
Av = 0 along y = 0 and y =

Force components of equal magnitude but opposite sign from those :
given by Eq. (47) are applied at the node points of the failed

element.

Problems 2 and 3 are then combined to obtain the following adjust-

ment increment results:

Au = 0 along x = a (obtained automatically since Au =0
for both Problems 2 and 3)
AEY =0 alongy =b

The displacement, strain, and stress increment fields are then added
to the previously accumulated sums in the usual manner.

The redistributions of stresses due to this adjustment increment
may cause one or more additional elements to exceed their ultimate
octahedral shear stress and octahedral plastic shear strain values,
i.e., to fail. TIf this happens, an additional adjustment increment
is solved for. This process is repeated until no additional elements
fail during an adjustment increment. The next applied stress increment
is then applied in the usual manner. ‘

As previously noted, adjustment increment boundary conditions other
than those selected for this analysis can also be used, the choice de-
pending upon the physical problem to be simulated.

For example, to simulate a constant deformation (e.g., screw-driven)

biaxial loading testing machine, the adjustment increment boundary
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conditions Au = 0 along x = a and Av = 0 along y = b would be appro-
priate. Since this corresponds to Problem 3 outlined above, only one
boundary-value problem would have to be solved per adjustment increment,
and no combining of individual problems is necessary.

To simulate a constant load (e.g., hydraulic or dead load) biaxial
loading testing machine, the adjustment increment boundary conditions
Aax = 0 along x = a and AEY = 0 along y = b would be appropriate. This
would require the combination of solutions for Problems 1, 2, and 3 for
each adjustment increment. A procedure for combining three problems
is discussed in detail in Ref. 12 (in considering the influence of a
uniform temperature change) and is not repeated here.

These and similar other adjustment increment boundary conditions
can be alternatively readily incorporated as desired.

Total failure of the composite occurs when a continuous band of
failed elements extends completely across the first quadrant, either
from the x = 0 boundary to the x = a boundary, or from the y = 0 boun-
dary to the y = b boundary. This necessarily corresponds to either
8Y = 0 or 5X = 0, with no further change in ay or Ex possible. In sum-
mary, a crack has propagated completely across the composite material,

causing total failure.
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III. COMPUTATIONAL ASPECTS

This section is intended for those who are interested in the gen-
eral characteristics of the numerical solution procedure.

Constant strain triangular elements, as defined in Sec. II, are used
to depict the region of interest. The computer program is presently
dimensioned to allow the use of up to 350 elements and 200 node points.
The size of the element array, and specifically the number of node points,
directly influences the computer time required per solution increment
since the solution is obtained in terms of node point displacement com—
ponents. Thus, a trade—off must always be made between improving the
resolution by using a larger number of elements and node points, and
keeping the required computation time within acceptable bounds. The
limits on the array size have been more than adequate to date. Much can
be done to improve the resolution, without increasing computation time,
by carefully constructing the finite element grid.

The composite material configuration that can be portrayed within
the region being analyzed (the first quadrant of the typical repeating
‘unit indicated in Fig, 2) is completely arbitrary. Any filament shape
that can be represented by a group of triangular elements is admissible,
and more than one filament can be included in the first quadrant. A
void can be expressed by setting the Young's modulus equal to zero for
those elements that represent its shape. The program is dimensioned
to handle as many as five different materials.

Since an elastoplastic analysis is being performed, the complete
stress-strain response to total failure for each constituent material
must be given. The analysis permits any monotonic response (i.e.,
single-valued relation between stress and strain) to be specified. The
stress-strain curve for each material is input point by point, usually
using actual experimental data. The applied stress components AEX and
AEY can be arbitrarily specified for each solution increment. The pro-
gram is dimensioned to handle as many as 50 pre-first-failure load
increments and 50 post—first-failure load increments. A typical prob-
lem may require 10 to 12 pre-first—failure load increments and 12 to

15 post~first-failure load increments.
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The finite element computer program provides a printout of results
for each applied stress increment and each adjustment increment, namely,
the increments of average composite stress actually solved for, the
corresponding increments of composite strain, the accumulated sums of
these quantities, and the accumulated node point displacement compon-
ents. It also prints out for each element the accumulated values of
yv? ny, €O(P) and the following normalized quantities:
the stress components Oxlax’ oylax’ OZ/BX, Txylax; the octahedral shear

the strains ex, €

stress TO/Ti; the maximum principal stress Ol/ax; and the maximum prin-
cipal strain el/EX. Furthermore, it prints out the numbers of the ele-
ments for which either Tg or Eo(p)u has been exceeded during the solution
increment.

In addition to this printed output, the program prepares a tape
containing those results that are required for input to the contour
plotting computer program, used by a Stromberg-DatagraphiX S-D 4060
plotter. |

The finite element grid, which is input no@eﬁby node into the
finite element computer program, can be plotted with and without ele—-
ment numbers being printed. This serves as a ready visual check for
the correctness of the input data. Contour plots of any of the follow-
ing element quantities can be specified (normalized as indicated):
maximum principal stress Ol/ax’ maximum principal strain el/éx, octa-
hedral plastic shear strain eo(p), and octahedral shear stress TO/TO.
Values of the contours to be plotted are specified as input data.

Failed elements are also indicated on the contour plots. These
elements are outlined and shaded, making it easy to follow visually the

progress of a crack on plots of successive solution increments.
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IV. NUMERICAL RESULTS

Because the primary goal of this investigation has been to develop
a method of analysis and to write an associated computer program, most
of the concentration has been on attempting to improve computational
techniques and solution accuracy. Only very limited numerical results
have been obtained to date.

However, in the process of refining the detailed aspects of the
numerical solution procedure and correcting programming errors, a sig-
nificant number of computer runs have been made. This development
effort involved the study of effects of changing finite element grid
patterns in local regions, modifying boundary conditions, reshaping
the governing stress-strain curves of the constituent materials, vary-
ing the size of the applied stress increments, and so forth. Thus, the
few examples presented here and the numerical analysis used to obtain
their solutions constitute a summary of the knowledge gained to date.

There was no single computer run that was completely satisfactory
in terms of modeling all aspects of the composite material response ‘
from the first (elastic limit) applied stress increment, to first fail-
ure, and then to complete crack propagation and total composite failure.
Each of these separate phases, however, was successfully run at various
times during the computer program development procesé. An inherent
numerical inaccuracy of the constant strain triangular finite element
technique, which remains to be resolved (as will be discussed in the
next section), combined with a lack of available computer time has
limited the number of numerical results obtained.

The examples presented here are intended to demonstrate the type
of information which can be obtained, even though the results are too
limited to provide conclusive predictions of actual crack propagation
and composite failure. Many more computer runs will be required to
achieve this.

