
High Performance Computing for a Financial
Application Using Fast Fourier Transform

Sajib Barua, Ruppa K. Thulasiram�, and Parimala Thulasiraman

Department of Computer Science, University of Manitoba
Winnipeg, MB R3T 2N2 Canada

{sajib,tulsi,thulasir}@cs.umanitoba.ca

Abstract. Fast Fourier Transform (FFT) has been used in many scien-
tific and engineering applications. In the current study, we have applied
the FFT for a novel application in finance. We have improved a recently
proposed mathematical model of Fourier transform technique for pricing
financial derivatives to help design and develop an effective parallel al-
gorithm using a swapping technique that exploits data locality. We have
implemented our algorithm on 20 node SunFire 6800 high performance
computing system and compared the new algorithm with the traditional
Cooley-Tukey algorithm We have presented the computed option values
for various strike prices with a proper selection of strike-price spacing to
ensure fine-grid integration for FFT computation as well as to maximize
the number of strikes lying in the desired region of the asset price.

Keywords: HPC for commercial application; Option pricing; Fast
Fourier transform; Mathematical modeling; Parallel algorithm; Data
locality.

1 Introduction

The finance industry demands efficient algorithms and high-speed computing
in solving many problems [1]. In this research we cut across two historically
established, technologically evolving and most importantly traditionally different
areas: computing and finance - computational finance. Specifically, this paper
addresses the problem of option pricing.

Terminologies: An option is a financial contract where one of the two parties
involved, known as holder, gets the right (but not obligation) to buy/sell a set of
underlying financial instruments such as stocks at a preset price (known as exer-
cise or strike price) at a preset date (known as exercise/maturity date) from/to
the other party known as the writer. If the holder decides to exercise the option,
the writer is obligated to satisfy the holder’s decision. Buying/selling underlying
asset through such contract is referred to as Call/Put option. If the option can
be exercised only at the maturity date, the option contract is known as European
option, whereas if the option can be exercised any time prior to the maturity, it
is known as American option. Value of a call/put option (shortly call/put value
� Author for Correspondence: tulsi@cs.umanitoba.ca

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 1246–1253, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



High Performance Computing for a Financial Application 1247

or call/put price) depends on the spot price of the underlying asset, strike price
among other parameters such as risk-free interest rate, volatility1 of the asset,
period of the contract.

The solution for the optimal exercise policy for a financial option must typi-
cally be performed numerically, and is usually a computationally intensive prob-
lem. Pricing of options has been traditionally done using either binomial tree ap-
proach or using Monte-Carlo simulation or engineering approaches such as finite-
differencing (see for example [2]). A recent addition to the numerical techniques
for the option pricing problem is the use of Fast Fourier Transform (FFT) [3]. By
providing an one-to-one mapping from the mathematics of Fourier space to the
computational domain of the FFT, [4] explored the high performance computing
for this problem.

In the current study, we develop an improved mathematical model of FFT
for option pricing and a new parallel FFT algorithm. While there are many
FFT algorithms available, for example, Stockham auto sort algorithm (SAS) [5]
(chapter 1.7) and Bailey algorithm [6], we had to develop a new algorithm in the
current study especially to satisfy the mathematics of the option pricing problem
described in section 2. The structure of our new algorithm behaves similar to the
SAS algorithm, however, captures the physics of option pricing closer than the
SAS algorithm as explained in section 2. Due to lack of space we do not discuss
the SAS or other available algorithms here. Readers are referred to [5] for an in
depth look on various FFT algorithms. We leave the work on fine tuning SAS [5]
(chapter 1.7) and Bailey’s [6] algorithm for option pricing problem as a future
study.

The rest of the paper is organized as follows. In section 2, we mention the
drawback of one major related work on mathematical model of option pricing
problem using Fourier transform and present an improvement to the mathemat-
ical modeling with which a finer mapping from mathematics to the FFT com-
putational domain for option pricing is presented. In section 3, we present the
new FFT algorithm, which exploits data locality to improve the performance.
The results are presented in section 4, with call value results followed by the
experimental results. We conclude the current study in section 5.

