
University of Almería
Department of Informatics

Ph.D. Thesis

High performance computing applied to

competitive facility location and design

problems: single and multi-objective

optimization algorithms

Aránzazu Gila Arrondo

Almería, March 2013

Ph.D. Thesis

High performance computing applied to competitive

facility location and design problems: single and

multi-objective optimization algorithms

University of Almería

Department of Informatics

Author: Aránzazu Gila Arrondo

Supervisors: Jose Fernández Hernández

Pilar Martínez Ortigosa

Juana López Redondo

Almería, March 2013

A mis padres, a mi hermano

y a Manu

Agradecimientos

En primer lugar me gustaría agradecer a mis tres supervisores, Dra. Da Pilar

Martínez Ortigosa, Dr. D. José Fernánez Hernández y Dra. Da Juana López Redondo,

su confianza y su dedicación. Creo sinceramente que no podría haber tenido mejores

directores. A Pilar, por haber confiado en mí desde el principio y hacer que, lo que

iba a ser sólo un Proyecto Final de Carrera, se convierta hoy en una Tesis Doctoral. A

Jose, por darme la oportunidad de trabajar con él y hacer estos tres años de trabajo

más llevaderos. A Juani, por todas las horas que me ha dedicado, sin importar las

diferencias horarias desde cualquier parte del mundo, y sobre todo, por hacerme ver

el lado positivo que me animaba a seguir. Y a todos ellos agradecerles, que por sus

conocimientos, ha sido posible que yo haya desarrollado esta tesis.

Todo este trabajo no lo hubiese podido realizar sin financiación. Por ello, me gus-

taría agradecer especialmente a la Fundación Séneca, Agencia de Ciencia y Tecnología

de la Región de Murcia, la concesión de la beca asociada al Proyecto ‘Aplicación de la

supercomputación a problemas matemáticos de optimización, algebraicos y de modeli-

zación (00003/CS/10)’. Agradezco en especial a Dr. D. Francisco Esquembre, investi-

gador principal del citado proyecto, su constante preocupación por el bienestar de los

becarios.

Notable reconocimiento merece el Centro de Supercomputación del Parque Cientí-

fico de Murcia, sin el cual la mayoría de los estudios computacionales de esta tesis no

se hubieran podido realizar. En particular, me gustaría destacar al servicio técnico de

dicho centro, por su ayuda y colaboración.

Al grupo de investigación ‘Supercomputación: Algoritmos’ de la Universidad de

Almería por esos buenos momentos que han hecho que el trabajo sea más ameno y

entretenido. En especial a Dra Da Inmaculada García Fernández, quien me abrió las

puertas a la investigación y ha seguido mis pasos de cerca.

A Dra. Da Boglárka G.-Tóth, de la Budapest University of Technology an Eco-

nomics, por haberme permitido usar los códigos de los algoritmos de ramificación y

acotación basados en el análisis de intervalos que ella implementó.

Muy importante para el desarrollo de esta tesis han sido mis estancias en el extran-

jero, que me han aportado nuevos puntos de vista en mi investigación. Por ello, me

iv Agradecimientos

gustaría citar al ‘Edinburgh Parallel Computing Centre (EPCC)’ y al ‘Swiss National

Supercomputing Center (CSCS)’, por haberme brindado la posibilidad de utilizar sus

recursos tanto técnicos como científicos. En particular, me gustaría agradecer a D.

Michele De Lorenzi y Dr. D. William Sawyer su acogida y colaboración.

A Manu por su apoyo, comprensión, paciencia y ánimo en los momentos de de-

saliento. Por haber creído en mí siempre y, porque a pesar de la distancia, ha estado a

mi lado constantemente.

A mis padres por ser ejemplo de esfuerzo y perseverancia, y por su entera dedicación

y motivación.

A mi hermano Miguel por involucrarse en todos mis proyectos, ayudándome de una

manera muy especial con los pequeños y grandes problemas que se me han presentado,

siendo siempre mi fuente de conocimiento. Y a Ka Lo Chan por su comprensión.

A Paco, Rosa y Clara por hacerme más llevaderos estos años de trabajo y hacerme

sentir permanentemente su cariño y apoyo.

A Mariquilla y a Pachús por estar siempre animándome y empujándome para que

no decayera.

A mis amigos por entender mis ausencias y mis ratos de mal humor, y por haberme

demostrado que son eso, muy buenos amigos.

Desde luego, esta tesis no hubiese sido posible sin todas y cada una de las personas

e instituciones aquí citadas. Muchas gracias a todos.

High performance computing applied to competitive facility location and design problems

Prefacio

La localización de servicios pretende encontrar el emplazamiento de uno o más centros

(servicios) de modo que se optimice una o varias funciones objetivo. Dicha función

objetivo puede, por ejemplo, tratar de minimizar el coste de transporte, proporcionar a

los clientes un servicio de forma equitativa, capturar la mayor cuota de mercado posible,

etc. La localización de servicios abarca muchos campos, como la investigación operativa,

la ingeniería industrial, la geografía, la economía, las matemáticas, el marketing, el

planning urbanístico, además de otros muchos campos relacionados.

Existen muchos problemas de localización en la vida real, como por ejemplo, la loca-

lización de hospitales, de colegios o vertederos, por nombrar algunos. Para ser capaces

de obtener soluciones a los problemas de localización, es necesario desarrollar/diseñar

un modelo que represente la realidad lo más fielmente posible. Dichos modelos pueden

llegar a ser realmente difíciles de tratar. Para resolver tales problemas de localización,

se han propuesto muchos algoritmos de optimización global, tanto exactos como heurís-

ticos. Los algoritmos exactos se caracterizan por ser capaces de obtener el óptimo global

con una cierta precisión. Los algoritmos heurísticos, sin embargo, no pueden demostrar

matemáticamente su convergencia al óptimo global, aunque pueden llegar a obtener

soluciones tan buenas y precisas como las proporcionadas por los exactos. Los exactos

son altamente costosos desde el punto de vista computacional, lo que implica que, en

determinados casos, sea imposible aplicarlos para resolver un problema utilizando in-

cluso los computadores más avanzados. De este modo los algoritmos heurísticos, con

menos requerimientos computacionales que los exactos, se alzan entonces como una

buena alternativa. No obstante, en determinadas circunstancias, las necesidades com-

putacionales son tan elevadas, que el uso de algoritmos heurísticos ejecutándose en

procesadores estándares actuales no es suficiente. En tales situaciones, se hace nece-

sario el uso de computación de altas prestaciones.

Esta tesis, “High performance computing applied to competitive facility location and

design problems: single and multi-objective optimization algorithms” (Aplicación de la

computación de altas prestaciones a problemas de localización competitiva con deci-

siones en diseño: algoritmos de optimización uni y multi-objetivo), proporciona, por un

lado, algoritmos heurísticos capaces de resolver problemas de localización competitiva,

vi Prefacio

tanto para funciones escalares como vectoriales, y por otro lado, técnicas paralelas que

permiten reducir el tiempo de ejecución, resolver problemas más grandes, e incluso, en

ocasiones, mejorar la calidad de las soluciones.

Esta tesis está organizada en cuatro capítulos. El primero de ellos es una intro-

ducción a las tres áreas de investigación en las que se enmarca esta tesis: localización,

algoritmos de búsqueda y computación de altas prestaciones. Primeramente se des-

criben de forma sucinta los principales elementos de un problema de localización. A

continuación, se introducen los campos de la optimización global y multi-objetivo, y se

definen los correspondientes conceptos de solución. Finalmente, se revisan brevemente

las arquitecturas paralelas así como los modelos de programación utilizados en esta

tesis.

En el Capítulo 2, se presenta un nuevo modelo de localización competitiva en el

plano de un solo centro, en el que la demanda varía dependiendo de la localización

de dicho centro. Este nuevo modelo se compara con su correspondiente modelo de de-

manda fija, mediante algoritmos disponibles en la literatura. En particular, el algoritmo

evolutivo UEGO se ha adaptado al nuevo modelo, mediante el diseño y desarrollo de

un nuevo optimizador local. Además, se ha llevado a cabo un extenso estudio computa-

cional con la intención de estudiar el impacto que tiene la consideración de demanda

fija o demanda variable en la localización. Finalmente, se presenta una paralelización

del algoritmo UEGO, que permite resolver problemas más costosos.

El Capítulo 3 está dedicado al problema de líder-seguidor con demanda variable.

Este problema se puede considerar una extensión del modelo anterior para el caso en el

que el competidor (el seguidor) reacciona localizando un nuevo centro después de que la

cadena (el líder) localice su propio centro. El objetivo del líder es encontrar la solución

que maximice su beneficio, teniendo en cuenta la futura reacción del seguidor. Por

tanto, hay que resolver dos problemas: el problema del seguidor, también denominado

medianoide, y el problema del líder o centroide. El modelo matemático se detalla al

comienzo del capítulo. Posteriormente, se proponen y evalúan varios algoritmos para

resolver el problema del centroide. TLUEGO, basado en UEGO, es el algoritmo que

proporciona mejores resultados. El capítulo finaliza presentando tres paralelizaciones

de TLUEGO, que permiten resolver problemas más grandes de forma precisa.

El último capítulo aborda un problema de localización bi-objetivo del franquiciado

y del franquiciado. Este problema se define en el plano y ya estaba propuesto en la

High performance computing applied to competitive facility location and design problems

Prefacio vii

literatura. Para la obtención de una buena aproximación de todo el frente de Pareto, se

propone un nuevo algoritmo evolutivo, llamado FEMOEA, que también se puede em-

plear para resolver otros problemas multi-objetivo generales tipo caja negra en donde

no se conocen las características matemáticas de tales problemas. Para la resolución del

problema bi-objetivo, FEMOEA incluye una búsqueda local, basada en el gradiente,

para mejorar la calidad (eficiencia) del las soluciones. FEMOEA además, presenta un

criterio de finalización que permite al algoritmo parar tan pronto como obtenga una

buena aproximación del frente de Pareto. Para analizar el comportamiento y buen

rendimiento de FEMOEA, se ha realizado un extenso estudio computacional. Final-

mente, se propone una versión paralela de FEMOEA eficiente y eficaz que permite

resolver problemas de mayor dimensión.

La tesis finaliza con un resumen de los principales resultados obtenidos y apuntando

líneas de investigación futura.

High performance computing applied to competitive facility location and design problems

Preface

Facility location applications are concerned with the location of one or more facilities

in a way that optimizes one or several objectives at the same time, such as minimizing

transportation costs, providing equitable service to customers, capturing the largest

market share, etc. The research on facility location problems spans many research

fields such as operations research/management science, industrial engineering, geogra-

phy, economics, computer science, mathematics, marketing, urban planning, and the

corresponding related fields.

There exist many facility location problems in real life, for example location of hos-

pitals, schools or rubbish dumps, to name a few. Nevertheless, to be able to obtain

certain solutions to location problems, it is necessary to describe them as close to re-

ality as possible, which may result in hard-to-solve optimization models. Many global

optimization algorithms, either exact or heuristic, have flourished to cope with loca-

tion problems. However, exact algorithms are unable to solve some problems, because

they are too slow or the computer runs out of memory. Thus, heuristic procedures

have to be developed to solve those other difficult problems. Nevertheless, sometimes,

computational requirements are so high that the use of heuristic algorithms running in

standard computers is not enough. In such situations, high performance computing is

needed.

This thesis, “High performance computing applied to competitive facility location

and design problems: single and multi-objective optimization algorithms”, provides, on

the one hand, heuristic algorithms able to solve single and multi-objective competitive

continuous location problems and, on the other hand, parallel techniques which reduce

the execution time, allow to solve larger problems and, in some cases, improve the

quality of the solutions.

This thesis is organized in four chapters. The first one is an introduction to the three

main research areas involved in this thesis, i.e., location science, search algorithms and

high performance computing. Chapter 1 begins with a brief description of the main

elements of a location problem. Then, the definition of global optimization and non-

linear multi-objective optimization problems is given, and some definitions and quality

x Preface

measures are also introduced. Finally, parallel architectures and parallel programing

models applied in this thesis are briefly described.

In Chapter 2, a new single facility location and design model in which ‘the demand

varies depending on the location of the facility’ is presented, and compared to the

corresponding fixed demand model. An evolutionary algorithm called UEGO proposed

in literature to accurately solve the fixed demand model is adapted to the new model.

In particular, a new local optimizer has been developed. Several computational studies

are carried out in order to investigate to what extent the assumption of fixed demand,

commonly employed in competitive location literature, has an impact on the location

decision. Moreover, a sensitivity analysis is conducted in order to check the changes in

optimal design/location when the model environment and parameters change. Finally,

a parallelization of UEGO is presented, in order to handle the drawbacks when the

complexity of the problem to be solved increases.

Chapter 3 is dedicated to a leader-follower problem with endogenous demand. It is

the extension of the previous model to the case in which the competitor’s chain (the fol-

lower) reacts by also locating a new facility after the locating chain (the leader) locates

its own facility. The objective of the leader is to find the solution which maximizes its

profit, following the location of the facility of the follower. This means that two prob-

lems are considered at the same time: the follower (or medianoid) problem, and the

leader (or centroid) problem. The model of the leader-follower problem is introduced

at the beginning of the chapter. Then, several algorithms to solve the centroid prob-

lem are proposed and evaluated. TLUEGO, based on UEGO, is the algorithm which

provides better solutions. The chapter ends with three parallelizations of TLUEGO,

which allow to solve larger instances accurately.

The last chapter, Chapter 4, deals with a bi-objective planar franchisor-franchisee

facility location and design problem, already proposed in literature. A new memetic bi-

objective evolutionary algorithm, called FEMOEA, is proposed to solve this continuous

bi-objective optimization problem. In its framework, FEMOEA includes a local search,

which uses gradient information, to improve the quality (efficiency) of the points, as

well as a termination rule to stop the algorithm as soon as a good approximation of

the Pareto-front is obtained. In order to show the behavior and good performance of

FEMOEA a comprehensive computational study is carried out. Finally, an efficient and

effective parallel version of FEMOEA capable of solving bigger problems is presented

High performance computing applied to competitive facility location and design problems

Preface xi

at the end of the chapter.

The thesis concludes with a summary where the main results are outlined and future

lines of research are presented.

High performance computing applied to competitive facility location and design problems

Contents

Agradecimientos v

Prefacio ix

Preface xiii

1 Introduction 1

1.1 Location science . 1

1.1.1 Global optimization . 3

1.1.2 Nonlinear multi-objective optimization 4

1.2 Search algorithms . 9

1.2.1 Exact algorithms: iB&B . 11

1.2.2 Heuristic algorithms: Evolutionary computation 15

1.3 High performance computing issues . 20

1.3.1 Parallel architectures . 20

1.3.2 MIMD architectures . 22

1.3.3 Parallel programming models and tools 24

1.3.4 Parallel performance measures 27

1.3.5 Computers and interfaces used in this thesis 29

1.3.6 Parallel models in population-based methods 30

2 A planar single facility location and design problem with endogenous

demand 37

2.1 The model . 38

2.2 Exogenous or endogenous demand? A key point to be taken into account 42

High performance computing applied to competitive facility location and design problems

xiv CONTENTS

2.3 Solving the location model . 48

2.3.1 UEGO . 48

2.3.2 Local optimizer . 50

2.3.3 Tuning UEGO . 56

2.3.4 Computational studies . 57

2.4 Sensitivity analysis . 60

2.4.1 On the variability of the demand 60

2.4.2 On the interval for the quality 61

2.4.3 On the customers’ sensitivity 63

2.4.4 The cost of the exogenous demand assumption 65

2.5 Improving the efficiency of UEGO: UEGOf 66

2.6 High performance computing . 69

2.6.1 ParUEGOf . 70

2.6.2 Computational studies . 72

2.7 Conclusions . 74

3 A planar location and design leader-follower problem with endoge-

nous demand 77

3.1 The model . 79

3.2 Solving the centroid problem . 86

3.2.1 GS: a grid search procedure . 86

3.2.2 The local optimizer SASS+WLMv 87

3.2.3 TLUEGO: A two-level evolutionary global optimization algorithm 89

3.2.4 MSH: A multistart heuristic algorithm 90

3.2.5 Computational studies . 91

3.3 Influence of the fuse process in the creation procedure 99

3.4 High performance computing . 103

3.4.1 Pure message passing programming for TLUEGO:

PMP_TLUEGO . 104

3.4.2 Shared memory programming for TLUEGO: SMP_TLUEGO . 106

3.4.3 Hybrid parallel programming for TLUEGO: HPP_TLUEGO . . 107

3.4.4 Computational studies . 109

3.5 Conclusions . 111

High performance computing applied to competitive facility location and design problems

CONTENTS xv

4 Expanding a franchise: solving a planar bi-objective facility location and

design problem 113

4.1 The model . 114

4.2 A new method for approximating the Pareto-front 117

4.2.1 Main concepts in FEMOEA . 117

4.2.2 The FEMOEA algorithm . 120

4.2.3 The improving method . 123

4.2.4 FEMOEA termination criteria 133

4.2.5 FEMOEA input parameters . 133

4.2.6 Computational studies . 134

4.3 High performance computing . 138

4.3.1 FEMOEA-Paral . 139

4.3.2 Computational studies . 144

4.4 Conclusions . 148

Global conclusions and future work 153

Appendix 155

Bibliography 157

High performance computing applied to competitive facility location and design problems

List of Figures

1.1 Hypervolume (hyper) calculation. 8

1.2 A taxonomy of search algorithms. 10

1.3 Extension of Flynn’s Taxonomy. 21

1.4 Uniform memory access architecture. 23

1.5 Non-uniform memory access architecture. 24

1.6 Multicomputer architecture, where each node is a multiprocessor. . . . 25

1.7 Efficiency example. 29

1.8 Master-slave model. 31

1.9 Coarse-grain model. 33

1.10 Fine-grain model. 34

1.11 Coarse-grain model + fine-grain model. 34

1.12 Coarse-grain model + coarse-grain model. 35

1.13 Coarse-grain model + master-slave model. 35

2.1 Objective function of the instance with setting (imax = 71, jmax = 5, k =

0) and FR = ([0, 10], [0, 10]), projected in the 2-dimensional location

space (with α = 5.0). (a) On the left with fixed demand (b) On the

right with variable demand. 44

2.2 Objective function of the instance with setting (imax = 50, jmax = 5, k =

2) and FR = ([0, 10], [0, 10]), projected in the 2-dimensional location

space (with α = 2.11). (a) On the left with fixed demand. (b) On the

right with variable demand. 45

High performance computing applied to competitive facility location and design problems

xviii LIST OF FIGURES

2.3 Contours of the objective function of the instance with setting (imax =

50, jmax = 5, k = 2) and FR = ([0, 10], [0, 10]), projected in the 2-

dimensional location space (with α = 2.11). (a) On the left with fixed

demand. (b) On the right with variable demand. 45

2.4 Species of UEGO. 49

2.5 Objective function of the problem with setting (imax = 50, jmax = 5, k =

2) and FR = ([0, 10, [0, 10]), projected in the 2-dimensional location

space, when α, ai,j ∈ [0.5, 5], with (a) α = 0.5 on the left (b) α = 2.75

on the right. 64

2.6 Objective function of the problem with setting (imax = 50, jmax = 10, k =

2) and FR = ([0, 10, [0, 10]), projected in the 2-dimensional location

space, when α ∈ [0.5, 100], with (a) α = 0.5 on the left (b) α = 50 on

the right. 65

3.1 Optimal location and quality for both leader and follower when chain E is

the leader. Exogenous demand. Leader’s facility ✳ (blue) and follower’s

facility + (red). 84

3.2 Optimal location and quality for both leader and follower when chain E is

the leader. Endogenous demand. Leader’s facility ✳ (blue) and follower’s

facility + (red). 85

3.3 Example with imax = 50, jmax = 5, k = 0. TLUEGO_BB = + (green),

TLUEGO_UEGO = ✳ (blue), MSH_BB = × (green) MSH_UEGO =

× (red) and GS = + (red). 98

3.4 HPP_TLUEGO parallel strategy. Communication j. 108

3.5 HPP_TLUEGO parallel strategy. Communication j + 1. 108

4.1 Select_species_paral procedure. 141

4.2 Distribution of a list carried out by processor P0. 143

High performance computing applied to competitive facility location and design problems

List of Tables

2.1 Settings of the test problems. 46

2.2 Number of local optima considering the three variables (x, y, α). 46

2.3 Number of local optima considering location variables (x, y). 47

2.4 Average results for small problems. 58

2.5 Average results for large problems. 59

2.6 Variation of the optimal solution for a problem with setting (imax =

50, jmax = 5, k = 2). 61

2.7 Average values for profit variation. 62

2.8 Loss in profit when assuming fixed demand. 66

2.9 More settings of larger problems. 67

2.10 Average results for small problems. 68

2.11 Average results for larger problems. 69

2.12 Average results for large problems. 73

2.13 Average efficiency for large problems. 74

3.1 Examples. 85

3.2 Settings of the test problems. 91

3.3 Results for the problems with imax = 15. TLUEGO_BB (ǫ1 = ǫ2 =

0.0001), TLUEGO_UE, MSH_BB and MSH_UE (with 150 starting

points), and GS. 93

3.4 Results for the problems with imax = 25. TLUEGO_BB (ǫ1 = ǫ2 =

0.0001), TLUEGO_UE, MSH_BB and MSH_UE (with 200 starting

points), and GS. 94

High performance computing applied to competitive facility location and design problems

xx LIST OF TABLES

3.5 Results for the problems with imax = 50. TLUEGO_BB (ǫ1 = ǫ2 =

0.0001), TLUEGO_UE, MSH_BB and MSH_UE (with 250 starting

points), and GS. 95

3.6 Average results considering all the problems (imax = 15, 25, 50). 97

3.7 Results for the problem with setting (50, 5, 0). 98

3.8 Settings of the test problems. 100

3.9 Effectiveness evaluation of the fuse process in TLUEGO (sequential al-

gorithm) for problems with imax = 50 demand points. 101

3.10 Effectiveness evaluation of the fuse process in TLUEGO (sequential al-

gorithm) for problems with imax = 100 demand points. 102

3.11 Settings of the test problems. 109

3.12 Efficiency results for problems with imax = 100. 110

3.13 Efficiency results for problems with imax = 500. 111

4.1 Hypervolume and computing time for problems with setting (25, 5, 2). . 136

4.2 Average values for Hypervolume and computing time for problems. . . . 137

4.3 Average results. Average iB&B’s Hypervolume [lowH, uppH] = [93.08106,

93.24334]. 145

4.4 Times employed by FEMOEA-Paral in some steps of the algorithm for

the problem (50,10,4). 146

High performance computing applied to competitive facility location and design problems

CHAPTER 1

Introduction

This chapter deals with the three main research areas involved in this thesis, i.e., loca-

tion science, search algorithms and high performance computing. A section is devoted

to each one of them, where the main issues related to the current work are described

and defined briefly.

1.1 Location science

Location science deals with the location of one or more facilities in a way that optimizes

a certain objective (minimization of transportation costs, minimization of social costs,

maximization of the market share, etc.). For an introduction to the topic see [49, 50, 71].

All location problems share several components, which leads to different models. The

mathematical formulations and methods used to solve the problems vary substantially

depending on the type of model. This section analyzes the main elements of a location

model.

The space where a location problem is explicitly defined determines the set of

methods that can be applied. It is possible to distinguish three different location spaces:

continuous location problems, where the facilities to be sited can be placed anywhere

on a region of the plane, network location problems, where any point on a network

is suitable for location, and discrete location problems, where the facilities can be

located only at a limited number of eligible points. Furthermore, the feasible set may

be restricted by the introduction of “forbidden zones”, i.e. areas in which facilities should

not be located [55] or other types of constraints. From the optimization point of view,

the techniques used to cope with the problems also differ. Continuous location problems

are, in most of cases, nonlinear optimization problems, while discrete and network

location problems are integer programming/combinatorial optimization problems.

It is customary to differentiate between single-facility location problems and multi-

High performance computing applied to competitive facility location and design problems

2 Introduction

facilities problems. In the former, only one facility is to be located (nfc = 1), while in

the latter, several facilities are to be sited (nfc> 1). Notice that when locating multiple

new facilities, interactions between them may have to be considered, usually through

the interdistances.

Two location models can be distinguished depending on whether a single player or

multiple players in the market are considered. They are referred to as non-competitive

and competitive models, respectively. A detailed taxonomy can be found in survey

papers [57, 84, 143]. In many location models it is assumed that the decision maker,

who plans the location of his facilities, faces an empty space without any similar or

competing facilities. Nevertheless, in most cases, similar facilities already exist in the

region and the task is to add new ones in an optimal way [57, 103, 128]. The existing

facilities may belong to the decision maker’s own chain or to a competitor’s chain [55].

When a competition takes place, it may be static, which means that the competitors

are already in the market, the owner of the new facility knows their characteristics

and no reaction is expected from them, or with foresight, in which the competitors

are assumed to react after the new facility enters. Furthermore, if the competitors can

change their decisions, the model is considered dynamic, as it is characterized by the

major concern of the existence of equilibria. In this context, Hakimi [82] introduced the

well known Stackelberg problems (also known as Simpson’s problems in voting theory).

The scenario considered in these kind of problems is that of a duopoly. A chain (the

leader) wants to set up nfc new facilities in the market, where similar facilities of

a competitor (the follower), and possibly of its own chain, are already present. The

follower will react by locating nff facilities after the leader locates its own facilities.

Hakimi introduced the terms medianoid for the follower problem, and centroid for

the leader problem. More precisely, an (nff |LOCnfc) medianoid problem refers to the

follower’s problem of locating nff new facilities in the presence of nfc leader’s facilities

located at a set of points LOCnfc. And an (nff |nfc) centroid problem refers to the

leader’s problem of locating nfc new facilities, knowing that the follower will react

positioning nff new facilities by solving an (nff |LOCnfc) medianoid problem.

Regarding customers, clients can be either distributed according to some distribu-

tion function over a given set, or located at specific points (named demand points,

see [70]) in the plane or at vertices in a network, which is the common approach in

literature.

High performance computing applied to competitive facility location and design problems

1.1 Location science 3

Another important feature is the so called demand. Demand can be either fixed

(exogenous) or may vary (endogenous). In the first case, the demand is known with

certainty. This is usually the case when the goods are essential to the customers, and

then, they will buy the goods independently of the distance to the facility or the price.

In the second case, goods are inessential to the customers, then, demand can vary

depending on prices, distances to the facilities, etc.

Another important question to take into account is whether customers are free

to choose the facility from which they are served. If so, knowing how customers buy

goods among the existing facilities helps to estimate the market share captured by each

facility [153]. The patronizing behavior of the customers is usually assumed to be either

deterministic, when the full demand of the customer is served by the facility to which

he/she is attracted most (leading to Hotelling-type models) or probabilistic, when the

customer splits his/her demand among all the existing facilities (leading to Huff-type

models).

Furthermore, location problems can be defined as pure location problems, where the

aim is to determine only the optimal sites for nfc new facilities (nfc ≥ 1), or as mixed

problems, in which, apart from the location, a decision has to be made about other

variables. In mixed problems, besides the location of the nfc services, some “active”

interactions have to be determined (see [127]). These interactions can be expressed by

an attraction (or utility) function of a customer towards a given facility. For instance, in

competitive location problems, it usually depends on the distance between the customer

and the facility, and on other characteristics of the facility which determine its quality.

The market share captured by the facilities depends on all those factors.

Finally, one may be interested in optimizing a single objective or several objec-

tives simultaneously. This thesis deals both with single and multi-objective competi-

tive continuous location problems. The former are usually global optimization problems,

whereas the latter usually leads to nonlinear multi-objective optimization problems. In

the following, a brief description of these fields is given.

1.1.1 Global optimization

The aim of global optimization is to find the best (global) solution of models, in the

presence of (many) local and global optimal solutions. Formally, global optimization

High performance computing applied to competitive facility location and design problems

4 Introduction

seeks the global solution of a constrained optimization model. Nonlinear models are

ubiquitous in many applications, e.g., in engineering design, biotechnology, data anal-

ysis, environmental management, financial planning, process control, risk management

or scientific modeling, among others. Their solution often requires a global search ap-

proach.

The formulation of a global optimization problem, in its maximization form, is given

by:

max f(y)

s.t. y ∈ S
(1.1)

where S is a nonempty closed set in R
n and f is a real valued function. Therefore, the

objective is to find the maximum value f ∗ and all the points y∗ ∈ S such that:

f ∗ = f(y∗) ≥ f(y) ∀y ∈ S (1.2)

The conversion of a minimization problem to a maximization one is straightforward

min{f(y)|y ∈ S} = −max{−f(y)|y ∈ S} (1.3)

so, minimizing f(y) is equivalent to maximizing −f(y).

1.1.2 Nonlinear multi-objective optimization

A general nonlinear multi-objective optimization problem (MOP) can be formulated

as follows:

min {f1(y), . . . , flmax(y)}

s.t. y ∈ S ⊆ R
n

(1.4)

where f1, . . . , flmax : R
n −→ R are lmax real-valued functions. Let us denote by f(y) =

(f1(y), . . . , flmax(y)) the vector of objective functions and by Z = f(S) the image of

the feasible region.

When dealing with multi-objective problems it is necessary to clarify what ‘solving’

a problem means. In the following, some widely known definitions are provided to

explain the concept of solution of (1.4).

High performance computing applied to competitive facility location and design problems

1.1 Location science 5

Definition 1. A feasible vector y∗ ∈ S is said to be efficient iff there does not exist

another feasible vector y ∈ S such that fl(y) ≤ fl(y
∗) for all l = 1, . . . , lmax, and

fj(y) < fj(y
∗) for at least one index j (j ∈ {1, . . . , lmax}). The set PS of all the

efficient points is called the efficient set or Pareto-set. If y1 and y2 are two feasible

points and fl(y1) ≤ fl(y2) for all l = 1, . . . , lmax, with at least one of the inequalities

being strict, then it is said that y1 dominates y2.

Efficiency is defined in the decision space. The corresponding definition in the cri-

terion space is as follows:

Definition 2. An objective vector z∗ = f(y∗) ∈ Z is said to be non-dominated iff y∗ is

efficient. The set PF of all non-dominated vectors is called the non-dominated set or

Pareto-front. If y1 and y2 are two feasible points and y1 dominates y2, then it is said

that f(y1) dominates f(y2).

Ideally, solving (1.4) means obtaining the whole efficient set, that is, all the points

which are efficient, and its corresponding Pareto-front. However, for a majority of

MOPs, it is not easy to obtain an exact description of the efficient set or Pareto-front,

since those sets typically include an infinite number of points (usually a continuum

set). To the extent of our knowledge, only two exact general methods, namely, two

interval branch-and-bound methods [62, 63] (see Subsection 1.2.1) have been proposed

in literature which obtain an enclosure of those sets up to a pre-specified precision.

Specifically, they offer a list of boxes (multi-dimensional intervals) whose union con-

tains the complete efficient set (and their images, the corresponding Pareto-front) as

a solution. However, they are time consuming. Furthermore, they have large memory

requirements, so that only small instances can be solved with them.

The common approach in literature is to approximate the Pareto-front by a finite set

of points. But then, a measure to quantify the effectiveness of such an approximation

is needed. According to [161] there exist three main methods for the assessment and

comparison of Pareto-set approximations:

• The dominance ranking method [67], which allows collections of Pareto-set ap-

proximations from two or more stochastic optimizers to be directly compared sta-

tistically. The dominance ranking approaches rely on the concept of Pareto domi-

nance and some ranking procedure only. They yield general statements about the

High performance computing applied to competitive facility location and design problems

6 Introduction

relative performance of the algorithms which are independent of any preference

information.

• The attainment function method [34, 66], which estimates the probability of at-

taining each goal in the objective space, and looks for significant differences be-

tween these probability density functions for different methods.

• The quality indicator method, the dominant method in literature, which maps

each Pareto-front approximation to a number, and performs statistics on the

resulting distribution(s) of numbers.

In this thesis, this last approach has been followed. Some definitions must be clarified.

Definition 3. A feasible vector y∗ ∈ S is said to be weakly efficient iff there does not

exist another feasible vector y ∈ S such that fl(y) ≤ fl(y
∗) for all l = 1, . . . , lmax. If y1

and y2 are two feasible points and fl(y1) ≤ fl(y2), l = 1, . . . , lmax, then it is said that y1

weakly dominates y2, and will be denoted by y1 � y2.

Now, the previous definition is extended to sets.

Definition 4. It is said that set A weakly dominates set B, A � B, provided that

every point y2 ∈ B is weakly dominated by at least one point y1 ∈ A.

Another concept that will be used in the explanation of the algorithms presented

in Chapter 4 of this thesis follows.

Definition 5. It is said that two feasible points y1 and y2 are indeterminate (or in-

comparable) provided that neither y1 � y2 nor y2 � y1.

The corresponding definitions apply in the criterion space. A general formal defini-

tion of a quality indicator follows.

Definition 6. A unary quality indicator is a function I : SPF → R which assigns

each Pareto-front approximation set PFap ∈ SPF a real value I(PFap).

It is desired that whenever an approximation set Aap of the Pareto-set is preferable

to an approximation set Bap with respect to weak Pareto dominance, the indicator

value for f(Aap) should be at least as good as the indicator value for f(Bap). Such

indicators are called Pareto compliant.

High performance computing applied to competitive facility location and design problems

1.1 Location science 7

Definition 7. A quality indicator is said to be Pareto compliant iff for any pair of

approximation sets Aap, Bap, Aap � Bap implies that the indicator assigns a better (or

equal) indicator value to f(Aap).

The most commonly used quality indicator in literature, and the one used in this

thesis, is the hypervolume [158, 163]. This Pareto compliant indicator measures the

hypervolume of the portion of the criterion space that is weakly dominated by the

approximation set. The higher the hypervolume, the better the approximation. In order

to measure this quantity, a reference point that is dominated by all points is needed.

For a given problem, the same reference point has to be used for all the algorithms

and all the runs. Assume that the quality of the outcomes generated by qmax stochastic

algorithms must be compared. For each algorithm q, q ∈ {1, . . . , qmax}, rsq runs are

performed, generating the approximation sets PSq
1 , . . . , PSq

rsq
(in the decision space).

Lets denote by SPS the set of all the approximation sets of the Pareto set, SPS =

{PS1
1 , . . . , PS1

rs1
, . . . , PSqmax

1 , . . . , PSqmax
rsqmax

}. In the computational studies of this thesis,

the point whose l-th component is the maximum of all the l-th components of points

in f(SPS) is considered as reference point. It is an approximation of the Nadir point

obtained when considering all the approximations of the Pareto-front together.

In Algorithm 1, a description of how to compute the hypervolume when two ob-

jective functions are considered, f1 and f2, is given. The first step is to compute the

reference point RP = (f
(max)
1 , f

(max)
2), where f

(max)
l denotes the maximum value of fl

with l = 1, 2 when considering all the solutions in SPS. Then, the hypervolume is

calculated as the area covered by the points of the Pareto-front and the reference point

RP . In Figure 1.1 a graphic representation of this metric is given for a bi-objective

optimization problem. In particular, the figure on the left hand shows the calculation

procedure of the hypervolume metric and the figure on the right illustrates how the

hypervolume increases as the number of points in the Pareto-front does.

Hypervolume can be thought of as a global quality indicator, in the sense that it

assesses the approximation as a whole. There are many other indicators in literature

which are designed to assess a single aspect of the approximation (its proximity to the

true Pareto-front, its spread, its evenness, etc.), although many of the them are not

Pareto compliant. They are still useful, since they may refine the preference structure of

Pareto compliant indicators. Proximity indicators, such as the (non Pareto compliant)

average distance [33] and the (Pareto compliant) unary additive epsilon indicator [164],

High performance computing applied to competitive facility location and design problems

8 Introduction

Algorithm 1: Computation of Hypervolume indicator

1: Compute reference point RP = (f
(max)
1 , f

(max)
2)

2: Set hyper = 0
3: for ic = 1 to (Lmax − 1) do

4: hyper = hyper + (f
(max)
2 − f

(ic)
2) · (f (ic+1)

1 − f
(ic)
1)

5: hyper = hyper + (f
(max)
2 − f

(Lmax)
2) · (f (max)

1 − f
(Lmax)
1)

Figure 1.1: Hypervolume (hyper) calculation.

somehow measure the distance between the approximation set and true Pareto-front.

Two (non Pareto compliant) evenness/diversity indicators are the spread [40, 121] and

the spacing [151].

When computing quality indicators, normalized objective values are used to allow

different objectives to equally contribute to comparative indicator values. The standard

normalization is

fl(y)′ =
fl(y) − f

(min)
l

f
(max)
l − f

(min)
l

,

where f
(min)
l (resp. f

(max)
l) denotes the minimum (resp. maximum) value of fl when

considering all the solutions in SPS.

High performance computing applied to competitive facility location and design problems

1.2 Search algorithms 9

1.2 Search algorithms

In general, classical (i.e. local) optimization techniques have difficulties in dealing with

global optimization problems. One of the main reasons is that they can easily be en-

trapped in local optima. Moreover, local optimization techniques cannot generate or

even use the global information needed to find the global optimum for a function with

multiple local optima. In order to find the global optimum, a global scope search effort

is needed. The field of global optimization studies those problems of type (1.1) which

have one or several global optima.

There are many taxonomies of global optimization strategies. An example can be

found in [123], where optimization strategies are classified, according to the degree of

rigor with which they approach the goal, into:

• Incomplete methods, where clever intuitive heuristics are used, but they cannot

guarantee to escape from a local optimum, and hence, they cannot guarantee

that the global optimum is found.

• Asymptotically complete methods. The probability of obtaining the global opti-

mum is one if they run indefinitely. However, that a global optimum is reached

if run a finite time cannot be ensured.

• Complete methods. They can reach the global optimum with certainty when exact

computations are used and they run indefinitely. They can also find an approxi-

mate global optimum, within prescribed tolerances, after a finite time.

• Rigorous methods, where the global optimum is reached with certainty, within

given tolerances, even with approximate computations.

Other classifications of global optimization methods can be consulted in [129, 152].

In spite of this, nowadays, it is really difficult to propose a classification of the search

algorithms, since they blend different techniques in order to obtain the global optimum.

Figure 1.2 depicts the classification followed in this work. Note that it focuses on

heuristics, because of the stochastic nature of the algorithms developed in this thesis.

Initially, global optimization methods are divided into exact and heuristic, depend-

ing on whether they can guarantee the optimal solution has been found or not.

High performance computing applied to competitive facility location and design problems

10 Introduction

Figure 1.2: A taxonomy of search algorithms.

In exact methods (such as outer approximation, Lipschitzian optimization or Branch

and Bound), random factors are hardly included. Some of them converge to the global

optimum under some conditions, but when the algorithm is stopped after a finite num-

ber of iterations the accuracy of the solution may not be known with exactness. Exact

methods with finite termination require detailed access to global information about the

problem. More efficient complete methods generally combine branching techniques with

one or several techniques from local optimization, convex analysis, interval analysis or

constraint programming.

Moreover, exact algorithms are guaranteed to find, for every finite size instance

of a problem, an optimal solution. Yet, for NP-hard problems, no polynomial time

algorithm exists. For practical purposes, exact methods are very expensive from a

computational point of view, and heuristic methods have received more and more

attention in the last few years. In these kind of methods, the guarantee of finding the

High performance computing applied to competitive facility location and design problems

1.2 Search algorithms 11

optimal solution is sacrificed for the sake of obtaining a good solution in a sufficiently

short period of time.

Heuristics can provide useful and practical solutions for a wide range of problems

and application domains. The power of heuristics comes from its ability to deal with

complex problems when little or no information of the search space is given. They

are particularly well suited to deal with a wide range of computationally intractable

optimization and decision-making applications.

Heuristic methods can be considered algorithms that perform biased random sear-

ches of feasible solutions for a problem until a particular termination condition is

met or after a predefined number of iterations is reached. Heuristic algorithms cannot

guarantee that the set of found solutions includes the global optimum. Usually, these

algorithms can find a solution whose objective value is close to the global optimum and

they find it fast and easily. Sometimes these algorithms can be accurate, which means

they actually find the best solution, but the algorithm is still called heuristic since this

solution cannot be proven to be the best one.

Usually, heuristics imitate successful strategies found in nature. For example, evo-

lutionary techniques copy the principles applied to species to develop superior qualities

over generations; simulated annealing is based on how crystals emerge when materials

are cooling and particles “find” a structure that minimizes the energy balance; some

population based methods replicate the combined intelligence of crowds or the collec-

tive behavior of social animals, where the whole is more than the sum of its members’

skills; etc.

The following subsections are devoted to briefly describe the exact and the heuristic

branches of Figure 1.2.

1.2.1 Exact algorithms: iB&B

Among the exact algorithms, Branch-and-Bound (B&B) methods are probably the

most successful ones. Many applications of these methods for solving many and diverse

types of problems can be found in literature. See for instance [93] and references therein.

They are deterministic algorithms based on search trees. The basic idea in B&B consists

of a recursive decomposition of the original problem into smaller disjoint subproblems

until the solution is found. A search tree, T (V, β), describes these subproblems (V is the

High performance computing applied to competitive facility location and design problems

12 Introduction

set of vertices, whose root is the whole search space S) and the decomposition process

(the set of arcs β). The algorithm avoids visiting subproblems which are known to not

contain an optimal solution [25].

In [38] a general description of B&B methods is given and a common structure for

all the applications, using general rules and operators [97, 114], is established. There

are four main rules:

• Division rule: Establishes how the nodes of the search tree are decomposed.

• Bounding rule: Finds upper and/or lower bounds for the optimal solution of a

node.

• Selection rule: Determines the next node which will be processed.

• Elimination rule: Recognizes and eliminates nodes where the solution of the orig-

inal problem cannot lie.

Depending on the kind of problem, the following rule can be added:

• Termination rule: Determines if a node belongs to the final solution. This rule

appears in problems where the termination criteria are given by some specified

threshold between the best upper and lower bounds.