A boron-aluminum composite was assumed in most of the numerical
examples considered. The distinct change in slope of the stress-strain

curve beyond the elastic limit for the annealed 6061 aluminum alloy
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matrix material that was selected offered a good test of the elasto-
plastic response representation of the analysis. Actual experimental .
data provided by TRW—Cleveland* were used; the stress-strain curve ob-
tained from a uniaxial tensile test of this matrix material is shown

in Fig. 6. The complete curve is input point by point into the computer
program., The measured Young's modulus was 9.4 X 106 lb/in-z, the elastic
limit stress was 6280 lb/in.z, and failure occurred at an ultimate stress
of 18,900 1b/in.2 and a strain of 30 percent. The boron filaments were
assumed to exhibit linearly elastic response to failure, based upon
longitudinal tensile tests of individual filaments. Their measured
Young's modulus was 55.0 X lO6 lb/in.z, and an ultimate strength of
500,000 lb/in.2 was assumed as being sufficiently high to insure that
failure would occur in the matrix only. This was the observed failure
mode in the actual composite material being modeled. The Poisson's
ratios for the aluminum and boron were assumed to be 0.32 and 0.20,
respectively.

Complete stress—strain curves to failure for a number of uniaxial,
transverse normal tensile tests of composites using these constituent
materials were provided by TRW-Cleveland, in the form of strip chart
records.* Photomicrographs of the test specimens before and after

(13) All specimens using the annealed alum—

failure were also available.
ijnum matrix failed in the matrix. Other composite specimens, using the
same 6061 aluminum alloy but in the heat~treated condition, also exhibited
failures in the filaments. The alloy is much stronger in the heat-treated
condition, as indicated by the experimental curve in Fig. 6. A complete
discussion of the test procedures, specimen designs, material processing,
and experimental program in general may be found in Ref. 13.

One specific test result, TRW Specimen 4F02/2, that was selected to
be modeled by the analysis is an annealed specimen containing 40 volume
percent (v = 40 percent) of boron filaments. This spec1men was selected .
because it exhlblted a stress-strain curve that represented well the e
data available. The filament packing was very regular and in approx-

imately a square array. Photomicrographs are included in Ref. 13.

*
Private communication of unpublished experimental data from I. J.
Toth, TRW, Inc., Cleveland, Ohio.
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Fig.6— Uniaxial tensile stress-strain curves, 6061 aluminum alloy
matrix materials (data from Ref, 13)
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The finite element grid shown in Fig. 3 was constructed to model
this geometry, boron filaments being circular in cross section. This
is a relatively large grid, containing 176 nodes and 304 elements, and
it models the matrix region very well. A coarse element grid was used
in the filament region since the boron filaments remain elastic and do
not fail. This conserved node points and should not significantly af-
fect solution accuracy. '

The actual composite stress-strain response obtained experimentally
by TRW is indicated by the solid curve in Fig. 7. This was a uniaxial,
transverse normal tensile test, corresponding to a Ex component of
applied stress, as indicated in Fig. 1; Oy is zero. One set of numer-
ical results of the present analysis, computer run 8A-10-17, is illus-
trated by the dashed curve in Fig. 7.

First yielding was predicted to occur in the matrix along the
x—axis midway between adjacent filaments-—in element 79 in the lower
right corner of the grid of Fig. 3. This is consistent with the re-
sults obtained in Ref. 1. As noted in Fig. 7, first yielding was pre-
dicted to occur at an applied stress of 5539 lb/in.2 and a composite
strain of 0.0296 percent, resulting in a predicted composite elastic
modulus of 18.7 X 106 lb/in.z. The experimentally measured elastic
modulus was 17.3 X 106 lb/in.z. As indicated in Fig. 7, the initial
portions of the two curves are in good agreement.

The composite was then loaded in 500 1b/in.2 increments up to first
failure, which was predicted to occur in element 139, an element of
matrix material located at the filament-matrix interface (see Fig. 3).
This occurred during applied stress increment no. 29, at an applied
stress of 19,519 lb/in.z. This point is marked first failure in Fig. 7.
The failed element is outlined in Fig. 8; the number inside the element
indicates the applied stress increment during which failure occurred.:
Octahedral shear stress contours (which have been normalized by dividing
by the value of the octahedral shear stress at which yielding of the
matrix material occurs, i.e., Ti = 2960 lb/in.z)’are also indicateg.
Matrix failure occurs at an octahedral shear stress of 8910 1b/in.”,
corresponding to a normalized value of Tg/Ti = 8910/2960 = 3.01. Thus,

the contours having the value 1.0 indicate the initiation of yielding,



Applied stress (ksi)

-56-~

20
A~ First failure ( see Fig.8)
Theory \/l
18 "Applied stress / : "M
increment 33/—2 l,’ly/‘.v,/‘“' | Aol
(see Fig.9) v vy~ Applied stress
16 /3 : increment 72
/ I (see Fig.10)
/ |
14 / ~—Applied siress
/ increment 73-9
1 (see Fig. 11)
10
. *
sl Experimental data -
TRW test specimen 4F, 2/2
6
Predicted first yield
4
* Private communication from 1. J. Toth,
TRW, Inc., Cleveland, Ohio
2
0 ] ] i ] | | | |

0 0.1 0.2

0.3 0.4 0.5 0.6

Composite strain (percent)

0.7

0.8

Fig. 7— Predicted and experimental stress=strain curves

Computer run 8A~-10-17

0.9



~-57~

Fig.8—First element failure and octahedral shear siress contours (normalized)
Computer run 8A-10-17, applied siress increment 29
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and those having the value 2.0 indicate a stress level approximately
midway between yielding and failure.

The first element failure, as indicated in Fig. 8, resulted in a
decrease of 196 lb/in.2 in the applied stress during the immediately
subsequent adjustment increment (which is always required when an ele-
ment fails), and this adjustment did not cause additional elements to
fail,

Beyond first failure, 200 lb/in.2 applied stress increments were
used. During applied stress increment no. 30, the plastic octahedral
shear strain ultimate Eo(p)u (but not the octahedral shear stress ;lti~
mate Tg) was exceeded in element 81 (see Fig. 3). This 200 1b/in.
appligd stress increment was thus automatically normalized to give the
valﬁé eo(p)u for elemen# 81, which corresponded to an actual applied
stress increment of 87 1b/in.2.

During the next applied stress increment, element 81 failed, at
a stress increment of only 24 lb/in.z. The subsequent adjustment in--
crement caused a decrease in applied stress of 85 1b/in.2, and Tz (but
not Eo(p)u) was exceeded in elements 78 and 79. These two elements
failed during the next applied stress increment, increment no. 32.

When this occurred, a total of four adjustment increments were required
to again achieve equilibrium. During the first adjustment increment,
element 93 failed. Thus, a second adjustment increment was required,
during which element 82 failed. This required a third adjustment, dur-
ing which elements 92, 94, and 105 failed. A stable condition was :
achieved during the fourth adjustment increment, although Tg had been
exceeded in element 117. At this point the applied stress had decreased
to 17,282 1b/in.2.