2 Drawback of an Existing FFT Model
and Improved Model for Option Pricing

An important contribution of the current work is to alleviate the drawback in
Carr-Madan (CM) model [3]. They developed a FFT model for option pricing
in continuous and discrete form as follows: If M = e−αk/π and ω = e−i then

CT (k) = M

∫ ∞

0

ωvkψT (v)dv. (1)

1 Variation in the asset prices is generally split into two parts: (i) changes due to known
factors affecting the asset price such as periodic changes - known as deterministic
changes or drift in prices; (ii) changes due to unknown phenomena in the market
place - generally known as volatility.



1248 Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman

If vj = η(j − 1) and applying trapezoidal rule for the integral on the right of
equation (1), CT (k) can be written as

CT (k) ≈M

N∑
j=1

ψT (vj)ωvjkη, k = 1, . . . , N, (2)

where the effective upper limit of integration is Nη and vj corresponds to various
prices with η spacing. Here CT (k) is the call option price; ψT (v) is the Fourier
transform of this call price given by ψT (v) = e−rT φT (v−(α+1)i)

α2+α−v2+i(2α+1)v ; where α is a
dampening factor and k is the logarithm of the strike price, k = log(K)); r
is the interest rate; T is the period of the option contract. The calculation of
ψT (v) depends on the factor φT (u), where u = v − (α + 1)i. We derive φT (v)
as, φT (v) =

∫ λ

0
(cos(vk) + i sin(vk))qT (s)ds where λ is terminal spot price and

integration is taken only in the positive axis.
To calculate the call values, equation (1) has to be solved analytically. The

discrete form equation (2) is not suitable to feed into the existing FFT algorithms
for example,Cooley-Tukey [7], Stockham auto sort [5](chapter 1.7) and Bailey [6].
Hence, the CM model in its current form cannot be used for faster pricing. This
is a major drawback of using CM model for practical purposes and for real time
pricing we need to improve this mathematical model.

This leads us to state the objectives of the current work as: (1) Improv-
ing the mathematical model that will be tractable for parallel computing and
for getting accurate solutions quickly; (2a) Designing an efficient parallel FFT
algorithm that can map the mathematics from the improved model to the com-
putational domain; and (2b) implementing the algorithm on distributed memory
architecture to study the performance.

Improved Mathematical Model: The limits on the integral have to be selected in
such a way as to generate real values for the FFT inputs. To generate the closed
form expression of the integral, the integrands, especially the function qT (s),
have to be selected appropriately. Without loss of generality, we use uniform
distribution for qT (s). This implies occurrence of a range of terminal log prices
at equal probability, which could, of course, be relaxed and a normal or other
distribution could be employed. Since the volatility of the underlying asset is
assumed constant (low) the variation in the drift is expected to cause a stiffness2

2 Stiffness occurs when two processes controlling a physical phenomenon proceeds at
two extremely different rates. It is common in scientific problems such as chemical
reactions and high temperature physics. When a system with such physical phe-
nomenon is manifested in mathematics such as differential or integral equations, the
mathematical system is known to be stiff, where solution of such systems of equa-
tions would require special techniques to handle the ‘stiffness’. Drift and volatility
in the finance systems act as two phenomena affecting the system away from equi-
librium hence may induce ‘stiffness’. Our assumptions of uniform distribution for
the density function to make the integration easier, in conjunction with assumed
constant volatility, however, naturally avoids this issue.



High Performance Computing for a Financial Application 1249

in the system. However, since we have assumed uniform distribution for qT (s),
variation in drift is eliminated and hence the stiffness is avoided. Therefore, use
of uniform distribution would make the integration easier.

For computation purposes, the upper limit of equation (1) is assumed as
a constant value and the lower limit is assumed as 0. The upper limit will be
dictated based on the terminal spot price. In other words, to finish the call option
in-the-money3, the upper limit will be smaller than the terminal asset price and
hence we arrive at the the modified expression for φT (v) presented earlier.

Without loss of generality, further modifications are required as derived be-
low. The purpose of these modifications is to generate feasible and tractable
initial input condition to the FFT algorithm from these equations. Moreover,
these modifications make the implementation easier. Due to lack of space we
skip the mathematical derivation and present the final improved mathematical
model as

ψT (v) =
A

{B}{C2 +D2}
[
{C∆+D∆x} + i{C∆x −D∆}

]
(3)

where, A = e−rT qT (s); B = (α+ 1)2 + v2; C = α2 +α− v2; D = (2α+ 1)v. We
use this final expression for the new parallel FFT algorithm to compute the call
price function. The financial input data set for our parallel FFT algorithm is the
calculated data points of ψT (v) for different values of v. We refer equation (3)
as BTT-CM Model or BTT-CM equation.