In B&B methods the feasible set is relaxed and subsequently partitioned in more

and more refined parts (branching) over which feasibility conditions and upper and/or

lower bounds of the objective function value can be determined (bounding). Parts of

the feasible set with upper bounds not exceeding the best lower bound for the global

optimum value found at a certain stage of the algorithm are deleted (pruning), since

these parts of the domain cannot contain the optimum.

A good understanding of the problem to be solved is needed to select the previous

basic rules correctly, since their good election can, on the one hand, decrease the ex-

ecution time and, on the other hand, allow the resolution of harder problems. These

basic rules are chosen depending on whether the search space is divided into general

polygons or into other special sets, like triangles or squares (see [47, 86]). In fact, this

division depends on how one can compute bounds for the given regions.

High performance computing applied to competitive facility location and design problems

1.2 Search algorithms 13

In chapters 2 and 4 of this thesis, B&B algorithms in which the bounds are au-

tomatically computed with the help of Interval Analysis have been used. It is only

required that the search region be a closed set and that the functions to be optimized

have a corresponding inclusion function (see below). Sometimes (twice) differentiabil-

ity in some subregions is only required to accelerate the convergence. Some notation

about interval analysis and related concepts are introduced in the following.

Real numbers will be denoted by lower case letters, x, y, ..., and intervals by capital

letters, X = [x, x] , Y = [y, y],..., where x = min{x ∈ X} and x = max{x ∈ X}.

The set of intervals will be denoted by I(R) := {[a, b] | a ≤ b; a, b ∈ R} and the

set of n-dimensional interval vectors, also called boxes, by I(R)n. For both real and

interval vectors the following notation is used: x = (x1, x2, ..., xn)T , xi ∈ R and X =

(X1, X2, ..., Xn)T , Xi ∈ I(R), (i = 1, 2, ..., n). The width of an interval X is defined by

w(X) = x − x, if X ∈ I(R) or by w(X) = maxi=1,...,n w(Xi) if X ∈ I(R)n.

The main interval arithmetic tools applied to optimization methods are the inclu-

sion functions. Let D ⊆ R
n, let I(Rn)(D) denote the set of boxes in D, I(Rn)(D) =

{X : X ∈ I(Rn), X ⊆ D}.

Definition 8. Let f : D ⊆ R
n → R be a real-valued function. A function F :

I(Rn)(D) → I(R) is said to be an inclusion function of f if:

f(X) ⊆ F (X),∀X ∈ I(R)(D)

The inclusion function generally overestimates the range of a function. The extent

of the overestimation depends on the type of the inclusion function, on the considered

function and on the width of the interval. If the computational costs are the same, the

smaller the overestimation, the better the inclusion function is.

Interval branch-and-bound (iB&B) methods are based on Interval Analysis. Apart

from using boxes to define the search region and its branches, they use inclusion func-

tions to bound the objective function over a given box [25, 59, 153].

The prototype iB&B is shown in Algorithm 2. This algorithm selects the next box

to be processed (Selection rule, line 3), which can be either totally or partially elimi-

nated if it is known that the box does not contain any global maximizer (Elimination

rule, line 5). This elimination process is based on some information obtained from in-

clusion functions (Bounding rule, line 4). If the box cannot be rejected, it is divided

High performance computing applied to competitive facility location and design problems

14 Introduction

Algorithm 2: A general interval B&B algorithm
1: Set the working list Listw := {S} and the final list Listf := {}
2: while Listw 6= {} do

3: Select a box X from Listw
4: Compute F (X)
5: if X cannot be eliminated then

6: Divide X into X ic, ic = 1, ..., icmax

7: for ic = 1 to icmax do

8: if X ic satisfies the termination criterion then

9: Store X ic in Listf
10: else

11: Store X ic in Listw
12: Return Listf

(Division rule, line 6). The obtained subboxes are stored in the final list if they satisfy

the termination criterion (Termination rule, line 9). Otherwise, they are stored in the

working list to its posterior processing (line 11). When there are no boxes to be pro-

cessed (i.e. Listw is empty), the algorithm finishes (line 2) and returns the set of boxes

in the solution list Listf as solution.

A similar algorithm can be devised to cope with multi-objective problems. In that

case, boxes are eliminated when it is known that they do not contain any efficient

point, i.e., all their points are dominated. Also notice that for multi-objective problems

the aim is to obtain the complete efficient set (and its corresponding Pareto-front), so

the solution boxes offered by the algorithm contain the efficient set, and the images of

those boxes contain the corresponding Pareto-front.

The iB&B method used in Chapter 2 of this thesis to solve the global optimization

problem introduced there is described in [153]. The algorithm includes several new

accelerating devices and modifies others presented in literature in order to solve difficult

highly nonlinear problems more efficiently. For more details about the method, the

interested reader is referred to [153]. On the other hand, for the bi-objective location

problem introduced in Chapter 4, the iB&B method detailed in [63] is used.

High performance computing applied to competitive facility location and design problems

1.2 Search algorithms 15

1.2.2 Heuristic algorithms: Evolutionary computation

In computer science, there are two fundamental goals which algorithms have to reach:

provable good or optimal solution quality and provable good run times. A heuristic

is an algorithm that abandons one or both of these goals. For example, a heuristic

usually finds pretty good solutions, but there is no proof the solutions could not become

arbitrarily bad; or it usually runs reasonably quickly, but there is no argument that

this will always be the case.

As mentioned previously, it just may happen that there is no interest in reaching the

optimal solution because the size of the problem to be solved is beyond the computa-

tional limit of known optimal algorithms within the available computer time. Moreover,

in other cases, the problem could be solved optimally but it can be considered that the

effort (time, money, etc) required to find the optimal solution is not worth it. In such

cases, a heuristic algorithm, which may hopefully find a feasible solution close to the

optimum in terms of objective function value, can be used. In fact, it is often the case

that a well-designed heuristic algorithm can give good quality (near-optimal) results.

The main advantages of heuristic algorithms are that such algorithms are (often)

conceptually simpler and (almost always) much cheaper computationally than exact

algorithms.

Among the heuristic methods, it is possible to distinguish between constructive

heuristics, local search methods and metaheuristics.

• Constructive heuristics are algorithms that always take the best immediate or

local solution while finding an answer. They generate solutions from scratch by

adding opportunely defined solution components to an initially empty partial

solution. This is done until a solution is complete or other stopping criteria are

satisfied [3].

• A local search method employs the idea that a given solution s may be improved

by making small changes. Those solutions obtained by modifying a solution s,

are called neighbors of s, and the application of an operator that produces a

neighbor s′ is commonly called a move. A local search algorithm starts with an

initial solution and moves from neighbor to neighbor as long as possible while

increasing the objective function value. The main drawback of this strategy is its

High performance computing applied to competitive facility location and design problems

16 Introduction

difficulty to escape from local optima where the search cannot find any further

neighbor solution that improves the objective function value.

• A metaheuristic can be defined as a high-level algorithmic framework or approach

that can be specialized to solve optimization problems. It consists of an iterative

process, which guides other heuristics in a search for feasible solutions. Meta-

heuristics are approximate and usually non-deterministic, and they are generally

applied to problems for which there is no satisfactory problem-specific algorithm

or heuristic; or when it is not practical to implement such a method. They are

not problem-specific, but they may make use of domain-specific knowledge in the

form of heuristics that are controlled by an upper level strategy.

Metaheuristics

The term metaheuristic, first introduced in [78], derives from the composition of two

Greek words. Heuristic derives from the verb heuriskein which means “to find”, while

the prefix meta means “beyond, in an upper level”. Some well-known algorithms are

considered metaheuristic: random optimization, random-restart hill climbing, genetic

algorithms, simulated annealing, tabu search, ant colony optimization, GRASP,. . . In-

numerable variants and hybrids of these techniques have been proposed, and many

more applications of metaheuristics to specific problems have been reported. This is an

active field of research, with considerable literature, a large community of researchers

and users, and a wide range of applications.

According to Figure 1.2, metaheuristics can be classified into trajectory methods

and population based methods. In the first group, the search process is characterized

by a trajectory in the search space. It is possible to distinguish between metaheuris-

tics which follow one single search trajectory corresponding to a closed walk on the

neighborhood graph, and metaheuristics which allow larger jumps in the neighborhood

graph. Simulated annealing and tabu search are typical examples of trajectory meth-

ods. These methods usually allow moves to worse solutions to be able to escape from

local optima.

Population-based metaheuristics (PBM) [15] are algorithms that work on a set of

solutions (i.e. a population) at the same time rather than on a single solution. At first

glance, it might be seen that this idea does not really provide anything new, since the

High performance computing applied to competitive facility location and design problems

1.2 Search algorithms 17

previous algorithms could run several times to increase the probability of arriving at the

global optimum. But there is an additional component that can make population-based

algorithms essentially different from other solving methods: the concept of competition

among solutions in a population. That is, they simulate the evolutionary process of

competition and selection so that the candidate solutions in the population fight for

room in future generations. In this way, population-based algorithms provide a natural,

intrinsic way for the exploration of the search space.

Among the population-based metaheuristics branch in Figure 1.2, it is possible to

distinguish between Evolutionary computation and Swarm algorithms. The former will

be studied next. The latter is out of the scope of this thesis, but the reader is referred

to [3, 41, 42, 159] for an in-depth description of the algorithms and their applications.

Evolutionary Computation (EC) is a modern search technique which uses com-

putational models of processes of evolution and selection [102, 111]. Concepts and

mechanisms of Darwinian evolution and natural selection are encoded in evolutionary

computation methods and used to solve problems in many fields of engineering and

science [36]. According to Figure 1.2, it is possible to find memetic algorithms and

niching methods in the evolutionary computation branch.

• Memetic algorithms (MAs) blend different search strategies in a combined algo-

rithmic approach [116]. MAs are population-based metaheuristics, which means

that they maintain a population of solutions for the problem at hand. Since it

is possible to have either feasible or proto-solutions (structures that can be ex-

tended/modified to produce feasible solutions) or even unfeasible solutions (which

can be “repaired” to restore feasibility), the term “solutions” is adopted here [119].

It is also assumed that both repairing or extension processes can be performed

quite fast, so as to justify including them in the population. In the context of

MAs, an agent represents a processing unit that can hold multiple solutions, and

has problem-domain methods that help to improve them if required [115]. Each

individual/agent represents a tentative solution/method to the problem under

consideration. For further advice on the design of MAs, the reader is referred to

[116, 117, 118, 119].

• Niching methods are based on the mechanics of natural ecosystems. In nature,

animals compete to survive by hunting, feeding, grazing, breeding, etc., and dif-

High performance computing applied to competitive facility location and design problems

18 Introduction

ferent species evolve to fill each role. A niche can be viewed as a subspace in

the environment that can support different types of life. A species is defined

as a group of individuals with similar biological features capable of interbreed-

ing among themselves but that are unable to breed with individuals outside

their group. For each niche, the physical resources are finite and must be shared

among the population of that niche. The size of each subpopulation will reflect

the availability of resources in the niche. A niche is commonly referred to as

an optimum of the domain, the fitness representing the resources of that niche.

An important variety of niching methods have been reported in literature (see

[10, 35, 37, 68, 94, 109, 112]).

Some of the most studied population-based methods are Evolutionary Algorithms

(EAs). As was mentioned before, strong resemblance to biological processes as well as

their initial applications for modeling complex adaptive systems influenced the termi-

nology used by evolutionary computation researchers. It borrows a lot from genetics,

evolutionary theory and cellular biology. Thus, a candidate solution to a problem is

called an individual, while the entire set of current solutions is called a population.

For some problem domains, a population may be broken into several subpopulations

or species. The actual representation (encoding) of an individual is called its genome

or chromosome. Each genome consists of a sequence of genes, i.e. attributes that de-

scribe an individual. A value of a gene is called an allele. When individual solutions are

modified to produce new candidate solutions, they are said to be breeding and the new

candidate solution is called an offspring or a child. During the evaluation of a candidate

solution, it receives a grade called fitness, which indicates the quality of the solution

in the context of a given problem; in optimization problems, the fitness is usually the

objective function value at the candidate solution. When the current population is re-

placed by offspring, the new population is called a new generation. Finally, the entire

process of searching for an optimal solution is called evolution [92].

Algorithm 3 describes the basic structure of an EA. Initially, a population of ran-

domly generated individuals (or individuals obtained from other sources such as con-

structive heuristics) is created. The fitness is used to determine the relative merit of

each individual. Once the initial population is obtained, an iterative process is carried

out. At each iteration, a new offspring is generated using a recombination operator,

High performance computing applied to competitive facility location and design problems

1.2 Search algorithms 19

Algorithm 3: Evolutionary Algorithms (EA)
1: Generate an initial population
2: Evaluate the population
3: while termination conditions are not met do

4: Recombine the population to obtain a new offspring
5: Mutate the offspring to obtain a new population
6: Evaluate the new population
7: Select individuals from the new population to be considered in the next

generation
8: Return best solution found

usually a two-parent or multi-parent crossover [12, 53]. Other techniques use popula-

tion statistics for generating offspring [120, 150]. In order to introduce some noise in

the search process for avoiding the convergence to local optima, a mutation operator

is applied to the offspring individuals. In some applications, small random changes are

used as a mutation mechanism. But, in other ones, it proved to be quite beneficial to

use improvement methods to increase the fitness of individuals. EAs which apply a

local search algorithm to each individual of a population can be thought of as memetic

algorithms. While the use of a population ensures an exploration of the search space,

the use of local search techniques helps to quickly identify “good” areas in the search

space. Nevertheless, a premature convergence towards sub-optimal solutions can hap-

pen when applying local search. In order to avoid this drawback, there are, apart from

the use of a random mutation operator, numerous ways of maintaining the population

diversity. Some of these ways are crowding [101], fitness sharing [81] and niching [112].

Finally, the individuals compete, either only among themselves or also against their

parents, to belong to the population at the next iteration. This is done by a selection

scheme.

There exist similar techniques which differ in the implementation details and the

nature of the particular problem, i.e. Genetic programming [106, 107], Evolutionary

programming [54], Evolution strategy [13] and Learning classifier system [108]. Never-

theless, the most popular type of EA is the Genetic algorithm [79, 92].

Evolutionary algorithms can also be used to obtain a discrete approximation of the

Pareto-front (and of the efficient set) of multi-objective optimization problems. The

structure of the algorithm is the same as for single-objective optimization problems

High performance computing applied to competitive facility location and design problems

20 Introduction

(see Algorithm 3) but now the fitness associated to a solution is related (somehow)

to its efficiency. The other difference is that since in multi-objective problems we look

for a finite ‘set’ of points approximating the Pareto-front, the solution offered by the

algorithms is a set of points, instead of a singleton.

1.3 High performance computing issues

Parallel computing operates on the principle that large problems can almost always

be divided into smaller ones which can be solved concurrently (“in parallel”). Parallel

computing is a research area which involves the study of both, hardware and software

issues. The former is related to parallel architectures, while the latter has to do with

parallel programming models. This section is devoted to providing a brief description of

the state of the art in high performance computing; it covers aspects such as hardware

and software models, performance evaluation and tools as well as a summary of the

characteristics of the set of parallel and distributed computers which have been used to

carry out the performance evaluation of the parallel algorithms proposed in this work.

1.3.1 Parallel architectures

Parallel computing is a set of systems, tools and techniques intended to achieve a

substantial reduction of the computing time for long running applications. In many

cases, parallel computing is the only way to tackle challenging problems which cannot

be solved with the resources provided by a single computer. However, the best perfor-

mance results are achieved when the modeler/programmer has a good knowledge of the

underlying parallel hardware. In addition, the understanding of the characteristics of

the different parallel architectures allows the programmers, on the one hand, to select

the best architecture for the needs of the user and the kind of program, and on the

other hand, to achieve better performance for the program, mainly due to the necessity

of optimizations of the code to fully exploit the target system.

Several classification schemes for parallel computers have been defined, but the first

and most commonly mentioned was proposed by Flynn in 1972 [65]. Flynn’s taxonomy

describes four possible models for combining data and instruction streams: SISD (Single

Instruction, Single Data stream), SIMD (Single Instruction, Multiple Data stream),

High performance computing applied to competitive facility location and design problems

1.3 High performance computing issues 21

Figure 1.3: Extension of Flynn’s Taxonomy.

MISD (Multiple Instruction, Single Data stream) and MIMD (Multiple Instruction,

Multiple Data stream).

Although Flynn’s taxonomy has become a standard model, the parallel computing

evolution makes an extension necessary. In [16, 31, 52, 76, 90, 146] more exhaustive

taxonomies are depicted. Figure 1.3 summarizes Flynn’s taxonomy and the extension

given by Alba in [3].

In SISD architecture, a single processor executes a single instruction stream, to

operate on data stored in a single memory, i.e. it corresponds to systems that still have

only one CPU (uniprocessor). However, MISD architectures refers to pipelined ma-

chines, where multiple instructions are executed on the same piece of data. This means

that the parallelism comes from the own processor architecture. These two architec-

tures refer, principally, to “old” personal computers, as nowadays, they include dual

processor, etc. For this reason, they are out of the scope of this revision in parallelism.

SIMD architectures include the ones in which the same instruction is executed by

all the processors, at each computing step or clock cycle, while MIMD comprise the

High performance computing applied to competitive facility location and design problems

22 Introduction

architectures where different data and programs can be loaded into different processors

(processors work asynchronously and independently). This means that SIMD can be

considered a particular case of MIMD architectures, where the execution of the same

instructions is applied on different data.

Another type of parallel platform which is very interesting in this context is based

on graphics processing units (GPUs). This type of architecture that had originally

been designed for a specific purpose, is currently being exploited in general purpose

computing (GPGPU) thanks to the availability of application programming interfaces

(APIs) such as Compute Unified Device Architecture (CUDA) [145], AMD ATI Stream

SDK [5] and OpenCL, considered the standard interface for programming accelerator

units. From the point of view of the programmer, the GPU may be viewed as a set of

SIMD multiprocessors with shared memory.

The next subection is dedicated to the most extended and used parallel architec-

tures; i.e. MIMD architectures.

1.3.2 MIMD architectures

MIMD architectures can be divided into two main groups: multiprocessors and mul-

ticomputers (see Figure 1.3). Multiprocessor architecture refers to the model where

all the processors have direct access to all the memory. Processors are connected to

some interconnection network, through which they can access a common set of memory

banks. Multicomputers refer to the architectures where each processor has its own local

memory module. Processors access remote memory modules using an interconnection

network and a message-passing method (see Subsection 1.3.3). The main multicomputer

advantage is its “unlimited” scalability. In theory, a multicomputer can be composed of

all the processors that are available. Nevertheless, note that now, the potential limita-

tion may come from the interconnection network used to connect the computing nodes.

Furthermore, multiprocessors are not scalable, but communications are transparent, in

the sense that they take place via memory accesses.

Multiprocessors can be classified into two types: centralized shared-memory and

distributed shared-memory architectures [90]. In the former, multiple processor-cache

subsystems share the same physical memory, typically connected by one or more buses

or a switch (see Figure 1.4). The key architectural property is the uniform access time

High performance computing applied to competitive facility location and design problems

1.3 High performance computing issues 23

Figure 1.4: Uniform memory access architecture.

to all of the memory from all the processors. That is why these architectures are often

called uniform memory access (UMA). The latter consists of individual nodes con-

taining a processor, some memory, typically some Input/Output, and an interface to

an interconnection network, which connects all the nodes (see Figure 1.5). In these

architectures, the memory access time depends on the memory location relative to a

processor. A processor can access its own local memory faster than non-local memory,

that is, the local memory of another processor or the memory shared among processors.

As memory accesses are not uniform, these architectures are called non-uniform mem-

ory access (NUMA). NUMA architectures may or may not maintain cache coherence

across shared memory. If so, they are named CC-NUMA (Coherent-Cache), otherwise,

they are called NC-NUMA (Non Coherent-Cache).

Multicomputers can be classified into (i) COW (cluster of workstations), where the

system is composed of a limited number of computers interconnected by a communi-

cation network (see Figure 1.6), and (ii) MPP models (Massively Parallel Processors),

which are composed of thousands of processors. MPP systems can be based on topolo-

gies such as hypercube, fat tree or torus, they can be tightly-coupled (i.e. it is a unique

computer), or can be composed of machines belonging to multiple organizations and

administrative domains, leading to the grid systems.

High performance computing applied to competitive facility location and design problems

24 Introduction

Figure 1.5: Non-uniform memory access architecture.

1.3.3 Parallel programming models and tools

A parallel program is intrinsically more complex than its serial counterpart. To write

an efficient and scalable parallel program, one must understand the behavior and per-

formance of the program. Sequential programming keeps a single process (i.e. a unique

flow of control), while parallel programming uses concurrent implementations, where

two or more processes work together to perform a single task and most of the times

they need to communicate and synchronize among them. Communication and synchro-

nization among different sub-tasks is typically one of the greatest barriers in obtaining

good parallel program performance.

Concurrent programming includes both the programming of multiprocessors (Shared

memory programming) and multicomputers or distributed systems (Distributed memory

programming). In the next subsections these programming models are briefly described.

High performance computing applied to competitive facility location and design problems

1.3 High performance computing issues 25

Figure 1.6: Multicomputer architecture, where each node is a multiprocessor.

Shared memory programming

In shared memory programming, the whole memory is directly accessible to all the

processes with an intent to provide communication among themselves. Depending on

context, programs may run on the same physical processor or on separate ones.

Multithreading (MT) is a programming paradigm for implementing application

concurrency and, therefore, also a way to exploit the parallelism on shared memory

multiprocessors [122]. A traditional “single threaded” can be defined as an independent

flow of control associated one to one with a program counter, a stack to keep track of

local variables, an address space and a set of resources. MT programming allows one

program to execute multiple tasks concurrently, by dividing it into multiple threads,

i.e. different streams of control that can execute its instructions independently and

concurrently. This implies that the overlapping of input, output and computing op-

erations is allowed. Moreover, when an MT program is executed on a multiprocessor

machine, several threads can be run simultaneously (in parallel) on separate processors,

High performance computing applied to competitive facility location and design problems

26 Introduction

exploiting the parallelism of the hardware.

There exist several ways to deal with parallelism in a shared memory model, al-

though the standardized library is Pthreads (or POSIX threads). Pthreads provides

a unified set of C library routines with the main aim to make multithreaded imple-

mentations portable. This library includes functions for thread management (creation,

scheduling and destruction) and synchronization (mutexes, synchronization variables,

semaphores and read-write locks), and it is available mainly for several variants of the

UNIX operating system.

Recently, modern programming languages, such as Java (java.sun.com), allow

programmers work with multithreaded environments. There are two ways of creat-

ing threads in Java: implementing an interface and extending a class [43]. Extending a

class is the way Java inherits methods and variables from a “single” parent class, while

interfaces are used to design the requirements for “a set” of classes to implement. The

interface sets everything up, and the class or classes that implement the interface do

all the work. The different set of classes that implement the interface have to follow

the same rules.

The OpenMP (Open Multi-Processing) (www.openmp.org) is an Application Pro-

gramming Interface (API) that supports multi-platform shared memory multiprocess-

ing programming in C/C++ and FORTRAN on many architectures (including Unix

and Microsoft Windows platforms). It consists of a set of compiler directives, library

routines, and environment variables that are used to express shared-memory paral-

lelism. Jointly defined by a group of major computer hardware and software vendors,

OpenMP is a portable, scalable model that gives programmers a simple and flexible

interface for developing parallel applications. The programmers use the OpenMP di-

rectives to tell the compiler which parts of the program must be executed concurrently

and to specify synchronization points.

Distributed programming

Distributed programming is based on the message-passing mechanisms. There exist

several ways to interchange messages among processors, for example, the use of Internet

computing system, object-based system and message-passing library. In the following

some of the tools available to deal with distributed programming are described.

High performance computing applied to competitive facility location and design problems

1.3 High performance computing issues 27

PVM (Parallel Virtual Machine) is a software package that permits a heterogeneous

collection of computers hooked together by a network, to be used as a single large

parallel computer [73]. Thus, large computational problems can be solved more cost

effectively by using the aggregate power and memory of many computers. The software

is very portable. The source, which is freely available through netlib [156], has been

compiled on many computers, from laptops to CRAY multicomputer systems.

MPI (Message-Passing Interface) is a language-independent communications pro-

tocol used to program parallel computers [69]. Processes are written in a sequential

language (C, C++, FORTRAN), and communications and synchronizations are made

by calling functions from the MPI library. The MPI API is a consequence of people’s

experiences with earlier message-passing libraries, such as PVM. MPI can be consid-

ered a de facto standard, and there exist several implementations such as MPICH

(http://www.mpich.org).

CORBA (Common Object Request Broker Architecture) is a middleware, which

provides a distributed-object-based platform to develop distributed applications in

which components can be written in different languages and can be executed in different

machines [3].

Java RMI (Java Remote Method Invocation) enables the programmer to create

distributed Java technology-based to Java technology-based applications, in which the

methods of remote Java objects can be invoked from other Java virtual machines, pos-

sibly on different hosts. RMI uses object serialization to marshal and unmarshal pa-

rameters and does not truncate types, supporting true object-oriented polymorphism.

See [98] for more information.

The Globus Alliance is a community of organizations and individuals developing

fundamental technologies that support grids and grid applications. Grid lets people

share computing power, databases, instruments, and other on-line tools securely across

corporate, institutional, and geographic boundaries without sacrificing local autonomy

[77].

1.3.4 Parallel performance measures

One of the main goals in parallelism consists of increasing the performance of an appli-

cation with respect to its execution on a uni-processor. The commonly used metric to

High performance computing applied to competitive facility location and design problems

28 Introduction

measure the performance of a parallel implementation on homogeneous processors is

the speedup, which is defined as the ratio between the execution time on a uni-processor

T (1) and the execution time on P processors T (P):

Spd(P) = T (1)
T (P)

(1.5)

Linear speedup (or ideal speedup) is obtained when Spd(P) = P . However, ob-

taining an ideal speedup is not always possible, since there are many factors which

can increase the value of T (P) and hence reduce the corresponding speedup. Among

others, these factors can be: work load unbalance, sequential parts of the algorithm,

communication overheads and synchronization among processors.

Nevertheless, sometimes a superlinear speedup can be obtained. This term refers

to speedup larger than P when a parallel calculation is performed on P processors.

According to Amdahl’s Law [6] this is impossible, however, superlinear speedups have

often appeared in literature [28, 141, 142, 148]. Many studies have been carried out in

order to predict superlinear speedups or to determine the reason behind them (see [9]

and the papers therein). Many of them coincide in that superlinear speedups can be

obtained due to a suboptimal sequential algorithm, important changes which concern

the performance of the parallel algorithms, or some unique feature of the architecture

(memory, cache,...) that favors the parallel execution.

Another metric is efficiency, which estimates how well-utilized the processors are

in solving the problem. So, the efficiency of a parallel version (run over P processors)

with respect to the sequential one is computed as:

Eff(P) = Spd(P)
P

= T (1)
P ·T (P)

(1.6)

Note that when linear speedup occurs efficiency is 1, which is called linear efficiency

(or ideal efficiency). Besides, if superlinear speedup is obtained, the efficiency metric

will be larger than 1. Figure 1.7 gives an example of the efficiency metric when all those

different situations happen. In this thesis, the performance of all parallel implementa-

tions have been measured by the efficiency metric.

An important concept in parallelism is that of scalability. It can be understood

as the ability of a system, network, or process, to handle a growing amount of work

in a capable manner or its ability to be enlarged to accommodate that growth. Using

High performance computing applied to competitive facility location and design problems

1.3 High performance computing issues 29

Figure 1.7: Efficiency example.

performance metrics (as speedup or efficiency) can determine whether an application is

scalable or not. It is said that an application scales on an specific parallel architecture

if it is suitably efficient and practical when applied to large situations (e.g. a large

input data set, a large number of outputs or users, or a large number of participating

nodes in the case of a distributed system). If the design or system fails when a quantity

increases, it does not scale.

1.3.5 Computers and interfaces used in this thesis

All performance results shown later in chapters 2, 3 and 4 have been obtained from

evaluations on a parallel architecture named Ben Arabi. Ben Arabi is the supercomputer

of the Supercomputing Center of Murcia, Spain. It is divided into two machines:

• Ben is a cc-NUMA shared-memory architecture with 128 cores, organized into

16 cells with 8 cores each and 96GB of RAM. The processors are Intel Itanium-

2 dual-core Montvale (1.6 GHz / 18MB of cache) and cells are connected by a

crossbar network (see Figure 1.5).

High performance computing applied to competitive facility location and design problems

30 Introduction

• Arabi is a Blade Cluster with 816 cores, organized in 32 nodes with 16GB of

memory each, and 70 nodes with 8GB each (102 nodes altogether). Each node

has 8 cores, divided into 2 Intel Xeon Quad Core (E5450) to 3.0 GHz (COW, see

Figure 1.6).

1.3.6 Parallel models in population-based methods

Population-based methods apply randomized operators over a population of candidate

solutions to generate new points in the search domain. Nowadays, problems are harder

and larger, and need larger population sizes to explore the search space deeply and

then obtain good solutions. This translates directly into larger computational time and

larger resource requirements (memory, processors...). In such a situation, a parallel

machine together with a parallel model could be a good choice.

Literature contains many examples of successful parallel implementations. Some

parallelization methods use a single population, while others divide the population

into several relatively isolated subpopulations. Some methods can massively exploit

parallel computer architectures, while others are better suited to multicomputers with

fewer and more powerful processors. In this section three types of parallel methods are

considered: (1) master-slave, (2) coarse-grain and (3) fine-grain.

Master-slave model

Master-slave is a communication model where one processor (the master) has unidirec-

tional control over one or more processors (the slaves). This technique is called “global

parallel model” too, since the management of the population is global (i.e. all the in-

dividuals in the population are considered when selection or crossover procedure is

carried out). Usually, the master takes charge of performing it. In this model, the par-

allelism comes from the evaluation of the individuals in the population. This is because

the fitness of an individual is independent of the rest of the population, and there is no

need to communicate during this phase. The evaluation of individuals is parallelized

by assigning a fraction of the population to each available processor. Communications

occur only as each slave receives its subset of individuals for evaluation and when the

slaves return the fitness values. If the algorithm stops and waits to receive the fitness

values for all the population before proceeding to the next generation, then the global

High performance computing applied to competitive facility location and design problems

1.3 High performance computing issues 31

Figure 1.8: Master-slave model.

parallel algorithm is called synchronous and it has exactly the same properties as the

sequential one. But, if the algorithm does not stop to wait for all processors, it does

not work exactly like the sequential algorithm, then it is named asynchronous [24, 75].

Figure 1.8 depicts the communication procedure among processors. The central

procesossor is the master, which interchanges some information with the slaves. Such

interchanges are carried out using communications, that are represented by arrows.

The execution time of a master-slave model has three basic components: the time

used in computations, the time used to communicate information among processors,

and the waiting time due to the synchronization points. The first one is largely deter-

mined by the size of the population. However, the population size is also a major factor

in the effectiveness of population-based methods and if the population is reduced, then

the probability that the algorithm will find good solutions would decrease [80, 88].

The second one depends directly on the number of slaves, on the particular hardware

used to execute the algorithm and on the size of the messages. Finally, the third one

depends on the degree of parallelism of the algorithm, i.e. if there exist parts that have

to be executed in a sequential way, and if the different parallel subtasks can evolve

independently or, on the contrary, they need some information from the other ones to

continue.

The master-slave method does not require a particular computer architecture, and

High performance computing applied to competitive facility location and design problems

32 Introduction

it can be implemented efficiently on shared and distributed memory computers. On a

shared-memory multiprocessor, the population can be stored in shared memory and

each processor could read a fraction of the population and write back the evaluation

results. The number of individuals assigned to any processor can be constant, but

in some cases (like in a multiuser environment where the utilization of processors is

variable) it may be necessary to balance the computational load among the processors

using a dynamic balancing algorithm (e.g., guided self-scheduling).

On a distributed-memory computer, the population is stored in one processor (the

master), which is responsible for sending the individuals to the other processors (the

slaves) for evaluation, collecting the results, and applying the genetic operators to

produce the next generation. The difference with a shared-memory implementation is

that the master has to send and receive messages explicitly.

It is important to emphasize that the master-slave method does not affect the

behavior of the algorithm, i.e. the selection mechanism takes into account the entire

population and it is possible to mate with any individual. However, there exist other

methods which introduce fundamental changes in the way the algorithm works: se-

lection is performed over a subset of individuals (subpopulation) and the population

mating is restricted to the subpopulation. Such methods are applied to parallel strate-

gies such as coarse-grain and fine-grain (see the following subsections.)

Coarse-grain model

In a coarse-grain model, each processor executes an algorithm independently of the

remaining ones during most of the time [23]. The idea is that different processors work

with smaller and different subpopulations in such a way that, when merging all the

subpopulations, a population similar to that of the sequential version can be obtained.

Nevertheless, some information can migrate from a processor to another one according

to a migratory policy, which is controlled by the following parameters:

• Interval of migration: It establishes how often the migration of a certain amount

of individuals will be conducted from a processor to another.

• Rate of migration: It indicates the number of individuals that have to communi-

cate with other processors when the migration interval is fulfilled.

High performance computing applied to competitive facility location and design problems

1.3 High performance computing issues 33

Figure 1.9: Coarse-grain model.

• Selection criterion: It determines the policy that will be applied for the selection

of migratory individuals.

Figure 1.9 shows an example of migration policy, where processors are supposed to

be connected in a ring topology. They communicate so that processor number i receives

information from processor Pi−1, and sends it to processor number Pi+1.

Fine-grain model

This parallel model is suited for massively parallel computers and consists of one

spatially-structured population [22]. Unlike a coarse-grain model, which consists of

few and large subpopulations, a fine-grained model regards smaller subpopulations of

which the larger ones are composed. The limit case is to have only one individual for

every processor available. Additionally, selection and mating are restricted to a small

neighborhood, but neighborhoods overlap permitting some interaction among all the

individuals. See Figure 1.10 for a schematic of these types of algorithms, where squares

represent processors and arrows refer to communications.

High performance computing applied to competitive facility location and design problems

34 Introduction

Figure 1.10: Fine-grain model.

Hybrid model

Nowadays, the tendency is to develop parallel algorithms which mix several techniques,

in order to exploit all the available parallelism. Figure 1.11 shows an example of a hybrid

model, which combines a coarse-grain model at the high level and a fine-grain strategy

at the low level.

Figure 1.11: Coarse-grain model + fine-grain model.

High performance computing applied to competitive facility location and design problems

1.3 High performance computing issues 35

Another way to hybridize is to use a coarse-grain method at both the high and the

low levels. At the low level the migration rate is faster and the communications topology

is much denser than at the high level (see Figure 1.12). A third method of hybridizing

is to use a form of global parallelization (master-slave) on each of the subpopulations

of a coarse-grain strategy (see Figure 1.13) [23].

Figure 1.12: Coarse-grain model + coarse-grain model.

Figure 1.13: Coarse-grain model + master-slave model.

High performance computing applied to competitive facility location and design problems

CHAPTER 2

A planar single facility location and design

problem with endogenous demand

One of the major questions that a retail chain has to face when it considers entering

or extending its presence in a market is ‘where to locate’ the new facility (or facilities)

to be opened. If other facilities offering the same goods already exist in the area, the

new facility will have to compete for the market. Many competitive location models

are available in literature, see for instance the survey papers [56, 57, 128] and the

references therein. In order to evaluate the market share resulting from the entry of

the new facility, one needs to consider the way consumers choose facilities offering

similar goods/services. Many quite different proposals exist in literature, as extensively

explained in [48].

In most competitive location literature, it is assumed that the demand is exogenous

(fixed) regardless the conditions of the market. Some remarkable exceptions are [11,

20, 83, 113]. Although this may be appropriate for essential goods, in other cases, this

is mainly due to the difficulty of the problems to be solved: even with fixed demand,

the corresponding location models may be hard-to-solve global optimization problems.

However, sometimes demand is endogenous, that is, it varies depending on several

factors. For instance, as already stated in [11], consumer expenditures on products or

services offered by the facilities may increase for a variety of reasons related to location

of the new facility: opening new outlets may increase the overall utility of the product;

the marketing expenditures resulting from the new facilities may increase the overall

‘marketing presence’ of the product, leading to increased consumer demand; or some

consumers who did not patronize any of the facilities, perhaps because none were close

enough to their location, may now be induced to do so. On the other hand, the quality

of the facilities may also affect consumer expenditures, since a better service usually

leads to more sales.

High performance computing applied to competitive facility location and design problems

38 A planar single facility location and design problem with endogenous demand

Furthermore, to our knowledge, in none of the previous studies, has the effect of

demand being influenced by facility layout been investigated. The first aim of this

chapter is to study to what extent the optimal location and quality of new facilities

to be located are affected by that assumption. In particular, it is considered a “spatial

interaction model” recently proposed in literature [61, 135, 153] to analyze this effect.

As will be shown, the corresponding problem with endogenous demand, introduced in

Section 2.1, is much harder to solve. Section 2.2 will answer the question: Exogenous or

endogenous demand? Does it really matter when locating a facility? In Section 2.3, two

methods to cope with the problem at hand are investigated, an interval B&B method

and an evolutionary algorithm called UEGO. A sensitivity analysis of the model is

carried out in Section 2.4. The second aim of this chapter is to improve the efficiency of

UEGO. In order to carry it out, the evolutionary algorithm has been slightly modified

(see Section 2.5) and a parallelization of it is proposed in Section 2.6. Finally, some

conclusions are pointed out in Section 2.7.

2.1 The model

A chain wants to locate a new single facility in a given area of the plane, where there

already exist jmax facilities offering the same goods or product. The first k of those jmax

facilities belong to the chain (0 ≤ k < jmax). The demand is supposed to vary with the

location of the new facility (is endogenous) and is concentrated at imax demand points,

whose locations locdi are given, as well as the location locfj and quality of the existing

facilities. The following notation will be used throughout this chapter:

Indices

i index of demand points, i = 1, . . . , imax.

j index of existing facilities, j = 1, . . . , jmax.

Variables

z location of the new facility, z = (x, y).

α quality of the new facility (α > 0).

nf variables of the problem, nf = (z, α).

Data

locdi location of demand point i (i = 1, . . . , imax).

High performance computing applied to competitive facility location and design problems

2.1 The model 39

locfj location of existing facility j (j = 1, . . . , jmax).

di,j distance between demand point i and facility j.

ai,j quality of facility j as perceived by demand point i.

gi(·) a non-negative non-decreasing function.

ui,j attraction that demand point i feels for facility j (or utility of j

perceived by the people at i), ui,j =
ai,j

gi(di,j)
.

γi weight for the quality of the new facility as perceived by demand point i.

dmin
i minimum distance from locdi at which the new facility can be located.

αmin minimum level of quality for the new facility.

αmax maximum level of quality for the new facility.

FR region of the plane where the new facility can be located.

Miscellaneous

di(z) distance between demand point i and the new facility.

ui,nf attraction that demand point i feels for the new facility,

ui,nf =
γiα

gi(di(z))
.

Ui total utility perceived by demand point i provided by all the

facilities.

wi(Ui) demand (or buying power or total expenditure) at demand point i.

M(nf) market share captured by the chain.

F (M(nf)) expected sales obtained by the chain.

G(nf) operating costs of the new facility.

Π(nf) profit obtained by the chain.

It is assumed that gi(di,j) > 0 ∀i, j. Following the framework of spatial interaction

models introduced by Huff [96], we consider that the patronizing behavior of customers

is probabilistic, that is, demand points split their buying power among all the facilities

proportionally to the attraction they feel for them. The attraction that a demand

point feels for a facility depends on both the location of the facility and its quality, as

perceived by the demand point.

Furthermore, another assumption made is that the demand at locdi is affected by the

perceived utility of the facilities, given by the vector ui = (ui,nf , ui,1, . . . , ui,jmax). Making

the simplifying assumption that the utility is additive, then Ui = ui,nf +
∑jmax

j=1 ui,j

represents the total utility perceived by a customer at locdi provided by all the facilities.

High performance computing applied to competitive facility location and design problems

40 A planar single facility location and design problem with endogenous demand

Hence, it is natural to assume that the actual demand at locdi is a function of Ui. Notice

that this simplifying assumption still allows us to seek whether the optimal location

and quality are affected by the type of demand, exogenous or endogenous, in the sense

that if they are affected under this assumption then they will be affected in the more

general case in which the utility is not additive.

If the maximum possible demand at locdi is denoted by wmax
i , and the minimum

possible demand at locdi by wmin
i , then the actual demand wi at locdi is a function of

the utility vector ui only through the total utility Ui, i.e., wi(Ui) = wmin
i + incri ·ei(Ui),

where incri = wmax
i −wmin

i . Here, ei(Ui) is a non-negative and non-decreasing function

of Ui that must not exceed 1 (notice that wi cannot exceed wmax
i). Function ei(Ui) can

be interpreted as the share of the maximum possible increment that a customer decides

to expend under a given location scenario.

There are different possible expressions for this. The following ones have been pro-

posed in literature:

1. Linear expenditures: it is assumed that wmin
i = 0, so that incri = wmax

i . In this

model wi is represented by wi(Ui) = wmax
i · ei1(Ui), where ei1(Ui) = ciUi, with ci

a given constant such that ci ≤ 1/Umax
i , where Umax

i is the maximum utility that

can possibly be perceived by a customer at i, see [11].

2. Exponential expenditures: it is also assumed that wmin
i = 0, so that incri = wmax

i .

In this model wi is given by wi(Ui) = wmax
i · ei2(Ui), where ei2(Ui) = 1 − e−ρiUi ,

where ρi > 0 is a positive constant, see [11]. A similar model, with ei3(Ui) =

1 − ρ−ρi2Ui

i1 , where ρi1, ρi2 > 0, was presented in [113], but notice that this is a

special case of ei2 , since ei3(Ui) = 1 − e−ρi2Ui ln(ρi1). This is a form of constant-

elasticity demand function popular in economic literature.

We also suggest the following models:

3. Affine expenditures: wi(Ui) = wmin
i + incriei1(Ui). Notice that linear expenditures

is a particular case of affine expenditures.