During the next applied stress increment, increment no. 33, element
117 failed after only 10 lb/in.2 of the allowable 200 lb/in.2 increment
had been applied. This in turn caused element 106 to fail during the
subsequent adjustment increment, requiring a second adjustment increment.
This restored equilibrium, at an applied stress of 16,246 lb/in.z, and
completed the first major decrease in applied stress, as indicated in

Fig. 7. The elements which had failed at this point are indicated in

Fig. 9. When the number within an element is hyphenated, the first
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1.0

Fig. 9— Failed elements and octahedral shear stress contours (normalized)
Computer run 8A-10-17, applied stress increment 33 -2
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digits indicate the applied stress increment number, and those after
the hyphen indicate the adjustment increment within that applied stress
increment during which the element failed. When the number is not
hyphenated, it indicates that that element failed during the applied
stress increment itself. Shading identifies the element that failed

in the previous figure. -

Seven additional 200 lb/in.2 applied stress increments, nos. 34
through 40, were then employed; no additional elements failed. At
83 lb/in.2 of increment no. 41, element 127 failed. This in turn caused
element 118 to fail, and equilibrium was restored at an applied stress
of 16,707 lb/in.z. This decrease is represented by the second sharp
drop in applied stress in Fig. 7, at a composite strain of 0.258 percent.

The process of applying stress increments and causing additional
elements to fail was continued as outlined above, resulting in the jagged
stress-strain response indicated in Fig. 7. During this time, the crack
initially continued to propagate upward along the right boundary of the
first quadrant, and then a second crack began to propagate along the
interface. At applied stress increment no. 72, when element 208 failed
(see Fig, 3), the applied stress dropped suddenly. This point is noted
in Fig. 7. Elements which had failed at this time are indicated in
Fig. 10.

Element 207 failed immediately during the next applied stress incre-
ment, marking the point at which the”crackvturned away from the interface,
propagating out into the matrii.ﬁagggiéi fegién. .During the first nine
adjustment increments following this applied stress increment, the crack
continued to propagate upward and at the same time it connected with the
original crack, as indicated in Fig. 11. At this point a numerical in-
stability interrupted the solution process.

In view of later results, it is fairly obvious that the crack ex-
tending out into the matrix from the interface would have continued to
propagate upward to the top boundary of the material region if the solu-
tion process had been continued. This would have constituted total
failure. Looking again at Fig. 7, it is anticipated that the predicted
stress-strain curve would have continued downward with only minor fluc-

tuations. For all practical purposes, failure had effectively occurred
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2.0

Fig. 10— Failed elements and octahedral shear stress contours (normalized)
Computer run 8A=~10-17, applied stress increment 72
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2.0

2.0

Failed elements and octahedral shear stress contours (normalized)

Computer run 8A-10~17, applied siress increment 73-9

Fig. 11
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during applied stress increment no. 66, when the crack began to propa-
gate along the interface. Beyond this point the applied stress de-
creased rapidly, with only minor pauses.

Although the first crack began at the interface (during applied
stress increment no. 29), the major crack propagation was initially
along the right boundary (up the midline between adjacent filaments).
Actually, the fact that first failure occurred in element 139 may have
been an anomaly, caused by the distorted shape of element 15 in the
filament directly across the interface (see Fig. 3). This distortion
was introduced while minimizing the matrix bandwidth during construc-
tion of the grid array. Element 81 was also very near to failure when
element 139 failed. At applied stress increment no. 66, during which
the second element near the interface failed, the magnitude of the
applied stress was 17,757 lb/in.z, and the composite strain was 0,388
percent. The composite was already near total failure.

The composite stress-strain curve presented in Fig. 7 is exactly
as obtained in computer run 8A-10-17. Later, however, several relatively
minor errors in the computer program were discovered and corrected. The
principal effects of these corrections were to approximately double the
plastic component of the composite strain, and to decrease the applied
stress at which first failure occurred. Because of a numerical insta-
bility problem that is yet to be resolved (as will be discussed in the
next section) and to conserve available computer time, a complete rerun
of this example problem was not attempted. However, a computer rerun
(8C-1) up to first failure was made. The result is plotted in Fig. 12
along with the original post-first-failure results, which have been »
approximately corrected for the previous error by doubling the plastic
component of the composite strain values. Thus it must be emphasized
that Fig. 12 does not represent an actual result of a single computer run,
but rather is an estimate of the type of behavior that can reasonably be
expected in subsequent investigations.

The postulated stress-strain curve of Fig. 12 is clearly in good
agreement with the experimental data, One fact that should be kept in
mind, however, is that the experimental data represent the results of 3

test of a composite containing hundreds of individual filaments that were
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not all perfectly spaced in a square array. It would be very informa-
tive to determine the influence of minor variations of filament spacing
on both the predicted composite stress-strain response and the actual
crack propagation pattern. The experimental curve represents a sta-
tistical average of such a variation.

The first example discussed, computer run 8A-10-17, was unique in
that a very large number of applied stress increments were required, a
total of 73. This was necessitated by the relatively small size of the
applied stress increments specified--500 lb/in.2 prior to first failure,
and 200 lb/in.2 after first failure. A study of the nearly 50 computer
runs that were made during the investigation have somewhat quantified
what is intuitively obvious: the numerical results are influenced by
the size of the increments used. -

For example, computer run 8C-1 used larger applied stress incre-
ments that did computer run 8A~10-17. The pre-first—failure applied
stress increments were specified as 500 1b/in.2 for increment nos. 2
and 3, 1000 lb/in.2 for increment no. 4, and 1500 lb/in.2 for all addi-
tional pre-first—failure increments required. (The magnitude of the
first (elastic limit) applied stress increment is solved for in the
analysis directly, as previously discussed.) The computer program was
then immediately rerun (8C-2) using all 500 lb/in.2 applied stress in-
crements. Although it terminated prior to first failure because of
a numerical instability, the predicted stress-strain curves as obtained
from runs 8C-1 and 8C-2, up to the point where the instability occurred
" in run 8C-2, were somewhat different. The applied stress at a given
composite strain was slightly lower when the larger increments were
used. Also, it was indicated that the applied stress at which first
failure would have occurred in computer run 8C-2 would have been some-
what higher than was actually obtained in computer run 8C-1 because
local stress concentrations within the composite tended to be lower.
(Probable reasons for this will be discussed in conjunction with the
next example.) It would probably>heve been more accurate to use run
8C-2 as the first portion of the predicted curve in Fig. 12 (to first
failure), if a numerical instability had not occurred just prior to

that point, making the stress at first failure indeterminate.
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The influence of applied stress increment size was also demonstrated
in another computer run, 8A-19-25. It was run immediately after 8A-10-17,
with only very minor changes in the computer program. The significant
difference between these two runs was in the size of the applied stress
increments specified. Computer run 8A-19-25 used larger increments. The
pre-first—-failure applied stress increments were 500 lb/in.2 for increment
nos. 2 and 3, 1000 lb/in.2 for increment no. 4, and 1500 lb/in.2 for all
subsequent pre-first-failure increments required. All post-first-failure
applied stress increments were specified as 500 lb/in.z.