We then calculate call value for different strike price values vj where j will
range from 1 to N . The lower limit of strike price is 0 and upper limit is (N−1)η
where η is the spacing in the line of integration. Smaller value of η gives fine
grid integration and a smooth characteristics function of strike price and the
corresponding calculated call value. If γ is the spacing in k, then the values for k
can be obtained from the equation: ku = −p+γ(u−1), for u = 1, . . . , N. Hence,
the log of the ratio of strike and exercise price will range from −p to p where
p = Nγ

2 . Substitution of previous equation for ku in equation (2) and replacing
vj with (j − 1)η in the equation gives (for u = 1, ..., N)

CT (ku) ≈ exp(−αku)
π

N∑
j=1

{e−iγη(j−1)(u−1))eipvjψT (vj)η}. (4)

Comparing equation (4) with the basic FFT equation, we note that γη = 2π
N .

Smaller values of η will ensure fine grid for the integration. But call prices at
relatively large strike spacings (γ), few strike prices will lie in the desired re-
gion near the stock price [3]. Furthermore, if we increase the values of N , we

3 In-the-money call option is a situation where underlying asset price of the option
is larger than the strike price; at-the-money call means asset price equals the strike
price; natural extension is for out-of-the-money call, which corresponds to a situation
where the asset price is smaller than the strike price. These definitions are reversed
for a put option



1250 Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman

will get more intermediate points of the calculated call prices (CT (ku)) corre-
sponding to different strike prices (vj). This helps the investor to capture the
call price movements of an option for different strike prices in the market. In the
experimental result (section(4)) of 1024 (N) numbers of calculated call values,
assuming η = 0.25 with the intuition that it will ensure fine grid integration, γ
is calculated as 0.02454. Similar to basic FFT equation, equation (4) can also be
parallelized with an efficient parallel algorithm. In the next section we develop
a data swapping technique that exploits data locality to reduce communication
on a parallel computer and effectively apply our mathematical model. We im-
plement this algorithm with the inputs derived from equation (4).

3 An Effective Parallel FFT Algorithm

Figure 1 illustrates our data swap algorithm. We assume we have N (N = 2m)
data elements and P (P = 2p) processors where N > P [8]. In our algorithm, we
apply the blocked data distribution and the first (logN−logP ) stages require no
communication. However, in the last logP stages that require communication,
we swap some data at each stage and let the data reside in the processor’s local
memory after swapping. Therefore, the identity of some of the data points in
each processor changes at every stage of the logP stages.

Fig. 1. Data Swap Algorithm

In figure (1), we can see that in iteration 2, processor 0 needs two input data
points with index 4 and 5 and these do not reside in the local processor. Hence, we
need two send operations to bring these values from processor 1. In general, for
an input data point with N/P data in every processor,N/(2P ) communication is



High Performance Computing for a Financial Application 1251

required. This is half of what is required in the Cooley-Tukey algorithm. That is,
in the new parallel FFT algorithm, the number of communications is reduced by
half. We take advantage of the the fact that communication between processors is
point to point and swap the data in a similar manner. However, in this case, only
N
2P amount of data (message size) is communicated by each processor at every
stage. Also note that, data swapping between processors at each location allows
both the upper and lower part of the butterfly computations to be performed
locally by each processor. This improvement enhances good data locality and
thereby providing performance increase in the new FFT algorithm compared
to the Cooley-Tukey algorithm. Analytically, the parallel runtime is given by [9]
tc(N/P ) logN+t

′′
s logP+tw(N/2P ) logP , where ts is the start up time; tw is the

per word transfer time; and tc is the time required for the butterfly computation.

4 Results and Discussions

Option Pricing Results: Figure (1) shows how the data swap algorithm calcu-
lates the call values from the input data set generated from the BTT-CM equa-
tion. The data swap algorithm calculates N number of call values. When the
call option is in-the-money, the investor would prefer to exercise the option
(purchasing the option) at the strike price and immediately sell the asset in the
market at the terminal spot price. Thus, the holder can profit. Figure (2) de-
picts the calculated in-the-money call values for different strike prices using the
data swap algorithm. In the experiment of call value computation, strike price
can be any value between 0 and 300. Our data swap algorithm can calculate
(figure 1) call values for in-the-money, at-the-money and out-of-the-money call
options. We are considering in-the-money call where the terminal spot price is
always greater than the strike price. Therefore, figure 2 plots a portion of the
calculated call values (in-the-money) from the output values of the data swap
algorithm. The plot shows that the normalized option value is decreasing with
the increase of strike price. If X , the strike price, is decreased, the call option
value is expected to increase, which can be seen in figure 2. For larger values of
N we can get more number of call values computed for the strike price range
from 0 to 127, which makes the plot as a continuous function.

