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Abstract. To-date, the application of high-performance computing re-
sources to Semantic Web data has largely focused on commodity hard-
ware and distributed memory platforms. In this paper we make the case
that more specialized hardware can offer superior scaling and close to
an order of magnitude improvement in performance. In particular we
examine the Cray XMT. Its key characteristics, a large, global shared-
memory, and processors with a memory-latency tolerant design, offer an
environment conducive to programming for the Semantic Web and have
engendered results that far surpass current state of the art. We exam-
ine three fundamental pieces requisite for a fully functioning semantic
database: dictionary encoding, RDFS inference, and query processing.
We show scaling up to 512 processors (the largest configuration we had
available), and the ability to process 20 billion triples completely in-
memory.
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1 Introduction

The Semantic Web is a loosely defined notion, but generally includes such stan-
dards as the

– Resource Description Framework (RDF), a mechanism for describing entities
and relationships between entities,

– RDF Schema (RDFS) and the Web Ontology Language (OWL), which pro-
vide the ability to describe ontologies that can be applied to RDF data
stores,

– various data interchange formats such as RDF/XML and N-Triples, and
– SPARQL, a query language for retrieving results from RDF data sets.
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An RDF statement consists of subject-predicate-object expressions known as
triples. RDFS and OWL can be applied to triple stores to infer new facts from
existing statements. This inferencing can be done at runtime for a particular
query, or it can be done in batch, essentially materializing the new triples all at
once in a process called closure.

There has been some work in taking these technologies and scaling them to
data sizes on the order of a billion triples or in some cases 100 billion triples. In
terms of RDFS and OWL inferencing, Urbani et al. [6] perform RDFS closure
on an RDF data set gathered from various sources on the web, and then later
expand to a fragment of OWL reasoning on data sets ranging up to 100 billion
triples [7]. They utilize a distributed cluster with MapReduce as the program-
ming paradigm. Weaver et al. [9] again use a distributed cluster, but develop
their algorithm using MPI. In terms of querying, Husain et al. [4] perform stan-
dard queries on the Lehigh University Benchmark (LUBM) [3] and SP2Bench
[5] on up to 1.1 billion triples with a cluster of 10 nodes.

A common thread to all these results is the use of commodity hardware and
distributed memory architectures. In this paper we utilize more specialized hard-
ware, specifically the Cray XMT, and present algorithms for the machine that
provide close to an order of magnitude better performance for three fundamental
tasks:

– Dictionary Encoding - This is the process of translating Semantic Web data
from a verbose string representation to a more concise integer format. We
show speedups ranging from 2.4 to 3.3.

– RDFS Closure - This step takes a set of triples and an associated ontology
and materializes all inferred triples. We show speedups of around 6-9.

– Query - We examine standard queries from LUBM, and for the more com-
plicated queries, we find between 4.3-28 times speedup.

All of these steps can be done almost entirely in memory. Once the raw data
is loaded in as the first step of the dictionary encoding, we no longer need to
touch disk until a user requests the results of a query to be sent to permanent
storage. In this paper we show processing of nearly 20 billion triples, completely
in memory.

The rest of the paper is organized as follows. Section 2 describes the Cray
XMT and the programming environment. Section 3 describes our approach to
dictionary encoding followed by Section 4 that relates our results on RDFS
closure. We take a moment in Section 5 to describe our data model. Section 6
presents our results on querying. We then conclude in Section 7.

2 Cray XMT

The Cray XMT is a unique shared-memory machine with multithreaded pro-
cessors especially designed to support fine-grained parallelism and perform well
despite memory and network latency. Each of the custom-designed compute
processors (called Threadstorm processors) comes equipped with 128 hardware
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threads, called streams in XMT parlance, and the processor instead of the operat-
ing system has responsibility for scheduling the streams. To allow for single-cycle
context switching, each stream has a program counter, a status word, eight tar-
get registers, and thirty-two general purpose registers. At each instruction cycle,
an instruction issued by one stream is moved into the execution pipeline. The
large number of streams allows each processor to avoid stalls due to memory
requests to a much larger extent than commodity microprocessors. For exam-
ple, after a processor has processed an instruction for one stream, it can cycle
through the other streams before returning to the original one, by which time
some requests to memory may have completed. Each Threadstorm processor can
currently support 8 GB of memory per processor, all of which is globally acces-
sible. One system we use in this study has 512 processors and 4 TB of shared
memory.