Total failure was achieved in this example; the resulting composite
stress-strain curve is shown in Fig. 13, As in computer run 8A-10-17
(see Fig. 7), the plastic gomponent of the computed composite strain was
in error by a factor of approximately two. This accounts for the small
strains in Fig. 13, since the curve was plotted exactly as obtained from
the computer printout.

As in 8A-10-17, first failure occurred at the interface, again in
element 139 (see Fig. 3). However, the applied stress at first failure,
13,285 lb/in.z, was considerably less than the 19,512 lb/in.2 previously
achieved, as was the composite strain, 0.123 percent versus 0.221 per-
cent. First failure occurred during applied stress increment nmo. 9.

Unlike computer run 8A-~10-17, the crack that initiated at the inter-
face immediately propagated along the interface, upward slightly at first,
as illustrated in Fig. 14, However, when the third element failed during
applied stress increment no. 1ll, a total of nine adjustment increments
were required before equilibrium was again achieved. During this time
the crack continued to propagate along the interface, primarily down-
ward; the condition at adjustment increment no. 11-6 is shown in Fig. 15.
Equilibrium was achieved during adjustment increment no. 11-9, when the
crack reached the lower boundary, as indicated in Fig. 16. However,
during the next two applied stress increments, the crack propagated up-
ward along the interface an additional two elements, causing the applied
stress to drop to 4563 lb/in.z. This marked the end of the nearly ver-
tical first major drop in applied stress beyond first failure.

The appliéd stress then increased during the next three applied

stress increments, with no additional elements failing. At this point
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Fig. 14—Failed elements and octahedral shear stress contours (normalized)
Computer run 8A -19-25, applied stress increment 11
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Fig. 15— Failed elements and octahedral shear stress contours (normalized)
Computer run 8A-19-25, applied stress increment 11-6
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1.0

Fig. 16 — Failed elements and octahedral shear stress contours (normalized)
Computer run 8A -19-25, applied stress increment 11 -9
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the crack began to propagate again, moving away from the interface, as
shown in Fig. 17, causing another drop in the applied stress. During:
the next three increments the applied stress again increased, with no
elements  failing. But the stiffness of the composite was considerably
reduced, as shown in Fig. 13 by the slope of the curve segment between
3043 1b/in.2 and 3883 lb/in.2 applied stress. This was due to the
drastic reduction of the load-carrying cross—sectional area caused by
the extensive crack in the composite. As may be seen in Fig. 17, only
a narrow strip of material between the crack tip and the upper boundary
remained to carry the applied stress.

During the final three applied stress increments, nos. 24 through
26, the crack propagated to the upper boundary, as shown in Fig. 18.

The applied stress dropped to zero, as illustrated in Fig. 13, defining
total failure. As Fig. 18 shows, a very well-defined crack was obtained.
A comparison of computer runs 8A-10-17 and 8A-19-25, which, as

previously stated, were essentially identical except for the magnitude

of the applied stress increments assumed, reveals several points. One

is that a basic assumption of the incremental loading procedure is that
the material behavior is linear within each applied stress increment.
That is, the slope of the octahedral shear stress-plastic octahedral
shear strain curve is assumed to remain constant during eacﬁ.increment.
This effectively means that each material element follows a stress-—strain
curve made up of a series of straight-line segments rather than the
actual input curve. A new straight-line segment of proper slope is
established at the beginning of each successive applied stress increment.
Thus, large increments may cause the element material response to oscil-
late excessively about the smooth input stress-strain curve. During a
given increment, the material response of one element may be overshoot~-
ing the input curve while an adjacent element is undershooting. This
results in a nonuniform local stress distribution, particularly in
regions where the stresses are on a portion of the stress—strain curve
where the slope is rapidly changing. This in fact did occur in computer
run 8A-19-25 as first failure was being approached. When element 139
failed (at a lower applied stress level than in computer run 8A-10-17

because of the increased stress due to an overshoot) and the required
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Fig. 17— Failed elements and octahedral shear stress contours (normalized)
Computer run 8A=-19-25, applied stress increment 20-2
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Fig. 18— Failed elements and octahedral shear stress contours (normalized)
Computer run 8A~19-25, applied stress increment 26-2 (total failure)
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stress adjustment increment was performed, the stress in element 150
overshot the actual stress-strain curve excessively, exceeding the
ultimate stress level. This element failure in turn caused adjacent
elements to fail, setting up an almost self-propagating effect. This
accounted for the very sudden drop from the maximum applied stress down
to zero stress that is exhibited in Fig. 13.

It should be noted that a similar sharp drop occurred in Fig. 7
when the crack began to propagate along the interface. However, in that
case, considerable strain at the high stress levels had already occurred
while the crack was initially propagating in the matrix region away from

the interface.
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V. DISCUSSION

It became obvious during the investigation described here that
much additional work remains to be done in problem areas that range
from improving the accuracy of the basic finite element solution tech-
nique to developing a more representative model of the propagating
crack. Many of these areas for additional research are well-defined
and require only the time to develop them. The solutions to other
problems are not so clear.

The author has briefly explored some of these research areas,
often only enough to discover certain inherent problems. Others have
been outlined in detail and only await accomplishment. The following
paragraphs define the more important of these problems, indicate what

has been done to date, and discuss what remains to be done.

FINITE ELEMENT METHODOLOGY

As discussed in detail in Sec. II, constant strain triangular ele-

ments were used in the investigation. Inaccuracies in the incremental
solution results, particularly as manifested by the shear strains,
apparently are associated with the finite element representation, Higher
order elements have been developed that more closely model the actual
strain variation across an element. The linear strain triangular ele-
ment has, for example, received considerable attention. Each element
involves six node points, one at the midpoint of each side of the
triangle and one at each apex. The author has not attempted to use
higher order elements as a means of improving accuracy, and this should
be explored. It must be established whether using additional node points
in a higher order approximation is a better technique than simply increas-
ing the number of constant strain elements proportionally. A thorough
discussion of the general use of higher order elements may be found in
a report by Felippa.(la)
Another source of error is in the construction of the grid array
itself. Since the triangular elements can be assembled in an arbitrary

manner, any number of elements can have a common node point. Thus,
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various patterns are created. Walz, et al.(ls) have investigated this
source of discretization error for specific grid patterns. A brief
study was also performed as part of the author's investigation. Since
inaccuracies were noted in even the first (elastic) applied stress in-
crement, only elastic behavior was analyzed. »

The finite element equations that express force equilibrium at a
given node point in terms of node point displacements are expanded in
Taylor series about that node point to obtain differential equations.
These differential equations are then compared with the classical con-
tinuum equations of equilibrium. Any differences represent the error
terms. .