In [11] there is another modification of linear expenditures, which is called bounded

linear expenditures, where the value of ei1(Ui) is fixed to a given constant above

a given threshold.

High performance computing applied to competitive facility location and design problems

2.1 The model 41

4. wi(Ui) = wmin
i + incriei4(Ui), with ei4(Ui) = 1

1+e
(ρi1+ρi2

1
Ui

)
, where ρi1 ∈ R and

ρi2 > 0 are given constants. This last function has already been used in [51],

and it allows to model different types of decreases in expenditures as the utility

decreases. Notice that, unlike the previous ei functions, ei4 is not concave.

Based on these assumptions the market share captured by the chain is

M(nf) =
imax∑

i=1

wi(Ui)
ui,nf +

∑k
j=1 ui,j

ui,nf +
∑jmax

j=1 ui,j

,

and the problem of profit maximization is described by

max Π(nf) = F (M(nf)) − G(nf)

s.t. di(z) ≥ dmin
i ∀i

α ∈ [αmin, αmax]

z ∈ FR ⊆ R
2

(2.1)

where F (·) is a strictly increasing differentiable function which transforms the market

share into expected sales, G(nf) is a differentiable function which gives the operating

cost of a facility located at z with quality α, and Π(nf) is the profit obtained by the

chain. The parameter dmin
i > 0 is a given threshold, which guarantees that the new

facility is not located on top of demand point i (although due to demand aggregation

(see [70]) locdi is a point which usually represents a set of customers who occupy a

given area). The parameters αmin and αmax are the minimum and maximum values,

respectively, that the quality of a facility may take in practice. By FR we refer to the

region of the plane where the new facility can be located.

In this thesis, function F is assumed to be linear, F (M(nf)) = s · M(nf), where

s is the income per unit of goods sold. Function G should increase as z approaches

one of the demand points, since it is rather likely that the operational cost of the

facility will be higher around those locations (due to the value of land and premises,

which will make the cost of buying or renting the location higher). On the other hand,

G should be a convex function in the variable α, since the more quality we expect

from the facility the higher the costs will be, at an increasing rate. It is assumed

that G is a separable function, in the form G(nf) = Ga(z) + Gb(α), where Ga(z) =
∑imax

i=1 Φi(di(z)), with Φi(di(z)) = AverAi
(wi(Ui))/((di(z))φi,0 + φi,1), φi,0, φi,1 > 0, and

High performance computing applied to competitive facility location and design problems

42 A planar single facility location and design problem with endogenous demand

Gb(α) = e
(α

α0
+α1)

− eα1 , with α0 > 0 and α1 given values. Notice that in the cost

function G(nf), AverAi
(wi(Ui)) stands for the average value of wi(Ui) over the feasible

set (the mathematical formulation is given in Section 2.2, see Equation (2.2)) and can

be thought of as an estimation of the demand at locdi by a fixed number. When using

AverAi
(wi(Ui)) instead of wi(Ui) in function G, we assume, on the one hand, that the

cost of obtaining a given level of quality, as given by Gb, does not depend on the level

of demand in the market. This can be realistic in many cases, especially when incri is

not too high. On the other hand, it also implies that the location cost does not depend

on the level of demand either. This is especially true if the cost of buying or renting the

place for the location is paid in advance, before opening the new facility. In this way,

the scenario which determines the cost of the location is not affected by the ‘variation’

in the demand produced by the location of the new facility, but just by the expected

average demand. Other possible expressions for F and G can be found in [61, 153].

Notice also that in this planar Huff-like competitive location and design model with

endogenous demand, the location and the quality of the new facility are the variables

of the problem, because although in most literature only the question of location is

researched, these two features cannot be separated (see [154]).

2.2 Exogenous or endogenous demand? A key point to

be taken into account

To be able to compare the solutions of the problems with exogenous (fixed) demand

with the corresponding problems with endogenous (variable) demand we have to assign,

given wi(Ui), a value to the estimated fixed demand at locdi, which will be denoted by

ŵi. A suitable choice could be to set ŵi equal to the mean value of wi(Ui).

In the case studies presented in this chapter, and to simplify the computations, it

is assumed that the region of the plane FR where the new facility can be located is a

rectangle. Let us denote ri =
∑jmax

j=1 ui,j. Then the range for Ui is the interval

Ai =

[
γiα

min

gi(di(Vi))
+ ri,

γiα
max

gi(dmin
i)

+ ri

]

where di(Vi) is the distance between demand point locdi and the furthest feasible point

High performance computing applied to competitive facility location and design problems

2.2 Exogenous or endogenous demand? A key point to be taken into account 43

(since our searching region is a rectangle, the furthest point is the furthest of the

vertices of FR, Vi). The mean value of wi(Ui) over Ai, denoted by AverAi
(wi(Ui)), is

given by

AverAi
(wi(Ui)) = wmin

i + incri · AverAi
(ei(Ui)),

where the mean value of the function ei(Ui), as a function of the variable Ui alone,

over the interval Ai, is given, according to the well known first mean value theorem for

integration, by

AverAi
(ei(Ui)) =

1
γiαmax

gi(dmin
i)

− γiαmin

gi(di(Vi))

∫ γiαmax

gi(d
min
i

)
+ri

γiαmin

gi(di(Vi))
+ri

ei(Ui)dUi. (2.2)

The previous reasoning also gives us a hint about how to compute the value of the

parameters incri,

incri =
AverAi

(wi(Ui)) − wmin
i

AverAi
(ei(Ui))

. (2.3)

Thus, to have a fair comparison between both location models and to solve a given

problem under both scenarios, fixed and variable demand, given the problem with fixed

demand (hence, given ŵi), we could do the following:

1. Determine the function range Ai = [γiα
min

gi(di(Vi))
+ ri,

γiα
max

gi(dmin
i)

+ ri] of Ui.

2. Compute AverAi
(ei(Ui)) using Equation (2.2).

3. Determine incri according to Equation (2.3), and setting AverAi
(wi(Ui)) = ŵi

(notice that wmin
i must be less than ŵi).

In order to compare both models (with endogenous and exogenous demand), firstly

we have applied the previous process to two different instances, assuming in both cases

(as will be done in the rest of the thesis) linear expenditures. The first one, with

imax = 71 demand points, jmax = 5 existing facilities, all belonging to the competitors

(k = 0) corresponds to a quasi-real case of location of supermarkets in the south-east

of Spain, see [154]. The second one, with setting (imax = 50, jmax = 2, k = 2), was

randomly generated as will be described in Subsection 2.3.4.

Figures 2.1 and 2.2 give the graphs of the objective function on the location domain

when quality α is fixed. The white holes in the graphs correspond to the forbidden

High performance computing applied to competitive facility location and design problems

44 A planar single facility location and design problem with endogenous demand

Figure 2.1: Objective function of the instance with setting (imax = 71, jmax = 5, k = 0) and
FR = ([0, 10], [0, 10]), projected in the 2-dimensional location space (with α = 5.0). (a) On the left with

fixed demand (b) On the right with variable demand.

regions around the demand points, as given by the constraints di(z) ≥ dmin
i (i =

1, . . . , imax), which guarantee that the new facility is not located on top of the area

where the customers represented by locdi lie. The two problems using the same data

give a completely different shape of the objective function. In the fixed demand cases,

the objective function has several local optima, but it tends to be smoother. In the

variable demand cases, the objective function has many more local optima, and the

landscape is much steeper. This effect can also be seen in Figure 2.3, where the contours

of the objective function change from blue colours (low objective function value) to red

colours (high objective function value) in fewer units of distance in the variable demand

case.

Finally, to corroborate this fact, we have solved 41 instances, one for each of the

settings (imax, jmax, k) in Table 2.1, assuming that dmin
i = 0.001 ∀i, using a local search,

namely, a Weiszfeld-like algorithm (see [61] for fixed demand and Subsection 2.3.2 for

variable demand). For each instance the local search was run 5000 times starting from

different random points, and we have counted the number of different solutions (local

optima) found in those runs. The number of different optima has been computed in two

different ways. In the first one, we say that two solutions (x1, y1, α1) and (x2, y2, α2) are

different provided that ‖(x1, y1, α1)−(x2, y2, α2)‖2 > 2·dmin
i . Thus, we count the number

of ‘hills’ of the objective function, since two local optima on the top of the same hill

High performance computing applied to competitive facility location and design problems

2.2 Exogenous or endogenous demand? A key point to be taken into account 45

Figure 2.2: Objective function of the instance with setting (imax = 50, jmax = 5, k = 2) and
FR = ([0, 10], [0, 10]), projected in the 2-dimensional location space (with α = 2.11). (a) On the left

with fixed demand. (b) On the right with variable demand.

Figure 2.3: Contours of the objective function of the instance with setting (imax = 50, jmax = 5, k = 2)
and FR = ([0, 10], [0, 10]), projected in the 2-dimensional location space (with α = 2.11). (a) On the left

with fixed demand. (b) On the right with variable demand.

over a demand point are considered equal. In the second one, two solutions (x1, y1, α1)

and (x2, y2, α2) are considered different provided that ‖(x1, y1) − (x2, y2)‖2 > 2 · dmin
i .

Therefore, two local optima on the boundary of the forbidden region of a demand point

are considered equal. Notice that any demand point usually generates a hill, since the

demand captured by the new facility usually increases as the new facility gets closer to

High performance computing applied to competitive facility location and design problems

46 A planar single facility location and design problem with endogenous demand

imax 50 100 200 500 1000
jmax 2 5 10 2 5 10 2 10 15 2 15 25 5 25 50
k 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4 0,1 0,2,4 0,5,10 0,1 0,5,10 0,7,15 0,1,2 0,7,15 0,15,30

FR ([0, 10], [0, 10]) ([0, 25], [0, 25]) ([0, 50], [0, 50])

Table 2.1: Settings of the test problems.

the demand point. This effect is more remarkable in the variable demand model, since

in addition to this, the level of demand at a demand point also increases as the new

facility gets closer to it.

The results are shown in tables 2.2 and 2.3, respectively, grouped according to the

number of demand points. The average number of different solutions found for both the

variable and fixed demand models are given first. Then, we give the minimum, average

and maximum values of the difference between the number of different solutions. As

we can see, the number of local optima is between 3.5 to 10.4 times greater in the

variable demand problems as compared to the fixed demand problems when consid-

ering the three variables, and between 2.9 to 7.7 when considering only the location

variables, thus confirming that the variable demand problem is more challenging from

an optimization point of view.

Continuing with the two examples mentioned above, if we denote the optimal so-

lution of the fixed demand instance by (x̌, y̌, α̌), and the optimal solution of the corre-

sponding variable demand instance by (x∗, y∗, α∗), we have that (x̌, y̌, α̌) = (5.13, 5.92,

0.50) and (x∗, y∗, α∗) = (8.45, 2.99, 5.00), with Π(x̌, y̌, α̌) = 282.46 and Π(x∗, y∗, α∗) =

67.09 in the first example. For the second example, the corresponding figures are

(x̌, y̌, α̌) = (0.76, 5.86, 1.34), (x∗, y∗, α∗) = (0.73, 5.88, 2.11), Π(x̌, y̌, α̌) = 363.10 and

Endogenous Exogenous Difference
imax demand demand Min Av Max
50 3597 346 2635 3227 3769
100 3398 351 2368 3030 3442
200 3334 451 1860 2855 3612
500 1723 394 827 1317 1588
1000 1491 424 550 1067 1466

Table 2.2: Number of local optima considering the three variables (x, y, α).

High performance computing applied to competitive facility location and design problems

2.2 Exogenous or endogenous demand? A key point to be taken into account 47

Endogenous Exogenous Difference
imax demand demand Min Av Max
50 2630 341 1688 2255 2846
100 2383 348 1348 2006 2496
200 2268 443 841 1797 2489
500 1249 389 353 844 1145
1000 1225 420 270 805 1168

Table 2.3: Number of local optima considering location variables (x, y).

Π(x∗, y∗, α∗) = 56.08. These values have been obtained using the exact interval branch-

and-bound method that will be outlined in Section 2.3 (see [153]). We can see that not

only are the optimal values rather different, but also, and most importantly, the lo-

cations and the qualities of the new facilities to be located are rather different. And

this is due to the variability of the demand. For instance, in the second example, for

which (x̌, y̌) is similar to (x∗, y∗), the market share captured by the facility in the fixed

demand case is 141.54, whereas this value goes down to 39.82 for the variable demand

case.

It may be argued that the procedure followed here is not the best one. For instance,

after setting AverAi
(wi(Ui)) = ŵi and ci = 1

Umax
i

, when Equation (2.3) is used, incri

is computed (or equivalently, the upper bound wmax
i is computed) so that everything

fits. Instead, for each demand point i, the average demand ŵi, the minimum possible

demand at it, wmin
i , and the maximum possible demand at it, wmax

i , could be estimated.

And then, suitable values for the parameters of the ei(Ui) functions could be found so

that Aver(wi(Ui)) = ŵi holds. But in any case, the same conclusion can be derived.

In fact, if a real problem has endogenous demand, whatever the value is assigned to

ŵi when solving the problem with a fixed demand model, the solution will be wrong.

Notice that the value assigned to ŵi, will be assigned assuming a given location scenario

(for instance, assuming that the new facility will be located at a medium distance from

locdi). But this will be done for all the demand points. So, regardless the value of nf ,

it cannot satisfy all those assumptions simultaneously. This means that when solving

the problem with a fixed demand model, the overall demand will be overestimated,

and hence, the final solution will be wrong.

Hence, we can conclude that the type of demand is a key point to be taken into

High performance computing applied to competitive facility location and design problems

48 A planar single facility location and design problem with endogenous demand

account when modeling a location problem, since both the optimal solution and the

optimal value of the corresponding location problems may be quite different. Further-

more, the cost of assuming that the demand is fixed when it actually varies may be

high (see Subsection 2.4.4).

2.3 Solving the location model

As we have seen in Section 2.2, the location model with endogenous demand may

have many more optima than the corresponding exogenous demand model. So we need

efficient algorithms for solving these types of problems. In [61], an exact interval branch-

and-bound method was sought to solve the corresponding exogenous demand model.

The same method can handle the endogenous demand model thanks to the use of the

interval tools employed to compute the bounds. However, only instances with up to

imax = 200 demand points can be solved with this exact method (see Subsection 2.3.4).

For bigger problems heuristic, procedures are needed. In [135], an evolutionary

algorithm called UEGO was studied for solving the corresponding fixed demand mode.

It proved to be able to generate solutions for instances with up to imax = 10000 demand

points in around 8 hours of CPU time. Next, a modification of that method for the

problem with endogenous demand is presented.

2.3.1 UEGO

Universal Evolutionary Global Optimizer (UEGO) is a multimodal algorithm which is

able both to solve multimodal optimization problems where the objective function has

multiple local optima and to discover the structure of these optima as well as the global

optimum (see [99, 124, 126]). In a multimodal domain, each peak can be thought of

as a niche. The analogy with nature is that within the environment there are different

subspaces, niches, that can support different types of life (species or organisms). Nich-

ing, clustering or speciation methods are techniques that promote the formation and

maintenance of subpopulations in the Evolutionary Algorithms (EA) (see Subsection

1.2.2).

The concept of niche is renamed species in UEGO. A species can be thought of as a

window on the whole search space. This window is defined by its center and a radius.

High performance computing applied to competitive facility location and design problems

2.3 Solving the location model 49

The center is a solution, and the radius indicates its attraction area, which covers a

region of the search space and hence, multiple solutions (see Figure 2.4). The radius

of the species is neither constant along the execution of UEGO nor the same for each

species. This radius is a monotonous function that decreases as the index level (or cycles

or generations) increases. The parameter tmax indicates the maximum number of levels

in the algorithm. The radius of a species created at level t (with t ∈ [1, tmax]), is given

by a decreasing exponential function (see [100]) which depends on the initial domain

landscape (the radius at the first level, R1) and the radius of the smallest species Rtmax .

During the optimization process, a list of species is kept by UEGO. This concept,

species-list, would be equivalent to the term population in an evolutionary algorithm.

UEGO is in fact a method for managing this species-list (i.e. creating, deleting and

optimizing species). The maximum length of the species list is given by the input

parameter Lmax (maximum population size).

UEGO has an upper bound FEmax on the number of function evaluations. However,

it is important to mention that UEGO may terminate simply because it has executed

all of its levels. The final number of function evaluations depends on the complexity of

the objective (fitness) function. This is qualitatively different from other evolutionary

algorithms, which typically run up to a limit on the number of function evaluations.

In UEGO every species is intended to occupy a local maximizer of the fitness func-

tion, without knowing the total number of local maximizers in the fitness landscape.

This means that when the algorithm starts it does not know how many species there

will be at the end. For this purpose, UEGO uses a non-overlapping set of species which

Figure 2.4: Species of UEGO.

High performance computing applied to competitive facility location and design problems

50 A planar single facility location and design problem with endogenous demand

defines sub-domains of the search space. As the algorithm progresses, the search pro-

cess can be directed towards smaller regions by creating new sets of non-overlapping

species defining smaller sub-domains. This process is a kind of cooling method simi-

lar to simulated annealing [149]. A particular species is not a fixed part of the search

domain; it can move through space as the search proceeds. Additionally, UEGO is a

hybrid algorithm that introduces a local optimizer into the evolution process [27, 155].

In this way, at every generation, UEGO performs a local optimizer operation on each

species, and these locally optimal solutions replace the caller species. Notice that any

single step taken by the optimizer in a given species is shorter than the radius of the

given species.

UEGO is abstract in the sense that the ‘species-management’ and the cooling

mechanism have been logically separated from the actual local optimization algorithm.

Therefore it is possible to implement any kind of optimizer to work inside a species. For

the endogenous demand problem considered in this chapter, a Weiszfeld-like algorithm

has been developed (see Subsection 2.3.2). Additionally, the parameters that control

UEGO have to be tuned to this new problem (see Subsection 2.3.3). The reader is

referred to [135, 136] for a more detailed description of the UEGO algorithm.

2.3.2 Local optimizer

The local optimizer presented in [61] (see also [135]) for solving the corresponding fixed

demand case is a steepest descent type method which takes discrete steps along the

search paths and, in the best case, converges to a local optimum. The method sets

the derivatives of the objective function to zero and the next iterate is obtained by

implicitly solving the resulting equations. In Location Science, these types of methods

are known as Weiszfeld-like methods, in honour of E. Weiszfeld, who first proposed

that strategy in 1937 [157].

A similar algorithm can be devised for the variable demand model, although the

mathematical development is more complicated. The details are given next. Whereas

for the fixed demand model the corresponding Weiszfeld-like algorithm was able to

obtain good solutions when used within a multi-start strategy (see [135]), this is no

longer true for the variable demand model. Even when the Weiszfeld-like algorithm is

started from 10000 different initial points, the best result obtained is often far from

High performance computing applied to competitive facility location and design problems

2.3 Solving the location model 51

the optimal solution. For the problem with variable demand, the objective function is

steep and not very smooth. This causes a gradient-like local search not to converge.

However, the local search procedure helps to find the global optimum when used

within the framework of UEGO, as the computational studies will show.

In the following, the market share captured by the chain can be rewritten as

M(nf) =
imax∑

i=1

wi(Ui)

(
1 −

∑jmax

j=k+1 ui,j

ui,nf +
∑jmax

j=1 ui,j

)
,

and setting

ri =

jmax∑

j=1

ui,j, pui =

jmax∑

j=k+1

ui,j,

we finally have

M(nf) =
imax∑

i=1

wi(Ui)

(
1 −

pui

ui,nf + ri

)
=

imax∑

i=1

(
wi(Ui) −

wi(Ui)gi(di(z))pui

γiα + rigi(di(z))

)
.

Notice that Ui is a function of nf , with Ui = Ui(nf) = ui,nf +
∑jmax

j=1 ui,j =
γiα

gi(di(z))
+ ri.

A necessary condition for a vector (z∗, α∗) to be a local or global maximum of

Π(z, α) = F (M(z, α))−
∑imax

i=1 Φi(di(z))−Gb(α) is that the partial derivatives of Π at

that point must vanish.

With regard to the first variable, x, we have that

∂Π

∂x
= 0 ⇐⇒

dF

dM
·
∂M

∂x
−

imax∑

i=1

∂Φi

∂x
= 0.

On the other hand,

∂M

∂x
=

imax∑

i=1

dM

ddi(z)
·
∂di(z)

∂x

and
∂Φi

∂x
=

dΦi

ddi(z)

∂di(z)

∂x
.

High performance computing applied to competitive facility location and design problems

52 A planar single facility location and design problem with endogenous demand

Hence,

∂Π

∂x
= 0 ⇐⇒

dF

dM

imax∑

i=1

dM

ddi(z)
·
∂di(z)

∂x
−

imax∑

i=1

dΦi

ddi(z)

∂di(z)

∂x
= 0.

If we denote

Hi(z, α) =
dF

dM

dM

ddi(z)
−

dΦi

ddi(z)
=

dΠ

ddi(z)

then
∂Π

∂x
= 0 ⇐⇒

imax∑

i=1

Hi(z, α)
∂di(z)

∂x
= 0.

It is necessary to compute
dF

dM
,

dM

ddi(z)
and

dΦi

ddi(z)
.

If we assume that F (M(z, α)) = s · M(z, α) then
dF

dM
= s.

If we assume that Φi(di(z)) = AverAi
(wi(Ui))/((di(z))φi,0 + φi,1) then

dΦi

ddi(z)
= −

AverAi
(wi(Ui))(di(z))φi,0−1

((di(z))φi,0 + φi,1)2

Taking into account that

dwi(Ui)

ddi(z)
= incri ·

dei

dUi

·
dUi

ddi(z)
=

−αγiincri

(gi(di(z)))2
·

dei

dUi

dgi

ddi(z)

then,

dM

ddi(z)
=

d

(
wi(Ui) −

wi(Ui)gi(di(z))pui

γiα + rigi(di(z))

)

ddi(z)
=

−αγiincri

(gi(di(z)))2
·

dei

dUi

dgi

ddi(z)
−

−α2γ2
i incripui

gi(di(z))
·

dei

dUi

dgi

ddi(z)
− γiα · incri · ri

dei

dUi

dgi

ddi(z)
+ wi(Ui)

dgi

ddi(z)
puiγiα

(γiα + gi(di(z))ri)2
.

In particular, if we assume that gi(di(z)) = (di(z))2 (as is most commonly done in

literature) then
dgi

ddi(z)
= 2di(z) and the previous expression becomes

dM

ddi(z)
=

−αγiincri · 2

(di(z)))3
·

dei

dUi

−

High performance computing applied to competitive facility location and design problems

2.3 Solving the location model 53

−α2γ2
i incripui

di(z)
·

dei

dUi

· 2 − γiα · incri · ri
dei

dUi

2di(z) + wi(Ui)2di(z)puiγiα

(γiα + (di(z))2ri)2
.

Also notice that if ei(Ui) = ei1(Ui) = ciUi then
dei

dUi

= ci.

If di(z) is a distance function such that

∂di(z)

∂x
= xAi,1(z) − Bi,1(z),

where Ai,1(z) and Bi,1(z) are functions of z, then

∂Π

∂x
= 0 ⇐⇒ x =

imax∑

i=1

Hi(z, α)Bi,1(z)

imax∑

i=1

Hi(z, α)Ai,1(z)

.

Analogously, if
∂di(z)

∂y
= yAi,2(z) − Bi,2(x), then

∂Π

∂y
= 0 ⇐⇒ y =

imax∑

i=1

Hi(z, α)Bi,2(z)

imax∑

i=1

Hi(z, α)Ai,2(z)

.

Finally,
∂Π

∂α
= 0 ⇐⇒

dF

dM
·
∂M

∂α
−

dGb

dα
= 0.

For this last expression we need to compute
dF

dM
,

∂M

∂α
and

dGb

dα
.

If we assume that F (M(z, α)) = s · M(z, α), then
dF

dM
= s.

If we assume that Gb(α) = e
α

α0
+α1 − eα1 then

dGb

dα
=

1

α0

e
α

α0
+α1

High performance computing applied to competitive facility location and design problems

54 A planar single facility location and design problem with endogenous demand

Taking into account that

∂wi

∂α
= incri

dei

dUi

dUi

dα
= incri

dei

dUi

γi

gi(di(z))
,

then
∂M

∂α
=

imax∑

i=1

incri
dei

dUi

γi

gi(di(z))
−

incri
dei

dUi

γipui(γiα + gi(di(z))ri) − wi(Ui)gi(di(z))puiγi

(γiα + gi(di(z))ri)2

Notice that if we fix z = (x, y), then the equation
∂Π

∂α
= 0 has just one variable, α.

Thus we could solve it by using any algorithm for solving equations of a single variable,

for instance, the Newton or the Secant methods.

Among the distance functions that satisfy the conditions

∂di(z)

∂x
= xAi,1(z) − Bi,1(z),

∂di(z)

∂y
= yAi,2(z) − Bi,2(z),

we have the inflated Euclidean distance or its rescaled version, the l2b norm, given by

di(z) =
√

b1(x − locdi1)2 + b2(y − locdi2)2,

where b1, b2 > 0 are given parameters (see [58]). In this case

Ai,1 =
b1

di(z)
, Ai,2 =

b2

di(z)

Bi,1 =
locdi1b1

di(z)
Bi,2 =

locdi2b2

di(z)

Thus, the following Weiszfeld-like algorithm can be constructed.

High performance computing applied to competitive facility location and design problems

2.3 Solving the location model 55

Algorithm 4: WLMv (Weiszfeld-like algorithm)
1: Set ic = 0
2: Set nf (0) = (x(0), y(0), α(0)).
3: while termination criteria are not satisfied do

4: Update nf (ic+1) = (x(ic+1), y(ic+1), α(ic+1))
5: if nf (ic+1) is unfeasible then

6: nf (ic+1) ∈ [nf (ic), nf (ic+1)] ∩ ∂FR
7: ic = ic + 1

The values x(ic+1) and y(ic+1) of Algorithm 4 are obtained as follows:

x(ic+1) =

imax∑

i=1

Hi(x
(ic), y(ic), α(ic))Bi,1(x

(ic), y(ic))

imax∑

i=1

Hi(x
(ic), y(ic), α(ic))Ai,1(x

(ic), y(ic))

y(ic+1) =

imax∑

i=1

Hi(x
(ic), y(ic), α(ic))Bi,2(x

(ic), y(ic))

imax∑

i=1

Hi(x
(ic), y(ic), α(ic))Ai,2(x

(ic), y(ic))

and α(ic+1) as a solution of the equation

∂Π

∂α
(x(ic+1), y(ic+1), α(ic)) = 0

According to steps 5 and 6 of Algorithm 4, if f nf (ic+1) is unfeasible then nf (ic+1) is

set equal to a point in the segment [(x(ic), y(ic), α(ic)), (x(ic+1), y(ic+1), α(ic+1))] which is on

the border of the feasible region. Also notice that when solving the equation for α(ic+1)

in Step 4 of Algorithm 4, we do not need to obtain α(ic+1) exactly: an approximation

is sufficient. So, when using a solution procedure for the equation, we do not need to

wait for the convergence of the procedure: a few iterations may be enough. Similarly,

in Step 6, it is not necessary to obtain an exact boundary point; any close but feasible

point will do.

High performance computing applied to competitive facility location and design problems

56 A planar single facility location and design problem with endogenous demand

Several termination criteria have been studied for the WLMv algorithm (Step 3,

Algorithm 4), although only two of them have been considered at the end. The first

one is based on the distance between the consecutive iterative vectors (x(ic), y(ic), α(ic))

and (x(ic+1), y(ic+1), α(ic+1)). Different functions can be used to measure the closeness

of two consecutive vectors. For instance, one of them may be to stop the algorithm

if ‖(x(ic), y(ic)) − (x(ic+1), y(ic+1))‖2 < ǫ1 and |α(ic) − α(ic+1)| < ǫ2, for given tolerances

ǫ1, ǫ2 > 0. The second stopping criterion requires setting a maximum number of iter-

ations icmax because the convergence of the algorithm cannot be guaranteed. When

a termination criteria is satisfied the vector (x(ic+1), y(ic+1), α(ic+1)) is accepted as a

potential local maximum.

2.3.3 Tuning UEGO

In [135], it was found that a good parameter setting for UEGO to solve the exogenous

demand problem was to set the maximum number of function evaluations allowed for

the whole optimization process to FEmax = 106, the maximum number of species kept

during the execution of the algorithm to Lmax = 150, the radius of the smallest species

to Rtmax = 0.005 and the number of levels or cooling stages (the number of times that

the radii of the species are reduced) to tmax = 30.

However, for solving the endogenous demand problem, the parameter setting has

been modified by increasing the maximum number of species to Lmax = 350 and the

radius of the smallest species to Rtmax = 0.05. The remaining parameters maintain the

same value. These modifications have been introduced to carry out a deeper search (a

denser covering of the landscape) and to reduce the computational cost, respectively.

Remember that this is a hard-to-solve global optimization problem with many local

optima. Therefore, the larger the number of species, the deeper the search of the global

optimum, but also the higher the computational effort. To reduce the execution times

while maintaining the quality in the solutions, the radius Rtmax has been increased.

The interested reader is referred to [125] for an in-detail description of the UEGO

parameters and their effects on obtaining a robust parameter setting.

High performance computing applied to competitive facility location and design problems

2.3 Solving the location model 57

2.3.4 Computational studies

All the computational results in this section have been obtained under Linux on an

AMD Athlon(tm) 64 X2 with 2.2GHz CPU and 2GB memory. UEGO has been imple-

mented in C++. As for the interval B&B method (iB&B), the implementation by B.

Tóth used in [61] has been employed, which uses the interval arithmetic of the PRO-

FIL/BIAS library [105] and the automatic differentiation of the C++ Toolbox library

[85].

In order to evaluate the performance of UEGO, a representative set of location

problems has been generated, varying the number imax of demand points, the number

jmax of existing facilities and the number k of those facilities belonging to the chain.

In particular, both small (imax ≤ 200) as well as large size problems (imax ≥ 500) have

been generated. The settings (imax, jmax, k) employed in the problems can be seen in

Table 2.1 (Page 46).

For every setting with imax ≤ 200, 10 problems were generated by randomly choos-

ing the parameters of the problems uniformly within the intervals presented in the

Appendix. Similarly, for every setting with imax ≥ 500, 5 problems were generated.

The search space for every problem was

z ∈ FR, α ∈ [0.5, 5].

The sets used for FR can be found in Table 2.1. For the Weiszfeld-like method, the

tolerances were set to ǫ1 = ǫ2 = 10−2 and the maximum iteration counter icmax to 400,

see Subsection 2.3.2.

Solving small problems

Since UEGO is a heuristic, different runs may provide different solutions. To take this

effect into account, UEGO has been run five times for each problem. In each run,

we obtain the approximate optimal value vPap, the point mPap at which that value

is attained and the CPU time employed by the algorithm. With this information we

investigate whether UEGO has successfully found the optimal solution. To this aim, we

check whether both vPap and mPap are included in the corresponding intervals provided

by the exact interval branch-and-bound algorithm, see [61, 153], which was run with

High performance computing applied to competitive facility location and design problems

58 A planar single facility location and design problem with endogenous demand

imax = 50 imax = 100 imax = 200
jmax k Π IUEGO jmax k Π IUEGO jmax k Π IUEGO

2 0 1896.94 30.27 2 0 1500.04 38.02 2 0 501.26 76.72
1 2647.48 30.88 1 1905.06 37.21 1 571.86 77.11

5 0 2878.26 29.70 5 0 1979.66 33.86 10 0 1.03 80.93
1 3365.72 37.62 1 2254.91 35.23 2 116.13 81.30
2 4084.44 34.98 2 2766.80 29.18 4 529.08 82.83

10 0 36.12 21.52 10 0 22.94 44.74 15 0 424.40 80.12
2 546.41 21.07 2 437.57 35.64 5 959.05 80.95
4 1412.11 21.42 4 1308.44 29.33 10 2045.98 82.56

Table 2.4: Average results for small problems.

a tolerance of 10−4. Note that those intervals (whose maximum width can be at most

that of the tolerance) contain any optimal solution to the problem. It is important to

highlight that UEGO has a 100% rate of success, i.e. it has always found, in all the

runs and in all the problems, an approximation of the global optimum solution which

is included in the solution list of 3-dimensional intervals offered by the iB&B method

(and of course, its optimal value is included in the corresponding interval offered by

the interval method).

And as expected, UEGO has used less computational time than the iB&B al-

gorithm. Table 2.4 shows average values of the 10 problems solved for each setting

(imax, jmax, k). In particular, the average objective value (Π) and the average time im-

provement (IUEGO) obtained by UEGO, as compared to the iB&B, in percentage, are

shown. As we can observe, such improvement increases with the computational load

of the problem. In fact, the improvement obtained by UEGO increases, in average,

from 28.43% when imax = 50 to 80.32% when imax = 200. Hence, we can conclude that

UEGO is a reliable method (it has always obtained the optimal solution) and much

faster than the iB&B method (but notice that the interval method is an exact method

which always finds the optimal solution with guarantee).

Solving larger problems

In this subsection, the behavior of UEGO when the number of demand points is larger

than or equal to imax = 500 is studied. In this case, the iB&B method is not able to

High performance computing applied to competitive facility location and design problems

2.3 Solving the location model 59

solve the problems (the computer runs out of memory). For this reason, the percentage

of success at finding the optimal solution is not computed, since the optimal solution

is not known with guarantee. Instead, UEGO has been run five times for each problem

and different measures have been computed. In particular, the average time (Time) in

the five runs (in seconds), the minimum (Min), the average (Av) and the maximum

(Max) objective value in the five runs, and finally the standard deviation (Dev), have

been computed. Table 2.5 summarizes those results for each setting (imax, jmax, k). The

given values correspond to the mean values for all the problems with the same setting.

As we can see, the differences between the values in columns Min and Max are always

negligible (also see column Dev), which gives an idea of the robustness of the algorithm.

In fact, the Euclidean distance between any pair of solutions provided by UEGO, in

the five runs was always less than 10−12, which shows that the algorithm always finds

the same solution in all the runs. UEGO can solve the most complicated problems,

with (imax = 1000, jmax = 50, k = 0) settings, in less than 33 minutes of CPU time.

Objective Function
imax jmax k T ime Min Av Max Dev

2 0 528.188 180.63510 180.63513 180.63515 0.00002
1 524.558 186.22636 186.22636 186.22636 0.00000

15 0 513.384 185.95095 185.95095 185.95095 0.00000
500 5 483.376 212.96355 212.96355 212.96355 0.00000

10 581.304 224.25499 224.25499 224.25499 0.00000
25 0 547.184 190.70291 190.70292 190.70293 0.00001

7 587.638 221.74127 221.74128 221.74129 0.00001
15 597.838 258.23334 258.23334 258.23334 0.00000

5 0 1805.698 186.21116 186.21117 186.21118 0.00001
1 1840.938 186.90243 186.90243 186.90243 0.00000
2 1843.256 187.48302 187.48302 187.48302 0.00000

25 0 1734.526 185.99122 185.99122 185.99122 0.00000
1000 7 1697.524 191.93223 191.93223 191.93223 0.00000

15 1737.840 199.43877 199.43877 199.43877 0.00000
50 0 1934.122 185.09211 185.09212 185.09213 0.00001

15 1692.750 201.68740 201.68740 201.68740 0.00000
30 1697.096 223.66563 223.66563 223.66563 0.00000

Table 2.5: Average results for large problems.

High performance computing applied to competitive facility location and design problems

60 A planar single facility location and design problem with endogenous demand

2.4 Sensitivity analysis

The endogenous demand location model is a highly nonlinear optimization problem,

whose behavior and parameters may be difficult to understand well. Therefore, it could

be interesting to know how stable the solution is with respect to those parameters.

This calls for a sensitivity analysis of the optimal solution in terms of changes in the

parameters. This section contributes to this study, in particular, by researching the

changes in optimal design/location when the parameters related to the demand and

the quality change. Changes in the other parameters will be left for future research. As

for the fixed demand location problem, the reader is referred to [154], where a complete

sensitivity analysis of that model is presented.

To carry out our studies, the iB&B method with a tolerance of 10−6 has been used.

2.4.1 On the variability of the demand

In this subsection, the stability of the solution when the average demand ŵi at locdi

(i = 1, .., imax) varies is investigated. For the study at hand, a total of 48 problems have

been selected, i.e., 2 problems for every setting with imax ≤ 200 in Table 2.1 (Page 46).

Sixteen versions of each problem have been solved, applying a variation, in percentage,

of ±0.25,±0.5,±0.75,±1,±2,±3,±4,±5 to every ŵi (i = 1, .., imax).

Table 2.6 summarizes the solutions obtained by the iB&B method for the instance

with setting (imax = 50, jmax = 5, k = 2) already used in Section 2.2. In particular,

the corresponding global maximizer point(s) mPexact (actually, a 3-dimensional box

containing the small 3-dimensional boxes in the solution list where any maximizer

point must lie) and its global optimal value vPexact (actually, a very narrow interval

[vP exact, vP exact] containing it), are shown. In the table, the notation 67.505[198, 218],

for instance, stands for [67.505198, 67.505218]. As can be observed, the optimal solu-

tion point usually changes in a progressive way as the demand increases. However,

sometimes there is a jump in the optimal solution point. See, for instance, the solu-

tions when the average demand is modified from −2% to −1%, in Table 2.6. Another

smaller jump can be seen when the average demand is modified from +2% to +3%.

These jumps are not uncommon, and can be observed in 13 out of the 48 instances of

our study.

High performance computing applied to competitive facility location and design problems

2.4 Sensitivity analysis 61

mPexact

wi x y α [vP exact, vP exact]
-5% 0.000[000,008] 0.823[581,583] 0.500[000,000] 48.614[065,070]
-4% 0.000[000,008] 0.817[895,897] 0.500[000,000] 49.954[607,612]
-3% 0.000[000,007] 0.812[213,215] 0.500[000,000] 51.309[837,841]
-2% 0.000[000,007] 0.806[535,538] 0.500[000,000] 52.679[688,693]
-1% 0.732[494,497] 5.889[163,165] 2.033[438,452] 54.129[522,567]

-0.75% 0.732[261,263] 5.887[340,342] 2.053[345,358] 54.614[017,063]
-0.50% 0.732[027,031] 5.885[519,520] 2.073[249,264] 55.101[778,835]
-0.25% 0.731[794,797] 5.883[698.699] 2.093[151,163] 55.592[795,841]
0.00% 0.731[561,563] 5.881[879,879] 2.113[054,064] 56.087[634,660]

+0.25% 0.731[327,329] 5.880[061,062] 2.132[941,953] 56.584[672,719]
+0.50% 0.731[094,097] 5.878[244,246] 2.152[830,842] 57.085[547,584]
+0.75% 0.730[860,863] 5.876[429,249] 2.172[716,726] 57.589[729,761]

+1% 0.730[627,630] 5.874[615,615] 2.192[592,598] 58.097[249,275]
+2% 0.729[693,697] 5.867[370,372] 2.272[097,111] 60.160[891,951]
+3% 1.095[527,530] 5.747[775,775] 2.453[591,599] 62.669[857,870]
+4% 1.056[957,960] 5.742[340,341] 2.547[668,676] 65.084[199,218]
+5% 1.026[317,319] 5.738[266,266] 2.635[716,724] 67.505[198,218]

Table 2.6: Variation of the optimal solution for a problem with setting (imax = 50, jmax = 5, k = 2).

Regarding the objective function value, it increases as the demand also increases.

It happened in most of the problems (44 out of 48).

To have a general overview of the results, the variation in the profit between the

cases −5% and +5% has also been computed, considering the midpoint in [vP exact,

vP exact]. In Table 2.7, we summarize those results, and we give the average of the

variation, in percentage, for each value of imax and jmax.

As we can see, although the absolute variation in the average demand is just 10%,

the variation in the objective function value is greater, extending from 13% to 33%.

Hence, it is important to have good estimations of the average values of the demand if

we want our location model to produce reliable results.

2.4.2 On the interval for the quality

The quality of the new facility clearly affects the profit obtained by the chain. However,

since the quality of the existing facilities is known in advance, one may wonder whether

High performance computing applied to competitive facility location and design problems

62 A planar single facility location and design problem with endogenous demand

imax jmax Av(Var)(%)
50 2 23.158

5 18.967
10 17.924

100 2 18.635
5 20.727
10 13.232

200 2 29.032
10 33.056
15 26.730

Table 2.7: Average values for profit variation.

it is possible to select the quality of the new facility in advance, taking the quality of

the existing facilities into account, without having to consider the quality as one of

the variables of the problem or, at least, select a range within which the search for the

quality of the new facility can be restricted.

We have tried four different scenarios, where the interval [αmin, αmax] has been set

to:

1. [max{ai,j/γi : i = 1, . . . , imax, j = 1 . . . , jmax}, max{ai,j/γi : i = 1, . . . , imax, j =

1 . . . , jmax} + 4], so that the utility of the new facility will be the highest one in

the region.

2. [max{ai,j/γi : i = 1, . . . , imax, j = 1 . . . , k}, max{ai,j/γi : i = 1, . . . , imax, j =

1 . . . , k} + 4], so that the utility of the new facility will be higher than that of

any of the facilities owned by the chain.

3. [max{ai,j/γi : i = 1, . . . , imax, j = k + 1 . . . , jmax}, max{ai,j/γi : i = 1, . . . , imax,

j = k +1 . . . , jmax}+4], so that the utility of the new facility will be higher than

that of any of the facilities of its competitors.

4. [0.5, 1.5 · max{ai,j/γi : i = 1, . . . , imax, j = 1 . . . , jmax} + 4], so that the utility of

the new facility will be selected within an interval which contains all the possible

utilities of the existing facilities and also greater utilities.

For this experiment, one problem for every setting with imax ≤ 200 in Table 2.1

High performance computing applied to competitive facility location and design problems

2.4 Sensitivity analysis 63

(Page 46) has been selected, and the difference in profit obtained with each scenario

as compared to the original problem, where α belongs to [0.5, 5], has been studied.