Programming on the XMT consists of writing C/C++ code augmented with
non-standard language features including generics, intrinsics, futures, and performance-
tuning compiler directives such as pragmas. Generics are a set of functions the
Cray XMT compiler supports that operate atomically on scalar values, perform-
ing either read, write, purge, touch, and int_fetch_add operations. Each
8-byte word of memory is associated with a full-empty bit and the read and
write operations interact with these bits to provide light-weight synchronization
between threads. Here are some examples of the generics provided:

– readxx: Returns the value of a variable without checking the full-empty bit.
– readfe: Returns the value of a variable when the variable is in a full state,

and simultaneously sets the bit to be empty.
– writeef : Writes a value to a variable if the variable is in the empty state,

and simultaneously sets the bit to be full.
– int fetch add: Atomically adds an integer value to a variable.

Parallelism is achieved explicitly through the use of futures, or implicitly,
when the complier attempts to automatically parallelize for loops. Futures al-
low programmers to explicitly launch threads to perform some function. Besides
explicit parallelism through futures, the compiler attempts to automatically par-
allelize for loops, enabling implicit parallelism. The programmer can also provide
pragmas that provide hints to the compiler on how to schedule iterations of the
for loop to various threads, whether it be by blocks, interleaved, or dynamically,
or supply hints on how many streams to use per processor, etc. We extensively
use the #pragma mta for all streams i of n construct that allows program-
mers to be cognizant of the total number of streams that the runtime has assigned
to the loop, as well as providing an iteration index that can be treated as the id
of the stream assigned to each iteration.

2.1 Code Libraries for the XMT

Much of the results outlined below utilize the code from two open source li-
braries that specifically target the Cray XMT: the MultiThreaded Graph Li-
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brary (MTGL)4 and the Semantic Processing Executed Efficiently and Dynam-
ically (SPEED-MT)5 library. The first is a set of algorithms and data structures
designed to run scalably on shared-memory platforms such as the XMT. The
second is a novel scalable Semantic Web processing capability being developed
for the XMT.

3 Dictionary Encoding

The first aspect of semantic databases we examine is that of translating semantic
data from a string representation to an integer format. To simplify the discussion,
we consider only semantic web data represented in N-Triples. In this format,
semantic data is presented as a sequence of lines, each line containing three
elements, a subject, a predicate, and an object. An element can either be a
URI, a blank node (an anonymous resource), or a literal value (a string value
surrounded by quotes with optional language and datatype modifiers). In all
cases, an element is a string of arbitrary length. To speed up later processing
of the data and to also reduce the size of the semantic graph, a common tactic
is to create a dictionary encoding - a mapping from string to integers and vice
versa. On the data sets we explore in this paper, we were able to compress the
raw data by a factor of between 3.2 and 4.4.

The dictionary encoding algorithm, outlined in Figure 1, is described in more
detail below. The dictionary is encapsulated within a class, RDF Dictionary,
that has three important members: fmap, rmap, and carray. The fmap, or for-
ward map, is an instance of a hash table class that stores the mapping from
strings to integer ids. Similarly, rmap, or reverse map, stores the opposite map-
ping, from integers to strings. We use unsigned 64-bit integers in order to support
data sets with more than 4 billion unique strings. The hash table implementa-
tion is similar to the linear probing method described in Goodman et al. [1].
However, we made some modifications that significantly reduces the memory
footprint that will be described in the next section.

Both of fmap and rmap reference carray, which contains a single instance of
each string, separated by null terminators. Having a single character array store
the unique instances of each string reduces the memory footprint and allows for
easy reading and writing of the dictionary to and from disk; however, it does
add some complexity to the algorithm, as shall be seen below. Also, we support
iteratively adding to the dictionary, which introduces further complications.