For the present two-dimensional plane strain analysis and an arbi-

trary grid pattern, the following results were obtained:

o TFor interior node points surrounded by elements all
having the same material properties, no error terms
involving first-order derivatives exist.

o For interior node points surrounded by elements not
all having the same material properties, e.g., at a

filament-matrix interface, there are error terms in-

volving %%, %§3 §§3 and %%, which contribute to errors

ine_, £_, and y_ .

x°y xy

o For node points on the boundaries x = 0 and x = a

(see Fig. 2), error terms involving %ﬁ-and %% exist
in the equation representing equilibrium in the
x~direction; error terms involving %3 and %% exist
in the equation representing equilibrium in the
y-direction.

o For node points on the boundaries y = 0 and y = b,

\ ov
there are error terms involving %% and-§§ in the

equation representing equilibrium in the x-direction;
error terms involving %% and<%§ exist in the equation

representing equilibrium in the y-direction.
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Note that, except for certain special grid patterns, there will also
be error terms involving second-order derivatives. All of these error
terms are independent of the element size-~—they do not reduce to zero
as the element size vanishes. There are other discretization errors
that do vanish as the element size vanishes, but they are not of prin-
cipal concern here.

The general conclusion is that additional errors are introduced
by the presence of material interfaces and boundaries (neither of which
was considered in Ref. 15) and cannot be avoided. Their severity is
dependent upon the specific local grid pattern, but they are difficult
to evaluate analytically. A more detailed and thorough investigation
of this aspect of the accuracy of finite element approximations and the
various sources of error is needed.

The entire problem of inherent local errors leading to numerical
instabilities that has been observed in this study is by no means unique.
The same problem has been reported and discussed by others, including

(16) and Argyris,(17) two recognized authorities on the use

Zienkiewicz
of finite element methods. These authors were concerned primarily with
elastic analyses, for which only one matrix inversion is needed. The
error problem is compounded whéﬁ an incremental solution technique in-
volving a large number of matrix inversions is required, as in the appli-
cation of the tangent modulus method of elastoplastic analysis described
in this report (or when a large number of iteration processes are required,
as in the ﬁethod of initial stféins).

Both Zienkiewicz(l6) and Argyris(l7) have suggested the use of some
type of averaging procedure t6>émodth out local irregularities, and have
indicated successful methods for doing so. Based upon the general sug-
gestions of Argyris, the problem might be approached as follows. It was
noted in this report that the dominant irregularities occurred in the
shear strains, particularly in regions of high shear strain gradients.

This suggests that as a first attempt, only the shear strains for each
individual boundary-value problem solution be averaged, before these

solutions are combined during each increment, A possible procedure is

to:
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1. Assign the ayerage of the shear strain values in pairs of
adjacent elements to the midpoint of their common side. At
the boundaries of the material region being analyzed, this
midpoint value will equal the element value, because of the
assumed symmetry across the boundary. At the filament-matrix
interface, assign the element value to the midpoint of the
side along the interface, i.e., do not average across the
interface since the materials are dissimilar and the stresses
discontinuous.

2. Average the values on the three sides of each element together

and assign this average value to the element,

This averaging procedure is straightforward and can be readily incorpor-
ated into the existing computer program. Although not as satisfying
analytically as using a higher order element representation, it may
provide numerical results of satisfactory accuracy for most engineering
applications and be much more economical of computer time required.

In addition, it may be that similar irregularities and instabilities

will occur if higher order elements are introduced.

CRACK REPRESENTATIONS AND FAILURE CRITERIA

The method of creation of a crack by "failing" an element and
allowing the surrounding material to adjust to the failure was de-
scribed in Sec. II. A possible alternative method of modeling a crack

is discussed in Appendix A. In some actual materials, very high stress

and strain gradients exist at the tip of a sharp crack. The adequacy
of using finite elements to model these gradients should be explored
further. Obviously the "failed element" approach used in the study
reported here does not represent the actual crack tip geometry very
closely. However, in most real materials there is a plastic zone
around the crack tip that tends to reduce the magnitude of the local
stress gradients, and may make it an adequate model. Certainly, many
practical difficulties can arise when developing a crack model, as

pointed out in Appendix A.



The definition of what constitutes material failure should also be
explored further. Here, exceeding specified ultimate values of octa-
hedral shear stress and octahedral plastic shear strain defines failure.
Other theories of failure have been proposed and they should be evalu-
ated for the application discussed in this report. It is hoped that
the sharp increase in interest in fracture mechanics concepts also will

prompt applications relevant to this problem.

GENERALIZED PLANE STRAIN

This analysis assumes a condition of plane strain, i.e., that the

normal strain €, in the z-direction (the direction of the filament re-
inforcement) is zero throughout the composite body. Correspondingly,
the z-component of displacement, w, is zero everywhere. When transverse
normal loadings ax and §y are applied, however, O, componegts of stress
are induced. Thus, an average stress in the z-directionm, o, exists.

In actual applications it may be desirable to keep this average
stress §z equal to zero to simulate a real loading condition. This
can be done by assuming a uniform nonzero axial displacement w rather
than a zero value. Such a condition is referred to as generalized
plane strain. The magnitude of w required to achieve az = 0 is ini-
tially unknown and must be solved fpr. For the problem considered "
here, this will require the solution of an additional boundary-value
problem for each increment, with Aw an arbitrarily specified constant.
and the normal displacement increments Au and Av along the boundaries
x = a and y = b, respectively, set equal to zero. The constitutive
relations must also be modified slightly to accommodate the nonzero
value of €+ A more detailed discussion is contained in Ref. 11.

The additional boundary-value problem is then combined with the
appropriate two problems defined in Sec. IT (Problems 1 and 2 for an
applied stress increment, or Problems 2 and 3 for an adjustment incre-

ment) to obtain the desired values of AEX and Agy, and the generalized

plane strain condition, Aaz = 0.
Generalized plane strain was not used in the present analysis be-
cause the required solution of three rather than two boundary-value '

problems per applied stress or adjustment increment would have increased
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the computation time by approximately fifty percent. Interest here

has been concentrated on developing the concept of crack propagation
rather than on producing an all-encompassing solution technique. Gen-
eralized plane strain will be a logical extension, however, particularly

because of the interest in combined loadings, as discussed below.

COMBINED LOADINGS

In a laminated composite system, the individual laminae are usually

subjected to a combination of axial, transverse, and shear loadings due
to interactions between the laminae, even when the composite body is
subjected to a simple loading state.

The same basic methodology developed here for crack propagation in
a composite subjected to transverse normal loading can be applied to
combined loading. The generalized plane strain condition discussed in
the previous subsection is, in fact, one special case of axial loading,
i.e., when 52 = 0. Thus, by specifying EX = Ey = 0 and EZ # 0, axial
loading of a unidirectional composite is obtained. By specifying arbi-
trary values of Ex, 5&, and 52, combined axial and trafsverse Eormal
loading is obtained. The longitudinal shear loadings T,x and sz re-
main to be added.