The results were a bit surprising. In the first scenario, only in 7 out of the 24

problems did the profit increase. In the second scenario, only in 11 problems was a

better profit obtained, and in the third and fourth scenarios the number of problems

with a better profit were 7 and 9, respectively. Furthermore, it is important to mention

that for the same subset of 7 problems in scenario 1 where a better objective function

value was obtained, a better profit was also obtained in the other scenarios. For the

remaining problems in scenarios 1, 3 and 4 there was a decrease in the objective function

value. In these cases, the cost of achieving the quality is comparatively greater than

the income that it may produce and, as a result, there is a decrement in the profit.

This is because the optimal value for α when looking for it in the interval [0, +∞] is

smaller than the lower bound of the range interval of such scenarios. Regarding scenario

2, the same profit has been obtained for the remaining 13 problems. For those cases,

the optimal value for α is less than 5.0, so the optimal solution remains the same and

enlarging the interval where the quality of the new facility must lie does not produce

changes.

Hence, it can be concluded that setting α to higher values does not necessarily imply

an increment in the profit obtained by the chain. The suitable value for α depends on

the particular instance we consider. Therefore, the best option is to solve the problem

with a range for α including both lower and higher values, as in the fourth scenario.

2.4.3 On the customers’ sensitivity

Since the attraction that customers feel for the facilities depends on both the quality

of the facility and the distance to the facility, one may wonder whether it is possible to

adjust the parameters of the model assuming a certain situation, e.g., the case where

customers are more sensitive to the quality of new facility than to its distance, or the

opposite case, where customers are more sensitive to the distance rather than to the

quality.

The attraction that the customers at locdi feel for the new facility is given by

ui,nf = γiα/gi(di(z)). Hence, if the range for α is wider than that of gi(di(z)), then the

sensitivity to the quality will be greater than to the distance, and vice versa.

High performance computing applied to competitive facility location and design problems

64 A planar single facility location and design problem with endogenous demand

Figure 2.5: Objective function of the problem with setting (imax = 50, jmax = 5, k = 2) and
FR = ([0, 10, [0, 10]), projected in the 2-dimensional location space, when α, ai,j ∈ [0.5, 5], with (a)

α = 0.5 on the left (b) α = 2.75 on the right.

To corroborate this fact, we have compared the problems with settings (imax =

71, jmax = 5, k = 0) and (imax = 50, jmax = 5, k = 2) already used in Section 2.2, in

two different situations. Since the region of the plane where the new facility can be

located is FR = ([0, 10], [0, 10]) and gi(di(z)) = di(z)2 for all i, using the Euclidean

distance the range for gi(di(z)) is (within) the interval [0, 200]. We have first solved the

problems assuming that both α and ai,j lie in the interval [0.5, 5]. In Figure 2.5, we

give the graph of the objective function on the location domain for the problem with

setting (imax = 50, jmax = 5, k = 2) for two different values of α, 0.5 and 2.75. Second,

we have solved the same problems but multiplying ai,j by 20 and setting the interval

for α to [0.5, 100]. In Figure 2.6, we give the graph of the objective function on the

location domain for the same problem for two different values of α, 0.5 and 50.

Comparing figures 2.5a and 2.6a (notice that in both cases α = 0.5) we can see that

the width of the range of variability of the objective function value is quite similar,

between 40 and 55 in Figure 2.5a and between 1289 and 1304 in Figure 2.6a. But

although the absolute variability is similar, (around 15 in both cases), the relative

variability in the first case (15/55) is much bigger than in the second one (15/1304).

So, the smaller the range of the quality as compared to the distance, the more the

objective varies with changes in the location, that is, the more the objective function

High performance computing applied to competitive facility location and design problems

2.4 Sensitivity analysis 65

Figure 2.6: Objective function of the problem with setting (imax = 50, jmax = 10, k = 2) and
FR = ([0, 10, [0, 10]), projected in the 2-dimensional location space, when α ∈ [0.5, 100], with (a)

α = 0.5 on the left (b) α = 50 on the right.

with the distance to the facility varies: customers are more sensitive to distance.

On the other hand, looking at figures 2.5a and 2.5b, we see that the range of

variability of the objective function is very similar. This is because in both pictures the

value of α is small as compared to the distance. However, in Figure 2.6, the quality of the

new facility (and that of the existing ones) can vary much more (in a magnitude similar

to the distance), that is why now the range of variability of the objective function is

very different between the cases α = 0.5 and α = 50. But notice that the shapes of

the graphs in figures 2.5b and 2.6b are very similar, which means that the location of

the facility still plays a role in the problem, although in the second figure (when the

quality is of the order of the distance) the influence is much smaller as compared to

the first one.

The same conclusions could be inferred from the instance with setting (imax =

71, jmax = 5, k = 0), although for this reason we have not included the corresponding

figures.

2.4.4 The cost of the exogenous demand assumption

To measure how important taking the variability of demand into account may be, we

have conducted a final study in which, for the 345 problems described in Subsection

High performance computing applied to competitive facility location and design problems

66 A planar single facility location and design problem with endogenous demand

Loss NumProb NumProb
imax Min Av Max Dev Loss > 10% Loss > 25%
50 0.000 10.464 37.150 9.325 26 8
100 3.500 23.859 49.950 9.981 73 34
200 0.030 33.997 65.380 16.660 37 26
500 31.200 49.737 90.380 13.764 40 40
1000 17.140 54.513 99.590 17.898 45 44

Table 2.8: Loss in profit when assuming fixed demand.

2.3.4, we have calculated the loss in profit when fixed demand is assumed instead of

variable demand. To this aim, we have first solved the corresponding location problem

assuming variable demand, and then assuming fixed demand (similar to what is done in

Section 2.2). Then we have evaluated the objective function of the problem with variable

demand at the optimal solution point obtained for that problem when assuming fixed

demand, and computed the difference between that value and the optimal value of the

problem with variable demand, that is, the loss in profit caused by the fixed demand

assumption.

Table 2.8 summarizes the results, grouped according to the number of demand

points. We give the minimum, the average and the maximum loss in profit obtained for

all the problems with the same imax, in percentage, as well as the standard deviation.

Additionally, the number of problems whose loss in profit is larger than 10% and 25%

is also shown.

As can be seen, for 221 out of 345 problems, the loss is larger than 10%, and in 152

out of 345 problems it is over 25%. This clearly indicates the usefulness of considering

variable demand, since the gains that can be achieved are substantial.

2.5 Improving the efficiency of UEGO: UEGOf

In Subsection 2.3.2, a Weiszfeld-like algorithm (WLMv, see Algorithm 4) was proposed

for dealing with the problem at hand. However, the method, in the best case, converges

to a local optimum. Furthermore, it may not converge. That is why we set a maximum

number of 400 iterations in Subsection 2.3.2 as a second stopping rule for WLMv. The

computational studies showed that between 1.5% and 5% of the calls to the Weiszfeld-

High performance computing applied to competitive facility location and design problems

2.5 Improving the efficiency of UEGO: UEGOf 67

imax 5000 10000
jmax 10 50 100 20 100 200
k 0,2,4 0,15,30 0,25,50 0,5,10 0,25,50 0,50,100

FR ([0, 50], [0, 50])

Table 2.9: More settings of larger problems.

like algorithm in UEGO stopped with this rule.

After a deeper study of the behavior of the algorithm, we have found that sometimes

a new iterate may have a worse (smaller) objective function value than its predecessor

(perhaps because the step given by the algorithm is too long), and although in future

iterations the objective function value may increase, the improvement does not usually

reach the best objective function value previously found by the algorithm. Thus, we

propose a new (third) stopping rule for the Weiszfeld-like algorithm: we stop it whenever

the objective function value of an iterate is worse than the one of its predecessor. UEGO,

with this modified local search, will be called UEGOf throughout the thesis.

In order to show that UEGOf works as UEGO, in the sense that they both obtain

similar solutions, the same representative set of location problems as in Subsection

2.3.4 has been considered. In addition, the set of larger problems has been increased

considering 5 problems per setting of Table 2.9. They have been solved in the Ben

supercomputer, using a single core.

Since both UEGO and UEGOf are heuristic algorithms, different runs may provide

different solutions. To take this effect into account, they have been run five times for

each problem. At each run, we obtain the approximate optimal value vPap, the point

mPap at which that value is attained and the CPU time employed by the algorithm.

With this information we investigate whether UEGOf has successfully found the opti-

mal solution as we did with UEGO in Subsection 2.3.4, that is, for the small problems

we check whether both vPap and mPap are included in the corresponding intervals

provided by the interval branch-and-bound algorithm, which was run with a tolerance

of 10−4. The results confirm that UEGOf also has (like UEGO) a 100% rate of success,

i.e., it has always found, in all the runs and in all the problems, an approximation

of the global optimum solution which is included in the solution list of 3-dimensional

boxes offered by iB&B.

High performance computing applied to competitive facility location and design problems

68 A planar single facility location and design problem with endogenous demand

Time % iB&B % UEGO
imax jmax iB&B UEGO UEGOf IUEGO IUEGOf IUEGOf

50 2 42.377 5.974 8.894 85.90 79.01 -48.86
5 56.757 7.651 8.165 86.52 85.61 -6.71
10 57.860 8.547 8.443 85.23 85.41 1.21

100 2 232.786 17.063 14.593 92.67 93.73 14.48
5 254.252 20.500 15.039 91.94 94.08 26.64
10 293.232 22.917 14.267 92.18 95.13 37.75

200 2 1320.607 36.510 28.821 97.24 97.82 21.06
10 1491.524 33.246 28.755 97.77 98.07 13.51
15 1473.295 32.471 28.341 97.80 98.08 12.72

Table 2.10: Average results for small problems.

In Table 2.10, we give the mean time (in seconds) employed by the different algo-

rithms (columns 3 to 5), grouped for each combination (imax, jmax), when solving the

small problems. We also give the relative reduction in CPU time for each pair of algo-

rithms (columns 6 to 8). As we can see, except for the easiest problems with setting

(imax = 50, jmax = 2, 5), UEGOf is faster than UEGO, with reductions varying from

1% up to 37% in some cases.

On the other hand, iB&B is not able to solve the larger problems (the computer

runs out of memory). Hence, we cannot compute the percentage of success of the

heuristics in finding the optimal solution for them, since the optimal solution is not

known with guarantee. However, so as to check the reliability of the heuristics, they

have been run five times for each problem, and the average time (in seconds) in the five

runs, the average objective function value (columns Π) and the maximum Euclidean

distance between any pair of solutions in the five runs (columns MaxDist) have been

computed. Noteworthy is that a value equal to zero in the MaxDist measure indicates

that the corresponding algorithm is able to find the same solution in all the runs (at

least up to 3 decimal places of accuracy), which gives an idea about its robustness.

Table 2.11 summarizes the results for UEGO and UEGOf. The given results cor-

respond to the mean values for all the problems grouped for each value of imax and

jmax. As can be seen, the differences between any pair of solutions in the five runs

are always negligible for both UEGO and UEGOf, which shows their robustness (see

columns MaxDist). And of course, the solutions obtained by the algorithms is practi-

High performance computing applied to competitive facility location and design problems

2.6 High performance computing 69

UEGO UEGOf
imax jmax T ime Π MaxDist T ime Π MaxDist IUEGOf

500 2 429.403 12.678 0.000 292.183 12.678 0.000 31.96
15 446.686 24.262 0.000 285.469 24.262 0.000 36.09
25 406.911 28.768 0.000 281.244 28.768 0.000 30.88

1000 5 959.340 0.887 0.000 345.629 0.886 0.000 63.97
25 1036.678 -6.056 0.000 350.513 -6.056 0.000 66.19
50 1049.559 14.900 0.000 361.128 14.901 0.000 65.59

5000 10 - - - 1750.307 -43.214 0.000 -
50 - - - 1737.301 -30.972 0.000 -
100 - - - 1694.765 -20.803 0.000 -

10000 20 - - - 2908.233 -28.582 0.000 -
100 - - - 2922.019 -21.677 0.000 -
200 - - - 2910.959 -13.637 0.000 -

Table 2.11: Average results for larger problems.

cally the same (see columns Π). The slight differences in objective function value are

due to the high steepness of the objective function value around the optimal solution,

which makes that very close feasible points may have very different objective function

values. Furthermore, as with the small instances, it can be seen that UEGOf is much

faster than UEGO, with reductions varying from 30% to 66% (see IUEGOf column).

Remarkably, UEGO has not been able to solve the largest problems, i.e. those

with setting imax ≥ 5000. On the contrary, UEGOf can tackle those problems without

difficulty, since the deployment of the new optimization method not only reduces the

computing time, but also the memory resources.

2.6 High performance computing

As we have seen, the CPU time needed by UEGOf to solve the largest problems is

not negligible (around 50 minutes). Despite the fact that the processing time and

computational requirements needed to solve some location problems (as the one in this

chapter) may be considerable, the use of high performance computing techniques in

location science is rather scarce, with hardly a dozen papers dealing with the topic.

Usually, the proposed parallel approaches have been based on distributed programming

paradigms executed on multicomputers [21, 29, 30, 39, 74, 134, 137, 138, 140, 144]. The

High performance computing applied to competitive facility location and design problems

70 A planar single facility location and design problem with endogenous demand

only exception seems to be [72], where an OpenMP implementation on a shared memory

machine is addressed.

This section explores and evaluates a parallel implementation of UEGOf with appli-

cation to the complex location problem described in Section 2.1. The parallel strategy

has been developed to be executed on a multiprocessor system.

2.6.1 ParUEGOf

ParUEGOf presents a multithreaded approach of UEGOf. In multicore computers,

all the processors have direct access to the whole memory. Processors are connected

to an interconnection network, through which they can access the common memory

banks. There exist several ways to deal with parallelism in a shared memory model (see

Subsection 1.3.2). For the problem at hand, OpenMP [26] has been selected, since it is

a portable and scalable model, and gives programmers a simple and flexible interface

for developing parallel applications.

In ParUEGOf, the parallelism comes from the concurrent execution of two pro-

cedures: the creation and optimization methods. Notice that the computational load

of UEGOf is concentrated in those procedures, and therefore, in order to exploit the

architecture properly, they must be performed in parallel. It is important to highlight

that there exists a “synchronization point” imposed by a ‘selection’ procedure. In such

a procedure, only one thread will work with the whole species-list to maintain coher-

ence in the data. Even so, to reduce the waiting time, partial selections are carried out

concurrently, although in the end a global one performed in the ‘selection’ procedure is

required for a correct performance of the algorithm in terms of quality in the solutions.

Algorithm 5 describes the basic structure of ParUEGOf. As can be seen, there are

three parallel procedures. Each of them creates a parallel region with thmax threads.

This value refers to the maximum number of available processors to solve the problem.

Initially, in Init_species-list_parallel, thmax species are randomly created, one at

each processor, and they are optimized (as described below). This will allow to explore

the whole area faster and fairly accurately.

Then, at each iteration of the algorithm, the creation procedure (Create_species_

parallel) occurs in parallel distributing the current species-list among thmax threads.

Notice that the species-list is shared by all threads which read from and write in it

High performance computing applied to competitive facility location and design problems

2.6 High performance computing 71

Algorithm 5: ParUEGOf
1: Init_species-list_parallel
2: for t = 1 to tmax do

3: Create_species_parallel
4: Selection
5: Optimize_species_parallel
6: Selection

inside the parallel region. Threads only receive the memory address of the corresponding

individuals and they are in charge of either reading or updating through this value.

The procedure for accessing the current species-list is as follows. Each thread picks

up one specie from the current species-list and applies the corresponding genetic oper-

ators to it, obtaining a new offspring. Once a particular thread finishes its task creating

an offspring, it picks up another individual from the global species-list, until all the

species have been picked up by some thread. It is important to mention that some

threads may be faster than others, so they may work with more species. This method

to balance the global species-list between threads is known as dynamic schedule with

chunk one in OpenMP literature. As a result, each thread has its own new candidate

sub-lists, which must be included in the global species-list. But before that, since there

may be many new candidate solutions, in order to reduce the computational load of the

global selection procedure (Step 4), a partial selection is applied by each thread to its

own new candidate sub-list. After that procedure, the selected species are included in

the global species-list. Notice that this is a critical region and it is necessary to ensure

that the threads do not update the global species-list simultaneously.

In the parallel optimization procedure (Optimize_species_parallel), each individual

of the current species-list is optimized using the Weiszfeld-like local optimizer described

in Section 2.5. The distribution of species and the load balancing technique are similar

to the ones described above.

As the results show, for the problem at hand, the use of this paradigm allows to

obtain good efficiencies.

High performance computing applied to competitive facility location and design problems

72 A planar single facility location and design problem with endogenous demand

2.6.2 Computational studies

In order to evaluate the performance of ParUEGOf, a representative set of location

problems has been considered, varying the number imax of demand points, the number

jmax of existing facilities and the number k of those facilities belonging to the chain. In

particular, both large (500 ≤ imax ≤ 1000) size problems described in Table 2.1 (Page

46) as well as larger size problems (imax ≥ 5000) described in Table 2.9 have been

considered. All the computational studies presented in this section have been obtained

in the shared memory machine Ben of the Supercomputer Center of Murcia, Spain (see

Subsection 1.3.5).

Study of the reliability of ParUEGOf

The aim of this subsection is to show that ParUEGOf works the same as UEGOf, in the

sense that they both obtain similar solutions. Since both algorithms are heuristics, they

may provide different solutions, so they have been run five times for each problem. The

average time (in seconds) in the five runs, the average objective function value (columns

Π) and the maximum Euclidean distance between any pair of solutions in the five runs

(columns MaxDist) have been computed.

Table 2.12 summarizes the results for UEGOf and ParUEGOf with different number

of processors, ParUEGOf(P). For the sake of completeness, values for UEGO have also

been included. The given results correspond to the mean values for all the problems

grouped for each value of imax. As can be seen, the differences between any pair of

solutions in the five runs are always negligible for both UEGOf and ParUEGOf (and

UEGO), which shows their robustness (see columns MaxDist). And of course, the so-

lution obtained by all the algorithms is practically the same (see columns Π). The slight

differences in objective function value are due to the high steepness of the objective

function value around the optimal solution, as commented before. As was mentioned

in Section 2.5, UEGO has not been able to solve the largest problems, i.e. those with

setting imax ≥ 5000.

Study of the efficiency of ParUEGOf

This subsection shows that the simple parallel algorithm ParUEGOf can reduce the

CPU time of UEGOf proportionally to the number of available processors while obtain-

High performance computing applied to competitive facility location and design problems

2.6 High performance computing 73

Time Π MaxDist Time Π MaxDist
Algorithm imax = 500 imax = 1000
UEGO 428 21.903 0.000 1015 6.684 0.000
UEGOf 286 21.903 0.000 352 6.683 0.000
ParUEGOf(2) 146 21.902 0.000 178 6.684 0.000
ParUEGOf(4) 76 21.903 0.000 90 6.683 0.000
ParUEGOf(8) 40 21.903 0.000 48 6.683 0.000
ParUEGOf(16) 23 21.902 0.000 27 6.684 0.000
ParUEGOf(32) 14 21.902 0.000 17 6.684 0.000
ParUEGOf(64) 10 21.902 0.000 12 6.684 0.000
ParUEGOf(128) 9 21.902 0.000 11 6.684 0.000

imax = 5000 imax = 10000
UEGO - - - - - -
UEGOf 1727 -31.663 0.000 2914 -21.299 0.000
ParUEGOf(2) 869 -31.663 0.000 1463 -21.299 0.000
ParUEGOf(4) 436 -31.663 0.000 736 -21.299 0.000
ParUEGOf(8) 226 -31.663 0.000 378 -21.298 0.000
ParUEGOf(16) 123 -31.663 0.000 199 -21.299 0.000
ParUEGOf(32) 72 -31.664 0.000 111 -21.298 0.000
ParUEGOf(64) 48 -31.663 0.000 70 -21.299 0.000
ParUEGOf(128) 37 -31.663 0.000 52 -21.299 0.000

Table 2.12: Average results for large problems.

ing the same solutions as UEGOf. In particular, the efficiency measure of the parallel

algorithm, which estimates how well-utilized the processors are in solving the problem,

is computed.

As can be seen in Table 2.13, the efficiency of ParUEGOf shows an almost ideal

efficiency, with values close to 1 for up to P = 8 processors. Additionally, the efficiency

values decrease when the number of processors increases. This tendency, may be ex-

plained by the parallel overheads and the non-parallelizable (sequential) parts, which

mean idle processors during the optimization procedure. These two adverse effects in-

crease as the number of processors does. Furthermore, the scalability of ParUEGOf is

good, since its efficiency improves as the difficulty of the problem increases (with the

number imax of demand point).

Noteworthy is that nowadays most PCs have a multicore architecture with up to

8 processors, and hence it is possible to use all their computing power to solve the

High performance computing applied to competitive facility location and design problems

74 A planar single facility location and design problem with endogenous demand

imax

P 500 1000 5000 10000
2 0.98 0.99 1.00 1.00
4 0.94 0.98 0.99 0.99
8 0.89 0.93 0.96 0.96
16 0.77 0.82 0.88 0.92
32 0.62 0.65 0.75 0.82
64 0.43 0.44 0.56 0.65
128 0.25 0.26 0.36 0.44

Table 2.13: Average efficiency for large problems.

location problem at hand. The current standalone multicore personal computers have

been successfully used in other fields to accelerate sequential codes [1, 2], but they still

have not been fully exploited in the location field. As far as we know, only in [32] are

the four cores of an Intel Core 2 Quad CPU put to work in parallel to solve an unca-

pacitated warehouse location problem, although no special strategy is used there: the

same heuristic algorithm is run in the four cores, as a kind of multi-start strategy. For

the sake of completeness, ParUEGOf has also been executed on a PC with 8 cores Intel

Xeon at 1.87 GHz with 16 GB of RAM shared memory. The conclusions were similar

than the ones previously inferred. More precisely, the CPU time required for solving a

given instance can be divided by 8 as compared to the case when only one processor is

used (as with the sequential algorithm). In that case, the whole architecture would be

exploited by ParaUEGOf properly, and at the same time, the solution obtained is as

reliable as the sequential version. For more information about this study, the interested

reader is referred to [7].

2.7 Conclusions

Location Science is an important topic of research. The selection of the right location

and quality for a new facility is crucial to its success, especially when the facility

has to compete for the customers’ demand with other facilities. To find the optimal

site, the mathematical model describing the characteristics of the location problem at

hand should be as realistic as possible. In this chapter it has been researched to what

High performance computing applied to competitive facility location and design problems

2.7 Conclusions 75

extent the assumption of fixed demand, commonly employed in competitive location

literature, has an impact on the location decision. To our knowledge, existing literature

says nothing about this impact. It has been found that this assumption greatly affects

the optimal solution and the optimal value of the problem. Although this assumption

helps to make the problems more computationally tractable, it should only be used

when the demand is really fixed. Otherwise, the solutions obtained may not be reliable

at all.

On the other hand, the use of global optimization techniques such as those presented

in this chapter, may be of help when solving the problems. Both the interval B&B

method and the evolutionary algorithm UEGO can handle difficult location problems.

The first one is an exact method that can solve nearly any continuous optimization

problem, although it can only solve small instances. The second one can generate

solutions of large instances. To be effective, it requires a suitable local optimizer for

the problem at hand. Of course, depending on the problem at hand, other optimization

techniques may also be useful.

A modification of the local search has also been proposed. Such a modification

allows, on the one hand, to save between 1% to 37% of the CPU time when solving

small problems and around 50% in large size problems, and on the other hand, to tackle

larger problems than the original version UEGO.

Additionally, a parallel implementation of the new heuristic UEGOf has been de-

veloped, ParUEGOf; this parallel algorithm reduces the CPU time proportionally to

the number of processing elements (at least up to 8 processors). The new method and

its parallelization are robust, in the sense that they always find the same solution in

all the runs.

High performance computing applied to competitive facility location and design problems

CHAPTER 3

A planar location and design leader-follower

problem with endogenous demand

The scenario considered in this chapter is that of a duopoly. A chain (the leader) wants

to set up a new facility in the market, where similar facilities of a competitor (the

follower), and possibly of its own chain, are already present. The demand is supposed

to be endogenous and concentrated at some known demand points. Both the location

and the quality of the new facility are to be found. The follower will react by locating

another facility after the leader locates its own facility. The objective of the leader is to

find the location and the quality of its new facility that maximizes its profit, following

the location of the facility of the follower. This model is the extension of that of the

previous chapter to the case in which the competitor’s chain reacts by also locating

a new facility, and it is a (1|1) centroid problem according to Hakimi’s nomenclature

(see Section 1.1).

As in the previous chapter, the feasible set is considered to be a region of the plane,

the patronizing behavior of customers is assumed to be probabilistic, and the quality

of the facility is regarded as a third decision variable of the model. And for the first

time in the literature on centroid problems, endogenous demand is contemplated. This

problem is a hard-to-solve global optimization problem, with many local maxima and

in some instances with very different objective values at quite close feasible points, as

will be shown.

The literature on centroid problems is scarce (see [56] for a review on the topic

until 1996), and to our knowledge, among the existing papers only five of them deal

with continuous problems. This is mostly due to the complexity of that type of bi-level

programming problems. Drezner [44] solved the (1|1) centroid problem for the Hotelling

model and Euclidean distances exactly, through a geometric-based approach. Bhadury

et al. [14] also considered the (nff |nfc) centroid problem for the Hotelling model with

High performance computing applied to competitive facility location and design problems

78 A planar location and design leader-follower problem with endogenous demand

Euclidean distances, and gave an alternating heuristic to cope with it. Drezner and

Drezner [45] considered the Huff model, and proposed three heuristic approaches for

handling the (1|1) centroid problem (see also [46]). More recently, Redondo et al. [133]

introduced four heuristics for handling a (1|1) centroid problem with Huff patronizing

behavior and with the quality of the new facility as a variable of the problem. In all

those papers the demand was assumed to be exogenous.

The (1|1) centroid problem considered in this thesis is similar to that in [133], but

in which the demand varies depending on the attraction for the facilities.

It is important to mention that to solve a single centroid problem, many medianoid

problems have to be solved, since the evaluation of the leader’s objective function

at a given point requires the resolution of the corresponding medianoid problem. Of

course, it is important to compute the leader’s objective function value accurately,

which means that the follower’s problem has to be solved with precision. However, the

medianoid problem (which is the problem introduced in the previous chapter) is also

a hard-to-solve global optimization problem. In the previous chapter, both an iB&B

method and the evolutionary algorithm UEGO were adapted to solve the medianoid

problem, and both methods will be considered here as alternatives to deal with the

medianoid problems.

The chapter is organized as follows. In Section 3.1, the centroid problem is in-

troduced. Section 3.2 describes three procedures for solving it, namely, a grid search

procedure, a multistart heuristic and an evolutionary algorithm called TLUEGO. Addi-

tionally, a local search procedure, called SASS+WLMv, is proposed to be used in both

the multistart and the evolutionary algorithms. In order to compare the performance

of the proposed algorithms, a comprehensive computational study is carried out. As

will be seen, the results show that the evolutionary algorithm TLUEGO is the best

choice to solve the centroid problem. In Section 3.3, special attention is paid to the fuse

procedure of TLUEGO and an extensive computational study devoted to studying the

influence of that fuse procedure in the quality of the solutions is performed. In order

to reduce the CPU time needed by TLUEGO for solving the centroid problem with

higher quality, three parallelizations of TLUEGO are presented in Section 3.4. Finally,

the main findings in the chapter are highlighted in Section 3.5.

High performance computing applied to competitive facility location and design problems

3.1 The model 79

3.1 The model

A chain, the leader, wants to locate a new single facility in a given area of the plane,

where jmax facilities offering the same goods or product already exist. The first k (≥ 0)

of those jmax facilities belong to the chain, and the other jmax−k (> 0) to a competitor

chain, the follower. The leader knows that the follower, as a reaction, will subsequently

position a new facility too. The demand, supposed to be endogenous, is concentrated

at imax demand points, whose locations locdi are known. The location locfj and quality

of the existing facilities are also known.

The following notation will be used throughout this chapter:

Indices

i index of demand points, i = 1, . . . , imax.

j index of existing facilities, j = 1, . . . , jmax.

Variables

z1 = (x1, y1) location of the new leader’s facility.

α1 quality of the new leader’s facility.

nf1 = (z1, α1) variables of the new leader’s facility.

z2 = (x2, y2) location of the new follower’s facility.

α2 quality of the new follower’s facility.

nf2 = (z2, α2) variables of the new follower’s facility.

Data

locdi location of the i-th demand point.

locfj location of the j-th existing facility.

dmin
i minimum distance from locdi at which the new facilities can be located.

di,j distance between demand point i and facility j.

ai,j quality of facility j as perceived by demand point i.

gi(·) a non-negative non-decreasing function.

ui,j attraction that demand point i feels for facility j (or utility of j

perceived by the people at i), ui,j =
ai,j

gi(di,j)

γi weight for the quality of the new facilities as perceived by demand point

i.

FR1 location space where the leader will locate its new facility.

High performance computing applied to competitive facility location and design problems

80 A planar location and design leader-follower problem with endogenous demand

αmin
1 minimum level of quality for the new leader’s facility.

αmax
1 maximum level of quality for the new leader’s facility.

FR2 location space where the follower will locate its new facility.

αmin
2 minimum level of quality for the new follower’s facility.

αmax
2 maximum level of quality for the new follower’s facility.

Miscellaneous

di(zl) distance between demand point i and zl, l = 1, 2.

ui,nfl
attraction that demand point i feels for nfl, l = 1, 2,

ui,nfl
=

γiαl

gi(di(zl))
.

Ui total utility perceived by a customer at demand point i.

wi(Ui) demand (or buying power or total expenditure) at demand point i.

M1(nf1, nf2) market share obtained by the leader after the location of the new

facilities.

M2(nf1, nf2) market share obtained by the follower after the location of the

new facilities.

Π1(nf1, nf2) profit obtained by the leader after the location of the new

facilities.

Π2(nf1, nf2) profit obtained by the follower after the location of the new

facilities.

It is assumed that gi(di,j) > 0 ∀i, j. As in the previous chapter, the demand is

endogenous and it is assumed to be a function of Ui = ui,nf1 + ui,nf2 +
∑jmax

j=1 ui,j,

wi(Ui) = wmin
i +incri ·ei(Ui), where incri = wmax

i −wmin
i , and wmax

i (resp. wmin
i) denotes

the maximum (resp. minimum) possible demand at locdi. Again, function ei(Ui) can be

interpreted as the share of the maximum possible increment that a customer decides

to expend under a given location scenario.

Using these assumptions, the market share attracted by the leader’s chain after the

location of the leader and the follower’s new facilities is

M1(nf1, nf2) =
imax∑

i=1

wi(Ui)
ui,nf1 +

∑k
j=1 ui,j

ui,nf1 + ui,nf2 +
∑jmax

j=1 ui,j

,

and the corresponding market share attracted by the follower’s chain is

High performance computing applied to competitive facility location and design problems

3.1 The model 81

M2(nf1, nf2) =
imax∑

i=1

wi(Ui)
ui,nf2 +

∑jmax

j=k+1 ui,j

ui,nf1 + ui,nf2 +
∑jmax

j=1 ui,j

.

Given nf1, the problem for the follower is the (1|nf1) medianoid problem:

(FP (nf1))

max Π2(nf1, nf2) = F2(M2(nf1, nf2)) − G2(nf2)

s.t. z2 ∈ FR2

di(z2) ≥ dmin
i , i = 1, . . . , imax

α2 ∈ [αmin
2 , αmax

2]

whose objective is the maximization of the profit obtained by the follower (once the

leader has set up its new facility at nf1), to be understood as the difference between

the revenues obtained from the captured market share minus the operating cost of the

new facility (see [61]). F2 is a strictly increasing function which transforms the market

share into expected sales and G2 is a function which gives the operating cost for the

follower of a facility located at z2 with quality α2.

Let nf ∗
2 (nf1) denote an optimal solution for (FP (nf1)). The problem for the leader

is the (1|1) centroid problem:

(LP)

max Π1(nf1, nf
∗
2 (nf1)) = F1(M1(nf1, nf

∗
2 (nf1))) − G1(nf1)

s.t. z1 ∈ FR1

di(z1) ≥ dmin
i , i = 1, . . . , imax

α1 ∈ [αmin
1 , αmax

1]

(3.1)

where F1 and G1 are the corresponding expected sales and operating costs functions,

respectively, for the leader’s chain.

In the computational studies presented in this chapter, the following choices were

made:

• Functions Fl, l = 1, 2, are linear, Fl(Ml) = sl · Ml, where sl is the income per

unit of goods sold.

• Usually, the operating costs of a new facility consist of the sum of the locational

costs and the costs related to reaching a given level of quality. Therefore functions

Gl, l = 1, 2, are assumed to be separable, in the form Gl(nfl) = Ga
l (zl) + Gb

l (αl).

High performance computing applied to competitive facility location and design problems

82 A planar location and design leader-follower problem with endogenous demand

In particular, it has been considered Ga
l (zl) =

∑imax

i=1 Φi
l(di(zl)), with Φi

l(di(zl)) =

AverAi
(wi(Ui))/((di(zl))

φi0
l +φi1

l), φi0
l , φi1

l > 0 and Gb
l (αl) = e(α/α0

l
+α1

l
)− eα1

l , with

α0
l > 0 and α1

l ∈ R as given values. Notice that in the cost function Ga
l (zl),

AverAi
(wi(Ui)) stands for the average value of wi(Ui) over the feasible set (the

mathematical formulation is given in Section 2.2, see Equation (2.2)) and can be

thought of as an estimation of the demand at locdi by a fixed number.

• Linear expenditures is considered (see Section 2.1), i.e., wmin
i = 0, wi(Ui) = wmax

i ·

ei1(Ui), where ei1(Ui) = ciUi, with ci a given constant such that ci ≤ 1/Umax
i ,

where Umax
i is the maximum utility that can possibly be perceived by a customer

at i.

A more detailed explanation of the parameters and functions of the model, as well as

other possible expressions for Fl and Gl, can be found in [61]. Of course, other functions

might be more suitable depending on the real problem considered, and for each real

application the most appropriate Fl and Gl functions should be discovered. In [154]

the interested reader can find a pseudo-real application to the case of the location

of supermarkets in the Autonomous Region of Murcia, in Southern Spain. Although

in that paper the demand was assumed to be exogenous and no reaction from the

competitor was expected, the parameters and functions have the same meaning as

those in this chapter.

As can be seen, the leader problem (LP) is much more difficult to solve than the

follower problem (FP (nf1)). Notice, for instance, that to evaluate its objective function

Π1 at a given point nf1, first the corresponding medianoid problem (FP (nf1)) to obtain

nf ∗
2 (nf1) must be solved. Furthermore, in order to compute the objective value of Π1

at nf1 accurately, the follower problem (FP (nf1)) has to be precisely solved since

otherwise, the error of the approximate value can be considerable.

As shown in Chapter 2, the objective function of the follower’s problem with exoge-

nous demand is multimodal, but it tends to be smoother than the objective function

of the follower’s problem with endogenous demand, which has many more local op-

tima and whose landscape is much steeper. Of course, the complexity of the centroid

problem is more greatly affected due to the endogenous demand assumption.

In order to show the difficulty of the problem at hand, and its differences with

the exogenous demand case, the quasi-real example introduced in [154] dealing with

High performance computing applied to competitive facility location and design problems

3.1 The model 83

the location of supermarkets in an area around the city of Murcia has been solved. In

particular, a working radius of 25 Km around the city of Murcia was considered. In all,

632,558 people live in that area, and they form our set of customers. Although they

are distributed over 71 population centers, with populations varying between 1,138

and 178,013, in this example it has been considered an aggregated version, in which

only population centers with a city hall are taken into account. The 21 towns with

a city hall form our reduced set of demand points, with the population obtained by

aggregating all population centers in the town which they administratively depend on.

The mean purchasing power of a town was considered proportional to its population.

The position and population of the towns can be seen in figures 3.1 and 3.2, where

yellow circles represent the forbidden areas around the existing demand points, which

are at the center of those circles (the greater the circle, the greater the purchasing

power at the demand point). The location space FR1 = FR2 was taken as the smallest

rectangle containing all demand points.

There are five supermarkets in the area: three from a first chain, ‘E’, and two from

another chain, ‘C’. Those figures show the location of each supermarket as viewed from

chain E’s point of view: firms belonging to chain E are marked by a black triangle (N),

and firms from the other chain are shown by a black square (�) on the map. The quality

parameters ai,j have been set within the interval [3,4]. The optimization of quality for

the new facilities was carried out in the interval [αmin
l , αmax

l] = [0.5, 5], l = 1, 2. The

income per unit of goods sold has been set to sl = 32, l = 1, 2. Due to the lack of real

data from the chains (they consider that data sensitive for them and are not willing

to make them public), the other parameters have been validated in an ad hoc way to

obtain ‘reasonable’ results. The interested reader is referred to [154] for more details

about the case study and the value of the parameters.

The same problem was solved both assuming fixed demand and considering endoge-

nous demand (as in Section 2.2 for the follower problem). In Figure 3.1, the optimal

location and quality for the new leader’s facility (represented by ✳) and the new fol-

lower’s facility (represented by +), when chain E is the leader, assuming that the

demand is exogenous (as obtained by algorithm UEGO_cent.SASS [133]) can be seen.

The corresponding solutions when the demand is endogenous are shown in Figure 3.2

(as obtained using TLUEGO_UE, see Subsection 3.2.3). In those figures, two windows

on the right and bottom of the map have been added, allowing the reader to view all

High performance computing applied to competitive facility location and design problems

84 A planar location and design leader-follower problem with endogenous demand

Figure 3.1: Optimal location and quality for both leader and follower when chain E is the leader.
Exogenous demand. Leader’s facility ✳ (blue) and follower’s facility + (red).

three 2-dimensional projections of the 3-dimensional solution set: the map itself shows

the 2-dimensional spatial part, without the quality, the right pane shows the quality

and vertical space part (quality increases from left (0.5) to right (5)), the bottom pane

shows the quality and horizontal space part (quality increases from top (0.5) to bottom

(5)). The numerical results are shown in Table 3.1.

As can be seen, in the exogenous demand case, the optimal location for the leader

is near the city of Alcantarilla, with a quality of 0.5. At that point, the market share

captured by the new leader’s facility is m1 = 2.112, which is 5.94% of the total market

share. Considering all its facilities, chain E gets 53.22% of the market, and a profit

Π1 = 593.352. The location for the follower’s facility is near the city of Molina, with

a quality of 3.696, where it captures 20.04% of the total market share. However, the

High performance computing applied to competitive facility location and design problems

3.1 The model 85

Figure 3.2: Optimal location and quality for both leader and follower when chain E is the leader.
Endogenous demand. Leader’s facility ✳ (blue) and follower’s facility + (red).

Demand nf1 M1 m1 Π1 nf2 M2 m2 Π2

Leader: chain E
Exogenous (3.303, 6.433, 0.500) 18.915 2.112 593.352 (3.259, 4.285, 3.696) 16.625 7.123 461.776
Endogenous (5.407, 5.798, 0.961) 2.807 0.419 73.454 (5.190, 6.276, 0.571) 3.618 0.249 101.563

Leader: chain C
Exogenous (8.487, 3.026, 3.277) 15.961 6.247 442.122 (3.274, 6.441, 0.500) 19.579 2.187 614.652
Endogenous (5.368, 6.166, 1.042) 3.822 0.453 106.320 (5.298, 6.228, 0.571) 2.6378 0.2489 70.227

Table 3.1: Examples.

leader’s optimal location in the variable demand case is in the suburb of Puente Tocinos,

in Murcia city, with a quality of 0.961. The market share captured by the facility is

0.419, which is 5.94% of the total market share. The whole chain gets 43.68% of the

market and a profit Π1 = 73.454. The location for the follower’s facility is near the

High performance computing applied to competitive facility location and design problems

86 A planar location and design leader-follower problem with endogenous demand

suburb of San Benito, in Murcia city, with a quality of 0.571, where it captures 3.875%

of the total market share.

If it is now assumed that chain C is the leader, then, in the exogenous demand

case, the optimal location for the leader is near the city of Orihuela, with a quality of

3.277, where the facility captures 17.57% of the total market share. The location for the

follower’s facility is near the city of Alcantarilla, with a quality of 0.5, where it captures

6.15% of the total market share. The corresponding total market share captured by the

chains and their profits can be seen in Table 3.1. However, the leader’s optimal location

in the endogenous demand case is near the suburb of San Benito, in Murcia city, with

a quality of 1.042, and the location for the follower’s facility is near the suburb of San

Benito too, with a quality of 0.571.

These two examples show how important it is to take endogenous demand into

consideration. As can be seen, the maximum profit for the chain is obtained at different

locations and with different qualities, depending on whether endogenous demand or

exogenous demand is considered. Also, the percentage of market share captured by

the chains may change to the point that the chain obtaining more profit may be the

opposite one.

3.2 Solving the centroid problem

In this section, three heuristics devised to cope with the centroid problem are described.

More precisely, a grid search procedure, a multistart method named MSH, and an

evolutionary algorithm called TLUEGO, are presented. In the last two, a local optimizer

is needed. A subsection will be dedicated to briefly explain such a local technique. Two

variants have been designed for the local optimizer, which derive two versions for MSH

and TLUEGO algorithms.

3.2.1 GS: a grid search procedure

The first method is a simple Grid Search procedure (GS) as in [133]. A grid of points

that cover the leader’s 3-dimensional searching region is generated. For each point of

the grid its feasibility is checked. If it is feasible, then the objective function for the

leader is evaluated, which implies knowing the optimal solution for the follower and

High performance computing applied to competitive facility location and design problems

3.2 Solving the centroid problem 87

therefore the corresponding medianoid problem must be previously solved. To this aim,

the algorithm UEGO described in Subsection 2.3.1 is used. When all the feasible points

of the grid have been evaluated, a second finer grid is constructed in the vicinity of the

point of the first grid having the best objective value. In this work, the length of the

step between two adjacent points in the first grid was 0.1 units in each coordinate, and

0.02 unit in the second grid.