The dictionary encoding algorithm is invoked with a call to parse file. The
variable ntriple file contains the location on disk of the file to be encoded.
As of now, we only support processing files in N-Triples or N-Quads6 format.
After reading in the raw data, the algorithm tokenizes the array into individual
elements (e.g. subjects, predicates, and objects) of statements in lines 6-10. It
does this by inserting a null terminator at the conclusion of each element, and
storing the beginning of each element in the words array.
4 https://software.sandia.gov/trac/mtgl
5 https://software.sandia.gov/trac/MapReduceXMT
6 http://sw.deri.org/2008/07/n-quads/
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Procedure: RDF Dictionary.parse file(char* ntriple file)

Relevant class member variables:
hash table<char*, int>* fmap . Mapping from strings to ints
hash table<int, char*>* rmap . Mapping from ints to strings
char* carray . Contains single instance of each string

1: char* data ← read(ntriple file)

Initialize:
2: char** words
3: char** keys
4: hash table<char*, int>* tmap
5: unsigned long* output

6: for i← 0...len(data) - 1 do
7: if data[i] == ‘\n’ then
8: process line(&data[i + 1])
9: end if

10: end for

11: for all w in words do
12: if fmap->member(w) then
13: tmap->insert(w,1)
14: end if
15: end for

16: start ← get max value(fmap) + 1
17: assign contiguous ids(tmap, start)
18: num new, keys ← get keys(tmap)

19: plen ← consolidate(num new, keys)
20: num keys ← num new + fmap->size()

21: if num keys
max load > fmap->capacity() then

22: exp ← blog2(num keys/max load)c
23: newsize ← 2exp+1

24: fmap->resize(newsize)
25: rmap->resize(newsize)
26: end if

27: for i← plen...len(carray) - 1 do
28: if carray[i] == ‘\0’ then
29: id ← tmap->lookup(&carray [i + 1])
30: fmap->insert(&carray [i + 1], id)
31: rmap->insert(id, &carray [i + 1])
32: end if
33: end for

34: for i← 0...len(words) - 1 do
35: output[i] ← fmap->lookup(words[i])
36: end for

Fig. 1: Overview of Dictionary Encoding Algorithm on the XMT.

We allow for updates to an existing dictionary, so the next for loop on lines
11-15 extracts the subset of elements that are new this iteration. Line 11 checks
to see if the string is already stored in the fmap and inserts them into a function-
scoped instance of the map class, tmap. Notice that for each new word we insert
the value 1. The actual ids that will be added to the dictionary are assigned
in the next block of code. Doing so allows us to avoid memory contention on a
counter variable and use efficient range iterators that come with the hash table
class.

The block of lines from 16 through 20 assigns ids to the new set of elements,
and then appends the new elements to the end of carray. Line 16 determines
the largest id contained within the dictionary and increments that value by one,
thus specifying the starting id for the new batch of strings. If the dictionary is
empty, the starting id is one, reserving zero as a special value required by the
hash table implementation. Line 17 calls the function assign contiguous ids
which iterates through the keys of the hash table and assigns them values
v ∈ [start, start + num new], thus ensuring that regardless of how many times
parse file is called, the ids are in the range [1, num keys], where num keys
is the total number of keys. Line 18 gathers the new elements into a contiguous
array, keys. Line 19 takes keys and copies the data to the end of carray, plac-
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ing null terminators between each element. The function consolidate returns
the previous size of carray and assigns that value to plen. Line 20 updates the
total number of unique elements.

Once we’ve updated the number of keys, we can then test if the forward
and reverse maps need to be resized. On line 21, if the total number of keys
divided by the maximum load factor exceeds the current capacity of the ta-
ble (the total number of slots in the table, claimed or unclaimed), then we
resize both maps. The new size is set to be the smallest power of two such that
num keys/capacity < max load.