A finite element analysis of the elastoplastic behavior of a uni-
directional composite subjected to longitudinal shear loading was de-
scribed in Ref. 11 using the method of initial strains, and in unpublished
work by Adams and Wilson* using the tangent modulus method. Combined
axial, transverse, and shear loadings of an elastoplastic material were
also considered in Ref. 11,

These same methodologies can be applied to the problem of crack
initiation and propagation. The addition of specified increments of
applied longitudinal shear stress components to the combined loading will
require the solution of one additional boundary-value problem per solu-
tion increment if only one of the two components A%zx or A?zy is to be

included, and two additional solutions if both are to be included. Thus,

* . s .

D. F. Adams and H. B. Wilson, Jr., "Inelastic Analysis of a Uni-
directional Composite-Longitudinal Shear Loading,' unpublished work,
Aeronutronic Division, Philco-Ford Corporation, August 1966.
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a complete combined loading problem involving the applied stress incre-
ments AEX, A5y, AEZ, A%zx’ and A?zy will require the solution and com-
bination of five separate boundary-value problems per solution increment.
However, longitudinal shear loading involves only one unknown displace-
ment component per node point (a displacement in the z-direction) rather
than two as.in the case of axial or transverse normal loading (displace-
ments in both the x- and y-directions). Thus, only an N X N matrix
rather than a 2N X 2N matrix needs to be inverted to obtain a solution
(N represents the total number of node points in the finite element
array). This suggests that the computation time required to solve a
longitudinal shear boundary-value problem will be only about one-fourth
as long.

The general expressions for octahedral shear stress and octahedral
plastic shear strain given by Eqs. (7) and (6), respectively, are used
to define material yield and failure. The consideration of crack ini-
tiation and propagation under combined loading should be a straight-
forward extension of the investigation given here and that found in
Ref. 11.

THERMAL EFFECTS

Thermal effects are of special interest in studies of composite

material micromechanical behavior because the differences in coefficients
of thermal expansion among the constituents almost always result in local
stresses being introduced during a temperature change, even a uniform
temperature change, Most composite materials, both metal and polyﬁer
matrix composites, are produced at elevated temperatures and subsequen;ly
are used in room temperature applications. Thus, even the as-received
composite material contains (thermal) residual stresses. If the com-
posite is also subjected to thermal enviromments during service, addi-
tional thermal stresses are developed.

Since the thermal stresses introduced in fabrication are developed
while the composite is not being subjected to significant mechanical
loads, i.e., during cool-down from fabrication temperatures, the con-
stituent materials will, at least initially, exhibit linear elastic

behavior. In most instances, these thermal stresses will not be high
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enough to cause yielding. This is particularly true because the elastic
stiffness (Young's modulus) of the constituents, especially the matrix
material that must flow during the compositing process, will be lower
at the fabrication temperature. Thus, a linearly elastic thermostress
analysis is often applicable. The variation of material properties with
temperature, particularly the Young's modulus, should be taken into
account, however, which complicates the analysis.

A linearly elastic micromechanical analysis of thermal residual
stresses was included in Ref., 2. The variation of the Young's modulus
with termperature was taken into account in an approximate way by using
room temperature material properties but an assumed temperature change
less than the actual value. The actual temperature change associated:
with cool-down can be applied in increments using the analysis described
here, with the material properties modified at the beginning of each
increment. This procedure will provide a more accurate representation
of the actual physical behavior.

Similarly, thermal loading need not be limited to elastic response.
By suitably modifying the elastoplastic analysis, arbitrary (including
nonuniform) temperature variations can be combined with the mechanica;
loading increments. This will require the specification of appropriate
material properties, including a complete stress-strain curve, for each
temperature increment used. Since, in the tangent modulus method, the
stiffness matrix is reconstructed and inverted in each increment anyway,
this modification will not involve excessive additional computational:
time. However, the inclusion éf a thermal loading (temperature change)
during a solution increment, just as any of the other loadings pre-
viously discussed, will require the solution of an additional boundary-
value problem, to be combined with the others. The conditions for the
problem will be: =zero shear stress Txy and zero normal displacement v
along all four rectangular boundaries, and specification of the desired
incremental temperature change in each element. .

The governing field equations must also be modified for this
boundary-value problem to include the thermal strain effect. For ex-
ample, the strain-displacement relation given by Eq. (35) must be ‘

amended to include a thermal strain term [a]AT, i.e.,
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[€] = [8] [8] + [a]AT
where

[al =

represents the coefficient of thermal expansion and AT is the incremental
temperature change. The constitutive relation, Eq. (30), remains un-

changed. Following through the analysis of Sec. II, Eq. (42) becomes
[F] = [K] [8] + A_[01" [H] [a] AT

The additional term is a known constant for each element during the
increment. Thus, no special complications will occur in formulating a

solution procedure.

DIAMOND PACKING ARRAYS

Filament packing geometries and the desirability of maintaining a

regular periodic array was discussed in Sec. II. Although this investi-
gation has been limited to rectangular arrays, diamond arrays, of which

a hexagonal array is a special case, are of equal interest. As noted

on the left side of Fig. lc and in the text of Sec. II, this analysis

also can be used to treat diamond arrays. It is possible to reduce the
area in the first quadrant that must be analyzed to one-half by redefining
the boundary-value problem to include only that region indicated by the
solid lines on the right side of Fig. lc. This region of the first
quadrant is redrawn in Fig. 19.

The greater difficulty in analyzing a diamond array as compared
with a rectangular array is associated with the fact that the boundary
represented by the line COD in Fig. 19 does not remain a straight line
under loading. However, it does deform antisymmetrically about the mid-
point 0, i.e., the displacements of two points on line COD at equal dis-
tances on opposite sides of point O will be equal in magnitude but

opposite in direction. Also, because of the assumed geome;ric symmetry,
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Fig. 19— First quadrant of a typical repeating unit
for a diamond array of filaments
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forces acting on these points will be of equal magnitude and direction.
Thus, by constructing node points on boundary COD symmetric about the
midpoint 0, both displacement and force relations between pairs of node
points can be established.

This is adequate information to solve the boundary~value problem.
However, there are also certain practical difficulties. These relation-
ships are of a different form than those making up the remainder of the
stiffness matrix, and thus the solution procedure must be modified. Node
points as widely separated as C and D are now related, a fact to be con-
sidered when numbering the node points so as to minimize the matrix
bandwidth.

An alternative scheme, which eliminates the need for including dis-
placement and force equivalence relations in the stiffness matrix di-
rectly, is to add additional node points and elements on the outside of
boundary COD. The node points on COD are still placed symmetrically
about midpoint 0. Additional fictitious node points, symmetric about
point 0 to node points inside the material region, are added outside so
that elements can be constructed that completely surround the node points
on one-half of boundary COD, say between C and 0O, as shown in Fig. 19.
The displacements of the boundary node points between 0 and D are re~
lated to those of their symmetric counterparts between C and 0 as be--
fore--they are of equal magnitude but opposite direction relative to
point 0. Equilibrium equations can then be written for the node points
on the boundary between C and O just as if they were interior nodes, and
the displacements of the fictitious nodes are eliminated by using the
known relationships to their symmetric counterparts in the interior.