3.2.2 The local optimizer SASS+WLMv

As mentioned above, to solve the centroid problem, both the multistart and the evo-

lutionary algorithms make use of a local procedure. Local optimizers usually assume

that the configuration of the problem during the optimization process does not change.

However, this is not the case for the centroid problem, since every time the leader’s

facility changes so does the follower’s facility. Thus, the value of the objective function

of the leader’s problem may change if the new configuration is taken into account.

This means that the new follower’s facility should be computed every time the leader’s

facility changes. However, considering that the number of function evaluations in any

local optimizer is usually large, obtaining the exact new follower’s facility at each new

location of the leader’s facility will make the process very time-consuming.

To deal with the centroid problem with exogenous demand, a local procedure called

SASS+WLM was introduced in [133]. The idea of such an algorithm is to apply the

stochastic hill climber SASS (see [147]) to improve the leader’s facility, and a Weiszfeld-

like algorithm WLM to approximate the follower’s. The leader optimization is focused

on a sphere whose radius is determined by the input parameter σub. The algorithm

stops when a maximum number of iterations (itermax) is reached, or when a maximum

number of consecutive failures at improving the objective function (Maxfcnt) occurs.

For the problem at hand, and after trying different strategies, a local procedure

similar to SASS+WLM in [133] is proposed. The pseudocode of this new method is

given in Algorithm 6. The main differences between the local algorithm used in this

thesis (which will be called SASS+WLMv) and the one in [133] are:

• The Weiszfeld-like algorithm used now for updating the follower’s facility is

WLMv (described in Subsection 2.3.2), instead of WLM. Similar to what was

considered for UEGO (see Subsection 2.3.1), WLMv stops when either two con-

High performance computing applied to competitive facility location and design problems

88 A planar location and design leader-follower problem with endogenous demand

Algorithm 6: Algorithm SASS+WLMv(nf1, nf2, itermax(= 15), σub)

1: Initialize SASS parameters. Set iter = 1, nf opt
1 = nf1, Π

opt
1 = Π1(nf1, nf2).

2: while iter ≤ itermax do

3: Update SASS parameters considering the previous successes at improving
the objective function value of the leader.

4: Generate a location for the leader nf
(iter)
1 within the updated radius.

5: Solve the corresponding medianoid problem using WLMv and let nf
(iter)
2

denote the solution obtained.
6: if Π1(nf

(iter)
1 , nf

(iter)
2) > Πopt

1 then

7: set nf opt
1 = nf

(iter)
1 and Πopt

1 = Π1(nf
(iter)
1 , nf

(iter)
2).

8: iter = iter + 1.
9: Compute the corresponding follower nf opt

2 for nf opt
1 using either iB&B or

UEGO.
10: if Π1(nf

opt
1 , nf opt

2) > Π1(nf1, nf2) then

11: return (nf opt
1 , nf opt

2)
12: else

13: Return (nf1, nf2).

secutive iterations are closer than the tolerance ǫ1 = ǫ2 = 0.0001, or when a

maximum number of icmax = 400 iterations is reached.

• The WLMv algorithm is not as reliable as the corresponding method WLM for

the fixed demand case. Then, a large maximum number of iterations itermax in

SASS could direct the leader towards overestimated solutions. To deal with this

drawback, the parameter itermax in SASS+WLMv is reduced to 15. Additionally,

once the maximum number of iterations itermax is reached, the medianoid prob-

lem is solved accurately. Otherwise the objective value for the leader could be

completely wrong. This can even happen if the solutions are very close to opti-

mality in objective function value but are in significantly different locations, and

even if the leader’s problem is solved optimally given the non-optimal follower’s

solution. For the problem at hand, two alternatives have been considered when

solving the medianoid problem: iB&B [61] or UEGO (see Section 2.3), resulting

in two versions of the local optimizer.

Notice that the algorithm iB&B gives a list of small 3-dimensional intervals where

any optimizer point must lie as a solution. Then, when selecting this method, in Step

High performance computing applied to competitive facility location and design problems

3.2 Solving the centroid problem 89

9 of Algorithm 6, the solution nf opt
2 considered will be the best point evaluated by the

algorithm iB&B.

3.2.3 TLUEGO: A two-level evolutionary global optimization algo-

rithm

The evolutionary algorithm TLUEGO is similar to the algorithm UEGO_cent.SASS

introduced in [133], which deals with the corresponding centroid problem with exoge-

nous demand. TLUEGO, as well as UEGO_cent.SASS, shares some concepts and ideas

with UEGO (see Subsection 2.3.1). In particular, the concept of species (including at-

traction radius) and the use of a local optimizer have been either adopted or adapted

to cope with the centroid problems. The values of the input parameters used for UEGO

(see Subsection 2.3.3) have also been adopted for TLUEGO.

In the following, the general structure of TLUEGO is provided (see Algorithm 7).

At the beginning, a single species (the root) exists, and as the algorithm evolves and

applies genetic operators, new species can be created. For TLUEGO to work properly,

it is very important to correctly evaluate the fitness of the new species after the creation

procedure. To this aim, a reliable follower solution has to be computed, and to do so, two

alternative algorithms are possible: iB&B or UEGO. At every generation, TLUEGO

performs a local optimizer operation on each species. For the problem at hand, the

algorithm SASS+WLMv is used. Notice that it is executed twice in order to have

more chances of obtaining a better point. The value of σub passed to SASS+WLMv is

always (the two times it is called) the radius associated to the calling species. In this

way, the scope of the local optimizer is exactly the area covered by the species. Notice

that a species involves a ‘cooling’ technique which enables the search to focus on the

promising regions of the space, starting off with a relatively large radius that decreases

as the search proceeds. Therefore, exploration and exploitation of the search space is

guaranteed. TLUEGO has been executed with the two variants of the local optimizer,

i.e. considering iB&B and UEGO when computing a reliable solution for the follower

(Step 9 in Algorithm 6). It is important to highlight that TLUEGO performs two

selection procedures during the optimization process. The first one is carried out after

the new offspring is generated. It consists of the ‘Fuse species’ and the ‘Shorten species

list’ procedures. The second one takes place after the optimization procedure, and only

High performance computing applied to competitive facility location and design problems

90 A planar location and design leader-follower problem with endogenous demand

Algorithm 7: Algorithm TLUEGO(FEmax, Lmax, tmax, Rtmax)
1: Set iteration counter t = 1.
2: Initialize a random leader location (center of initial species) nf

(t)
1 and compute

the corresponding follower nf
(t)
2 using either iB&B or UEGO.

3: (nf
(t)∗
1 , nf

(t)∗
2) = SASS+WLMv(nf (t)

1 , nf
(t)
2 , itermax(= 15), σub(= Rt)).

4: (nf opt
1 , nf opt

2) = SASS+WLMv(nf (t)∗
1 , nf

(t)∗
2 , itermax(= 15), σub(= Rt)).

5: for t = 2 until tmax do

6: Create new species.
7: Compute the corresponding follower for the new species using either iB&B or

UEGO, and evaluate the leaders’ fitness values.
8: Fuse species, and Shorten the species list.
9: for each existing species nf

(t)
1 (with radius Rt) and its corresponding follower

nf
(t)
2 do

10: (nf
(t)∗
1 , nf

(t)∗
2)=SASS+WLMv(nf (t)

1 , nf
(t)
2 , itermax(= 15), σub(= Rt)).

11: (nf opt
1 , nf opt

2)=SASS+WLMv(nf (t)∗
1 , nf

(t)∗
2 , itermax(= 15), σub = Rt).

12: Fuse species.
13: t = t + 1.
14: Return the best leader facility and its objective value.

considers the Fuse species procedure. In this work, in the Fuse procedure called at a

level t, two species are fused into a single one whenever the distance between their

centers is smaller than 2Rt, where Rt is the radius associated at level t. The reader is

referred to [133] for a more detailed description of these procedures.

The inclusion of iB&B or UEGO in TLUEGO derives two algorithms for solving

the centroid problem, TLUEGO_BB and TLUEGO_UE, respectively.

3.2.4 MSH: A multistart heuristic algorithm

The MSH algorithm consists of randomly generating MaxStartPoints feasible candidate

solutions for the leader and applying a local optimizer to them in order to achieve an

optimized leader solution. The final solution will be the one with the best objective

function value.

For the case at hand, the considered local optimizer has been SASS+WLMv (see

Algorithm 6). Notice that this method focuses the search on an area defined by the

parameter σub. In order to provide a balance between exploitation and exploration of

High performance computing applied to competitive facility location and design problems

3.2 Solving the centroid problem 91

the search space, this method has also been executed twice as in TLUEGO, but with

different values for σub. In the first call, a value of σub = 2.083895 (the one corresponding

to level 10 in TLUEGO) was considered. Such a value was chosen because in this way,

the initial random candidate solutions in the multistart strategy can cover the whole

searching space, and at the same time, they can focus on an area small enough so

that the local procedure can find a good local optimum. In the second call, a value of

σub = 0.162375 (the one corresponding to level 23 in TLUEGO) was used to improve

the quality of the local optimum obtained with the first call. These σub values were

selected after some preliminary studies, in which eight problems of different sizes were

solved trying different strategies for the heuristic algorithm.

As in TLUEGO, two versions of the MSH method, called MSH_BB and MSH_UE,

are proposed. They differ in whether iB&B or UEGO is used as a method of computing

the follower nf opt
2 in Step 9 of the local optimizer SASS+WLMv (see Algorithm 6).

3.2.5 Computational studies

All the computational results in this section have been carried out on a processor Xeon

IV with 2.4GHz and 1 GByte RAM. The algorithms have been implemented in C++.

To study the performance of the algorithms, 24 different problems have been gen-

erated varying the number imax of demand points, the number jmax of existing facilities

and the number k of those facilities belonging to the leader’s chain. The actual set-

tings (imax, jmax, k) employed are detailed in Table 3.2. For every setting, the problem

was generated by randomly choosing its parameters uniformly within pre-specified in-

tervals presented in Appendix. In all the problems, the following choices were made:

FR1 = FR2 = ([0, 10], [0, 10]) and α1, α2 ∈ [0.5, 5].

Since most of the proposed algorithms are heuristics, each run may provide a dif-

ferent solution. Thus, to study their robustness, for every heuristic algorithm, each

imax 15 25 50
jmax 2 5 10 2 5 10 2 5 10
k 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4

Table 3.2: Settings of the test problems.

High performance computing applied to competitive facility location and design problems

92 A planar location and design leader-follower problem with endogenous demand

problem has been solved ten times and average values have been computed. Neverthe-

less, the heuristic GS has only been run once and the results obtained in that run (no

average results) are given.

Tables 3.3, 3.4 and 3.5 show the results obtained by the algorithms when imax = 15,

imax = 25 and imax = 50, respectively. In the column labelled ‘Time’, the average time

in the ten runs (in seconds) is given; in the ‘Best Solution’ column, the best solution

(x1, y1, α1) found in the ten runs is shown; the ‘MaxDist’ column gives the maximum

Euclidean distance (considering the three variables of the problem) between any pair

of solutions provided by the algorithm, which gives an idea of how far the solutions

provided by the algorithm in different runs can be; in the next three columns, the

minimum, the average and the maximum objective value in the ten runs are given.

Finally, in the ‘Dev’ column, the standard deviation is provided. As can be seen in

these tables, two versions of TLUEGO and MSH algorithms have been executed. It

is worth mentioning that the number of times that MSH_BB (resp. MSH_UE) was

allowed to repeat its basic local optimizer was chosen so that the CPU time employed

by MSH_BB (resp. MSH_UE) was, on average (when considering all the problems

with the same value of imax), similar to the CPU time employed by TLUEGO_BB

(resp. TLUEGO_UE) or a bit higher. In particular, for the problems with 15, 25 and

50 demands points, the number of starting points were 150, 200 and 250, respectively.

On the bottom of these tables, the average results for each algorithm are showed.

The method considered to solve the medianoid problem does not seem to have too

much influence on the quality of the final solution, i.e., TLUEGO and MSH behave

similarly independent of whether iB&B or UEGO is employed. This fact is corroborated

in Subsection 2.3.4, where it was stated that UEGO was able to obtain the global

optimal solution for all the problems where iB&B could be executed (with imax ≤ 200).

However, the computing time is highly affected by those methods. The iB&B technique

is faster than UEGO for small size problems, which helps to reduce the execution time

of both TLUEGO and MSH. Namely, the use of iB&B reduces the computing time of

TLUEGO for problems with imax = 15 (as compared to its counterpart executed with

UEGO) by 74.6%. The corresponding reduction for the problems with imax = 25 is

30.9%. Similar reductions in computing time can be seen in MSH when iB&B is used

instead of UEGO. Nevertheless, for medium size problems (with imax = 50 demand

points), TLUEGO_UE and MSH_UE reduce the computing time as compared to

High performance computing applied to competitive facility location and design problems

3.2 Solving the centroid problem 93

Best Solution Max Objective Function
(jmax,k) Algorithm Time x1 y1 α1 Dist Min Av Max Dev
(2,0) TLUEGO_BB 618 8.505 4.154 0.50 0.049 -4.630 -4.630 -4.630 0.000

TLUEGO_UE 1217 8.513 4.152 0.50 0.032 -4.630 -4.630 -4.630 0.000
MSH_BB 619 8.558 4.138 0.50 0.258 -4.678 -4.653 -4.635 0.016
MSH_UE 1254 8.566 4.133 0.50 0.235 -4.744 -4.663 -4.640 0.041
GS 379932 8.540 4.140 0.50 - - -4.637 - -

(2,1) TLUEGO_BB 121 7.860 7.841 0.50 0.000 38.732 38.732 38.732 0.000
TLUEGO_UE 977 7.860 7.841 0.50 0.001 38.731 38.732 38.732 0.001
MSH_BB 142 7.865 7.841 0.50 0.111 38.607 38.667 38.727 0.043
MSH_UE 1247 7.876 7.837 0.50 0.276 38.468 38.608 38.698 0.097
GS 400226 7.860 7.840 0.50 - - 38.730 - -

(5,0) TLUEGO_BB 264 5.731 8.062 0.88 0.058 -5.806 -5.805 -5.802 0.002
TLUEGO_UE 1039 5.731 8.062 0.85 0.017 -5.804 -5.803 -5.802 0.001
MSH_BB 314 5.773 8.078 0.81 0.525 -6.394 -6.115 -5.978 0.148
MSH_UE 1188 5.729 8.064 0.91 3.315 -6.713 -6.095 -5.815 0.328
GS 481907 5.720 8.080 0.75 - - -5.928 - -

(5,1) TLUEGO_BB 393 1.328 0.000 0.50 0.007 10.574 10.575 10.575 0.000
TLUEGO_UE 1156 1.328 0.000 0.50 0.019 10.573 10.574 10.575 0.001
MSH_BB 376 1.325 0.036 0.50 8.029 10.560 10.564 10.571 0.005
MSH_UE 1159 1.328 0.004 0.50 0.036 10.571 10.573 10.574 0.001
GS 511797 9.120 0.180 0.50 - - 10.533 - -

(5,2) TLUEGO_BB 71 5.711 2.343 0.50 0.000 39.968 39.968 39.968 0.000
TLUEGO_UE 691 5.714 2.341 0.50 0.003 39.968 39.969 39.970 0.001
MSH_BB 109 5.711 2.345 0.50 0.162 39.852 39.910 39.965 0.042
MSH_UE 1058 5.714 2.342 0.50 0.116 39.883 39.930 39.964 0.031
GS 391193 5.720 2.340 0.50 - - 39.952 - -

(10,0) TLUEGO_BB 140 0.000 1.854 0.50 0.000 -9.753 -9.753 -9.753 0.000
TLUEGO_UE 726 0.000 1.854 0.50 0.001 -9.754 -9.753 -9.753 0.000
MSH_BB 196 0.000 1.855 0.50 0.021 -9.758 -9.757 -9.756 0.001
MSH_UE 984 0.000 1.854 0.50 0.017 -9.764 -9.758 -9.753 0.004
GS 621003 0.120 1.880 0.50 - - -9.789 - -

(10,2) TLUEGO_BB 139 7.206 10.000 0.50 0.003 16.414 16.415 16.415 0.000
TLUEGO_UE 709 7.206 10.000 0.50 0.000 16.415 16.415 16.415 0.000
MSH_BB 198 7.206 9.995 0.50 0.080 16.392 16.405 16.411 0.007
MSH_UE 915 7.206 10.000 0.50 0.009 16.402 16.411 16.415 0.005
GS 573090 7.200 10.000 0.50 - - 16.395 - -

(10,4) TLUEGO_BB 59 2.273 0.487 0.50 0.000 38.323 38.323 38.323 0.000
TLUEGO_UE 613 2.273 0.487 0.50 0.000 38.323 38.323 38.323 0.000
MSH_BB 110 2.271 0.486 0.50 0.129 38.220 38.282 38.320 0.042
MSH_UE 921 2.260 0.483 0.50 0.121 38.218 38.263 38.307 0.032
GS 563554 2.260 0.480 0.50 - - 38.304 - -

Aver. TLUEGO_BB 226 - - - 0.015 15.478 15.478 15.479 0.000
TLUEGO_UE 891 - - - 0.009 15.478 15.478 15.479 0.001
MSH_BB 258 - - - 1.164 15.350 15.413 15.453 0.038
MSH_UE 1091 - - - 0.516 15.290 15.409 15.469 0.067
GS 490338 - - - - - 15.445 - -

Table 3.3: Results for the problems with imax = 15. TLUEGO_BB (ǫ1 = ǫ2 = 0.0001), TLUEGO_UE,
MSH_BB and MSH_UE (with 150 starting points), and GS.

High performance computing applied to competitive facility location and design problems

94 A planar location and design leader-follower problem with endogenous demand

Best Solution Max Objective Function
(jmax,k) Algorithm Time x1 y1 α1 Dist Min Av Max Dev
(2,0) TLUEGO_BB 2714 4.580 6.183 4.99 0.016 45.533 45.593 45.637 0.042

TLUEGO_UE 2991 4.580 6.184 4.99 0.030 45.472 45.541 45.592 0.056
MSH_BB 2169 4.584 6.189 4.92 2.210 22.210 34.739 44.373 8.146
MSH_UE 2652 4.581 6.185 4.32 4.964 24.210 32.102 40.052 5.405
GS 876818 4.600 6.200 5.00 - - 42.191 - -

(2,1) TLUEGO_BB 1324 7.066 7.225 4.93 0.110 61.041 61.049 61.055 0.006
TLUEGO_UE 1957 7.066 7.225 4.89 0.105 61.044 61.045 61.050 0.002
MSH_BB 1619 7.229 7.414 4.63 0.781 35.451 39.567 51.214 5.876
MSH_UE 2630 7.072 7.231 4.78 1.148 49.804 55.859 60.568 3.566
GS 745640 7.080 7.240 4.75 - - 59.912 - -

(5,0) TLUEGO_BB 915 0.000 2.159 0.50 0.002 -10.847 -10.847 -10.846 0.000
TLUEGO_UE 1579 0.000 2.159 0.50 0.002 -10.847 -10.847 -10.846 0.000
MSH_BB 1503 0.000 2.158 0.50 0.064 -10.882 -10.867 -10.849 0.012
MSH_UE 2163 0.002 2.158 0.50 0.028 -10.862 -10.853 -10.847 0.005
GS 860059 0.020 2.140 0.50 - - -10.881 - -

(5,1) TLUEGO_BB 1704 10.000 8.657 0.50 0.000 13.492 13.492 13.492 0.000
TLUEGO_UE 1495 10.000 8.657 0.50 0.000 13.492 13.492 13.492 0.000
MSH_BB 2072 10.000 8.658 0.50 0.039 13.469 13.481 13.489 0.008
MSH_UE 2322 9.999 8.657 0.50 0.002 13.480 13.488 13.492 0.005
GS 844241 9.300 6.600 0.50 - - 13.430 - -

(5,2) TLUEGO_BB 1957 6.152 2.006 2.47 0.085 46.736 46.739 46.741 0.002
TLUEGO_UE 2251 6.152 2.006 2.51 0.521 46.502 46.666 46.732 0.085
MSH_BB 2387 6.146 2.000 2.47 0.801 44.630 45.947 46.620 0.701
MSH_UE 2793 6.149 2.010 2.73 0.671 45.249 45.911 46.389 0.542
GS 762229 6.140 2.000 2.25 - - 46.388 - -

(10,0) TLUEGO_BB 425 0.526 0.000 0.50 0.001 -10.283 -10.283 -10.283 0.000
TLUEGO_UE 2135 0.526 0.000 0.50 0.003 -10.283 -10.283 -10.283 0.000
MSH_BB 651 0.526 0.000 0.50 0.016 -10.289 -10.285 -10.283 0.002
MSH_UE 3650 0.526 0.000 0.50 0.001 -10.284 -10.283 -10.283 0.001
GS 1237873 0.520 0.000 0.50 - - -10.295 - -

(10,2) TLUEGO_BB 627 9.623 9.436 0.50 0.001 24.958 24.959 24.959 0.000
TLUEGO_UE 1692 9.651 9.440 0.50 0.027 24.960 24.962 24.965 0.002
MSH_BB 959 9.633 9.437 0.50 0.377 24.856 24.896 24.953 0.035
MSH_UE 2285 9.615 9.438 0.50 0.281 24.854 24.911 24.948 0.035
GS 963392 9.880 9.460 0.50 - - 24.852 - -

(10,4) TLUEGO_BB 942 0.486 4.980 2.94 0.544 62.201 62.334 62.414 0.094
TLUEGO_UE 1259 0.486 4.980 3.32 0.702 62.169 62.273 62.402 0.074
MSH_BB 1449 0.481 4.982 3.31 2.302 57.799 59.881 62.081 1.794
MSH_UE 2153 0.483 4.977 2.78 3.298 51.366 56.898 62.045 4.034
GS 1021566 0.480 4.980 2.75 - - 61.836 - -

Aver. TLUEGO_BB 1326 - - - 0.095 29.104 29.130 29.146 0.018
TLUEGO_UE 1920 - - - 0.174 29.064 29.106 29.138 0.027
MSH_BB 1601 - - - 0.824 22.156 24.670 27.700 2.072
MSH_UE 2581 - - - 1.299 23.477 26.004 28.296 1.699
GS 913977 - - - - - 28.429 - -

Table 3.4: Results for the problems with imax = 25. TLUEGO_BB (ǫ1 = ǫ2 = 0.0001), TLUEGO_UE,
MSH_BB and MSH_UE (with 200 starting points), and GS.

High performance computing applied to competitive facility location and design problems

3.2 Solving the centroid problem 95

Best Solution Max Objective Function
(jmax,k) Algorithm Time x1 y1 α1 Dist Min Av Max Dev
(2,0) TLUEGO_BB 14473 5.936 5.663 2.44 0.138 -9.998 -9.986 -9.972 0.010

TLUEGO_UE 5557 5.936 5.663 2.45 0.222 -9.996 -9.985 -9.971 0.010
MSH_BB 17699 6.051 5.644 2.72 8.323 -12.840 -12.642 -11.859 0.391
MSH_UE 7242 5.939 5.661 2.23 8.203 -12.836 -11.499 -10.250 1.094
GS 3003349 5.940 5.660 2.25 - - -10.276 - -

(2,1) TLUEGO_BB 8632 2.840 4.738 4.96 0.051 77.850 78.006 78.297 0.152
TLUEGO_UE 6377 2.840 4.738 5.00 0.043 78.297 78.516 78.654 0.125
MSH_BB 8080 2.839 4.726 4.98 1.729 28.929 51.910 76.424 19.328
MSH_UE 7180 2.852 4.737 4.94 3.679 21.223 63.114 75.007 20.981
GS 3003750 2.840 4.720 5.00 - - 75.285 - -

(5,0) TLUEGO_BB 8295 2.643 1.097 4.98 0.000 27.917 27.917 27.917 0.000
TLUEGO_UE 9483 2.645 1.096 4.98 0.005 27.917 28.127 28.267 0.172
MSH_BB 9433 3.711 2.168 4.99 1.791 12.304 17.132 21.203 2.929
MSH_UE 11058 2.640 1.099 4.99 2.337 6.922 15.253 27.402 7.428
GS 3003816 3.720 2.160 4.50 - - 21.678 - -

(5,1) TLUEGO_BB 10993 7.346 9.574 4.39 0.740 16.347 16.455 16.614 0.090
TLUEGO_UE 7153 7.346 9.574 4.61 0.634 16.422 16.561 16.666 0.093
MSH_BB 12956 7.042 9.555 4.74 2.520 -0.745 6.598 13.342 4.769
MSH_UE 9112 7.265 9.583 4.13 1.952 0.359 8.730 12.275 4.303
GS 3003513 7.340 9.580 4.00 - - 15.153 - -

(5,2) TLUEGO_BB 11834 9.502 4.853 2.34 0.441 48.553 48.664 48.776 0.096
TLUEGO_UE 16579 9.502 4.853 2.37 0.393 48.478 48.706 48.779 0.115
MSH_BB 15717 9.497 4.851 2.03 5.111 46.868 47.116 48.106 0.495
MSH_UE 20315 10.000 0.000 0.50 0.000 47.698 47.698 47.698 0.000
GS 3004494 9.980 0.300 0.50 - - 47.459 - -

(10,0) TLUEGO_BB 7825 1.008 7.438 5.00 0.073 31.359 31.580 31.734 0.180
TLUEGO_UE 6510 1.008 7.438 5.00 0.099 31.223 31.524 31.734 0.204
MSH_BB 9336 0.999 7.428 4.98 1.490 18.745 23.831 29.913 3.574
MSH_UE 7495 2.206 8.129 4.93 1.145 23.221 26.986 30.718 2.655
GS 3003878 1.020 7.420 5.00 - - 28.702 - -

(10,2) TLUEGO_BB 4826 9.865 8.238 4.98 0.032 56.181 56.315 56.414 0.109
TLUEGO_UE 6532 9.865 8.238 4.99 0.021 56.225 56.390 56.521 0.095
MSH_BB 5199 9.545 7.674 4.84 1.288 43.832 47.754 54.446 3.663
MSH_UE 6660 9.866 8.238 4.38 3.113 36.785 46.307 52.232 5.220
GS 3003775 9.880 8.240 5.00 - - 50.801 - -

(10,4) TLUEGO_BB 8884 7.675 3.264 4.22 0.013 70.718 70.729 70.738 0.009
TLUEGO_UE 7880 7.675 3.264 4.24 0.061 70.730 70.737 70.741 0.004
MSH_BB 10296 7.669 3.265 4.17 0.585 67.679 68.935 70.198 0.911
MSH_UE 10223 7.661 3.255 3.92 1.727 66.780 68.119 69.594 1.090
GS 3003775 7.460 3.040 4.00 - - 69.442 - -

Aver. TLUEGO_BB 9470 - - - 0.186 39.866 39.960 40.065 0.081
TLUEGO_UE 8259 - - - 0.185 39.912 40.072 40.174 0.102
MSH_BB 11090 - - - 2.855 25.597 31.329 37.722 4.508
MSH_UE 9911 - - - 2.769 23.769 33.088 38.084 5.346
GS 3003794 - - - - - 37.280 - -

Table 3.5: Results for the problems with imax = 50. TLUEGO_BB (ǫ1 = ǫ2 = 0.0001), TLUEGO_UE,
MSH_BB and MSH_UE (with 250 starting points), and GS.

High performance computing applied to competitive facility location and design problems

96 A planar location and design leader-follower problem with endogenous demand

TLUEGO_BB and MSH_BB, by 12.79% and 10.63%, respectively. These results are

also consistent with the ones showed in Subsection 2.3.4, where it was observed that

the increase of requirements for iB&B with the size of the problem was greater than

for UEGO.

Focusing now on the strategies proposed to solve the current centroid problem, it

can be stated that TLUEGO (in any of its versions) is the algorithm providing the best

results. Its average objective function values (see column ‘Av’ in tables 3.3, 3.4 and

3.5) are always higher than the ones given by both MSH and GS. It is also important

to highlight that the minimum objective function value found by TLUEGO in the ten

runs is always better than the average values obtained by both MSH and GS (see

columns ‘Min’ and ‘Av’).

In addition to this, TLUEGO is also the most reliable algorithm, in the sense that

it usually attains the same solution in all the runs, whereas MSH is more erratic, and

may provide different solutions in each run (see the values of ‘MaxDist’ and ‘Dev’).

MSH has been designed to check whether a random search is enough to find the

global optimum of the centroid problem introduced in this paper. But as the results

show, it is necessary to direct the search through the whole space, as TLUEGO does. In

only four problems (those with settings (15, 10, 0), (15, 10, 2), (25, 5, 1) and (25, 10, 0))

does MSH find the same best solution as TLUEGO (see columns ‘Best Solution’).

Furthermore, in none of the 24 problems the best objective function value found by

MSH in the ten runs is better than the corresponding average value of TLUEGO (see

columns ‘Max’ and ‘Av’). Comparing MSH to GS, only in 10 out of the 24 problems

is the average value of MSH greater than the objective value obtained by GS.

GS is rather time-consuming. Moreover, there is no guarantee that GS can find a

good approximation to the global optimum. If the objective function value decreases

dramatically in a small neighborhood around the global optimum and the grid is not

dense enough, the second finer grid can focus around a local optimum. Something

similar can happen when a local optimum exists whose objective value is close to the

global optimum value and the grid is not fine enough. The risk of failure is even higher

in the presence of constraints, as happens in our centroid problem, since it may occur

that the global optimum is surrounded (in part) by infeasible areas, and the grid may

not have a feasible point near the global optimum. Of course, the finer the grids, the

higher the possibilities for the method to find the optimum, but one never knows how

High performance computing applied to competitive facility location and design problems

3.2 Solving the centroid problem 97

Max Objective Function
Algorithm Time Dist Min Av Max Dev

TLUEGO_BB 3674 0.099 28.149 28.189 28.230 0.033
TLUEGO_UE 3690 0.123 28.151 28.219 28.264 0.043
MSH_BB 4316 1.614 21.034 23.804 26.958 2.206
MSH_UE 4528 1.528 20.845 24.834 27.283 2.371
GS 1469370 - - 27.052 - -

Table 3.6: Average results considering all the problems (imax = 15, 25, 50).

small the distance between two adjacent points in the grid should be, and regardless

how small that distance is, it may still happen that the search does not reach the

global optimum. In fact, GS has been used only as a safeguard to check the goodness

of TLUEGO and MSH, and also because it allows to study the difficulty of the problem

at hand and to draw the graphs of the objective function projected in both the location

and the quality spaces.

Finally, to have an overall view of the algorithms’ behavior, average values when

considering all the problems are presented in Table 3.6. As can be observed, similar

conclusions can be inferred, i.e. TLUEGO is both the algorithm giving the best and

most robust results, and this using the least computational time. On average, MSH

provides the worst objective function value (see column Av) and different runs may

provide very different objective values. GS is much more time-consuming and is not

able to find the global optimum. Regarding the quality of the solutions, it seems that

TLUEGO_UE and MSH_UE obtain better average results than their corresponding

counterparts executed with iB&B.

To illustrate the algorithms’ behavior, the best solution obtained by the different

algorithms for the problem with setting (50, 5, 0) are depicted in Figure 3.3, projected

onto the two-dimensional spaces (see also Table 3.7). In that figure, the black squares

(�) correspond to the locations of the existing follower’s facilities, the green symbol

+ gives the best solution found by TLUEGO_BB in the ten runs, and the blue star

✳ is the one obtained by TLUEGO_UE; the green and red signs × give the best

solutions provided by MSH_BB and MSH_UE, respectively. Finally, the red plus sign

+ represents the solution obtained by the GS algorithm. Light yellow ovals represent

the forbidden areas around the existing demand points, which are at the center of those

High performance computing applied to competitive facility location and design problems

98 A planar location and design leader-follower problem with endogenous demand

Best Solution Max Objective Function
Algorithm Time x1 y1 α1 Dist Min Av Max Dev
TLUEGO_BB 8295 2.643 1.097 4.98 0.000 27.917 27.917 27.917 0.000
TLUEGO_UEGO 9483 2.645 1.096 4.98 0.005 27.917 28.127 28.267 0.172
MSH_BB 9433 3.711 2.168 4.99 1.791 12.304 17.132 21.203 2.929
MSH_UEGO 11058 2.640 1.099 4.99 2.337 6.922 15.253 27.402 7.428
GS 3003816 3.720 2.160 4.50 - - 21.678 - -

Table 3.7: Results for the problem with setting (50, 5, 0).

Figure 3.3: Example with imax = 50, jmax = 5, k = 0. TLUEGO_BB = + (green), TLUEGO_UEGO =
✳ (blue), MSH_BB = × (green) MSH_UEGO = × (red) and GS = + (red).

ovals (the greater the oval, the greater the purchasing power at the demand point).

Notice that in this problem k = 0, i.e., there are no existing facilities belonging to the

leader’s chain.

High performance computing applied to competitive facility location and design problems

3.3 Influence of the fuse process in the creation procedure 99

As can be seen in this example, the optimal solution is at the intersection of two

forbidden regions, as found by both TLUEGO_BB and TLUEGO_UE. The solution

provided by MSH_UE is around that area, but it focuses on a local maximum whose

objective value is close to the optimal one (see ‘Max’ column in Table 3.7). Also notice

that the solutions provided by GS and MSH_BB are quite close, but they yield very

different objective values, showing that the objective function can locally be quite

steep. Thus, this example clearly shows that GS is not a good strategy, since it does

not allow a proper approximation to the optimal point. Additionally, MSH (in any of

its versions) may get trapped in a local optimum, since the goodness of that algorithm

depends on how close the starting points are with respect to the optima.

3.3 Influence of the fuse process in the creation proce-

dure

As was mentioned before, TLUEGO is based on the algorithm UEGO_cent.SASS

described in [133]. In the creation procedure, for every species in the list, a set of possible

new candidates is computed, fused and evaluated in order to find new promising species,

thereby increasing the species-list. Notice that each species generates new ones by itself,

independent of the remaining ones.

An important issue to take into account is that the evaluation of a single species

in TLUEGO requires intensive computational effort, since it involves the execution

of another expensive optimization algorithm (UEGO or iB&B) to obtain the optimal

location of the follower (by solving the corresponding medianoid problem). For this

reason TLUEGO was designed to maintain a small-size species-list, by including a ‘fuse’

process just after the creation of candidate solutions, therefore, only the resulting ones

are evaluated.

However, it is known that larger species-list sizes help to explore the search space

deeply and then obtain better solutions. With this aim, in this section, new creation

procedures are proposed, where the fuse process is relaxed in part (instead of fusing

two species whenever the distance between their centers is smaller than 2Rt, the new

thresholds Rt, Rt/2 or 0 are used). In what follows, only TLUEGO_UE will be used,

since it can solve larger instances. It will simply be denoted by TLUEGO.

High performance computing applied to competitive facility location and design problems

100 A planar location and design leader-follower problem with endogenous demand

imax 50 100
jmax 2 5 10 2 5 10
k 0,1 0,1,2 0,2,4 0,1 0,1,2 0,2,4

Table 3.8: Settings of the test problems.

For the analysis at hand, only small and medium size problems have been con-

sidered, i.e. imax = 50, 100. For every setting in Table 3.8, a problem was generated

by randomly choosing its parameters uniformly within the intervals presented in Ap-

pendix. In all the problems, FR1 = FR2 = ([0, 10], [0, 10]) and α1, α2 ∈ [0.5, 5]. They

have been solved in the Arabi supercomputer, using a single core of the nodes with

8GB memory (one problem at a time).

Since each run of TLUEGO may provide a different solution, for every variant, each

problem has been solved ten times and average values have been computed. Tables 3.9

and 3.10 show the results obtained by the algorithms for the problems with imax = 50

and imax = 100, respectively. The first column gives the setting of the problem. The

second one indicates the threshold value used in the fuse process. In the column labeled

‘Time’, the average time in the ten runs (in seconds) is showed. The MaxDist column

gives the maximum Euclidean distance (considering the three variables of the problem)

between any pair of solutions provided by the algorithm in the ten runs, which provides

an idea of how far the solutions given by the algorithm in different runs can be. The

average objective function value (column Π1) in the ten runs and the corresponding

standard deviation (column Dev) are given next. Column DifΠ1 shows the relative

improvement in the objective function value between the solution obtained by the

algorithms when a threshold different from 2Rt is used as compared to the result

obtained when using that threshold, and it is computed as DifΠ1 =
Π

(other)
1 −Π

(2Rt)
1

Π
(2Rt)
1

·100.

The final column shows the relative difference between the solutions, and is computed

as

DifSol =
‖nf

(other)
1 − nf

(2Rt)
1 ‖2

max{‖nf
(2Rt)
1 − (x1, y1, α1)‖ : (x1, y1, α1) ∈ FR1 × [0.5, 5]}

· 100.

The last four lines in the tables give the average values when considering all the prob-

lems.

High performance computing applied to competitive facility location and design problems

3.3 Influence of the fuse process in the creation procedure 101

(jmax, k) threshold Time MaxDist Π1 Dev DifΠ1 DifSol

(2,0) 2Rt 5587 0.509 49.311 0.027 - -
Rt 8839 0.320 49.390 0.020 0.159 0.822

Rt/2 9281 0.261 49.423 0.005 0.226 1.263
0 13282 0.197 49.443 0.006 0.266 0.424

(2,1) 2Rt 4871 0.159 255.137 0.732 - -
Rt 7136 0.068 257.168 0.267 0.796 1.812

Rt/2 7632 0.023 257.831 0.085 1.056 2.440
0 10042 0.007 257.974 0.021 1.112 2.568

(5,0) 2Rt 9408 0.317 171.041 0.956 - -
Rt 15242 0.118 172.414 0.322 0.803 1.545

Rt/2 15888 0.099 173.201 0.178 1.263 2.622
0 20804 0.049 173.878 0.075 1.659 3.725

(5,1) 2Rt 10154 0.106 115.437 0.164 - -
Rt 18190 0.114 115.970 0.131 0.462 1.135

Rt/2 18084 0.084 116.344 0.080 0.786 2.074
0 21348 0.140 116.792 0.085 1.174 3.593

(5,2) 2Rt 17093 0.890 95.705 0.086 - -
Rt 26150 0.664 96.445 0.050 0.773 0.254

Rt/2 29045 0.217 97.011 0.040 1.365 3.991
0 34462 0.402 98.971 0.031 3.412 3.016

(10,0) 2Rt 11623 0.922 137.950 0.829 - -
Rt 16800 0.788 139.586 0.431 1.187 2.335

Rt/2 18658 0.109 140.934 0.391 2.163 3.531
0 21643 0.057 141.850 0.202 2.827 3.717

(10,2) 2Rt 14212 0.784 198.422 1.756 - -
Rt 24459 0.031 201.940 0.124 1.773 2.084

Rt/2 25590 0.023 202.602 0.100 2.107 2.274
0 30152 0.017 202.807 0.080 2.210 2.344

(10,4) 2Rt 14997 0.469 163.525 0.073 - -
Rt 24696 0.351 164.015 0.070 0.300 4.507

Rt/2 25307 0.215 165.024 0.024 0.917 0.714
0 31449 0.212 166.298 0.013 1.696 4.131

Aver 2Rt 10993 0.520 148.316 0.578 - -
Rt 17689 0.307 149.616 0.177 0.782 1.812

Rt/2 18686 0.129 150.296 0.113 1.235 2.364
0 22898 0.135 151.002 0.064 1.794 2.940

Table 3.9: Effectiveness evaluation of the fuse process in TLUEGO (sequential algorithm) for problems
with imax = 50 demand points.

High performance computing applied to competitive facility location and design problems

102 A planar location and design leader-follower problem with endogenous demand

(jmax, k) threshold Time MaxDist Π1 Dev DifΠ1 DifSol

(2,0) 2Rt 20567 0.443 173.455 2.209 - -
Rt 34793 0.095 177.655 0.343 2.422 3.210

Rt/2 36818 0.028 179.286 0.101 3.362 4.544
0 43798 0.033 180.223 0.116 3.902 5.381

(2,1) 2Rt 28921 0.969 209.147 1.563 - -
Rt 43661 0.108 213.918 0.374 2.281 3.515

Rt/2 47264 0.039 216.137 0.123 3.342 4.986
0 56301 0.001 217.040 0.023 3.774 5.755

(5,0) 2Rt 31206 0.359 135.318 1.151 - -
Rt 48181 0.165 137.661 0.486 1.731 2.358

Rt/2 53020 0.083 138.694 0.200 2.495 3.507
0 59954 0.022 139.208 0.054 2.875 4.110

(5,1) 2Rt 24066 0.583 220.752 2.856 - -
Rt 41364 0.179 225.347 0.736 2.082 3.301

Rt/2 44739 0.046 228.335 0.230 3.435 5.610
0 51167 0.005 228.662 0.022 3.583 5.811

(5,2) 2Rt 33344 0.383 179.378 1.152 - -
Rt 56804 0.113 181.226 0.258 1.030 2.100

Rt/2 63904 0.170 182.576 0.461 1.783 3.845
0 73450 0.001 183.258 0.002 2.163 4.788

(10,0) 2Rt 38772 1.101 165.054 3.058 - -
Rt 62530 0.276 170.901 1.362 3.543 3.921

Rt/2 67270 0.159 177.146 0.897 7.326 3.999
0 74407 0.031 178.971 0.161 8.432 4.627

(10,2) 2Rt 38916 1.094 114.965 1.847 - -
Rt 65372 0.163 119.828 0.154 4.230 5.938

Rt/2 69543 0.510 120.275 0.099 4.618 8.615
0 79906 0.333 120.474 0.042 4.791 10.929

(10,4) 2Rt 40438 1.111 220.841 2.104 - -
Rt 64295 0.067 240.192 0.206 8.763 9.425

Rt/2 72898 0.030 243.230 0.066 10.138 12.875
0 84776 0.019 244.570 0.043 10.745 14.819

Aver 2Rt 32029 0.755 177.364 1.992 - -
Rt 52125 0.146 183.341 0.490 3.260 4.221

Rt/2 56932 0.133 185.710 0.272 4.562 5.998
0 65470 0.056 186.551 0.058 5.033 7.027

Table 3.10: Effectiveness evaluation of the fuse process in TLUEGO (sequential algorithm) for problems
with imax = 100 demand points.