After the forward and reverse maps have been resized if necessary, they are
then updated with the new elements and new ids in lines 27 through 33. Since
the new elements have been added to the end of carray, we iterate through that
portion of the array. Each time we find a null terminator at position i, we know
that an element to be added starts at i + 1. We find the corresponding id from
tmap, and then add the pair to each map. With the forward and reverse maps
updated, we are finally ready to translate the elements listed in the words array
into integers and store the result in the output buffer in lines 34 through 36.

After the data has been encoded as integers, we are then ready to move on
to the next step, that of performing inferencing. An optional step is to write out
the translated data and the mapping between strings and integers to disk. This
is done by means of three files:

– <dataset>.translated : A binary file of 64-bit unsigned integers that contain
the triples encoded as integer values.

– <dataset>.chararr : This contains the contents of carray.
– <dataset>.intarr : Another binary file of 64-bit unsigned integers. The se-

quence of integers corresponds to the same sequence of words found in
<dataset>.chararr, thus preserving the mapping defined between strings and
integers.

3.1 Results

We examined four data sets: Uniprot7, DBPedia8, Billion Triple Challenge 2009 9

(BTC2009 ), and the Lehigh University Benchmark ( LUBM(8000)). We also ran
the dictionary encoding on a LUBM data set consisting of 16.5 billion triples.
This is roughly equivalent to LUBM(120000), though we generated it using
several different concurrent runs of the generator using different random seeds
and different offsets. These sets represent a wide variety, ranging from the well-
behaved, generated triple set of LUBM, to real-world but curated sets such as
DBPedia and Uniprot, to the completely wild sources like BTC2009, which was
formed by crawling the web.

We evaluated the dictionary encoding code using two different-sized systems,
a 512-processor XMT and a 128-processor system. Each XMT comes equipped
7 http://www.uniprot.ort
8 http://wiki.dbpedia.org/
9 http://challenge.semanticweb.org
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Data set Size(GB) Compression Size Dictionary Size Dictionary
Ratio On Disk (GB) In-memory (GB)

BTC2009 247 4.34 31.1 44.8
DBPedia 36.5 3.2 5.65 9.15
LUBM 185 4.37 17.7 31.7
Uniprot 250 3.94 19.6 33.2

Table 1: The data sets and the compression achieved

Data set MapReduce rate XMT rate Improvement
(MB/s) (MB/s)

DBPedia 36.4 120 3.29
LUBM 67.1 162 2.41
Uniprot 48.8 161 3.30

Table 2: Comparison to Urbani et al. [8]

with a service partition. On the service nodes a Linux process called a file service
worker (fsworker) coordinates the movement of data from disk to the compute
nodes. Multiple file service workers can run on multiple service nodes, providing
greater aggregrate bandwidth. The 512 system has 16 service nodes and can thus
run 16 fsworkers. However, our 128 system is limited to 2 service nodes and at
most 2 fsworkers. For runs where a limited number of fsworkers was available,
we decided to estimate the rate that would have been achieved had 16 fsworkers
been available, thus emphasizing the performance that could be expected on a
configuration more amenable to I/O.

Table 1 shows the raw sizes of the original data sets and the compression
ratio achieved. The compression ratio is calculated with

so

si + sc + st

where so is the size of the original data set, si is the size of the dictionary integer
array, sc is the size of the dictionary character array, and st is the size of the
encoded triples. The size of the dictionary on disk is si + sc while the size of the
dictionary in memory is the total memory footprint of the dictionary. Going from
disk to memory increases the size of the dictionary by about a factor between 1.5
and 2. This is due to the hash table implementation which requires load factors
lower than 0.7 to work efficiently.