This scheme eliminates the need for satisfying force equivalences
across the midpoint of the boundary COD; the resulting stiffness matrix
retains a form similar to that fpr a rectangular array. Numbering the
node points to keep the matrix bandwidth small remains an important con-

sideration, just as it is for the first scheme.

OTHER TOPICS

There are a number of other topics requiring additional investig#-

tion, only a representative sample of which will be mentioned here. For
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example, this investigation has only considered regular arrays of fila-
ments, whereas in actual composite materials the filaments are often
not regularly spaced. The influence of random filament packing on
elastic stiffness properties was investigated in Ref., 3. The influence
of randomness on crack propagation and composite ultimate strength
should also be studied.

Anisotropy of the constituents is also a consideration. Graphite
filaments, for example, are known to be anisotropic due to their crystal-
line structure. '

Certain filament reinforcements, e.g., graphite produced from a
rayon pfecurser, have noncircular and often very irregular cross—sectional
shapes. The analysis described in this report can readily handle an ir-
regular geometry. A study should be performed to, determine the influence
of an irregular shape on crack propagation and ultimate strength.

Voids in the matrix material and local unbonded regions at the fila-
ment-matrix interface are examples of defects often present in an actual
composite. A systematic study of their influence on crack propagation

and ultimate strength should be conducted.
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Appendix A

INVERSE OF THE CONSTITUTIVE EQUATION

The inve;se of Eq. (25) can be obtained by first expanding it into
the three equations it represents, .ll’ €99 and 812, and then solving
these equations for 011, o 29 and 012 by successive elimination. Be-
cause such a process is lengthy, it is much simpler to invert exclu-

sively in index notation, as follows. Repeating Eq. (25),

éa8=_(0 - Vo 68)+%t

E aBtys Y5

from which the following two equations are obtained:

_ .1 + V .l _
€on = )1 - 2\))0 D tth<S (A-1)
and
_ 1y . . 1 .
- = -2
*ag®o8 = TE (taBGocB \)tocozcw) ) tOLBtOLBt’YSGYG (a-2)

Letting x = %o and y = t.8%a8° Egs. (25), (A-1), and (A-2) can be

written as

s _ 1k 1 _
a8 E (G - vGan) 9 tapy (A=3)

- _ A +v@-2v 1 -
€. .= = X+ 5ty (A-4)

. 1+ ty 1 _
tasfag = B T Vi® T D toptas’ (4=5)

Eliminating x and y, solving for 6QB’ and simplifying give the desired

inverse, Eq. (26).



-88-

Alternatively, the inverse of Eq. (25) can be obtained as follows.

First, determine SaBé 8 from Eq. (25),

o

. 1+v

. . 1 .
SuBeaB =R [SaBGaB - Vsaﬁgyysaﬁ] +-5 taBtYdschYS

noting that, as usual, the repeated indices indicate summation. Thus,
the second term in the brackets can be expres?ed as.\)(sl1 + SZZ)GYY’ or
- 3 i = - =0 ,8 ,. The expres~
as vSBBGaBSdB’ since (sll + 322) S33 and OYY = %8%8 P
i . tit
sion within the brackets becomes [(s o + vs336a6)0a31 But the quantity
within the parentheses here is equal to taB’ as previously defined.

Therefore, the full equation can be rewritten as

1+v + taBSaB 5
E D af aB

t

SaBCas

. E
Setting the terms in parentheses over the common denominator 1:G-D and

expanding taBSdB gives

. 2
Su8%a8 = { A+ Esss)

t .o

E [ 2 2 2 2 N _ 2 a8%8

* 1 [811 tsyy F8g5 F 28y, VS33(511 S22) 33 1E 5
V

where the term s§3 has been added and subtracted within the brackets.
2
The first four terms within the brackets are now equal to 3T0. Also,
since (s,, + s,,) = -s.,, the remaining terms within the brackets re-
11 22 33 E )
duce to ~(1 + v)s33. This term, when multiplied by the 1+, appearing
outside the brackets, becomes —Es§3, which cancels with the second

term within the braces. Thus, the complete equation reduces to

t .0
< E 2, _af af
saB€d8 = (A + T+ BTO) —E—~;—
1+

which can be rewritten as
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tag%8 _ Sag 0B (A~6)
D 3r§+(1+v)%

This equation relates the stress 6Y6 in Eq. (25) to the strain €Y5'
The next step is to relate 6YY in Eq. (25) to €, . Writing

. YY
Eq. (25) for €aa?

t O
. 1 . ¥§ Y8
€ === (0. - chydau) +—5 tya

Simplifying the first term and substituting Eq. (A-6) into the second

gives
, o &
€ = l%! (1r- 2v)caa +— Y8 Y8 T Yoo
3t + (L + V) &
0 E
Substituting the expansion of tua below,
tao = (sll + v333) + (322 + vs33)
= (sll + 322) + 2v333
= =S33 + 2v533
= ~(1 - 2\))s33
into the above equation and solving for 6&& gives
. E . a - 2\))5333Y55Y§
O = T F W@ =20 | faa T 72 A (A-7)
3ty + (L + V) §

Substituting Eqs. (A-6) and (A-7) into Eq. (25) gives
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L 1+y G . - VE e+ (1 - 2\))533SY6€Y6 S
o E o 1+ v) (l - 2v) YY 3’['(2) + (1 + V) % o
s_.E
Tt 2 Y60 A
3T0 + (1 + V) t
Solving for OGB
E |- v_ . , ©°33%8 = 0 %ys%ys

- _ _E_ L
c’ocB 1+v 8ocB 1-2v E‘Y'Y‘SOLB 3T2 + (1 + V) A
Q E

Since the quantity in parentheses in the numerator of the last term is,

by definition, —SaB’ the equation can be written as

S S é
. E-| v aB”yS S
€ o t+t=———=ec &§ , - (A-8)
o  1+v| 0B 1-2v o8 BTS +(1+V) %

which is the inverse of Eq. (25).
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Appendix B

ALTERNATIVE METHODS OF MODELING A CRACK

In addition to the "failed element" concept of modeling a local
failure, which was used in the investigation discussed here, other
methods were considered, one of which will be briefly outlined below.
This discussion is included to point out some of the practical diffi-
culties involved in modeling a crack and to serve as a starting point
for additional investigations by the interested reader. There is
clearly a need for much more study in this problem area.

When the stresses in a given element exceed the ultimate strength
of the material, rather than dropping out that element to create a
crack, an additional node point can be added at each of two of the
three corners of the triangular element. These node points are co-
located with, but not attached to, the existing ones. At each of these
two locations, one node point is then associated with certain of the
surrounding elements, and the other node point with the remainder.