High performance computing applied to competitive facility location and design problems

3.4 High performance computing 103

As can be seen, the CPU time increases as the threshold decreases, and when this

is set to 0, the time is (a bit more than) double as compared to the 2Rt case. The

algorithm also becomes more robust, in the sense that the runs give solutions with a

more similar objective function value (see the decrease in the figures in columns Dev).

And the quality of the solution gets better, as its average objective function value

gets better (see columns Π1). Concerning the relative improvement in the objective

function value, whereas for the problems with imax = 50 demand points are on average

a moderate 1.794% when the threshold is set to 0, for the problems with imax = 100

it attains a significant 5.033%. Furthermore, for some particular instances the progress

may be more than 10%. This clearly shows that the smaller the threshold, the better

the solutions are, although this is at the cost of increasing the CPU time and the

memory requirements.

3.4 High performance computing

According to the studies showed in the previous secticon, the computational time em-

ployed by TLUEGO for solving small size problems was very high, and this despite the

inclusion of a fuse process in the creation procedure to reduce the size of the species-list

in the algorithm (see tables 3.9 and 3.10). This clearly suggests that a parallelization

of the algorithm is needed, especially if real problems, with more demand points, must

be solved.

In the following, some details about TLUEGO which may affect the efficiency of

the parallel algorithms are described.

• The first aspect to highlight is that there is no relationship among species. This

means that a single species can create a new offspring and evolve to the local

or global optima without participation of the remaining ones. Therefore, there

exists an intrinsic parallelism, which can be exploited by dividing the species-list

among the available processors.

• The second one is related to the Selection procedure. As mentioned above (see

also [131]), at each iteration TLUEGO calls the Selection mechanism twice, just

after the Create_species and Optimize_species procedures. The Selection proce-

dure requires the knowledge of the whole species-list to be able to measure the

High performance computing applied to competitive facility location and design problems

104 A planar location and design leader-follower problem with endogenous demand

distances among all the species for the fuse process, and therefore the proces-

sors must interchange information. This may be understood as synchronization

points, which may reduce the efficiency of the parallel version. On the other hand,

the Selection method itself is quite fast, since it only implies the computation of

distances between species. It means that the parallelization of the Selection pro-

cedure may be counterproductive, since the parallelism overheads may be higher

than the computational cost saved. To deal with the drawbacks imposed by the

Selection, a good load balancing must be designed.

• The third one is that both the Create_species and the Optimize_species proce-

dures are time-consuming, which makes them suitable for being run in parallel.

In the following subsections, three programming paradigms for the parallelization of

TLUEGO are designed. More specifically, a pure message passing paradigm (Subsection

3.4.1), a pure shared memory programming model (Subsection 3.4.2) and a hybrid one

which combines message passing with shared memory (Subsection 3.4.3). Finally, in

Subsection 3.4.4 their efficiency and effectiveness are analyzed and compared.

3.4.1 Pure message passing programming for TLUEGO:

PMP_TLUEGO

The first parallel approach of TLUEGO has been designed to be executed in a multi-

computer, and hence the programming language is based on message-passing mecha-

nisms. A master-slave technique has been implemented considering the characteristics

of these kinds of optimization problems with a time-consuming objective function. In

[138], the counterpart of the current problem was considered, i.e. the facility location

and design (1|1)-centroid problem with exogenous demand was solved via parallel al-

gorithms. In that work, several parallel strategies were designed and analyzed. The

results showed that the efficiency of the master-slave method outperformed the other

proposals. That parallel method has been adapted to the problem at hand.

Algorithm 8 depicts the main structure of the master-slave model. Next, the main

details are summarized (the interested reader is referred to [138] for a deeper description

of the parallel model).

High performance computing applied to competitive facility location and design problems

3.4 High performance computing 105

Algorithm 8: PMP_TLUEGO
1: Init_species-list
2: for t = 1 to tmax do

3: Create_species_paral
4: Selection
5: Optimize_species_paral
6: Selection

In our particular master-slave model, the master processor executes TLUEGO se-

quentially. The parallelism comes from the simultaneous evaluation of the new candi-

date solutions in the creation function, and from the concurrent execution of the local

search procedure (see [131]). Therefore, new creation and optimization procedures have

been designed to cope with the parallel model. These new procedures will be called

Create_species_paral and Optimize_species_paral.

Basically, when the Create_species_paral takes place, the master obtains a new

offspring of candidate solutions for the leader’s facility. The evaluation of the objective

function Π1 at those candidate solutions is carried out in a parallel way. To this aim, the

master processor divides the list of candidate solutions by the number of processors and

delivers the resulting sublists among them all (including itself). Each processor receives

a species sublist from the master and evaluates Π1 at each of its elements. Notice that

the amount of information involved in these communications is pretty small: only the

location and the quality of the leader’s facility (the center of the species) need to be

sent.

Optimize_species_paral behaves similar to the previous procedure. Again, the mas-

ter divides the species list among the processors and distributes the resulting sublists.

Nevertheless, now, each processor executes the local search method SASS+WLWv (see

Subsection 3.2.2) to every species in its sublist.

Similar to TLUEGO, the parallel version PMP_TLUEGO includes a selection

mechanism just after the creation and optimization procedures (see Steps 4 and 6

of Algorithm 8). For the reasons expound previously, the execution of these procedures

are only carried out by a single processor, the master.

It is important to mention that the interchange of information among processors has

been carried out through MPI [69]. Processes are written in C++, and communications

and synchronizations are carried out by calling functions from the MPI library.

High performance computing applied to competitive facility location and design problems

106 A planar location and design leader-follower problem with endogenous demand

3.4.2 Shared memory programming for TLUEGO: SMP_TLUEGO

The second parallel approach of TLUEGO is devised to be executed in a multiprocessor,

hence, shared memory programming is considered. Contrary to the previous parallel

strategy, no messages are required to communicate processors, though a mechanism to

coherently share memory data is necessary. For the implementation of the problem at

hand, OpenMP has been selected, since it is a portable and scalable model, and gives

programmers a simple and flexible interface for developing parallel applications.

Concerning the parallel model, it can be considered a pseudo master-slave tech-

nique. OpenMP includes mechanisms to distribute the species list among the different

processors without the existence of a master processor. In this way there does no exist

a master processor which globally controls the algorithm and manages the species list.

It can be done in parallel by all the processors. Nevertheless, it is still necessary that

a single processor be in charge of applying the Selection procedure and updating the

species list that will be accessible to all processors. Accordingly, the parallelism is ap-

plied to the evaluation of the new candidate solutions in the creation function and to

the local search procedure. Therefore, new creation and optimization procedures have

also been designed. The structure of the proposed algorithm is similar to Algorithm 8,

although in this case, it cannot be considered a master-slave technique in the sense

that unlike PMP_ TLUEGO, in this case, no processor has unidirectional control over

the remaining ones. In the following, the main ideas of the SMP_TLUEGO algorithm

are summarized.

The parallel algorithm developed in this subsection considers that the species-list is

stored in shared memory. When the Create_species_paral is executed, each processor

picks up a new single species and evaluates it. Once a particular processor has finished

that task, it collects another species. This loop is repeated until all the new offspring are

evaluated. Notice that mutual exclusion is not needed, since each processor accesses

different memory areas. Additionally, note that no processor makes decisions about

what species must be evaluated by which processor, as happens in the previous version.

On the contrary, all the processors remain at the same hierarchical level.

Optimize_species_paral procedure differs from the Create_species_paral method in

the task carried out by each processor. Instead of only evaluating the species, it applies

the local search procedure. Notice that the number of function evaluations required to

High performance computing applied to competitive facility location and design problems

3.4 High performance computing 107

optimize a single species and hence, the computational load assumed by each processor,

may be quite different. The way the species are distributed among the processors helps

to balance the computational burden and to reduce the waiting time of the processors.

3.4.3 Hybrid parallel programming for TLUEGO: HPP_TLUEGO

This last parallel version of TLUEGO has been conceived to be executed in a multi-

computer where each node is a multiprocessor (see Figure 1.6), like for instance, Arabi.

The parallel programming combines message-passing mechanisms among nodes with

shared memory parallelization inside each node. MPI and OpenMP have been consid-

ered to implement the parallel version. The parallel model links a coarse-grain model

with a pseudo master-slave strategy.

For the problem at hand, each node executes TLUEGO. The species-list size and the

total number of function evaluations for the whole optimization process are internally

divided by the number of nodes, N . Concerning the migration procedure, two types of

nodes (collectors and workers) are considered. Half of the nodes act as collectors and

the other half as workers. At each communication, each node behaves either as a worker

(sender) or as a collector (receiver), although, they interchange their roles at the next

communication. The nodes are supposed to be connected in a ring topology and run

independent of the remaining ones. In a communication stage, node i is a worker and

sends its sublist to the next node i+1 (collector) (see the left part of Figure 3.4). Node

i+1 fuses this list with its own sublist and distributes the resulting list between both

nodes (see the right part of Figure 3.4). In the next communication stage, node i will

be a collector and will receive a sublist from node i-1, while node i+1 will be a worker

and will send the sublist to the node i+2 (see Figure 3.5). The migration process is

carried out at the first half of the levels of the algorithm. The communications among

nodes are implemented using MPI.

Notice that with the previous parallel strategy only, the computational resources

inside each node are not fully exploited, since only a single processor would be used.

To make use of the whole set of processors and improve the efficiency of the parallel

version, the parallel algorithm SMP_TLUEGO is considered inside each node instead

of the sequential version TLUEGO.

It is important to mention that parallel hybrid versions based on the master-slave

High performance computing applied to competitive facility location and design problems

108 A planar location and design leader-follower problem with endogenous demand

Figure 3.4: HPP_TLUEGO parallel strategy. Communication j.

Figure 3.5: HPP_TLUEGO parallel strategy. Communication j + 1.

strategy instead of the coarse grain paradigm as first hybridization level have also been

implemented. Nevertheless, the achieved efficiencies were quite poor, since the overhead

imposed by the communication costs increases. Notice that, following the idea of the

master-slave model, a processor inside a node will act as master whereas the remaining

ones will be slaves. This implies that the number of communications for this case will

be multiplied by Nc, the number of processors inside each node, as compared to the

SMP_TLUEGO parallel version.

High performance computing applied to competitive facility location and design problems

3.4 High performance computing 109

3.4.4 Computational studies

All the computational studies have been run in Arabi, always considering nodes with

8GB (see Subsection 1.3.5). The algorithms have been implemented in C++.

In order to study the performance of the parallel algorithms, 24 different problems

have been considered. In particular, the medium size problems (imax = 100) described

in Table 3.8 and used in the Section 3.3 have been considered. In addition, for every

setting of Table 3.11 a problem was generated by randomly choosing its parameters

uniformly within pre-specified intervals presented in Appendix. In all those problems,

the following choices were made: α1, α2 ∈ [0.5, 5], and FR1, FR2 = ([0, 25], [0, 25]).

Notice that all the parallel versions of TLUEGO have been developed considering

that the threshold used in the fuse process in the creation procedure has been set to

0, since it provides the better results.

So as to study the performance of PMP_TLUEGO, it has been considered that

it runs in N = 1, 2, 4, 8, 16, 32, 64 nodes, using a single processor per node (Nc = 1).

Concerning the SMP_TLUEGO performance analysis, it has been carried out in a

single node with 8GB, then N = 1 and Nc = 1, 2, 4, 8. Finally, the performance of

HPP_TLUEGO has also been studied by considering N = 1, 2, 4, 8 nodes, but now

using its Nc = 8 processors, i.e., all the available resources in a node have been selected.

To measure the performance of the parallel implementations when using P proces-

sors, the efficiency metric has been used, Eff(P) = T (1)
P ·T (P)

. Notice that T (1) is the time

employed by the sequential TLUEGO, and the value of P is given by the number N

of nodes multiplied by the number Nc of processors used in the nodes.

Table 3.12 shows, for the problems with imax = 100 demand points, the average

computing time (in secs.) and the mean efficiency Eff(P) obtained by each parallel

algorithm. Again, the algorithms have been run 10 times for each problem. As can be

seen, PMP_ TLUEGO as well as SMP_TLUEGO have either optimal or near-optimal

efficiency for up to P = 8 processors. The efficiency values decrease when the number

imax 500
jmax 2 15 25
k 0,1 0,5,10 0,7,15

Table 3.11: Settings of the test problems.

High performance computing applied to competitive facility location and design problems

110 A planar location and design leader-follower problem with endogenous demand

imax Algorithm N Nc P Time Eff(P)
100 PMP_TLUEGO 1 1 1 65470 -

2 1 2 32774 1.00
4 1 4 16507 0.99
8 1 8 8934 0.92

16 1 16 4861 0.84
32 1 32 2920 0.70
64 1 64 1800 0.57

SMP_TLUEGO 1 1 1 65470 -
1 2 2 32878 1.00
1 4 4 16928 0.97
1 8 8 8703 0.94

HPP_TLUEGO 1 1 1 65470 -
2 8 16 5013 0.82
4 8 32 3047 0.67
8 8 64 2006 0.51

Table 3.12: Efficiency results for problems with imax = 100.

of processors P increases. This tendency, which also appears in the HPP_TLUEGO

parallel version, may be explained by the parallel overheads and the waiting time, which

increase as the number of processors does, but so does also by the limited computational

load. Notice that a particular problem has a fixed burden which cannot be divided and

distributed constantly by larger values of P .

Apparently, in terms of efficiency, the HPP_TLUEGO parallel version is worse than

PMP_TLUEGO, since the obtained values for P = 16, 32, 64 are smaller. Neverthe-

less, notice that HPP_TLUEGO fully exploits the resources at their disposal, while

PMP_TLUEGO does not (it requires double nodes to obtain similar efficiency values).

Finally, the scalability of the proposed algorithms is analyzed. Broadly speaking,

this concept can be defined as the ability of an algorithm to manage a growing amount

of work. Table 3.13 shows the mean executing time and the average efficiency achieved

by the three parallel methods for instances with imax = 500 demands points. As can

be seen, all the proposed algorithms demonstrate increased performance by increasing

the problem size, i.e. the efficiency improves with regards to the previous set of experi-

ments (with imax = 100), see Table 3.12. On the other hand, the same tendency in the

efficiency values can be observed. Again, the efficiency decreases as the number of pro-

cessing elements increases. Those behaviors may be explained by the same arguments

as before.

High performance computing applied to competitive facility location and design problems

3.5 Conclusions 111

imax Algorithm N Nc P Time Eff(P)
500 PMP_TLUEGO 1 1 1 565358 -

2 1 2 282562 1.00
4 1 4 144663 0.98
8 1 8 75520 0.94

16 1 16 39194 0.90
32 1 32 21699 0.81
64 1 64 12290 0.72

SMP_TLUEGO 1 1 1 565358 -
1 2 2 283707 1.00
1 4 4 143416 0.99
1 8 8 73065 0.97

HPP_TLUEGO 1 1 1 565358 -
2 8 16 40751 0.87
4 8 32 24953 0.71
8 8 64 14773 0.60

Table 3.13: Efficiency results for problems with imax = 500.

3.5 Conclusions

In this study, a new (1|1)-centroid problem on the plane with endogenous demand has

been introduced. In the problem, a chain (the leader) has to decide where to locate

a new facility (and its quality) knowing that a competitor (the follower) will react by

locating another facility. The demand is assumed to be endogenous, depending on the

distances to and on the quality of the facilities. Three heuristics have been proposed

for handling the problem, namely, a grid search procedure, a multistart method and

an evolutionary algorithm. The computational studies have shown that the evolution-

ary algorithm TLUEGO provides the best results and is more robust than the other

strategies. However, the computational time employed by TLUEGO for solving a prob-

lem with 50 demand points is in average more than 2.5 hours. This clearly suggests

that a parallelization of the algorithm is needed, especially if real problems, with more

demand points, are to be solved.

A threshold value used within the fuse process included in the creation procedure

of TLUEGO has been investigated. It has been shown that the smaller the threshold,

the better the results obtained, but at the cost of an increase in CPU time and memory

requirements.

Furthermore, three parallel implementations of TLUEGO, devised to be executed

in different architecture platforms, have been proposed. All of them exhibit good per-

High performance computing applied to competitive facility location and design problems

112 A planar location and design leader-follower problem with endogenous demand

formance behaviors, obtaining either optimal or near-optimal efficiency for up to 8

processors. Additionally, their scalability has been demonstrated by solving problems

with different computational loads, and checking that the efficiency increases with the

size of the problems.

Depending on the computational environment available to the decision-maker, the

most suitable threshold and/or parallel algorithm should be selected. For instance, to

take advantage of today’s multicore personal computers, the shared memory program-

ming implementation SMP_TLUEGO should be used, with a threshold equal to 0 (if

memory allows). On the contrary, when working in a cluster as those available in most

of today’s supercomputing centers, the hybrid algorithm HPP_TLUEGO should be

used, since it allows to fully exploit all the computer power available in the nodes used.

High performance computing applied to competitive facility location and design problems

CHAPTER 4

Expanding a franchise: solving a planar

bi-objective facility location and design

problem

The literature on multi-objective competitive location models is rather scarce. This is

in part due to the fact that single-objective competitive location problems are difficult

to solve, and considering more than one objective makes the problem nearly intractable.

As far as the author knows, [60, 62, 63, 153] seem to be the only references on the topic.

In this chapter, the bi-objective problem described in [63] is revisited. A franchise

wants to increase its presence in a given geographical region by opening one new facility.

Both the franchisor (the owner of the franchise) and the franchisee (the actual owner

of the new facility to be opened) have the same objective: maximizing their own profit.

However, the maximization of the profit obtained by the franchisor is usually in conflict

with the maximization of the profit obtained by the franchisee.

As was mentioned in Chapter 1, solving a multi-objective problem means obtaining

the whole efficient set. To the extent of the author’s knowledge, only two exact gen-

eral methods, namely, two interval branch-and-bound methods (see [62, 63]) have been

proposed in literature with that purpose for the general nonlinear bi-objective prob-

lem (1.4). However, they are time consuming. Furthermore, they have large memory

requirements, so that only small instances can be solved with them.

On the other hand, the use of (meta)heuristics may allow to obtain good approxima-

tions of the efficient set, even for big instances. In particular, genetic and evolutionary

algorithms have proved to be good tools to cope with (1.4), see for instance the well-

known NSGA-II [40] or SPEA2 [162] algorithms. This is due to their ability to find

multiple efficient solutions in one single run. However, they are usually designed to ob-

tain a finite set of points approximating the Pareto-front given a budget in the number

High performance computing applied to competitive facility location and design problems

114 Expanding a franchise: solving a planar bi-objective facility location and design problem

of function evaluations, regardless the CPU time needed for that. In this thesis, a new

Fast and Efficient Multi-Objective Evolutionary Algorithm (FEMOEA), whose aim is

to obtain a good fixed size approximation of the Pareto-front quickly, is presented. To

this aim, a new method to improve the efficiency of points is proposed. A new stopping

rule is also introduced in FEMOEA, which allows to stop the algorithm as soon as a

good approximation of the Pareto-front is available, thus saving time as compared to

other criteria in which a fixed number of iterations or function evaluations have to be

performed.

The chapter is organized as follows. In Section 4.1, the bi-objective facility loca-

tion and design problem is described. In Section 4.2, the new algorithm FEMOEA

is introduced and applied to the bi-objective facility location problem. To show the

performance of the new method, the quality of the approximations of the Pareto-front

provided by the algorithm is analyzed in the computational studies (Subsection 4.2.6).

High performance computing approaches are investigated in Section 4.3. Finally, in

Section 4.4 the main conclusions are summarized.

4.1 The model

A franchise wants to increase its presence in a given geographical region by opening

one new facility. Both the franchisor and the franchisee want to maximize their own

profit.

In the model, the demand is supposed to be exogenous and concentrated at imax

demand points, whose locations locdi and buying power ŵi are known (notice that in

this model the demand is exogenous, i.e., fixed). The location locfj and quality of the

existing facilities are also known. As in the previous chapters, the demand points split

their buying power among all the facilities proportionally to the attraction they feel for

them (see [83, 96]). The attraction (or utility) function of a customer towards a given

facility depends on the distance between the customer and the facility as well as on

other characteristics of the facility which determine its quality. The location and the

quality of the new facility are the variables of the problem.

The following notation will be used throughout this chapter:

Indices

i index of demand points, i = 1, . . . , imax.

High performance computing applied to competitive facility location and design problems

4.1 The model 115

j index of existing facilities, j = 1, . . . , jmax.

Variables
z location of the new facility, z = (x, y).

α quality of the new facility (α > 0).

nf variables of the new facility, nf = (z, α).

Data
locdi location of the i-th demand point.

ŵi demand (or buying power) at locdi.

locfj location of the j-th existing facility.

di,j distance between locdi and locfj.

ai,j quality of facility j as perceived by demand point i.

gi(·) a non-negative non-decreasing function.
ai,j

gi(dij)
attraction that demand point i feels for facility j.

γi weight of the quality of the new facility as perceived by demand point i.

k number of existing facilities that are part of the franchise (the first

k of the jmax facilities are assumed to be in this category,

0 < k < jmax).

Miscellaneous
di(z) distance between demand point i and the new facility nf .

γiα

gi(di(z))
attraction that demand point i feels for nf .

From the previous assumptions, the total market share attracted by the franchisor

is

M(nf) =
imax∑

i=1

ŵi

γiα

gi(di(z))
+

k∑

j=1

ai,j

gi(di,j)

γiα

gi(di(z))
+

jmax∑

j=1

ai,j

gi(di(z))

.

It is assumed that the operating costs for the franchisor pertaining to the new

facility are fixed. In this way, the profit obtained by the franchisor is an increasing

function of the market share that it captures. Thus, maximizing the profit obtained

by the franchisor is equivalent to maximizing its market share. This will be the first

objective of the problem.

The second objective of the problem is the maximization of the profit obtained by

High performance computing applied to competitive facility location and design problems

116 Expanding a franchise: solving a planar bi-objective facility location and design problem

the franchisee, to be understood as the difference between the revenues obtained from

the market share captured by the new facility minus its operational costs. The market

share captured by the new facility (franchisee) is given by

m(nf) =
imax∑

i=1

ŵi

γiα

gi(di(z))

γiα

gi(di(z))
+

jmax∑

j=1

ai,j

gi(di,j)

and the profit is given by the following expression,

π(nf) = F (m(nf)) − G(nf),

where F (·) is a strictly increasing function which determines the expected sales (i.e.,

income generated) for a given market share m(nf), and G(nf) is a function which gives

the operating costs of a facility located at z with quality α.

In our computational studies we have considered F to be linear and G to be sep-

arable, in the form G(nf) = Ga(z) + Gb(α), where Ga(z) =
∑imax

i=1 Φi(di(z)), with

Φi(di(z)) = ŵi/((di(z))φi0 + φi1), φi0, φi1 > 0, and Gb(α) = e
α

α0
+α1 − eα1 , with α0 > 0

and α1 given values (other possible expressions for G(nf) can be found in [61]).

The problem considered is

max M(nf)

max π(nf)

s.t. di(z) ≥ dmin
i ∀i

α ∈ [αmin, αmax]

z ∈ FR ⊂ R
2

(4.1)

where the parameters dmin
i > 0 and αmin > 0 are given thresholds, which guarantee that

the new facility is not located over a demand point and that it has a minimum level of

quality, respectively. The parameter αmax is the maximum value that the quality of a

facility may take in practice. By FR we denote the region of the plane where the new

facility can be located.

Notice that (4.1) is a particular case of (1.4), in which f1(y) = −M(nf), f2(y) =

−π(nf) and the feasible set S is given by the constraints in (4.1).

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 117

4.2 A new method for approximating the Pareto-front

FEMOEA is an evolutionary algorithm devised to cope with nonlinear multi-objective

problems. Its main objective is to provide a good fixed size approximation of the Pareto-

front, i.e., a fixed number of well-distributed and non-dominated solutions. However,

it has been designed to do it quickly. To this aim, it combines ideas from typical al-

gorithms described in literature for solving general multi-objective optimization prob-

lems: an external archive is used to store preferable non-dominated solutions [104, 121]

(see Subsection 4.2.1), and the crowded comparison operator is used to guide the al-

gorithm towards a uniformly spread Pareto-front approximation [40]. Additionally, it

also inherits some concepts from other evolutionary algorithms devised to cope with

single-objective optimization problems. More precisely, FEMOEA shares some ideas

with UEGO. In particular, species are used, and the concept of a decreasing radius,

as a mechanism of maintaining a balance between exploration and exploitation of the

search space, is also considered here. Nevertheless, FEMOEA incorporates new mech-

anisms which help to improve the quality (efficiency) of the solutions and accelerate

the optimization process. The ‘improving method’ or the termination criteria are two

of those specific contributions.

In FEMOEA, each species is intended to occupy an efficient solution. For this

purpose, FEMOEA directs the species during the searching process towards the most

suitable regions. Therefore, notice that a particular species is not a fixed part of the

search domain, but it can move through the space as the search proceeds. ‘Species-

management’ is one of the core parts of FEMOEA. It consists of procedures for creating

and selecting species during the whole optimization process. Additionally, FEMOEA

includes an improving method, which has been logically separated from the species-

management. This means that FEMOEA can be easily adapted to solve any other

multi-objective problem, only adapting the improving technique.

4.2.1 Main concepts in FEMOEA

Species: center and radius

The most important concept in FEMOEA is that of species. As in UEGO, a species is

defined by a center and a radius. The center is a solution and the radius is a positive

High performance computing applied to competitive facility location and design problems

118 Expanding a franchise: solving a planar bi-objective facility location and design problem

number which determines the subregion of the search space covered by that species.

The main aim of the radius is to focus the searching operators on the corresponding

subregions. It is worth mentioning that the radius of a species is neither constant along

the execution of FEMOEA nor the same for each species. On the contrary, the radius

is a monotonous function that decreases as the optimization process moves forward.

Then, at each stage of the algorithm, several species with different radii can coexist

simultaneously. The use of different radii throughout the optimization process allows,

on the one hand, to identify regions in the search space with high quality solutions and,

on the other hand, not to waste too much time in regions of the search space which

are either already explored or do not provide high quality solutions [15]. This idea of

a decreasing radius is a legacy of UEGO [125].

Species attributes in the objective space

Apart from the center and the radius, a species has two attributes which are related to

the objective space: the non-domination rank (drank) and the crowding distance (cdist),

see [40]. The non-domination rank indicates the number of species which dominate that

particular species. In this sense, a zero value means that such a species is not dominated

by any of the remaining ones in the current population. On the other hand, the crowding

distance is an estimation of the density of solutions surrounding a particular solution

in a population. In this thesis, it is computed as the Euclidean distance between the

two closest solutions on either side of the point in the (normalized) criterion space.

An algorithm which calculates the crowding distance of each point in a population

POP was proposed in [40], but using the rectangular distance instead of the Euclidean

distance. That algorithm has been simplified to the case where only two objectives are

considered and modified to work with the Euclidean distance, see Algorithm 9. In this

work, Euclidean distance has been used since it represents the crowding better than

the rectangular distance.

In Algorithm 9, f i
l (with l = 1, 2) refers to the l-th objective function value of the

spi-th point in the set POP , and f
(max)
l and f

(min)
l refer to the maximum and minimum

objective function values of the l-th objective function, respectively.

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 119

Algorithm 9: Crowding distance assignment(P)

1: nPOP = |POP |
2: POP=sort(POP) {Sort using the first objective function value}
3: c

(1)
dist = c

(nPOP)
dist = ∞ {In this way, boundary points are always selected}

4: for spi = 2 to nPOP − 1 do

5: c
(i)
dist =

√(
f
(i−1)
1 −f

(i+1)
1

f
(max)
1 −f

(min)
1

)2

+

(
f
(i−1)
2 −f

(i+1)
2

f
(max)
2 −f

(min)
2

)2

Lists of species

During the optimization process, two lists of species are kept by FEMOEA, whose

maximum size Lmax, the same for both lists, is a given input parameter. The param-

eter Lmax refers to the desired number of points in the final set approximating the

Pareto-front. The first list, named population_list, is composed of Lmax diverse spe-

cies with different attributes, i.e. various radii, non-domination ranks and crowding

distances. FEMOEA is in fact a method for managing this list (i.e. creating, deleting

and improving species). The second list, called external_list, can be understood as a

deposit to keep non-dominated solutions. Notice that the number of non-dominated

points may be fewer than Lmax during the early stages of the optimization algorithm

and hence, the external_list may contain fewer elements than the desired ones. In fact,

it cannot be guaranteed that Lmax non-dominated solutions have been found once the

termination criteria have been satisfied, although this has always been the case in our

computational experiments. When this is not the case, the external_list and the po-

pulation_list are joined and the Lmax elements with the most preferable solutions is

offered as solution (see Definition 9).

Crowed comparison operator

Definition 9. A solution spi is preferable to a solution spi′, spi ≻ spi′, if

• di
rank < di′

rank, or

• di
rank = di′

rank and ci
dist > ci′

dist.

The previous relation is known as crowded comparison operator (see [40]). To ac-

celerate the selection process, both lists are always sorted according to the crowded

High performance computing applied to competitive facility location and design problems

120 Expanding a franchise: solving a planar bi-objective facility location and design problem

Algorithm 10: Algorithm FEMOEA
1: Init_species_lists
2: while termination criteria are not satisfied do

3: Create_new_species(evals)
4: if (length(population_list) > Lmax) then

5: Select_species(population_list)
6: Improve_species(population_list)
7: Update_external_list
8: if length(external_list) > Lmax then

9: Select_species(external_list)
10: Improve_species(external_list)
11: if length(external_list) < Lmax then

12: Compose_pareto

comparison operator, i.e. in ascending order according to non-domination rank, and

in descending order of the crowding distance when several elements share the same

non-domination rank.

4.2.2 The FEMOEA algorithm

A global description of FEMOEA is given in Algorithm 10. In the following, the different

key stages in the algorithm are described:

• Init_species_lists: In this procedure, as many species as parameter Lmax indicates

are created. The centers of the species are randomly computed, while the radii will

be the ones associated at level 1. Since such a radius coincides with the diameter

of the search space, the whole search area will be covered. The population_list

is initialized from this set of species, while the external_list consists only of the

non-dominated species.

After this procedure, the FEMOEA main loop starts, which basically consists of

three procedures: creating, improving and selecting species. This loop is executed until

a stopping condition is fulfilled, namely, whenever a considerable improvement of the

Pareto-front (placed in external_list) is not obtained among three consecutive approx-

imations or a number of maximum levels is achieved. The number of levels (cycles or

generations) will be given by the input parameter tmax.

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 121

• Create_new_species(evals): For every species in the population_list, evals/2 ran-

dom trial points in the area defined by its radius are created. evals refers to the

budget of function evaluations available for each existing species for creating a

new offspring. In the computational studies evals = 20 has been set.

Furthermore, for each new random candidate solution, the closest point (in the

objective space) in the external_list is calculated. Then, a new random point is

computed in the segment joining the candidate solution with its closest point.

Notice that the intermediate point can be placed outside the area covered by the

original species. If the intermediate point dominates the candidate solution, then

it will be included in the population_list as a new species. On the contrary, if

the candidate solution is the one which dominates the other, it will be the one

inserted in the population. Additionally, if the two points are indeterminate (not

one dominates the other), then they will both be inserted as new species. The

radius assigned to each new species is the one associated with the current level t.

The radius of a species created at level t, Rt, is given by a decreasing exponen-

tial function, where Rtmax and R1 are the given (input parameters) smallest and

largest radii. For a detailed description of how to compute the radius at each level

of the algorithm, see [125]. It is interesting to remark that a location in the search

space can belong to different species with different radii. Therefore, species with

small radii examine a relatively small area, their motion in the space is slower,

but they are able to differentiate between efficient solutions which are very close.

On the contrary, species with large radii study a somewhat bigger region, they

may move greater distances and discover new promising areas, which may be

analyzed conscientiously in later stages of the algorithm.

Additionally, both the non-domination rank and the crowding distance associated

to each new species are computed. The population_list is then sorted according

to the crowding comparison operator.

• Select_species(list): If list reaches its maximum allowable capacity, a decision has

to be made to determine which individuals should be kept and not removed. The

selection strategy used in this work is based on the crowded comparison operator

[40]. Then, the most preferable species will be selected, i.e. between two species

with different non-domination rank, the one with the lower rank is preferred.

High performance computing applied to competitive facility location and design problems

122 Expanding a franchise: solving a planar bi-objective facility location and design problem

Otherwise, the one which is located in a region with the fewest number of points

(i.e., the highest crowding distance) is chosen.

It is worth mentioning here that the selection procedure could be based on other

measures, such as the density estimation criterion of SPEA2 [162]. This technique

was also studied with a comprehensive set of test problems. However, the obtained

results, in terms of the distribution of the points in the Pareto-front (spread), were

similar for both methods.

• Improve_species(list): Most classical multi-objective optimization algorithms use

improving methods based on mutation operators for pushing a solution towards

the optimal Pareto-front. In those methods, only the objective function values are

used to guide the search strategy [40, 121, 162]. Such algorithms start from a solu-

tion. Thereafter, based on a pre-specified transition rule, the algorithm suggests a

search direction. A mutation is then performed along the search direction to find

a better solution. If a better solution is found, it becomes the new solution and

the above procedure is continued repeatedly a number of times. Those improving

methods are usually slow, requiring many function evaluations for convergence,

although they can be applied to many problems without a major change in the

algorithm.

For bi-objective problems, a new gradient-based improving method has been de-

signed, which will be discussed in Subsection 4.2.3. Broadly speaking, gradient-

based methods use the first-order derivatives of the objective functions to guide

the search process, which helps to quickly converge to near-optimal solutions.

Improve_species applies the improving method to all the species in the list. As can

be observed in Algorithm 10, this technique is applied to both the population_list

and the external_list at different stages of the optimization process, i.e., steps 6

and 10, respectively. Depending on the input list, there are minor changes in the

improving method (see Step 17 of Algorithm 11).

Once all the species in the input list have invoked the improving method, they

are reordered according to the crowded comparison operator.

• Update_external_list: During the previous process, new non-dominated points

may be generated. In Step 7 of Algorithm 10, the external_list is updated by

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 123

copying the non-dominated solutions of the population_list to it. Of course, this

implies that the points in the external_list dominated by the new ones have to

be removed, and a reordering of the remaining ones according to the new values

of the crowded comparison operator has to be performed.

• Compose_pareto: The solution provided by the algorithm must include Lmax so-

lutions since it is a requirement imposed by the user. If the number of solutions

in the external_list reaches this value, the Pareto-set presented as the final so-

lution will be the one kept on that list. Notice that, in the external_list, the

non-dominated solutions which are better spread during the optimization process

have been stored. However, it may happen that the number of non-dominated

solutions found by the algorithm is smaller than Lmax. In such a case, a joint

list will be composed considering all the elements in population_list and exter-

nal_list, and the Lmax most preferable solutions among them will be offered as a

result by the algorithm.

4.2.3 The improving method

In this work, a new method to improve the efficiency of points in nonlinear bi-objective

optimization problems is introduced. Basically, the algorithm looks for a search di-

rection based on gradient information. Then, a local optimizer is applied along the

suggested search direction to improve the current solution. Hybridization of multi-

objective evolutionary algorithms with local search algorithms has been investigated

for more than one decade. However, the use in particular of gradient-based informa-

tion in this area is still scarce. In some cases, the original problem is converted into

a single-objective problem to which a single-objective local search is applied [95]. In

other cases, a single-objective local search is repeated to (some of) the objective func-

tions [19]. More recently, gradient information has been used to obtain directions which

simultaneously improve all the objective functions [17, 18, 64].

In this thesis, this last strategy has been followed. To find improving directions,

several attempts are performed. They will be explained next. Furthermore, to move

along the improving direction, a multi-objective variant of the local procedure SASS

[147], has been developed. In fact, and unlike the other algorithms in literature, it does

not move only along the improving direction, but in a neigborhood of it. In this way,

High performance computing applied to competitive facility location and design problems

124 Expanding a franchise: solving a planar bi-objective facility location and design problem

a better spread can be obtained. Finally, the main steps of the improving method will

be depicted.

Looking for an improving direction

The strategies introduced next closely follow the ones described in [63]. Consider the

general problem (1.4), defined in Subsection 1.1.2, but only with two objective func-

tions, f1 and f2. Let y ∈ S be a feasible point of (1.4). The method wants to find an

improving direction, i.e., a vector v 6= 0, v ∈ R
n, such that

f1(y + δv) < f1(y) and f2(y + δv) < f2(y)

for a small value δ > 0.

Checking the coordinate directions

This study checks whether the coordinate directions satisfy the previous condition.

Let ∇fl = (∇1fl, . . . ,∇nfl) be the gradient of the objective function fl, l = 1, 2.

• If ∇jf1(y) < 0 and ∇jf2(y) < 0 for some j (i.e., both objectives are decreasing

along the j-th variable), then the vector v = (0, . . . , 1(j, . . . , 0) is an improving

direction.

• If ∇jf1(y) > 0 and ∇jf2(y) > 0 for some j (i.e., both objectives are increasing

along the j-th variable), then the vector v = (, 0, . . . ,−1(j, . . . , 0) is an improving

direction.

• Otherwise, there is no coordinate direction which is an improving direction.

Looking for interior directions

If none of the coordinate directions is an improving direction, we can still try to

find an improving direction as follows.

Assume that one of the objective functions is monotonous along a given coordi-

nate direction, say j, and the other objective function is monotonous along a different

coordinate direction, say j′, j′ 6= j. In this case, we can still try to find out whether

both objective functions are decreasing along a given direction v different from the

coordinate directions. In particular, the method will study it for directions which are

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 125

linear combinations of the j-th and j′-th coordinate directions, i.e., for directions v of

the form v = (v1, . . . , vn), with vk = 0 ∀k 6= j, j′.

Remember that the monotonicity of the objective function fl, l = 1, 2, along a

direction v is given by the directional derivative of fl along the vector v, Dvfl, and if

the differential function of fl at y is denoted by dfl(y), then

Dvfl(y) = lim
h↓0

fl(y + hv) − fl(y)

h
= dfl(y)(v) = ∇fl(y) · v.

In particular, if v is as described above, then

Dvfl(y) = vj∇jfl(y) + vj′∇j′fl(y).

Notice that the method is looking for a direction v such that

Dvfl(y) < 0, l = 1, 2. (4.2)

Theorem 10. Let f1, f2 : R
n → R be two real functions, y ∈ S a feasible point. Suppose

that there is no coordinate direction along which both functions are either increasing or

decreasing. Then

C.1. If ∇jf1(y) > 0,∇j′f2(y) > 0 and
∇jf2(y)

∇j′f2(y)
−

∇jf1(y)

∇j′f1(y)
> 0, then any vector

of the form v = (0, . . . ,−1(j, . . . , vj′ , . . . , 0), with

vj′ ∈

(
∇jf1(y)

∇j′f1(y)
,
∇jf2(y)

∇j′f2(y)

)

is an improving direction.

C.2. If ∇jf1(y) < 0,∇j′f2(y) > 0 and
∇jf1(y)

∇j′f1(y)
−

∇jf2(y)

∇j′f2(y)
> 0, then any vector

of the form v = (0, . . . , 1(j, . . . , vj′ , . . . , 0), with

vj′ ∈

(
−
∇jf1(y)

∇j′f1(y)
,−

∇jf2(y)

∇j′f2(y)

)

is an improving direction.

High performance computing applied to competitive facility location and design problems

126 Expanding a franchise: solving a planar bi-objective facility location and design problem

C.3. If ∇jf1(y) > 0,∇j′f2(y) < 0 and
∇jf1(y)

∇j′f1(y)
−

∇jf2(y)

∇j′f2(y)
> 0, then any vector

of the form v = (0, . . . ,−1(j, . . . , vj′ , . . . , 0), with

vj′ ∈

(
∇jf2(y)

∇j′f2(y)
,
∇jf1(y)

∇j′f1(y)

)

is an improving direction.

C.4. If ∇jf1(y) < 0,∇j′f2(y) < 0 and
∇jf2(y)

∇j′f2(y)
−

∇jf1(y)

∇j′f1(y)
> 0, then any vector

of the form v = (0, . . . , 1(j, . . . , vj′ , . . . , 0), with

vj ∈

(
−
∇jf2(y)

∇j′f2(y)
,−

∇jf1(y)

∇j′f1(y)

)

is an improving direction.

Proof. C1. Since f1 is increasing along the j-th coordinate direction and f2 along

the j′-th, the improving method will study if there exists a vector v of the form

v = (v1, . . . , vn), with vj, vj′ < 0 (it can be assumed, without loss of generality,

that vj = −1) and vk = 0 ∀k 6= j, j′, such that condition (4.2) holds.

This happens if there exists a vj′ ∈ R
− such that

−∇jfl(y) + vj′ · ∇j′fl(y) < 0, l = 1, 2,

that is, if

vj′ · ∇j′fl(y) < ∇jfl(y), l = 1, 2. (4.3)

Since ∇j′f1(y) < 0 (otherwise both functions would be increasing along the j′-th

coordinate direction), for l = 1 condition (4.3) becomes

vj′ >
∇jf1(y)

∇j′f1(y)

whereas the condition for l = 2 is

vj′ <
∇jf2(y)

∇j′f2(y)
.

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 127

Thus, in this case, both objective functions decrease along direction v whenever

∇jf1(y)

∇j′f1(y)
< vj′ <

∇jf2(y)

∇j′f2(y)

(notice that both fractions are negative, thus vj′ is negative too), or in other

words, whenever
∇jf2(y)

∇j′f2(y)
−

∇jf1(y)

∇j′f1(y)
> 0.