Table 2 gives a comparison to a MapReduce dictionary encoding algorithm
presented by Urbani, et al. [8]. We compare rates achieved using 32 Threadstorm
processors versus a 32 quad-core cluster. We range from a 2.4 to a 3.3 times
improvement. Rate is calculated by dividing the size of the original data set
by the total time to read the data from disk to memory, perform the encoding
algorithm, and write the encoding and dictionary to disk. It should be noted that
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Fig. 2: (a) shows the compute times for the data sets and varying number of processors.
(b) displays the encoding rates achieved. The rate is defined as the original file size
divided by the time it takes to read the file into memory, perform the calculation, and
write the translated triples and dictionary to disk. The file I/O times were estimated
to what would be achieved using 16 fsworkers.

the datasets are of similar variety, but of different sizes. DBPedia and Uniprot
have grown since the time when the Urbani paper was published to when we
examined them. Also, we used a larger LUBM dataset. Figure 2(a) displays the
times obtained for the compute portion (i.e. excluding file I/O) of the dictionary
encoding process. Regardless of the nature of the data, we see nearly linear
speedup of 47-48x. Figure 2(b) presents the encoding rates. This includes an
estimated I/O time that would have been obtained with 16 fsworkers. The rates
fall within a relatively tight band except DBPedia, which is about 15% slower.
We are unsure if this is due to the nature of the data within DBPedia, or due to
the fact that file is significantly smaller than the other dataset.

We ran the 512 system on LUBM(120000). We ran once using all 512 pro-
cessors, iteratively processing a third of the data at a time. The times for each
chunk were 1412, 2011, and 1694 seconds. The times of the latter files are longer
than the first due to the need to check against the existing table, and also sec-
ond file required a resize of the forward and reverse hash tables. Overall the rate
achieved was 561 MB/s. Extrapolating from our LUBM(8000) 2-processor run,
ideally we would have achieved 2860 MB/s, representing an efficiency of about
.20. If we had run had concatenated all the data together, the rate of the 512
run would have been significantly better.

4 RDFS Closure

We presented an algorithm for RDFS closure in previous work [2]. In general the
process we described is to keep a large hash table, ht, in memory and also smaller
hash tables as queues for the RDFS rules, qi. We first iterate through all the
triples, adding the original set to ht, and any triples that match a given rule is
added to the appropriate qi. Then, upon invocation of a rule, we iterate through
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its cue instead of the entire data set. The algorithm assumes the ontology does
not operate on RDFS properties. As such, a single pass through the RDFS rule
set is sufficient.

The algorithm we employed in this paper is largely the same. We did make
some modifications that resulted in a 40% decrease in the memory footprint,
namely with

– removal of the occupied array in the hash table and hash set implementa-
tions, and

– removal of the rule queues.

In our previous work on hashing for the Cray XMT [1], we outlined an open
addressing scheme with linear probing, the key contribution being a mechanism
for avoiding locking except for when a slot in the hash table is declared occupied
for a given key. The open addressing scheme makes use of two arrays, a key array
and an occupied array. The key array stores the keys assigned to various slots
in the hash table, while the occupied array handles hash collisions and thread
synchronization. The occupied array acts as a boolean, a 1 indicating that the
slot is taken and a 0 otherwise (this assumes we don’t care about deleting and
reclaiming values, else we need another bit). Despite the occupied array being a
boolean, each position in the array is a 64-bit integer. Threads need to be able to
interact with the full-empty bit for synchronization, and full-empty bits are only
associated with each 8-byte word. However, an important observation is that the
occupied array is only necessary for a general implementation that is agnostic to
the key distribution. In situations where there is a guarantee that a particular
key k will never occur, we can use the key array itself for thread synchronization
and use k as the value indicating a slot is empty. When we initialize the key
array, we set all the values to k. Since we control what values are assigned during
the dictionary encoding, we reserve k = 0 as the special value indicating a slot
is open.

The second change we employed is the removal of queues. In our previous
implementation, we made use of queues for RDFS rules. As we processed existing
triples or added new triples through inference, we would check to see if the triple
under consideration matches a rule. If so, we would add it to the appropriate
queue. Then, when the rule was actually evaluated, we iterated over the queue
instead of the entire dataset, thus saving computation. To save on space, we
removed the queues. This change did result in a small increase in computation
time. We examined LUBM(8000) and found about a 33% increase in computa-
tion time for small processor counts, but for 128 the increase in time was only
11%.