This is illustrated in Fig. B-1, which represents a local region of

the full grid shown in Fig. 3. Suppose that failure is indicated in
element 163. Additional node points 177 and 178 are added at nodes 68
and 78, respectively. (See Fig. B-1(b); the nodes of the pairs 68, 177
and 78, 178 are shown separated from each other for clarity, and the
shaded area represents the crack.) 1In this representation, a crack

of zero initial width is created and no material is removed.

However, there are certain procedural difficulties created. For
indicated failure in element 163, one of the other two sides could have
been selected as the crack site instead, resulting, for example, in a
crack through nodes 86, 77, 68, 59 or nodes 76, 77, 78, 79 rather than
nodes 88, 78, 68, 58. These differences are significant, resulting in
possible cracks almost perpendicular to the one indicated in Fig. B-1(b).

These are not the only three crack path choices possible, although
they are perhaps among the more obvious for the particular local region

selected as an example here. For instance, the crack between nodes 78
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(a) Local grid region prior to failure

(b) Local material failure

Fig.B-1.— Crack representation by double-numbered nodes
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and 68 could have been assumed to run from node 68 to node 67, 39, or
69 rather than to node 58. Similar choices were possible for the other
end. Thus, a scheme would have to be developed for selecting the most
logical path, perhaps based upon the stress gradients existing around
the element in which failure is indicated.

Figure B-1 demonstrates another potential problem. An assumed
crack along either of the other two sides of element 163 would neces-
sarily extend either into the adjacent material regiomn (from matrix
into filament) or along the interface. In an actual material this may
not be realistic, particularly if one material has significantly dif-
ferent properties than the adjacent one, as is usually the case. The
problem stems from the fact that, although failure is indicated in only
one element, the crack is modeled to extend along the sides of as many
as three adjacent elements, as may be seen in Fig. B-1(b). To use
this model, a method would also have to be devised to insure that the
" crack created by colocated node points can only open up; the material
region on one side of the crack cannot be allowed to move into the
material region on the other side, based upon physical considerationms.

A serious computational difficulty also occurs if the "double node"
crack representation is used. As was discussed in Sec. II, the band-
width of the diagonalized stiffness matrix [511] in Eq. (51) must be
kept to a minimum to achieve an efficient solution. This bandwidth is
proportional to the maximum difference between the highest and lowest
node point number associated with each of the various elements in the
array. For the grid array shown in Fig. 3, this maximum difference is
only 11. However, if node points 177 and 178 were added as indicated
in Fig. B-1(b), this maximum difference would increase to 119 (for
element 151). Thus, some scheme would have to be developed for auto-
matically renumbering all of the node points each time additional node
points were added. At present, not even the initial set of node points
are numbered automatically; because of the computational problems in-
volved, they are numbered by hand.

An alternative scheme would be to double-number (consetutively) all

of the node points, and use, for example, only the odd numbers initially.
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The even-numbered nodes could be introduced as needed to model the
crack formation. This scheme would approximately double the matrix

bandwidth, however, which would make it of questionable utility.



10.

11.

12,

-95—

REFERENCES

Adams, D. F., Inelastic Analysis of a Unidirectional Composite
Subjected to Transverse Normal Loading, The Rand Corporation,
RM~6245-PR, May 1970; see also D. F. Adams, "Inelastic Analysis
of a Unidirectional Composite Subjected to Transverse Normal
Loading," J. Composite Materials, Vol. 4, July 1970, pp. 310-
328.

Adams, D. F., and D. R. Doner, "Transverse Normal Loading of a
Unidirectional Composite," J. Composite Materials, Vol. 1,
No. 2, April 1967, pp. 152-163.

Adams, D. F., and S. W. Tsai, The Influence of Random Filament
Packing on the Elastic Properties of Composite Materials, The
Rand Corporation, RM-5608-PR, December 1968.

Adams, D. F., and S. W. Tsai, "The Influence of Random Filament
Packing on the Transverse Stiffness of Unidirectional Com- _
posites," J. Composite Materials, Vol. 3, July 1969, pp. 368-381.

PRD-49, DuPont's New High Modulus Organic Fiber, E. I. duPont de
Nemours & Company, Inc., April 1971.

Hill, R., The Mathematical Theory of Plasticity, Oxford University
Press, London, 1950, p. 27.

Swedlow, J. L., "Elasto-Plastic Cracked Plates in Plane Strain,"
Int. J. Fracture Mech., Vol. 5, No. 1, March 1969, pp. 33-44.

Zienkiewicz, 0. C., The Finite Element Method in Engineering
Seience, McGraw-Hill Book Co., Inc., London, 1971.

Foye, R. L., Advanced Design Concepts for Advanced Composite Air-
frames, Air Force Materials Laboratory, Contractor Report AFML~
TR-68-91, Vol. 1, July 1968.

Marcal, P. V., "A Comparative Study of Numerical Methods of Elastic-
Plastic Analysis," AT4A Journal, Vol. 6, No. 1, January 1968,
pp. 157-158,

Foye, R. L., and D. J. Baker, Design/Analysis Methods for Advanced
Composite Structures, Air Force Materials Laboratory, Contractor
Report AFML-TR-70-299, Vol. I Analysis, Vol. 1I Computer Programs,
February 1971.

Tsai, S. W., D. F. Adams, and D. R. Doner, Effect of Constituent
Material Properties on the Strength of Fiber-Reinforced Com-
posite Materials, Air Force Materials Laboratory, Contractor
Report AFML-TR-66-190, August 1966.



13.

14.

15.

16.

17.

-96—

Menke, G. D., and I. J. Toth, The Time-Dependent Mechanical Be-
havior of Composite Materials, Air Force Materials Laboratory,
Contractor Report AFML-TR-70-174, June 1970.

Felippa, C. A., Refined Finite Element Analysis of Linear and
Nonlinear Two-Dimensional Structures, University of California
at Berkeley, Department of Civil Engineering, Report 66-22, 1966.

Walz, J. E., R, E. Fulton, and N. J. Cyrus, "Accuracy and Con-
vergence of Finite Element Approximatiomns," Proc. Second Con-
ference on Matrix Methods in Structural Mechanics, Air Force
Flight Dynamics Laboratory, Report AFFDL-TR-68-150, December
1969, pp. 995-1027.

Zienkiewicz, O. C., The Finite Element Method in Structural and
Continuum Mechanice, McGraw-Hill Book Co., Inc., London, 1967,
pp. 35-37.

Argyris, J. H., "Continua and Discontinua," Matrix Methods in
Struetural Mechanics--Proceedings of the Conference, Air Force
Flight Dynamics Laboratory, Report AFFDL-TR-66-80, November
1966, p. 43,






Adams HIGH-PERFORMANCE COMPOSITE MATERIALS FOR VEHICLE CONSTRUCTION: AN R-1070-PR

ELASTOPLASTIC ANALYSIS OF CRACK PROPAGATION IN A UNIDIRECTIONAL COMPOSITE