C2. Since f1 is decreasing along the j-th coordinate direction and f2 is increasing along

the j′-th, and the method wants a direction v along which both objective functions

are decreasing, it will research if there exists a vector v, with vj > 0, vj′ < 0 (it

can be assumed, without loss of generality, that vj = 1) and vk = 0 ∀k 6= j, j′,

such that condition (4.2) holds. Since vj = 1 and vj′ < 0, condition (4.2) holds if

∇jfl(y) + vj′ · ∇j′fl(y) < 0, l = 1, 2,

that is, if

vj′ · ∇j′fl(y) < −∇jfl(y), l = 1, 2. (4.4)

As in C1, ∇j′f1(y) < 0, thus, for l = 1 condition (4.4) becomes

vj′ > −
∇jf1(y)

∇j′f1(y)

whereas the condition for l = 2 is

vj′ < −
∇jf2(y)

∇j′f2(y)
.

Thus, both objective functions decrease along direction v whenever

−
∇jf1(y)

∇j′f1(y)
< vj′ < −

∇jf2(y)

∇j′f2(y)
,

that is, whenever
∇jf1(y)

∇j′f1(y)
−

∇jf2(y)

∇j′f2(y)
> 0.

High performance computing applied to competitive facility location and design problems

128 Expanding a franchise: solving a planar bi-objective facility location and design problem

C3. Now f1 is increasing along the j-th coordinate direction and f2 is decreasing along

the j′-th, so it will be studied if there exists a vector v, with vj < 0, vj′ > 0 (it

can be assumed, without loss of generality, that vj = −1) and vk = 0 ∀k 6= j, j′,

such that condition (4.2) holds. In this case condition (4.2) holds if

−∇jfl(y) + vj′ · ∇j′fl(y) < 0, l = 1, 2,

that is, if

vj′ · ∇j′fl(y) < ∇jfl(y), l = 1, 2. (4.5)

Since ∇j′f1(y) > 0 (otherwise both functions would be decreasing along the j′-th

coordinate direction), for l = 1 condition (4.5) becomes

vj′ <
∇jf1(y)

∇j′f1(y)

whereas the condition for l = 2 is

vj′ >
∇jf2(y)

∇j′f2(y)
.

Thus, both objective functions decrease along direction v whenever

∇jf2(y)

∇j′f2(y)
< vj′ <

∇jf1(y)

∇j′f1(y)
,

that is, whenever
∇jf1(y)

∇j′f1(y)
−

∇jf2(y)

∇j′f2(y)
> 0.

C4. Since f1 is decreasing along the j-th coordinate direction and f2 along the j′-th,

the method will observe if there exists a vector v, with vj, vj′ > 0 (it can be

assumed, without loss of generality, that vj = 1) and the rest of the components

equal to zero, such that condition (4.2) holds. And it holds if

∇jfl(y) + vj′ · ∇j′fl(y) < 0, l = 1, 2,

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 129

that is, if

vj′ · ∇j′fl(y) < −∇jfl(y), l = 1, 2. (4.6)

Since ∇j′f1(y) > 0 (as in case C3), for l = 1 condition (4.6) becomes

vj′ < −
∇jf1(y)

∇j′f1(y)

whereas the condition for l = 2 is

vj′ > −
∇jf2(y)

∇j′f2(y)
.

Thus, both objective functions decrease along direction v whenever

−
∇jf2(y)

∇j′f2(y)
< vj′ < −

∇jf1(y)

∇j′f1(y)
,

that is, whenever
∇jf2(y)

∇j′f2(y)
−

∇jf1(y)

∇j′f1(y)
> 0.

A good choice for vj′ could be to set it equal to the midpoint of the mentioned

intervals.

Moving the point along the improving direction

In this work, a modified version of the local optimizer SASS has been developed. The

SASS algorithm was initially proposed by Solis and Wets in [147] to cope with single-

objective optimization problems. It has been successfully applied to many optimization

problems, see for instance [110, 133]. Here, it has been adapted, on the one hand, to

work on multi-objective optimization problems and, on the other hand, to move the

input point along a given improving direction, instead of randomly looking for one.

The proposed algorithm will be called MO_SASS throughout this chapter. The way

the heuristic MO_SASS works is described in Algorithm 11.

The algorithm MO_SASS can be applied to an arbitrary multi-objective optimiza-

tion problem over a bounded subset of R
n, although internally it assumes, as the original

High performance computing applied to competitive facility location and design problems

130 Expanding a franchise: solving a planar bi-objective facility location and design problem

SASS does, that the range in which each variable is allowed to vary is the interval [0, 1].

The new points are generated using a Gaussian perturbation ξ ∈ R
n over the search

point y, a normalized bias term b ∈ R
n and an improving direction v to direct the

search. In this way, given y, a first trial point, y+ξ ·v is considered, and if it dominates

y, then y + ξ · v updates the initial point, but maintaining the same radius value. Oth-

erwise, if y and y + ξ · v are indeterminate solutions, then y + ξ · v is compared pairwise

to the points in the external_list. If it is dominated by any point from such a list, it is

discarded; otherwise, it is stored in the external_list. Notice that, as a consequence of

this inclusion, there may be dominated solutions in the external_list. In such a case,

those solutions are removed.

The coefficient values 0.4, 0.2 and 0.5 in steps 22, 24 and 26, used for updating the

bias term b are retained from Solis and Wets’s results [147]. The standard deviation σ

specifies the size of the sphere that most likely contains the perturbation vector, whereas

the bias term b locates the center of the sphere based on directions of past successes.

The size of the standard deviation of the normalized perturbation ξaux is controlled by

the repeated number of successes, scnt, or failures, fcnt. A success occurs when the

new point dominates the initial one. The contraction (ct) and expansion (ex) constants,

as well as the upper bound σub on the standard deviation σ, are set by the user.

As mentioned earlier, depending on the stage a species is created, this species has

an associated radius that determines a subregion of the search space covered by that

species. This means that any single step taken by the improving method in a given

species is no longer than the radius of the species.

Since in MO_SASS the standard deviation σ specifies the size of the sphere that

most likely contains the normalized perturbation vector, its upper bound σub should

have the same value than the normalized radius of the caller species. That is why the

parameter σub is also considered an input argument of MO_SASS. For the same reason,

the improving vector v must also be normalized.

It is worth mentioning that the use of MO_SASS allows, on the one hand, to push

y towards the true Pareto-set (steps 14-15 in Algorithm 11) and, on the other hand,

to study its surrounding area to obtain indeterminate solutions (steps 17-18 in Al-

gorithm 11). The inclusion of indeterminate points in the external_list may improve

the quality of the final Pareto-front, but it increases the computational effort (the

more elements on the list, the more computing time required to order it). Notice that

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 131

Algorithm 11: Algorithm MO_SASS(y, σub, v, bel)

1: Set iter = 1, y(iter) = y, b(iter) = 0, scnt = 0, fcnt = 0, σ(0) = σub,
σlb = max{σub/1000, 10−5}

2: Fix ex, ct, Scnt, Fcnt, Maxfcnt, itermax

3: while iter < itermax and fcnt < Maxfcnt do

4: σ(iter) = σ(iter−1)

5: if scnt > Scnt then

6: σ(iter) = ex · σ(iter−1)

7: if fcnt > Fcnt then

8: σ(iter) = ct · σ(iter−1)

9: if σ(iter) < σlb then

10: σ(iter) = σub and b(iter) = 0
11: if σ(iter) > σub then

12: σ(iter) = σub

13: Generate a multivariate Gaussian random vector ξ
(iter)
aux = N(b(iter), σ(iter)I)

14: if y(iter) + ξ(iter)v dominates y(iter) then

15: y(iter+1) = y(iter) + ξ(iter)v; scnt = scnt + 1, fcnt = 0
16: else

17: if bel = 0 and y(iter) + ξ(iter)v is not dominated by any point in the
external_list then

18: Include y(iter) + ξ(iter)v in external_list; scnt = 0, fcnt = 1
19: if fcnt = 0 then

20: for j = 1..3 do

21: if vj > 0 then

22: b
(iter+1)
j = 0.4ξ

(iter)
auxj + 0.2b

(iter)
j

23: else

24: b
(iter+1)
j = b

(iter)
j − 0.4ξ

(iter)
auxj

25: else

26: b(iter+1) = 0.5b(iter), fcnt = fcnt + 1, scnt = 0
27: iter = iter + 1
28: Return y(iter)

MO_SASS is called (through the Improving_method) by FEMOEA to improve both

the population_list and the external_list, which may mean a large number of indeter-

minate points. In order to reach a compromise between quality in the final Pareto-front

and computational effort, it was considered the decision of not executing steps 17-18

when the external_list is considered input in the Improving_method. The input param-

eter bel tells MO_SASS whether the solution y belongs to the population_list (bel = 0)

High performance computing applied to competitive facility location and design problems

132 Expanding a franchise: solving a planar bi-objective facility location and design problem

or the external_list (bel = 1).

The stopping rules are determined by the maximum number of iterations (itermax)

and by the maximum number of consecutive failures (Maxfcnt). After a comprehensive

computational study, they have been set to 400 and 20, respectively.

Structure of the improving method

The main steps of the improving method are enumerated in Algorithm 12. As can be

observed, initially, the coordinate directions are analyzed to discover possible improving

directions. Then, if none of the coordinate directions is an improving direction (ic = 0),

the interior directions are studied.

It is interesting to remark that all the coordinate directions are examined, in such

a way that the MO_SASS algorithm can be invoked n times at most with different

improving vectors as input. However, for the interior directions, only the first case

which fulfills the conditions is considered.

Algorithm 12: Improve_species(list)
1: for each species y in list do

2: ic = 0
3: Compute ∇fl = (∇1fl, . . . ,∇nfl), l = 1, 2
4: for each coordinate j do {(Check for coordinate directions)}
5: if coordinate direction j is an improving direction then

6: Compose the improving direction vector v
7: y = MO_SASS(y, σub, v, bel).
8: ic = ic + 1.
9: if ic = 0 then {(Check for interior directions)}

10: for a = 1..4 do

11: if condition C.a of Theorem 10 is satisfied then

12: Compose the improving direction vector v accordingly
13: y = MO_SASS(y, σub, v, bel)
14: Break
15: Return list

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 133

4.2.4 FEMOEA termination criteria

Usually, the termination criteria defined by the multi-objective optimization algorithms

described in literature are based on the number of function evaluations [40, 121, 162].

So, an algorithm stops when it reaches a maximum number of evaluations. However,

for the problem at hand, another stopping rule based on the well-known Hausdorff

distance is proposed. Informally, it measures how far two sets are from each other.

Mathematically, the modified Hausdorff distance hd used in FEMOEA is given by:

hd(Q1, Q2) =

P

a∈Q1
min{d(a,b):b∈Q2}

max{d(a,a′):a,a′∈Q1}
+

P

b∈Q2
min{d(a,b):a∈Q1}

max{d(b,b′):b,b′∈Q2}

2
,

where Q1 and Q2 are two given discrete sets and d(·, ·) is a distance function (the

Euclidean distance has been used).

Specifically, the algorithm finishes if during three consecutive iterations, the changes

experimented in the external_list are negligible (in terms of the objective function

values), for a given tolerance tol (for this work, tol = 10−7), i.e. the algorithm stops at

iteration t provided

hd(f(external_list(t)), f(external_list(t−1))) < tol, and

hd(f(external_list(t−1)), f(external_list(t−2))) < tol.

Nevertheless, as a safeguard, a second termination criterion based on the number

of iterations executed by FEMOEA has been considered. Then, the algorithm stops

if the previous condition holds or a maximum number of iterations has been fulfilled.

This maximum value is represented by the input parameter tmax.

Notice that the first stopping criterion allows the algorithm to stop when a good

approximation of the Pareto-front is obtained, without reaching the maximum num-

ber of iterations. This allows the algorithm the saving of a lot of CPU time in some

instances.

4.2.5 FEMOEA input parameters

Five input parameters must be provided by the user:

• Lmax: The number of solutions which must compose the final approximation of

High performance computing applied to competitive facility location and design problems

134 Expanding a franchise: solving a planar bi-objective facility location and design problem

the Pareto-front.

• tmax: The maximum number of levels (or iterations).

• R1 and Rtmax : The radius that is associated with the minimum and maximum

level, respectively.

• tol: The tolerance associated with the termination criterion.

Notice that the only parameters which really need to be fine tuned are Rtmax and

tmax. The remaining ones are either a determination of the user based on his/her expe-

rience, requirements or needs (as occurs with the value of Lmax and tol), or a parameter

associated with the particular problem to be handled (R1).

4.2.6 Computational studies

All the computational studies have been run in the supercomputer Arabi of the Su-

percomputing Center of Murcia, Spain. In these studies, each problem was run in one

of the cores of the nodes with 16GB memory (one problem at a time). As for the

interval B&B method (iB&B), the implementation by B. Tóth introduced in [63] has

been employed, which uses the interval arithmetic of the PROFIL/BIAS library [105]

and the automatic differentiation of the C++ Toolbox library [85]. FEMOEA has been

implemented in C++.

In order to have an overall view of the performance of the algorithm, different

types of problems have been generated, varying the number imax of demand points, the

number jmax of existing facilities and the number k of those facilities belonging to the

chain. The settings used were (imax = 25, 50, jmax = 2, k = 1), (imax = 25, 50, jmax =

5, k = 1, 2) and (imax = 25, 50, jmax = 10, k = 2, 4). For every setting, 10 instances

were generated by randomly choosing the parameters of the problems uniformly within

pre-defined intervals (see Appendix). The searching space proposed in [135] has also

been considered here for every problem.

As a general rule, the algorithm iB&B has been executed considering a tolerance

of eps = 0.03 (the maximum width of a box on the solution list), which is not a

negligible value. Even so, the algorithm ran out of memory when trying to solve several

instances. In each of those cases, the value of eps was progressively increased until

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 135

the algorithm was able to solve that particular problem. Notice that the eps value is

related to the quality of the final solution (the larger the value of eps, the greater the

intervals containing the exact Pareto set). Regarding FEMOEA, it was found that a

good parameter setting to deal with the current multi-objective optimization problem

is: tmax = 30, Rtmax = 0.005 and tol = 10−7. The parameter R1 coincides with the

diameter of search space. Furthermore, FEMOEA has been analyzed for two different

values of the number of points in the Pareto-front, Lmax = 200 or 400.

To measure the performance of FEMOEA, two aspects are under consideration,

that of effectiveness and that of efficiency [89]. Notice that for stochastic algorithms,

performance indicator values are also stochastic. That is why for each random indicator,

the expected value is approximated by taking the average over 5 runs.

As an effectiveness metric, whether the heuristic algorithm has successfully found

an approximation of the Pareto-front was checked. A success means that both the

objective function values of the solution points are included in the corresponding in-

tervals provided by the iB&B method, and the points themselves are included in the

corresponding solution boxes offered by iB&B. This is the first aim of the study, that

is, to prove that all the solution points provided by FEMOEA are certainly efficient

points (or are very close to efficient points). Additionally, for measuring the goodness

of an approximation to the whole Pareto front, the so-called hypervolume measure,

hyper, has also been computed [160]. Notice that the hyper value becomes larger as

the number of points in the Pareto-front increases. In this sense, track of the number

of generated points Lmax in the set approximating the Pareto-front should be kept,

since theoretically speaking, higher values of hyper represent better approximations

of the Pareto-front. For the iB&B algorithm, the interval [lowH, uppH], whose lower

limit gives the hypervolume obtained from the upper-right corner of the boxes in the

solution list of iB&B and whose upper limit gives the hypervolume obtained from the

lower-left corners, is provided. It is important to mention that, prior to the computa-

tion of that hypervolume, dominated points are removed. [lowH, uppH] contains the

exact hypervolume of the true Pareto-front. Furthermore, since the number of boxes in

the solution list provided by iB&B is usually very high (with a mean value of 37017 and

a standard deviation of 36287) such an interval may be considered a good estimation

of that value. The second aim of the study is to prove that if FEMOEA approximates

the Pareto-front with enough points, then the corresponding hypervolume lies in the

High performance computing applied to competitive facility location and design problems

136 Expanding a franchise: solving a planar bi-objective facility location and design problem

TimeiBB eps T ime200 Time400 [lowH, uppH] hyper200 hyper400

209 0.03 262 537 [146.317,146.532] 146.320 146.332
489197 0.05 347 1144 [1.326,1.328] 1.323 1.326
508028 0.03 273 596 [3.157,3.159] 3.146 3.158
97404 0.03 310 730 [112.931,113.380] 112.728 112.956

551537 0.05 308 910 [1.751,1.764] 1.754 1.759
4536 0.03 274 562 [553.147,554.340] 553.151 553.163

569547 0.03 309 756 [2.282,2.283] 2.278 2.282
81687 0.03 266 596 [428.519,429.229] 427.964 428.800

389738 0.04 338 1072 [1.342,1.344] 1.340 1.343
281464 0.04 339 989 [1.762,1.763] 1.758 1.761
297340 0.05 302.6 789.2 [125.253,125.512] 125.176 125.288

Table 4.1: Hypervolume and computing time for problems with setting (25, 5, 2).

interval.

It is worth mentioning that FEMOEA approximates the Pareto front with 100%

success for all the problems (for both Lmax = 200 and Lmax = 400), i.e. its solutions are

always included in the intervals provided by the iB&B algorithm. Therefore, only hy-

pervolume results will be shown as effectiveness measurement (see the last two columns

of tables 4.1 and 4.2, where the hypervolume when Lmax = 200 and Lmax = 400 points

are used to approximate the Pareto-front, are shown, respectively).

As for the efficiency of the algorithm, one should measure the effort made to obtain

the final result. Here, the average computing time in the five runs for FEMOEA to

reach the result (Time200 when Lmax = 200 and Time400 when Lmax = 400) has been

measured. For the shake of completeness, the computing time for iB&B (TimeiBB) is

also provided.

Table 4.1 shows the computing time and the hypervolume metric obtained by both

iB&B and FEMOEA (for both Lmax = 200 and Lmax = 400), for a set of 10 instances

with setting (25, 5, 2). Additionally, the tolerance required by iB&B to solve a particular

problem is also shown (see column eps). The average values for the 10 problems have

been computed and they are shown in the last line of the table. Notice that, instead

of computing the average value of eps in the last column, the maximum value of eps

in the ten instances is reported. As can be observed, the iB&B algorithm is very

erratic regarding computing time, while the evolutionary algorithm seems to be more

High performance computing applied to competitive facility location and design problems

4.2 A new method for approximating the Pareto-front 137

(imax, jmax, k) TimeiBB max(eps) Ni0.03 Time200 Time400 [lowH, uppH] hyper200 hyper400

(25,2,1) 304440 0.04 5 210 670 [199.982,200.466] 199.679 200.065
(25,5,1) 235880 0.05 7 248 706 [75.006,76.363] 75.018 75.087
(25,5,2) 297340 0.05 6 302 789 [125.253,125.512] 125.176 125.288
(25,10,2) 161270 0.07 7 441 962 [422.501,423.243] 421.768 422.615
(25,10,4) 149140 0.05 8 446 980 [354.444,355.200] 353.694 354.478
(50,2,1) 91113 0.04 8 368 935 [155.721,156.230] 155.659 155.860
(50,5,1) 51111 0.04 8 555 1245 [105.892,106.135] 105.822 105.982
(50,5,2) 92467 0.04 6 528 1156 [113.764,114.256] 113.690 113.858
(50,10,2) 244080 0.04 7 870 1807 [107.110,107.459] 106.976 107.207
(50,10,4) 123380 0.07 9 905 1838 [78.797,79.164] 78.834 78.903

All 175022 0.07 7.1 487 1109 [173.8470,174.4028] 173.6316 173.9343

Table 4.2: Average values for Hypervolume and computing time for problems.

regular, i.e. it always spends similar computing time for instances with the same setting.

Additionally, it is difficult to determine the suitable tolerance to execute iB&B for a

given problem in advance. As can be seen on this table, there exist four cases where a

different value of eps = 0.03 had to be considered.

FEMOEA increases its hyper value as the number of points Lmax in the Pareto-front

increases. As can be observed on Table 4.1, the hypervolume covered by the heuristic

with 400 points is always included in the interval [lowH, uppH]. On the other hand,

with 200 points in the Pareto-front, the hypervolume is smaller than the lower limit for

7 out of 10 problems. This clearly shows that in order to have a good approximation

of the Pareto-front for this difficult nonlinear multi-objective problem 200 points are

not enough.

For the sake of brevity, the particular results for the rest of the settings are not

shown; but in order to have a general overview, the summarizing values of the last lines

(as in Table 4.1) are detailed. Table 4.2 encapsulates those results. Additionally, a new

column has been included (Ni0.03), which indicates the number of instances executed

by iB&B with a tolerance value of eps = 0.03. The remaining instances have been run

with larger values of eps, being max(eps) the maximum considered value. Again, a

summarizing last line has been included.

As can be observed from the results with Lmax = 400, the FEMOEA average hyper-

volume is always included in the corresponding iB&B intervals, which means that the

Pareto-fronts provided by FEMOEA cover in practice all the area of the true Pareto-

front. It is important to mention that the hypervolume obtained by the heuristic with

High performance computing applied to competitive facility location and design problems

138 Expanding a franchise: solving a planar bi-objective facility location and design problem

Lmax = 400 points is always included in the interval [lowH, uppH] for any particular in-

stance. Of course, depending on the particular problem, fewer points may be required.

See, for example, the value of hyper200 for the settings (25, 5, 1) and (50, 10, 4), where

Lmax = 200 points are enough to, in average, cover the true Pareto-front.

Additionally, iB&B was able to solve 71% of the test problems with eps = 0.03

(see Table 4.2). The average computing time spent by the exact algorithm for solving

this subset of instances was 118080 seconds (32.8 hours). On the other hand, the

subset of problems executed by iB&B with higher values of eps involves an average

execution time of 284340 seconds (78.9 hours). This means that, independent of the

complexity of the instance at hand and the eps tolerance required to handle it, the

iB&B method has been completely superseded by the evolutionary algorithm in terms

of computing time: FEMOEA needs less than 1% of the computing time of iB&B, and

this considering Lmax = 400 points in the Pareto-front. Remember, however, that iB&B

is an exact method which computes a set of boxes guaranteed to contain the complete

efficient set, whereas FEMOEA, despite its good effectiveness in results (hypervolume),

provides just an approximation of it.

4.3 High performance computing

As can be seen in previous computational studies, when the set approximating the

Pareto-front must have many points (because a high precision is required), then the

computational time needed by FEMOEA may not be negligible at all. Furthermore,

the computational resources needed may be so high that a PC may run out of memory.

In those cases, parallelizing the algorithm and running it in a supercomputer may be

the best way forward. As far as the author’s knowledge is concerned, the development

of parallel multi-objective evolutionary algorithms is a booming field, which has not

been explored enough (see [4]).

In this thesis, a parallel algorithm with application to the bi-objective facility loca-

tion problem described in Section 4.1, called FEMOEA-Paral, is presented in Subsec-

tion 4.3.1. Then, its efficiency and effectiveness is analyzed in Subsection 4.3.2.

High performance computing applied to competitive facility location and design problems

4.3 High performance computing 139

4.3.1 FEMOEA-Paral

The programming paradigm used to parallelize FEMOEA may be considered a coarse-

grain model. Similar to previous proposals, each processor executes FEMOEA inde-

pendent of the remaining ones most of time but considering a smaller population_list.

More precisely, the length of such a list will be equal to L′
max = Lmax/P , assuming

that P processors will be available. This list will be named local_population_list in

the following. Therefore, the idea is that different processors work with a smaller and

different species list in such a way that, when merging all the local lists, a population

list similar to that of the sequential version can be obtained. Notice that the species

in the population list can create a new offspring or be improved without participation

of the remaining ones. Consequently, there exists an intrinsic parallelism which will

consist of dividing the species among the number of processors.

Nevertheless, although there exits no relationship among species in the popula-

tion list, the evolution of the population list highly depends on the solutions stored

in the external list. Furthermore, the external list may be modified (increasing, re-

moving or updating species) by procedures initially applied over the population list.

Then, to prevent poor effectiveness, the external_list is not divided among the proces-

sors, on the contrary, each processor has a local copy of it. Such a list will be called

local_external_list throughout this thesis. An important issue to highlight is that, un-

like the sequential version, those two lists are not sorted by the crowded comparison

operator, but only by the first objective function value. Since the selection will be car-

ried out in parallel, the maintenance of sorted lists by crowded comparison operator is

counter-productive in terms of efficiency.

Apart from these two lists, another list, called auxiliary_external_list is main-

tained during the optimization process. Such a list is only stored at the processor with

identification number 0 and keeps the most preferable species found during the whole

optimization process.

Algorithm 13 sketches the structure of the parallel algorithm. In the following, the

different key stages are described.

• Init_species_lists_paral: Initially, L′
max species are created at each processor

(Step 1 of Algorithm 13). As in the sequential version, the center of the spe-

cies are randomly computed, while the radii will be the one associated at level 1.

High performance computing applied to competitive facility location and design problems

140 Expanding a franchise: solving a planar bi-objective facility location and design problem

Algorithm 13: FEMOEA-Paral
1: Init_species_lists_paral
2: while termination criteria are not satisfied do

3: Create_new_species_paral(evals)
4: Select_species_paral(local_population_list)
5: Improve_species_lists_paral
6: Update_local_external_lists
7: Select_species_paral(local_external_list)
8: Improve_external_list_paral
9: if length(auxiliary_external_list) < Lmax then

10: Compose_pareto

The local_population_list is initialized from this set of species, while the local_ex-

ternal_list will consist only of the non-dominated species.

After this procedure, a loop starts, which basically creates, selects and improves

species. This loop is executed until a stopping condition is fulfilled, namely, whenever

a considerable improvement is not obtained among three consecutive approximations

of the local Pareto-front (placed in auxiliary_external_list) or the maximum level tmax

is achieved. Notice that the termination criteria is controlled by processor P0. Then,

if the stopping rule is satisfied, it sends a flag to the remaining processors indicating

that the optimization procedure has finished.

• Create_new_species_paral(evals): Each processor executes the sequential Cre-

ate_new_species procedure but considering its own local_population_list, with

length equal to L′
max = Lmax/P (see Subsection 4.2.2). It is important to mention

that, after the creation procedure, the length of the local_population_list at each

processor is usually much larger than L′
max.

• Select_species_paral (list): In addition to the previous procedure, during the

optimization process, the local_population_list as well as the local_external_list

may be modified by including new species or modifying the existing ones. There-

fore, following the spirit of the sequential version, a selection procedure is re-

quired. In order to prevent a decrement in the effectiveness, selections are not

carried out locally at each processor. Instead, a global selection considering all

the lists at the P processors is accomplished. This may imply that large amounts

High performance computing applied to competitive facility location and design problems

4.3 High performance computing 141

Figure 4.1: Select_species_paral procedure.

of data must be frequently transferred among processors. To speed-up the com-

munication overheads and hence the selection procedure, a hierarchical tree com-

munication schema has been designed. Figure 4.1 represents the global idea of

this communication model. Let us assume that the root of the tree is processor

P0. Then, processor P0 may be understood as the collector of all the transferred

information.

High performance computing applied to competitive facility location and design problems

142 Expanding a franchise: solving a planar bi-objective facility location and design problem

The maximum width of the hierarchical tree is given by the number of available

processors P , which are identified by Pid with id ∈ [0, P−1]. Its maximum number

of stages (or levels) is given by stgmax = log2(P). Each stage has associated a

figure stg ∈ [0, stgmax]. There exist three kinds of processors: senders, receivers

and idle processors. As can be observed in Figure 4.1, the role of each processor

varies through the communication model.

When a processor is a receiver, it obtains a list from a sender processor, composes

a joint list considering the own species list and the received one and computes

the drank value associated to each species. Then, a selection is carried out, which

will vary depending on the transferred list and the stage of the communication

model.

– If list refers to local_population_list. In this case, if stg < stgmax, the se-

lection is only carried out in terms of domination ranks. More precisely, the

minimum non-domination rank dmin
rank in such a way that at least 2·L′

max·2
stg+1

species exists with a non-domination rank smaller than or equal to dmin
rank is

computed. Those species with drank ≥ dmin
rank will be removed from the joint

list. The remaining ones will be transferred through the communication hi-

erarchical tree. In the last stage of the selection procedure, i.e. stg = stgmax,

then the receiver processor (P0) is the hierarchical tree root, and it will select

the Lmax most preferable species by using the crowded comparison opera-

tor described in Subsection 4.2.1. The resulting population_list will then be

distributed back among all the processors, in such a way that L′
max species

will be sent directly to each processor. Figure 4.2 depicts the global idea of

this communication procedure.

– If list refers to local_external_list and stg < stgmax, only the non-dominated

species will be maintained on the joined list and transferred to the next

stage of the hierarchical communication tree. If stg = stgmax, processor P0

(the receiver) will reduce the joint list to the Lmax most preferable species

and will store it in its own local_external_list. Then, P0 distributes its

local_external_list directly among all the processors as explained before

(see Figure 4.2).

High performance computing applied to competitive facility location and design problems

4.3 High performance computing 143

Figure 4.2: Distribution of a list carried out by processor P0.

• Improve_species_lists_paral: This procedure executes the Improve_species(list)

algorithm described in Subsection 4.2.3, where the input list is the local_popu-

lation_list, which has a length equal to L′
max. It is important to remember here

that, as a consequence of this method, the species belonging to the local_popu-

lation_list may be improved, i.e. substituted by species which dominate them.

Additionally, this procedure may also add new points to the local_external_list

when indeterminate species are found (see Subsection 4.2.3).

• Update_local_external_lists: After the previous procedure, the local population

list may contain species which deserve to be included in the external list. Then,

similar to the sequential version, the local_external_list is updated by copying the

non-dominated species of the local_population_list to it. Of course, this implies

that the points in the local_external_list dominated by the new ones have to be

removed.

Finally, a selection procedure is carried out over the local_external_list where

High performance computing applied to competitive facility location and design problems

144 Expanding a franchise: solving a planar bi-objective facility location and design problem

the Lmax most preferable solutions are chosen.

• Improve_external_list_paral: Each processor applies the Improve_species(list)

over the received species (from the local_external_list sent by P0) and sends them

back to processor P0 by using the communication model depicted in Figure 4.1.

If stg < stgmax, the selection procedure carried out by the receiver processors will

maintain the non-domination species. On the contrary, if stg = stgmax, processor

P0 will join the auxiliary_external_list to the received improved species, and

will apply a selection procedure, where only the Lmax most preferable species are

maintained. Finally, P0 will directly send the whole auxiliary_external_list to

each processor (see Figure 4.2), which becomes their new local_external_list

• Compose_pareto: As has been stated, the solution provided by the algorithm

must include Lmax species. If the number of species in the auxiliary_external_list

reaches this value, the set offered as an approximation of the Pareto-set will be

the one kept on that list. Otherwise, the local population lists are sent to P0

using the hierarchical tree communication schema explained before (see Figure

4.1), which joins these lists to the auxiliary_external_list, and the Lmax most

preferable species will be offered as a result by the algorithm.

4.3.2 Computational studies

As in the previous chapters, the performance of the parallel algorithm has been studied

in terms of effectiveness and efficiency. To this aim, a single problem per configuration

(of those solved in Subsection 4.2.6) has been run with different number of processors

P = 1, 2, 4, 8, 16, 32, 64. However, in this case, the behavior of FEMOEA-Paral has

been analyzed with higher values of Lmax. In particular, each problem has been solved

with Lmax = 400, 800, 1600. Again, to counteract the randomness effect, each problem

has been executed 5 times and average values have been computed.

The effectiveness has been tested, on the one hand, by checking if all the solution

points provided by FEMOEA-Paral are certainly efficient points (or are very close to

efficient points). To this aim, similar to the sequential version, whether both the objec-

tive function values of the solution points are included in the corresponding intervals

provided by the iB&B method, and the points themselves are included in the corre-

High performance computing applied to competitive facility location and design problems

4.3 High performance computing 145

sponding solution boxes offered by iB&B is studied. If so, a success can be considered.

On the other hand, whether the corresponding hypervolume hyper lies in the inter-

val [lowH, uppH] provided by iB&B as well as the behavior of both FEMOEA and

FEMOEA-Paral when the number of points in Pareto-front, Lmax, increases has been

tested.

It is worth mentioning that FEMOEA-Paral has approximated the Pareto front with

100% success for all the executed problems. Furthermore, the obtained hyper values

have always been included on the interval [lowH, uppH] for any particular instance.

Finally, as expected, that the hyper value increases as the number of points Lmax

in the Pareto-front does has been observed. On the other hand, that the hypervolume

obtained by the parallel version is similar to the one obtained by the sequential method

has been checked. This has been a challenge, since the sequential version has global

control over both the population and the external lists. On the contrary, the parallel

version has carried out some decisions based on local knowledge. The designed selection

procedures have helped to counteract these drawbacks.

To measure the computational effort of obtaining the solutions, the efficiency Eff

measure has been computed. Table 4.3 summarizes the average results for different

values of P and grouped them according to the value of Lmax. The average hyper has

also been included. As can be seen, the higher the Lmax values, the larger the hyper.

Concerning the efficiency, it increases up to 8 processors, and then it starts to

decrease. Even so, promising results have been obtained and values very superior to

the ideal case have been achieved in most cases.

It is important to mention that the tendencies observed in Table 4.3, are not a

Lmax=400 Lmax=800 Lmax=1600

P hyper T ime Eff hyper T ime Eff hyper T ime Eff

1 93.1227 1439 - 93.1988 8186 - 93.2359 36028 -
2 93.1273 280 2.57 93.2003 1473 2.78 93.2365 8736 2.06
4 93.1271 128 2.82 93.2005 318 6.43 93.2365 1718 5.24
8 93.1266 72 2.50 93.2005 167 6.11 93.2365 729 6.18

16 93.1268 49 1.82 93.2003 110 4.64 93.2364 295 7.63
32 93.1270 43 1.06 93.2001 90 2.84 93.2362 231 4.87
64 93.1258 38 0.59 93.2001 84 1.53 93.2362 218 2.58

Table 4.3: Average results. Average iB&B’s Hypervolume [lowH, uppH] = [93.08106, 93.24334].

High performance computing applied to competitive facility location and design problems

146 Expanding a franchise: solving a planar bi-objective facility location and design problem

P Creation Selection Improving Selection (ext.lists) Improving (ext.lists) T ime Eff
(Ppop lists) (Ppop lists) Tco Tcm Total Tco Tcm Total

1 128 713 12171 6157 - 6157 680 - 680 21537 -
2 64 601 2225 1104 954 2057 349 31 380 5774 1.86
4 32 119 388 117 193 310 192 35 227 1105 4.87
8 20 84 171 33 106 139 103 35 138 567 4.75

16 8 72 67 7 75 82 43 32 75 314 4.29
32 4 69 32 3 83 87 22 32 54 256 2.63
64 2 66 16 2 96 98 11 33 44 238 1.41

Table 4.4: Times employed by FEMOEA-Paral in some steps of the algorithm for the problem (50,10,4).

consequence of computing average values. On the contrary, the behavior is similar

when particular instances are analyzed.

Taking the spectacular efficiency results into account, a deeper study is demanded.

To this aim, a particular problem (the one with setting (50, 10, 4)) has been selected

and analyzed. Table 4.4 shows the computing time employed by the steps of both

FEMOEA and FEMOEA-Paral which can influence the efficiency, see algorithms 10

and 13, respectively.

Column ‘Creation’ refers to Create_new_species procedure when P = 1 and to

Create_new_species_paral for larger values of P . Notice that, ideally, the Create_new_

species_paral method should reduce the computational time associated to the sequen-

tial creation procedure proportionally to the number of processors P , since the length

of local_population_list is reduced to L′
max = Lmax/P . As can be seen in the table, the

prospects are almost satisfied. It is important to mention that the smaller the length

of the population list, the smaller the number of new species inserted in it.

Column ‘Selection (Ppop lists)’ involves the sequential Select_species(population_

list) procedure and the Select_species_paral(local_population_list) method. The ob-

jective of both methods is to obtain a population with the Lmax most preferable so-

lutions. Notice that, in order to maintain the effectiveness of the sequential version

and compensate its global knowledge of the population, at each stage of the hier-

archical communication tree, the intermediate selections carried out by the parallel

method were relaxed by allowing redundant work, i.e. 2 ·L′
max · 2

stg+1 were maintained

at each stg < stgmax. The key point is that the parallel procedure works with smaller

list lengths, which permits to reduce the computing time of the sequential version,

although not proportionally to the number of processors. Ideally, the smaller the list

High performance computing applied to competitive facility location and design problems

4.3 High performance computing 147

lengths, the better the efficiency. However, due to the fact that when the number of

processors increases, the list size at each processor decreases, it turns out that the

smaller the list sizes, the higher the communication overheads. This explain this ten-

dency in the efficiency, i.e. it increases for up to 8 processors and decreases from this

value of P .

Column ‘Improving (Ppop lists)’ refers to the Improve_species(population_list) and

Improve_species_lists_paral of algorithms 10 and 13, respectively. Notice that, at the

beginning of these procedures, the length of the population to be improved as well

as the length of the external list is Lmax for the sequential version. On the contrary,

for the parallel version, the lengths of the species population and the external list

are L′
max and Lmax, respectively. Additionally, remember that, as a consequence of the

application of those methods, the species in the corresponding population list may be

improved (updated) or new solutions may be included on the associated external list.

The inclusion of a species on the external list may suppose (i) a previous comparison

to determine that any point in the external list dominates that solution, (ii) a removal

of solutions (on the external list) which are dominated by the new one and (iii) a

sorting of the external list. Of course, the smaller the length of the population list,

the fewer the number of solutions which may deserve being included in the external

list and hence, the lighter the effort to accomplish the inclusion procedure. Having a

look at the figures in Table 4.4, it is possible to observe that such an effort does not

decreases linearly, but exponentially. This procedure is, therefore, one of the causes for

those fantastic efficiency values.

The computing time associated to Step 7 in Algorithm 10 (resp. Step 6 in Al-

gorithm 13) is not shown, because its influence on the obtained results is minimal

regarding the remaining procedures.

Column ‘Selection (ext.lists)’ depicts the effort required to execute the Select_spe-

cies(external_list) procedure in Algorithm 10 and the Select_species_paral(local_ex-

ternal_list) method in Algorithm 13. For the parallel case, such an effort has been

divided between the computational cost (Tco) and the communication time (Tcm). The

sequential method must select the Lmax most preferable solutions among the ones stored

in its external_list, while the parallel procedure must do it from the ones kept in the

P local external lists. Although the parallel method Select_species_paral(local_popu-

lation_list) is initially similar to the Select_species_paral(local_external_list), this last

High performance computing applied to competitive facility location and design problems

148 Expanding a franchise: solving a planar bi-objective facility location and design problem

procedure differs in two important issues, which may explain why the improvement (in

terms of efficiency) is higher in this part of the algorithm: (i) The intermediate selections

carried out through the hierarchical communication tree do not maintain redundant

work and (ii) the lengths of the lists involved here are much larger than the ones in

Select_species_paral(local_population_list). Focusing on the computing time Tco, the

enormous acceleration which is possible to obtain when P increases can be observed. Of

course, this is because the larger the number of processors, the smaller the local external

list lengths and hence, the higher the number of parallel comparisons. As can be seen

in Table 4.4, the efficiency obtained by the Select_species_paral(local_external_list)

procedure is highly reduced by the communication costs. Notice that the weight of

the communication overhead is compensated by the computing cost when the number

of processors is smaller than 8. From this value, the number of communications, the

waiting times and the synchronization points increase, making the efficiency decrease.

Even so, super efficiencies are obtained independent of the value of P . This procedure

is responsible for the obtained efficiencies as well as for the tendency of decreasing from

8 processors.

Columns ‘Improving (ext.lists)’ shows the execution time associated with Impro-

ve_species(external_list) and Improve_external_list_paral of algorithms 10 and 13,

respectively. Notice that, for the parallel version, two efforts are depicted: the compu-

tational cost (Tco) and the communication time (Tcm). As expected, the parallel version

is able to reduce the computational effort of the sequential version proportionally to

the number of available processors and, hence, an almost constant ideal efficiency is ob-

tained (note that the improved external list in FEMOEA-Paral is P times smaller than

the one in FEMOEA). However, such an ideal efficiency is reduced by the overheads

imposed by the communications, i.e. the efficiency values decrease when the number of

processors increases.

4.4 Conclusions

In this work, a new memetic bi-objective evolutionary algorithm, FEMOEA, has been

proposed. In its framework, it includes a local search, which uses gradient information

to improve the quality (efficiency) of the points, as well as a termination rule to stop

the algorithm as soon as a good approximation of the Pareto-front is obtained.

High performance computing applied to competitive facility location and design problems

4.4 Conclusions 149

It has been applied to a hard-to-solve competitive facility location problem. The

computational studies show that all the points offered by the algorithm as an approxi-

mation of the efficient set are always included in the boxes offered by iB&B, an interval

branch-and-bound algorithm able to obtain an enclosure of the true Pareto-front. Fur-

thermore, when the number Lmax of points approximating the Pareto-front is adequate,

the hypervolume of the approximations also lies within the corresponding interval con-

taining the hypervolume of the true Pareto-front as offered by the interval algorithm.

Thus, we can conclude that all the points offered by the algorithm are (nearly) efficient

and they cover all the area of the true Pareto-front.

These findings supplement another study (see [139]) where it is compared a simpli-

fied version of FEMOEA (in which the improving method does not make use of gra-

dient information) with other widely referenced heuristic algorithms devised to cope

with multi-objective problems, namely, NSGA-II [40] and SPEA2 [162]. A set of 20

benchmark problems were solved. The results in [139] show that FEMOEA is faster

and provides better approximations of the efficient set, as it obtains better results for

quality indicators such as the hypervolume [160], average distance [33], additive epsilon

[164], spread [40] and spacing [151].