4.1 Results

We examined performing closure on LUBM(8000) and BTC2009. For BTC2009,
we used the higher-level ontology described by Williams et al. [10]. BTC2009 is
a collection of data crawled from the web. As such, it is questionable whether the
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ontological information procured from sundry sources should be applied to the
entire data set. For instance, some ontological triples specified superproperties
for rdf:type. While expansion of rdf and rdfs namespaces may be appropriate
for some portion of BTC2009, namely the source from which the ontological
information is taken, it doesn’t make sense for the rest of the data. Also, this
type of expansion violates the single-pass nature of our algorithm, and would
require multiple passes. As such, we removed all ontological triples (i.e. any triple
with rdfs or owl in the namespace of the predicate) from BTC2009 and added
the higher level ontology.
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Fig. 3: This figure shows the times ob-
tained by running RDFS closure on
LUBM(8000) and BTC2009.

Query With I/O Without I/O

MPI 6.0 6.8
WebPIE 9.0 10.6

Table 3: This table shows the speedup
our RDFS closure algorithm achieved
against other approaches on LUBM
data sets.

Figure 3 displays the results of running our RDFS closure algorithm on the
two different data sets. For comparison, we also include the times using the
previous approach on LUBM(8000). Table 3 provides comparison with other
approaches. We refer to the work of Weaver and Hendler [9] as MPI as they
use an MPI-based approach. WebPIE refers to the work of Urbani et al. [7].
We extract the WebPIE rate for RDFS out of a larger OWL computation. In
both cases we compare equal number of Threadstorm processors with quad-core
nodes (32 for MPI and 64 for WebPIE). We present the comparison with and
without I/O. As this part of our pipeline doesn’t require I/O, it is seems a fair
to consider the comparison between our non I/O numbers with the previous
approaches, whose processing relies upon access to disk. Though to aid in an
apples-to-apples comparison, we include estimated rates that would be garnered
with I/O using 16 fsworkers.

We also ran RDFS closure on LUBM(120000) with 512 processors. The final
triple total came in at 20.1 billion unique triples. We achieved an inference
rate of 13.7 million inferences/second when we include I/O, and 21.7 million
inferences/second without I/O. Again using the 2 processor run on LUBM(8000)
as a baseline, ideally we would want to see 77.2 million inferences/second when
ignoring I/O. This gives an estimate on efficiency of 0.28.
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5 Data Model: A Graph

Once we have the data encoded as integers, and all RDFS inferences have been
materialized, we are now ready to store the data within a data model. Previous
to this step, the triples had been stored in one large array. Instead of trying to
fit standard relational DBMS-style models to sets of triples, we opt to model
each triple as a directed edge in a graph. The subject of a triple is a vertex on
the graph, the predicate is a typed edge, with the head being the subject and
the tail being the object, another vertex.

We present some basic notation to facilitate discussions of the graph data
model. A graph is defined in terms of vertices, V , and edges E, i.e. G = (V,E).
The graphs we consider are directed, meaning that the edges point from a head
vertex to a tail vertex. We use E(v) to denotes the edges incident on vertex v,
while E−(v) denote only the incoming edges and E+(v) signifies the outgoing
edges. Similarly we define degree, the number of edges incident to vertex v as
deg(v), deg−(v), and deg+(v). We use source(e) and dest(e) to denote the head
and tail vertices for an edge e. Also, we enumerate the edges, and refer to the
ith edge incident with v using the notations E(v) [i], E(v)− [i], and E(v)+ [i].

6 Querying

Once we have the data in graph form, we can now utilize that information to
perform efficient SPARQL queries. LUBM [3] provides several standard queries.
For the purposes of discussion we list query 1:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl#>
SELECT ?X
WHERE

{?X rdf:type ub:GraduateStudent .
?X ub:takesCourse

http://www.Department0.University0.edu/GraduateCourse0}

The WHERE clause contains a set of what are called basic graph patterns
(BGPs). They are triple patterns that are applied to the data set, and those
elements that fit the described constraints are returned as the result. The above
SPARQL query describes formally a request to retrieve all graduate students
that take a particular course. It is important to note that there are basically
only two possibilities for the number of variables within a BGP, one and two.
The other two cases are degenerate: a BGP with no variables has no effect on
the result set, and a BGP with all variables simply matches everything.

Here we present an algorithm we call Sprinkle SPARQL. The algorithm be-
gins by creating an array of size |V | for each variable specified in the query (see
line 1 of Figure 4). Each array is called aw for every variable w. We then evaluate
each BGP by incrementing a counter in the array for a given variable each time a
node in the graph matches the BGP. For example, say we have a BGP, b, similar
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to the two BGPs of LUBM query 1, where the subject b.s is a variable but b.p
and b.o are fixed terms (line 2 of Figure 5). In that case, we use the graph data
model (line 3 of Figure 5) and start at the object and iterate through all the
deg−(b.o) edges in E(b.o). If an edge matches b.p, we then increment the counter
for the subject at the source of the edge (source(E−(b.o) [i]) in the temporary
array t. We use a temporary array to prevent the possibility of the counter for
a node being incremented more than once during the application of a single
BGP. Once we have iterated through all the edges associated with b.o and found
matching subjects, we then increment positions within ab.s that have a non-zero
corresponding position in t. In the interest of space, we omit the a description
of the other cases. Note that the algorithm as currently defined excludes the
possibility of having a variable in the predicate position; we will leave that as
future work. It is this process of iterating through the BGPs and incrementing
counters that we liken to sprinkling the information from SPARQL BGPs across
the array data structures.

Algorithm: Querying via Sprinkle SPARQL

Let B be a set of Basic Graph Patterns and W be the set of variables
contained in B. For w ∈ W , let |w| denote the number of times the
variable appears in B. Also, for b ∈ B, let |b| denote the number of
variables in b. To query, perform the following:

1: ∀w ∈ W , create a set of arrays A such that ∀aw ∈ A : |aw| = |V | ∧ ∀i ∈
[0, |V | − 1] : aw [i] = 0

2: ∀b ∈ B, Sprinkle(b, A)

3: Select wmin ← minwi∈W

P|V |
j=1 awi [j] = |wi|

4: Create result set R, initially populated with all v : awmin [v] = |wmin|
5: Let B(2) = {b|b ∈ B ∧ |b| = 2}
6: while B(2) 6= ∅ do
7: Let Bmatch = {b|b ∈ B(2) ∧ ∃w ∈ b : w ∈ R}
8: Select bmin ← minb∈Bmatch |R ./g b|
9: R← R ./g bmin

10: B(2)← B(2)− bmin

11: end while

Fig. 4: This figure gives an overview of the Sprinkle SPARQL algorithm

Once we have applied each of the BGPs b ∈ B to A, if the counter associated
with node i in aw matches the number of times that w appears in B, then
that node is a candidate for inclusion. In essence, we have reduced the set of
possibilities for the result set.

The next step is to iterate through all BGPs that have 2 variables, applying
those constraints to the set of possible matches defined by Line 2 of Figure
4. Line 3 of Figure 4 selects the variable with the smallest number of nodes
that match, beginning a greedy approach for dynamically selecting the order of
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Procedure: Sprinkle(b, A)
Let B and W be the same as above. Let F be the set of fixed terms (not
variables) in B

1: Create a temporary array t of size |V | where ∀i ∈ [0, |V | − 1] : t [i] = 0
2: if b.s ∈W ∧ b.p ∈ F ∧ b.o ∈ F then
3: for i← 0...deg−(b.o)− 1 do
4: if E−(b.o) [i] = b.p then
5: s← source(E−(b.o) [i])
6: t [s]++
7: end if
8: end for
9: for i← 0...|V | − 1 do

10: if t [i] > 0 then
11: ab.s [i]++
12: end if
13: end for
14: else if b.s ∈ F ∧ b.p ∈ F ∧ b.o ∈W then

...
15: else if b.s ∈W ∧ b.p ∈ F ∧ b.o ∈W then

...
16: end if

Fig. 5: This figure outlines the Sprinkle process.

execution. We populate the initial result set with these matching nodes. At this
point, One can think of the result set as a relational table with one attribute.
We then iterate through all the 2-variable BGPs in lines 6 through 11, where for
each iteration we select the BGP that creates in the smallest result set. For lack
of a better term, we use the term join to denote the combination of the result
set R with a BGP b, and we use the notation ./g to represent the operation.
Consider that R ./g b has two cases:

– A variable in R matches one variable in b, and the other variable in b is
unmatched.