Furthermore, in this chapter, a parallel version of FEMOEA has been developed

and analyzed. A comprehensive computational study has shown that FEMOEA-Paral

maintains the effectiveness of the sequential version, i.e. both algorithms approximate

the Pareto-front with 100% success in all the instances, their hypervolume values are

always included in the interval provided by iB&B and they both obtain similar hyper-

volume figures for any particular instance. The maintenance of the effectiveness values

has been possible thanks to the implemented selection procedure, which allows to con-

currently choose the most preferable solutions. The efficiency of the parallel version has

also been tested. The distribution of the computational load carried out by FEMEOA-

Paral allows to highly accelerate the sequential computational times, in such a way

that FEMOEA-Paral has been able to obtain super efficiency values. Additionally, the

scalability of the parallel version has also been analyzed by solving instances with a

larger computational burden. As expected, the bigger the instances to be solved, the

better the efficiency.

High performance computing applied to competitive facility location and design problems

Global conclusion and future work

In this thesis, new heuristic algorithms able to solve either single or multi-objective

optimization algorithms have been presented. They have been applied to new facility

location and design problems with endogenous demand introduced in this thesis, as

well as to other location problems already proposed in literature. Furthermore, several

parallel strategies have been developed in order to improve the performance of the

proposed algorithms.

In order to deal with a new single facility location problem with endogenous demand,

the evolutionary algorithm UEGO, with a new generalized Weiszfeld-like algorithm

(WLMv) as local optimizer, has been considered. It has been evaluated and compared

to another algorithm described in literature, i.e. an interval branch-and-bound method

(iB&B). Results have shown that UEGO is able to always obtain the optimal solution,

and this reducing the computational time employed by iB&B (although notice that

iB&B is a rigorous method). Furthermore, for the first time in literature, an endogenous

demand model has been compared to its corresponding exogenous demand model,

concluding that the loss in profit due to the assumption of exogenous demand may be

very high (see also [130]).

Besides, a modification of the local search WLMv, which allows to reduce UEGO’s

computational time even more, and its parallelization, which shows an almost linear

speedup up to 8 processors, have also been proposed (see [7]).

Several algorithms have been proposed to cope with the new corresponding leader-

follower problem with endogenous demand (or centroid problem), namely, a grid search

procedure (GS), a multistart method (MSH) and an evolutionary algorithm (TLUEGO).

For the last two algorithms, two versions are obtained depending on the algorithm used

for solving the corresponding follower problem, i.e. UEGO and iB&B. Based on an ex-

tensive study, it has been concluded that TLUEGO, considering UEGO as follower

solver, (TLUEGO_UE) is the most reliable one since it provides the best objective

function value with less deviation and in less CPU time (see also [131]).

Additionally, several new creation procedures have been analyzed to increase the ro-

bustness of TLUEGO_UE at finding the global optimum. However, the computational

effort needed by TLUEGO_UE with those new procedures is higher, and therefore,

152 Global conclusions and future work

high performance computing becomes a necessity. Three parallel approaches which

not only allow to obtain the solution faster, but also to solve larger size instances,

have been implemented. In particular, a distributed memory programming algorithm

(PMP_TLUEGO), a shared memory programming algorithm (SMP_TLUEGO) and

a hybrid of the two previous algorithms (HPP_TLUEGO) have been proposed. The

computational studies showed that all of them have good performance behaviors for

up to 8 processors (see [8]).

Finally, to deal with a bi-objective facility location and design problem, a new multi-

objective evolutionary algorithm, called FEMOEA, has been introduced. The new evo-

lutionary algorithm has been evaluated and compared to an exact interval B&B algo-

rithm. Based on a comprehensive computational study, it can be concluded that all

the points offered by FEMOEA are (nearly) efficient and they cover all the area of the

true Pareto-front (see [132]).

Moreover, since the computational time needed by FEMOEA may be not negligible

when the set approximating the Pareto-front must have many points (because a high

precision is required), a parallel strategy, called FEMOEA-Paral, has been proposed.

Computational studies showed that FEMOEA-Paral is able to maintain the effective-

ness of the sequential version and this by highly reducing the computational costs. In

fact, super efficiency values were obtained independently of the number of available

processors. Furthermore, the parallel version showed its good scalability.

In the future, we plan to compare the solutions obtained in the location models

when different demand generating functions wi(Ui) are used to model the variability

of the demand, in order to know whether there exists a pattern in the regions of

near optimality depending on the function used. Additionally, we plan to solve other

location models, focusing mainly on undesirable (obnoxious) facility location models,

which lead to hard-to-solve global optimization problems, and for which usually only

ad-hoc heuristic procedures have been proposed. We also plan to develop new methods

for solving some of the most successful existing models and to create new, more realistic

models for the location of both undesirable and semi-desirable facilities.

Regarding FEMOEA, there are several research issues that we believe to be worth

exploring in the future. One of them is when to apply the improving method. FEMOEA

does it at every iteration (or level), but in other algorithms the local search is applied

either only as a final step to refine the solution (see [87]) or only as a first step to

High performance computing applied to competitive facility location and design problems

Global conclusions and future work 153

guide the evolutionary algorithm (see [91]). A common aim in both cases is to save

computational time. These and other strategies should be investigated. Another issue

is which individuals should the improving method be applied to. FEMOEA applies it

to the Lmax elements of the population_list and the external_list, but other strategies

are also possible [18, 95]. The use of other local searches different from the improving

method introduced in this work is another topic of research. Moreover, the extension of

the improving method proposed in Section 4.2 to the case where more than 2 objectives

are considered, is also a future line to work on.

From the high performance computing perspective, there are many aspects that

have not been sufficiently analyzed. In particular, we are interested in the projection

of our proposed algorithms on heterogeneous environments.

High performance computing applied to competitive facility location and design problems

Appendix

For every setting in this thesis, the problems have been generated by randomly choosing

the parameters of the problems uniformly within the following intervals:

• locdi, locfj ∈ FRl,

• AverAi
(wi(Ui)) ∈ [1, 10],

• γi ∈ [0.75, 1.25],

• aij ∈ [0.5, 5],

• Gl(nfl) =
∑imax

i=1 Φi(di(zl)) + Gb
l (αl) where

• Φi(di(zl)) =
AverAi

(wi(Ui))

(di(zl))φi0
l + φi1

l

with φi0
l = φ0 = 2, φi1

l ∈ [0.5, 2],

• Gb
l (αl) = e

α

α0
l

+α1
l
− eα

1
l with α0

l ∈ [5, 7], α1
l ∈ [4, 4.5],

• sl ∈ [2, 3.5], the parameter for Fl(Ml(nfl)) = sl · Ml(nfl),

• b1, b2 ∈ [1, 2], parameters for di(zl) =
√

b1(xl − locdi1)2 + b2(yl − locdi2)2 (see

[58]),

• The functions gi(r) used to measure the attraction of a demand point towards a

facility were of the the form gi(r) = r2.

Notice that in Chapter 2, a single chain is considered, l = 1. In Chapter 3, the

leader and follower chains are considered, l = 1, 2. In Chapter 4, a single chain and

fixed demand are considered, therefore, l = 1 and AverAi
(wi(Ui)) is ŵi.

Those intervals were obtained by varying up and down the value of the parameters

of the quasi-real problem studied in [154], where a case of location of supermarkets

in south-est Spain is studied. Nevertheless, when applying the model to a particular

problem those parameters have to be fine-tuned.

Bibliography

[1] J.I. Agulleiro and J.J. Fernández. Fast tomographic reconstruction on multicore

computers. Bioinformatics, 27(4):582–583, 2011.

[2] J.I. Agulleiro, E.M. Garzón, I. García, and J.J. Fernández. Vectorization with

SIMD extensions speeds up reconstruction in electron tomography. Journal of

Structural Biology, 170(3):570–575, 2010.

[3] E. Alba. Parallel metaheuristics: a new class of algorithms. Wiley-Interscience,

2005.

[4] E. Alba, G. Luque, and S. Nesmachnow. Parallel metaheuristics: recent advances

and new trends. International Transactions in Operational Research, 20:1–48,

2013.

[5] AMD. Ati stream technology. http://ati.amd.com/technology/

streamcomputing/.

[6] G. Amdahl. Validity of the single processor approach to achieving large-scale

computing capabilities. In AFIPS conference proceedings, volume 30, pages 483–

485, 1967.

[7] A.G. Arrondo, J. Fernández, J.L. Redondo, and P.M. Ortigosa. An approach

for solving competitive location problems with variable demand using multicore

systems. Optimization Letters, 2012. (doi: 10.1007/s11590-012-0596-z).

[8] A.G. Arrondo, J.L. Redondo, J. Fernández, and P.M. Ortigosa. High performance

computing approaches for solving a continuous (1|1)-centroid problem with en-

dogenous demand. Submitted to Journal of Global Optimization.

High performance computing applied to competitive facility location and design problems

158 BIBLIOGRAPHY

[9] G.L. Beane. The effects of microprocessor architecture on speedup in distributed

memory supercomputers. Ph.D. Thesis, University of Maine, August 2004.

[10] D. Beasley, D.R. Bull, and R.R. Martin. A sequential niche technique for multi-

modal function optimization. Evolutionary Computation, 1(2):101–125, 1993.

[11] O. Berman and D. Krass. Locating multiple competitive facilities: Spatial in-

teraction models with variable expenditures. Annals of Operations Research,

111(1):197–225, 2002.

[12] H. Bersini and G. Seront. In search of a good evolution-optimization crossover.

In R. Männer and B. Manderick, editors, Proceeding of PPSN-II, second interna-

tional conference on parallel problem solving from nature, pages 479–488. Elsevier,

Amsterdam, The Netherlands, 1992.

[13] H.G. Beyer and H.P. Schwefel. Evolution strategies: a comprehensive introduc-

tion. Journal Natural Computing, 1(1):3–52, 2002.

[14] J. Bhadury, H.A. Eiselt, and J.H. Jaramillo. An alternating heuristic for medi-

anoid and centroid problems in the plane. Computers and Operations Research,

30(4):553–565, 2003.

[15] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[16] A. Bode and M.D. Cin, editors. Parallel computer architectures: theory, hard-

ware, software, applications, volume 732 of Lecture Notes in Computer Science.

Springer, 1993.

[17] P.A.N. Bosman. On gradients and hybrid evolutionary algorithms for real-valued

multiobjective optimization. IEEE Transactions on Evolutionary Computation,

16(1):51–69, 2012.

[18] P.A.N. Bosman and E.D. de Jong. Exploiting gradient information in numerical

multi-objective evolutionary optimization. In H.G. Beyer et al. et al., editor,

2005 genetic and evolutionary computation conference (GECCO’2006), volume 1,

pages 755–762, New York, USA, 2005. ACM Press.

High performance computing applied to competitive facility location and design problems

BIBLIOGRAPHY 159

[19] P.A.N. Bosman and E.D. de Jong. Combining gradient techniques for numerical

multi-objective evolutionary optimization. In M. Keijzer et al. et al., editor,

2006 genetic and evolutionary computation conference (GECCO’2006), volume 1,

pages 627–634, Seattle, Washington, USA, July 2006. ACM Press. ISBN 1-59593-

186-4.

[20] M.L. Brandeau and S.S. Chiu. Location of competing facilities in a user-

optimizing environment with market externalities. Transportation Science,

28(2):125–139, 1994.

[21] J.F. Campbell, G. Stiehr, A.T. Ernst, and M. Krishnamoorthy. Solving hub arc

location problems on a cluster of workstations. Parallel Computing, 29(5):555–

574, 2003.

[22] E. Cantú-Paz. A summary of research on parallel genetic algorithms. Technical

Report IlliGAL 95007, University of Illinois at Urbana-Champaign, 1995.

[23] E. Cantú-Paz. A survey of applications and methods. Technical Report IlliGAL

97003, University of Illinois at Urbana-Champaign, 1997.

[24] E. Cantú-Paz. Designing efficient master-slave parallel genetic algorithms. In

J.R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H.

Garzon, D.E. Goldberg, H. Iba, and R. Riolo, editors, Genetic programming 1998:

proceedings of the third annual conference, page 455, University of Wisconsin,

Madison, Wisconsin, USA, 1998. Morgan Kaufmann.

[25] L.G. Casado and J. Fernández. Introducción a la optimización global intervalar.

In El análisis de intervalos en España: Desarrollos, herramientas y aplicaciones,

pages 45–62. Documenta Universitaria, 2005.

[26] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP. Portable shared

memory parallel programming. The MIT Press, Cambridge, Massachusetts, 2008.

[27] J.W. Chung, S.M. Oh, and C. Choi. A hybrid genetic algorithm for train se-

quencing in the korean railway. Omega, 37(3):555–565, 2009.

High performance computing applied to competitive facility location and design problems

160 BIBLIOGRAPHY

[28] M. Cosnard and J.L. Philippe. Achieving superlinear speedups for the multiple

polynomial quadratic sieve factoring algorithm on a distributed memory mul-

tiprocessor. In Proceedings of the joint international conference on vector and

parallel processing, pages 863–874, London, UK, 1990. Springer-Verlag.

[29] T.G. Crainic, M. Toulouse, and M. Gendreau. Synchronous tabu search par-

allelization strategies for multicommodity location-allocation with balancing re-

quirements. OR Spectrum, 17(2-3):113–123, 1995.

[30] T.G. Crainic, M. Toulouse, and M. Gendreau. Parallel asynchronous tabu searh

for multicomodity location-allocation with balancing requirements. Annals of

Operations Research, 63(2):277–299, 1996.

[31] D. Culler, J.P. Singh, and A. Gupta. Parallel computer architecture: a hard-

ware/software approach (The Morgan Kaufmann series in computer architecture

and design). Morgan Kaufmann, 1998.

[32] T. Cura. A parallel local search approach to solving the uncapacitated warehouse

location problem. Computers and Industrial Engineering, 59(4):1000–1009, 2010.

[33] P. Czyzżak and A. Jaszkiewicz. Pareto simulated annealing – a metaheuristic

technique for multiple-objective combinatorial optimization. Journal of Multi-

Criteria Decision Analysis, 7(1):34–47, 1998.

[34] V.G. da Fonseca and C.M. Fonseca. The attainment-function approach to

stochastic multiobjective optimizer assessment and comparison. In T. Bartz-

Beielstein, M. Chiarandini, L. Paquete, and M. Preuss, editors, Experimental

methods for the analysis of optimization algorithms, pages 103–130. Springer,

2010.

[35] P.J. Darwen and X. Yao. Speciation as automatic categorical modularization.

IEEE Transactions on Evolutionary Computation, 1(2):100–108, 1997.

[36] C. Darwin. The origin of species by means of natural selection. Mentor Reprint,

1958, 1859.

High performance computing applied to competitive facility location and design problems

BIBLIOGRAPHY 161

[37] Y. Davidor. A naturally occurring niche and species phenomenon: The model and

first results. In R.K. Belew and L.B. Booker, editors, Proceedings of the 4th in-

ternational conference on genetic algorithms, pages 257–263. Morgan Kaufmann,

1991.

[38] A. de Bruin, G.A.P. Kindervater, and H.W.J.M. Trienekens. Towards an ab-

stract parallel branch and bound machine. In Solving combinatorial optimization

problems in parallel - methods and techniques, pages 145–170, London, UK, 1996.

Springer-Verlag.

[39] A. de Silva and D. Abramson. A parallel interior point method and its applica-

tion to facility location problems. Computational Optimization and Applications,

9(3):249–273, 1998.

[40] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjec-

tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computa-

tion, 6(2):182–197, 2002.

[41] M. Dorigo. Ant colony optimization. Scholarpedia, 2007.

[42] M. Dorigo and G. Di Caro. The ant colony optimization meta-heuristic. In

D. Corne, M. Dorigo, and F. Glover, editors, New ideas in optimization, pages

11–32. McGraw-Hill, London, 1999.

[43] D.G. Drake. Introduction to Java threads. A quick tutorial on how

to implement threads in Java. http://www.javaworld.com/javaworld/

jw-04-1996/jw-04-threads.html.

[44] T. Drezner and Z. Drezner. Competitive location strategies for two facilities.

Regional Science and Urban Economics, 12:485–493, 1982.

[45] T. Drezner and Z. Drezner. Facility location in anticipation of future competition.

Location Science, 6(1):155–173, 1998.

[46] T. Drezner and Z. Drezner. Retail facility location under changing market con-

ditions. IMA Journal of Management Mathematics, 13(4):283–302, 2002.

High performance computing applied to competitive facility location and design problems

162 BIBLIOGRAPHY

[47] T. Drezner and Z. Drezner. Finding the optimal solution to the Huff based

competitive location model. Computational Management Science, 1(2):193–208,

2004.

[48] T. Drezner and H.A. Eiselt. Consumers in competitive location models. In

Z. Drezner and H.W. Hamacher, editors, Facility location: applications and the-

ory, pages 151–178. Springer, 2001.

[49] Z. Drezner, editor. Facility location: a survey of applications and methods.

Springer, Berlin, Berlin, 1995.

[50] Z. Drezner and H.W. Hamacher. Facility location. Applications and theory.

Springer, Berlin, 2002.

[51] Z. Drezner, G.O. Wesolowsky, and T. Drezner. On the logit approach to com-

petitive facility location. Journal of Regional Science, 38(2):313–327, 1998.

[52] R. Duncan. A survey of applications and methods. Computer, 23(2):5–16, 1990.

[53] A.E. Eiben, P.E. Raué, and Zs. Ruttkay. Genetic algorithms with multiparent

recombination. In Y. Davidor, H.P. Schwefel, and R. Männer, editors, Parallel

problem solving from nature - PPSN III, volume 866 of Lecture Notes in Computer

Science, pages 78–87, Berlin, 1994. Springer.

[54] A.E. Eiben and J.E. Smith. Introduction to evolutionary computing. Springer,

2003.

[55] H.A. Eiselt and G. Laporte. Objectives in location problems. In Z. Drezner,

editor, Facility location: a survey of applications and methods, Springer Series in

Operations Research and Financial Engineering, pages 151–180. Springer, Berlin,

1995.

[56] H.A. Eiselt and G. Laporte. Sequential location problems. European Journal of

Operational Research, 96(2):217–231, 1996.

[57] H.A. Eiselt, G. Laporte, and J.F. Thisse. Competitive location models: a frame-

work and bibliography. Transportation Science, 27(1):44–54, 1993.

High performance computing applied to competitive facility location and design problems

BIBLIOGRAPHY 163

[58] J. Fernández, P. Fernández, and B. Pelegrín. Estimating actual distances by

norm functions: a comparison between the lk,p,θ-norm and the lb1,b2,θ-norm and a

study about the selection of the data set. Computers and Operations Research,

29(6):609–623, 2002.

[59] J. Fernández and B. Pelegrín. Using interval analysis for solving planar single-

facility location problems: new discarding tests. Journal of Global Optimization,

19(1):61–81, 2001.

[60] J. Fernández, B. Pelegrín, F. Plastria, and B. Tóth. Planar location and design of

a new facility with inner and outer competition: An interval lexicographical-like

solution procedure. Networks and spatial economics, 7(1):19–44, 2007.

[61] J. Fernández, B. Pelegrín, F. Plastria, and B. Tóth. Solving a Huff-like compet-

itive location and design model for profit maximization in the plane. European

Journal of Operational Research, 179(3):1274–1287, 2007.

[62] J. Fernández and B. Tóth. Obtaining an outer approximation of the efficient set

of nonlinear biobjective problems. Journal of Global Optimization, 38(2):315–331,

2007.

[63] J. Fernández and B. Tóth. Obtaining the efficient set of nonlinear biobjective

optimization problems via interval branch-and-bound method. Computational

Optimization and Applications, 42(3):393–419, 2009.

[64] J. Fliege and B.F. Svaiter. Steepest descent methods for multicriteria optimiza-

tion. Mathematical Methods of Operations Research, 51(3):479–494, 2000.

[65] M. Flynn. Some computer organizations and their effectiveness. IEEE Transac-

tions on Computers, 21(9):948–960, 1972.

[66] C.M. Fonseca, V.G. da Fonseca, and L. Paquete. Exploring the performance of

stochastic multiobjective optimizers with the second-order attainment function,.

In C.A. Coello, A.H. Aguirre, and E. Zitzler, editors, Evolutionary multi-criterion

optimization. Third international conference, EMO, volume 3410 of Lecture Notes

in Computer Science, pages 250–264. Springer, 2005.

High performance computing applied to competitive facility location and design problems

164 BIBLIOGRAPHY

[67] C.M. Fonseca and P.J. Fleming. Genetic algorithms for multiobjective optimiza-

tion: formulation, discussion and generalization. In S. Forrest, editor, Proceedings

of the fifth international conference on genetic algorithms, pages 416–423, San

Mateo, California, 1993. University of Illinois at Urbana-Champaign, Morgan

Kauffman Publishers.

[68] S. Forrest, B. Javornik, R.E. Smith, and A.S. Perelson. Using genetic algorithms

to explore pattern recognition in the immune system. Journal of Evolutionary

Computation, 1(3):191–211, 1993.

[69] Message Passing Interface Forum. MPI: A message-passing interface standard.

International Journal of Supercomputer Applications, 8(3-4):165–414, 1994.

[70] R.L. Francis, T.J. Lowe, and A. Tamir. Demand point aggregation for location

models. In Z. Drezner and H. Hamacher, editors, Facility location: application

and theory, pages 207–232. Springer, 2002.

[71] R.L. Francis, L.F. McGinnis, and J.A. White. Facility layout and location: an

analytical approach. Prentice Hall, Englewood Cliffs, 1992.

[72] F. García-López, B. Melián-Batista, J.A. Moreno-Pérez, and J.M. Moreno-Vega.

The parallel variable neighborhood search for the p-median problem. Journal of

Heuristics, 8(3):375–388, 2002.

[73] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM Parallel Virtual Machine, a user’s guide and tutorial for networked parallel

computing. MIT Press, Cambridge, Massachusetts, 1994.

[74] B. Gendron and T.G. Crainic. A parallel branch-and-bound algorithm for mul-

ticommodity location with balancing requirements. Computers and Operations

Research, 24(9):829–847, 1997.

[75] D. Ghazfan, B. Srinivasan, and M. Nolan. Massively parallel genetic algorithms.

Technical Report 94-01, Department of Computer Technology. University of Mel-

bourne, 1994.

[76] W.F. Gilreath and P.A. Laplante. Computer architecture. Kluwer Academic

Publishers, Norwell, MA, USA, 2003.

High performance computing applied to competitive facility location and design problems

BIBLIOGRAPHY 165

[77] Globus. The globus alliance. http://www.globus.org/.

[78] F. Glover. Future paths for integer programming and links to artificial intelli-

gence. Computers and Operations Research, 13(5):533–549, 1986.

[79] D.E. Goldberg. Genetic algorithms in search, optimization, and machine learn-

ing. Addison-Wesley, New York, 1989.

[80] D.E. Goldberg, K. Deb, and J.H. Clark. Genetic algorithms, noise, and the sizing

of populations. Complex Systems, 6:333–362, 1992.

[81] D.E. Goldberg and J. Richardson. Genetic algorithm with sharing for multimodal

function optimization. In J.J. Grefenstette, editor, Genetic algorithms and their

applications, pages 177–183. Lawrence Erlbaum Associates, Hillsdale, NJ, 1987.

[82] S.L. Hakimi. On locating new facilities in a competitive environment. European

Journal of Operational Research, 12(1):29–35, 1983.

[83] S.L. Hakimi. Locations with spatial interactions: competitive locations and

games. In R.L. Francis and P.B. Mirchandani, editors, Discrete location theory,

pages 439–478. Wiley/Interscience, 1990.

[84] H.W. Hamacher and S. Nickel. Classification of location models. Location Science,

6(1):229–242, 1998.

[85] R. Hammer, M. Hocks, U. Kulisch, and D. Ratz. C++ Toolbox for verified com-

puting I: basic numerical problems: theory, algorithms and programs. Springer-

Verlag, Berlin, 1995.

[86] P. Hansen and J.F. Thisse. The generalized Weber-Rawls problem. In Operational

research ’81 (Hamburg, 1981), pages 569–577. North-Holland, Amsterdam, 1981.

[87] K. Harada, K. Ikeda, and S. Kobayashi. Hybridizing of genetic algorithm and

local search in multiobjective function optimization: recommendation of GA then

LS. In M. Keijzer et al. et al., editor, 2006 genetic and evolutionary computation

conference (GECCO’2006), volume 1, pages 667–674, Seattle, Washington, USA,

July 2006. ACM Press. ISBN 1-59593-186-4.

High performance computing applied to competitive facility location and design problems

166 BIBLIOGRAPHY

[88] G. Harik, E. Cantu-Paz, D.E. Goldberg, and B. Miller. The gambler’s ruin prob-

lem, genetic algorithms, and the sizing of populations. Evolutionary Computation,

7(3):231–253, 1999.

[89] E.M.T. Hendrix and B. G. Tóth. Introduction to nonlinear and global optimiza-

tion. Springer, New York, 2010.

[90] J.L. Hennessy and D.A. Patterson. Computer architecture, fourth edition: A

quantitative approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2006.

[91] A.G. Hernández-Díaz, C.A.C. Coello, F. Pérez, R. Caballero, J. Molina, and L.V.

Santana-Quintero. Seeding the initial population of a multi-objective evolution-

ary algorithm using gradient-based information. In 2008 congress on evolutionary

computation (CEC’2008), pages 1617–1624, Hong Kong, June 2008. IEEE Service

Center.

[92] J.H. Holland. Adaptation in natural and artificial systems. The University of

Michigan Press, Ann Arbor, Michigan, 1975.

[93] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer,

3rd edition, 1996.

[94] J. Hu and E. Goodman. Robust and efficient genetic algorithms with hierarchical

niching and a sustainable evolutionary computation model. In K. Deb et al.,

editor, Genetic and evolutionary computation–GECCO 2004. Proceedings of the

genetic and evolutionary computation conference. Part I, volume 3102 of Lecture

Notes in Computer Science, pages 1220–1232. Springer-Verlag, 2004.

[95] X. Hu, Z. Huang, and Z. Wang. Hybridization of the multi-objective evolutionary

algorithms and the gradient-based algorithms. In Proceedings of the 2003 congress

on evolutionary computation (CEC’2003), volume 2, pages 870–877, Canberra,

Australia, 2003. IEEE Press.

[96] D.L. Huff. Defining and estimating a trading area. Journal of Marketing,

28(3):34–38, 1964.

High performance computing applied to competitive facility location and design problems

BIBLIOGRAPHY 167

[97] T. Ibaraki. Theoretical comparisons of search strategies in branch and bound

algorithms. International Journal of Computer and Information Sciences,

5(4):315–344, 1976.

[98] Java. Remote method invocation home. http://java.sun.com/javase/

technologies/core/basic/rmi/index.jsp.

[99] M. Jelásity. The shape of evolutionary search: Discovering and representing search

space structure. Ph.D. Thesis, Leiden University, 2001.

[100] M. Jelásity, P.M. Ortigosa, and I. García. UEGO, an abstract clustering technique

for multimodal global optimization. Journal of Heuristics, 7(3):215–233, 2001.

[101] K.A. De Jong. An analysis of the behavior of a class of genetic adaptive systems.

Ph.D. Thesis, University of Michigan, Ann Arbor, MI, 1975.

[102] R. Kicinger, T. Arciszewski, and K.A. De Jong. Evolutionary computation and

structural design: a survey of the state of the art. Computers and Structures,

83(23-24):1943–1978, 2005.

[103] M. Kilkenny and J.F. Thisse. Economics of location: a selective survey. Comput-

ers and Operations Research, 26(14):1369–1394, 1999.

[104] J. Knowles and D. Corne. The Pareto archived evolution strategy: a new baseline

algorithm for Pareto multiobjective optimisation. In Proceedings of the 1999

congress on evolutionary computation, 1999.

[105] O. Knüppel. PROFIL/BIAS - a fast interval library. Computing, 1(53):277–287,

1993.

[106] J.R. Koza. Genetic programming: On the programming of computers by means

of natural selection. Cambridge, Massachusetts: MIT Press, 1992.

[107] J.R. Koza. Genetic programming II: automatic discovery of reusable programs.

MIT Press, 1994.

[108] P.L. Lanzi, W. Stolzmann, and S.W. Wilson, editors. Learning classifier systems,

from foundations to applications, volume 1813 of Lecture Notes in Computer

Science. Springer, 2000.

High performance computing applied to competitive facility location and design problems

168 BIBLIOGRAPHY

[109] J.P. Li, M.E. Balazs, G.T. Parks, and P.J. Clarkson. A species conserving ge-

netic algorithm for multimodal function optimization. Evolutionary Computa-

tion, 10(3):207–234, 2002.

[110] J.M.G. Linares, N. Guil, E.L. Zapata, P.M. Ortigosa, and I. García. Deformable

shapes detection by stochastic optimization. In 2000 IEEE international confer-

ence on image processing (ICIP’2000), Vancouver, Canada, 2000.

[111] S. Luke. Issues in scaling genetic programming: Breeding strategies, tree genera-

tion, and code bloat. Ph.D. Thesis, Department of Computer Science, University

of Maryland, 2000.

[112] S.W. Mahfoud. Niching methods for genetic algorithms. Ph.D. Thesis, University

of Illinois at Urbana-Champaign, Urbana, IL, 1995.

[113] R.G. McGarvey and T.M. Cavalier. Constrained location of competitive facilities

in the plane. Computers and Operations Research, 32:359–378, 2005.

[114] L.G. Mitten. Branch and bound methods: general formulation and properties.

Operations Research, 18:24–34, 1970.

[115] P. Moscato. On genetic crossover operators for relative order preservation. Tech-

nical Report C3P-778, Caltech Concurrent Computation Program, 1989.

[116] P. Moscato and C. Cotta. Memetic algorithms. http://www.lcc.uma.es/

ccottap/papers/memetic_HAAM.pdf.

[117] P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In

F. Glover and G. Kochenberger, editors, Handbook of metaheuristics, pages 105–

144. Kluwer Academic Publishers, Boston MA, 2003.

[118] P. Moscato and C. Cotta. An introduction to memetic algorithms. Inteligencia

Artificial, Revista Iberoamericana de Inteligencia Artificial., 19:131–148, 2003.

[119] P. Moscato, C. Cotta, and A. Mendes. Memetic algorithms. In G.C. Onwubolu

and B.V. Babu, editors, New optimization techniques in engineering, volume 141

of Studies in Fuzziness and Soft Computing, chapter 3, pages 53–86. Springer,

2004.

High performance computing applied to competitive facility location and design problems

BIBLIOGRAPHY 169

[120] H. Mühlenbein and H.M. Voigt. Gene pool recombination in genetic algorithms.

In I.H. Osman and J.P. Kelly, editors, Proceeding of the metaheuristics conference,

pages 53–62. Kluwer Academic Publishers, 1995.

[121] A.J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J.J. Durillo, and A. Beham. AbYSS:

Adapting scatter search to multiobjective optimization. IEEE Transactions on

Evolutionary Computation, 12(4):439–457, 2008.

[122] A. Negri, D.A. Scannicchio, F. Touchard, and V. Vercesi. Multi thread

programming, 2001. https://atlserver.pv.infn.it/atlas/EventFilter/

NoteMT.pdf.

[123] A. Neumaier. Complete search in continuous global optimization and constraint

satisfaction. In Acta Numerica 2004, pages 271–369. Cambridge University Press,

2004.

[124] P.M. Ortigosa. Métodos estocásticos de optimización global. Procesamiento par-

alelo. Ph.D. Thesis, Universidad de Málaga, 1999.

[125] P.M. Ortigosa, I. García, and M. Jelásity. Reliability and performance of UEGO,

a clustering-based global optimizer. Journal of Global Optimization, 19(3):265–

289, 2001.

[126] P.M. Ortigosa, J.L. Redondo, I. García, and J.J. Fernández. A population global

optimization algorithm to solve the image alignment problem in electron crystal-

lography. Journal of Global Optimization, 37(4):527–539, 2007.

[127] F. Plastria. Continuous location problems. In Z. Drezner, editor, Facility location:

a survey of applications and methods, Springer Series in Operations Research and

Financial Engineering, pages 151–180. Springer, Berlin, 1995.

[128] F. Plastria. Static competitive facility location: an overview of optimisation

approaches. European Journal of Operational Research, 129(3):461–470, 2001.

[129] H. Ratschek and J. Rokne. New computer methods for global optimization. Ellis

Horwood, Chichester, 1988.

High performance computing applied to competitive facility location and design problems

170 BIBLIOGRAPHY

[130] J.L. Redondo, J. Fernández, A.G. Arrondo, I. García, and P.M. Ortigosa. Fixed

or variable demand? Does it matter when locating a facility? Omega, 40(1):9–20,

2012.

[131] J.L. Redondo, J. Fernández, A.G. Arrondo, I. García, and P.M. Ortigosa. A two-

level evolutionary algorithm for solving the facility location and design (1|1)-

centroid problem on the plane with variable demand. Journal of Global Opti-

mization, To appear. (doi: 10.1007/s10898-012-9893-4).

[132] J.L. Redondo, J. Fernández, J.D. Álvarez, A.G. Arrondo, and P.M. Ortigosa.

A new memetic evolutionary algorithm for approximating the Pareto-front of

nonlinear bi-objective optimization problems: application to a competitive facility

location problem. Submitted to Journal of Global Optimization.

[133] J.L. Redondo, J. Fernández, I. García, and P. M. Ortigosa. Heuristics for the

facility location and design (1|1)-centroid problem on the plane. Computational

Optimization and Applications, 45(1):111–141, 2010.

[134] J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. Parallel algorithms

for continuous competitive location problems. Optimization Methods & Software,

23(5):779–791, 2008.

[135] J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. A robust and efficient

global optimization algorithm for planar competitive location problems. Annals

of Operations Research, 167(1):87–105, 2009.

[136] J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. Solving the multiple

competitive facilities location and design problem on the plane. Evolutionary

Computation, 17(1):21–53, 2009.

[137] J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. Parallel algorithms

for continuous multifacility competitive location problems. Journal of Global

Optimization, 50(4):557–573, 2011.

[138] J.L. Redondo, J. Fernández, I. García, and P.M. Ortigosa. Solving the facility

location and design (1|1)-centroid problem via parallel algorithms. Journal of

Supercomputing, 58(3):420–428, 2011.

High performance computing applied to competitive facility location and design problems

http://dx.doi.org/doi:10.1007/s10479-007-0233-x
http://dx.doi.org/doi:10.1007/s10479-007-0233-x

BIBLIOGRAPHY 171

[139] J.L. Redondo, J. Fernández, and P.M. Ortigosa. FEMOEA: a Fast and Effi-

cient Multi-Objective Evolutionary Algorithm. Submitted to European Journal

of Operational Research, 2012.

[140] J.L. Redondo, I. García, P.M. Ortigosa, B. Pelegín, and P. Fernández. Paral-

lelization of an algorithm for finding facility locations for an entering firm under

delivered pricing. In Proceeding of parallel computing 2005 (PARCO 2005), pages

269–276, 2005.

[141] J.L. Redondo, I. García, P.M. Ortigosa, B. Pelegrín, and P. Fernández. Paral-

lelization of an algorithm for finding facility locations for an entering firm under

delivered pricing. In G.R. Joubert, W.E. Nagel, F.J. Peters, O. Plata, P. Tirado,

and E. Zapata, editors, Parallel computing: current and future issues of high-end

computing, volume 33 of NIC series, pages 269–276. John von Neumann Institute

for Computing, 2006.

[142] J.L. Redondo, I. García, B. Pelegrín, P. Fernández, and P.M. Ortigosa. CG-

GASUB: A parallelized algorithm for finding multiple global optima to a class

of discrete location problem. In A. Paias and F. Saldanha da Gama, editors,

Proceedings of the EURO winter institute on locations and logistic, pages 139–

146. Universidade de Lisboa, 2007.

[143] C.S. ReVelle and H.A. Eiselt. Location analysis: a synthesis and survey. European

Journal of Operational Research, 165(1):1–19, 2005.

[144] J.B. Rosen and G.-L. Xue. Computational comparison of two algorithms for

the euclidean single facility location problem. ORSA Journal on Computing,

3(3):207–212, 1991.

[145] J. Sanders and E. Kandrot. CUDA by example: an introduction to general-purpose

GPU programming. NVIDIA, 2010.

[146] S.G. Shiva. Advanced computer architecture. CRC Press, 2006.

[147] F.J. Solis and R.J.B. Wets. Minimization by random search techniques. Mathe-

matics of Operations Research, 6(1):19–30, 1981.

High performance computing applied to competitive facility location and design problems

172 BIBLIOGRAPHY

[148] E. Speckenmeyer, B. Monien, and O. Vornberger. Superlinear speedup for parallel

backtracking. In Proceedings of the 1st international conference on supercomput-

ing, pages 985–993, London, UK, 1988. Springer-Verlag.

[149] S.S. Syam and M.J. Côté. A location–allocation model for service providers with

application to not-for-profit health care organizations. Omega, 38(3-4):157–166,

2010.

[150] G. Syswerda. Simulated crossover in genetic algorithms. In L.D. Whitley, editor,

Proceeding of the second workshop on foundations of genetic algorithms, pages

239–255. Morgan Kaufmann Publishers, 1993.

[151] K.C. Tan, C.K. Goh, Y.J. Yang, and T.H. Lee. Evolving better population dis-

tribution and exploration in evolutionary multi-objective optimization. European

Journal of Operational Research, 171(2):463–495, 2006.

[152] A. Tórn and A. Zilinskas. Global optimization. Springer-Verlag New York, Inc.,

New York, NY, USA, 1989.

[153] B. Tóth and J. Fernández. Interval methods for single and bi-objective opti-

mization problems - applied to competitive facility location problems. Lambert

Academic Publishing, Saarbrücken, 2010.

[154] B. Tóth, F. Plastria, J. Fernández, and B. Pelegrín. On the impact of spatial pat-

tern, aggregation, and model parameters in planar Huff-like competitive location

and design problems. OR Spectrum, 31(1):601–627, 2009.

[155] E. Vallada and R. Ruiz. Genetic algorithms with path relinking for the minimum

tardiness permutation flowshop problem. Omega, 37(1-2):57–67, 2010.

[156] Official web. PVM (Parallel Virtual Machine), 2011.

http://www.csm.ornl.gov/pvm/.

[157] E. Weiszfeld. Sur le point pour lequel la somme des distances de n points donnés

est minimum. Tohoku Mathematical Journal, 43:355–386, 1937.

[158] L. While, L. Bradstreet, and L. Barone. A fast way of calculating exact hyper-

volumes. IEEE Transactions on Evolutionary Computation, 16(1):86–95, 2012.

High performance computing applied to competitive facility location and design problems

BIBLIOGRAPHY 173

[159] L. Yu, K. Liu, and K. Li. Ant colony optimization in continuous problem. Fron-

tiers of Mechanical Engineering in China, 2(4):459–462, 2007.

[160] E. Zitzler. Evolutionary algorithms for multiobjective optimization: methods

and applications. Master’s thesis, Swiss Federal Institute of Technology (ETH)

Zurich, Shaker Verlag, Germany, 1999.

[161] E. Zitzler, J. Knowles, and L. Thiele. Quality assessment of Pareto set approx-

imations. In J. Branke, K. Deb, K. Miettinen, and R. Slowinski, editors, Multi-

objective optimization. Interactive and evolutionary approaches, pages 373–404.

Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.

[162] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength Pareto

evolutionary algorithm for multiobjective optimization. In K. C. Giannakoglou,

D. T. Tsahalis, J. Périaux, K. D. Papailiou, and T. Fogarty, editors, Evolutionary

Methods for Design Optimization and Control with Applications to Industrial

Problems, pages 95–100, Athens, Greece, 2002. International center for numerical

methods in engineering (CIMNE).

[163] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algo-

rithms – a comparative study. In A. E. Eiben, editor, Parallel problem solving

from nature V, pages 292–301, Amsterdam, September 1998. Springer-Verlag.

[164] E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, and V.G. da Fonseca. Per-

formance assessment of multiobjective optimizers: An analysis and review. IEEE

Transactions on Evolutionary Computation, 7(2):117–132, 2003.

High performance computing applied to competitive facility location and design problems

	Agradecimientos
	Prefacio
	Preface
	Introduction
	Location science
	Global optimization
	Nonlinear multi-objective optimization

	Search algorithms
	Exact algorithms: iB&B
	Heuristic algorithms: Evolutionary computation

	High performance computing issues
	Parallel architectures
	MIMD architectures
	Parallel programming models and tools
	Parallel performance measures
	Computers and interfaces used in this thesis
	Parallel models in population-based methods

	A planar single facility location and design problem with endogenous demand
	The model
	Exogenous or endogenous demand? A key point to be taken into account
	Solving the location model
	UEGO
	Local optimizer
	Tuning UEGO
	Computational studies

	Sensitivity analysis
	On the variability of the demand
	On the interval for the quality
	On the customers' sensitivity
	The cost of the exogenous demand assumption

	Improving the efficiency of UEGO: UEGOf
	High performance computing
	ParUEGOf
	Computational studies

	Conclusions

	A planar location and design leader-follower problem with endogenous demand
	The model
	Solving the centroid problem
	GS: a grid search procedure
	The local optimizer SASS+WLMv
	TLUEGO: A two-level evolutionary global optimization algorithm
	MSH: A multistart heuristic algorithm
	Computational studies

	Influence of the fuse process in the creation procedure
	High performance computing
	Pure message passing programming for TLUEGO: PMP_TLUEGO
	Shared memory programming for TLUEGO: SMP_TLUEGO
	Hybrid parallel programming for TLUEGO: HPP_TLUEGO
	Computational studies

	Conclusions

	Expanding a franchise: solving a planar bi-objective facility location and design problem
	The model
	A new method for approximating the Pareto-front
	Main concepts in FEMOEA
	The FEMOEA algorithm
	The improving method
	FEMOEA termination criteria
	FEMOEA input parameters
	Computational studies

	High performance computing
	FEMOEA-Paral
	Computational studies

	Conclusions

	Global conclusions and future work
	Appendix
	Bibliography