– Two variables in R match both variables in b.

In the former case, the join adds in an additional attribute to R. In the latter case,
the join further constrains the existing set of results. Our current implementation
calculates the exact size of each join. An obvious improvement is to select a
random sample to estimate the size of the join.

6.1 Results

Here we present the results of running Sprinkle SPARQL on LUBM queries 1-5
and 9. Of the queries we tested, 4, 5, and 9 require inferencing, with 9 needing
owl:intersectionOf to infer that all graduate students are also students. Since we
do not yet support OWL, we added this information as a post-processing step
after caclucating RDFS closure. Figure 6 shows the times we obtained with the
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Fig. 6: This figure shows the times of
running Sprinkle SPARQL on LUBM
queries 1-5 and 9.

Query MapReduce BigOWLIM

2 13.6 4.25
9 28.0 5.64

Table 4: This table shows the speedup
Sprinkle SPARQL achieved against
other approaches for queries 2 and 9.

method. We report the time to perform the calculation together with the time to
either print the results to the console or to store the results on disks, whichever
is faster. For smaller queries, it makes sense to report the time to print to screen
as a human operator can easily digest small result sets. For the larger result
sets, more analysis is likely necessary, so we report the time to store the query
on disk.

Queries 2 and 9 are the most complicated and they are where we see the
most improvement in comparison to other approaches. We compare against a
MapReduce approach by Husain et al. [4] and against the timings reported for
BigOWLIM on LUBM10. This comparison is found in Table 4. For the MapRe-
duce work, we compare 10 Threadstorm processors to an equal number of quad-
core processors. For the comparison against BigOLWIM, the website states a
”desktop” machine but lacks any other information, so we compare their times
with our 2-processor count runs. Ideally, we would like to compare against larger
processor counts, but we could find nothing in the literature.

Queries 1, 3, and 4 have similar performance curves. The majority of the time
is consumed during the Sprinkle phase, which down-selects so much that later
computation (if there is any) is inconsequential. For comparison we ran a simple
algorithm on query 1 that skips the Sprinkle phase, but instead executes each
BGP in a greedy selection process, picking the BGPs based upon how many
triples match the pattern. For query 1, this process chooses the second BGP,
which has 4 matches, followed by the first BGP, which evaluated by itself has
over 20 million matches. For this simple approach, we arrive at a time of 0.33
seconds for 2 processors as opposed to 29.28 with Sprinkle SPARQL, indicating
that Sprinkle SPARQL may be overkill for simple queries. Query 5 has similar
computational runtime to 1, 3, and 4, but because of a larger result set (719
versus 4, 6, and 34), takes longer to print to screen. For these simple queries,
Sprinkle SPARQL performs admirably in comparison to the MapReduce work,
ranging between 40 - 225 times faster, but comparing to the BigOWLIM results,
we don’t match their times of between 25 and 52 msec. As future work, we plan
to investigate how we can combine the strategies of Sprinkle SPARQL and a
10 http://www.ontotext.com/owlim/benchmarking/lubm.html
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simpler approach without Sprinkle (and perhaps other approaches) to achieve
good results on both simple and complex queries.

7 Conclusions

In this paper we presented a unique supercomputer with architecturally-advantageous
features for housing a semantic database. We showed dramatic improvement for
three fundamental tasks: dictionary encoding, rdfs closure, and querying. We’ve
shown the ability to store large triple stores up to 20 billion in size completely
in memory, and we’ve also shown scaling up to 512 processors, a feat not seen
in the literature.
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