Significant Experimental Results: The experiments were conducted on a 20 node
SunFire 6800 high performance computing system at the University of Manitoba
running MPI. The Sunfire consists of Ultra Sparc III CPUs, with 1050 MHz clock
rate and 40 gigabytes of memory and runs Solaris 8 operating system. The data
generated in section 2 is used for the FFT input. Due to lack of space, we present
only limited number of results.

Figure (3 a) depicts a comparison of the execution time between the swap al-
gorithm and the Cooley-Tukey algorithm. At each iteration N

2P = 220

25 = 215 data
points are swapped on each of the 16 processors. On a 2 processor machine, there
are log 220 − log 2 = 19 local computations and only 1 remote communication.
However, there is a significant decrease in execution time in 16 processors. This is



1252 Sajib Barua, Ruppa K. Thulasiram, and Parimala Thulasiraman

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50 100 150

Strike Price

N
o

rm
al

iz
ed

 C
al

l V
al

u
e

Fig. 2. Computed Call Values

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

1.20E+02

1.40E+02

1.60E+02

2^10 2^12 2^14 2^16 2^18 2^20

Data Size (N)

T
im

e 
in

 m
se

c 
(T

)

Cooley-Tukey
(16 Processors)

Swap Algorithm
(16 processors)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

Number of Processors (P) 

E
ff

ic
ie

n
cy

 (
E

) N = 2^12

N = 2^13

N = 2^14

N = 2^16

N = 2^19

Fig. 3. a)Comparison of the execution times of swap and Cooley-Tukey algorithms,
and b) Efficiency of the data swap algorithm

attributed to the fact that in MPI, the packing and unpacking of N
2P = 218 data

elements for each of the 2 processors requires significant amount of time. When
we compare the swap algorithm to the Cooley-Tukey algorithm in figure (3)
on 16 processors, the swap algorithm performs 15% better than Cooley-Tukey
algorithm on a data size of 220.

We calculated the efficiency of the swap algorithm for various processors on
a fixed data size as presented in figure (3 b). The efficiency for 16 processors is
close to 1. For 4, 8, and 16 processors the efficiency is 90% for data sizes 214,
216, 219 respectively. Also for 8 and 16 processors the efficiency is 50% for 212

and 213 respectively. These results illustrate that as we increase the data size
and the number of processors, the swap algorithm exhibits very good scalability.

5 Conclusions

Without loss of generality, we have improved the mathematical modeling of FFT
for option pricing and we have identified appropriate values for the parameters to
generate the input data set for the parallel FFT computations. We have reduced
the communication latency by improving the data locality. We have presented
the computed call values for various strike prices with a proper selection of



High Performance Computing for a Financial Application 1253

strike-price spacing to ensure fine-grid integration for FFT computation as well
as to maximize the number of strikes lying in the desired region of the asset price.
Compared to the traditional Cooley-Tukey algorithm, the current algorithm with
data swapping performs better by more than 15% for large data sizes.

Acknowledgement

The last two authors acknowledge partial financial support from Natural Sciences
and Engineering Research Council (NSERC) of Canada and the University of
Manitoba Research Grant Program (URGP). They also gratefully acknowledge
the discussions with Prof. Sanjiv R. Das, Department of Finance, Leavey School
of Business, Santa Clara University, Santa Clara, CA, USA, on the Fourier trans-
form application for finance problems especially the option pricing problem.

References

1. E. J. Kontoghiorghes, A. Nagurnec, and B. Rustem. Parallel Computing in Eco-
nomics, Finance and Decision-making. Parallel Computing, 26:207–209, 2000.

2. J.C. Hull. Options, Futures and Other Derivatives. Prentice Hall, Upper Saddle
River, NJ, 5th edition, 2002.

3. P. Carr and D. B. Madan. Option Valuation using the Fast Fourier Transform. The
Journal of Computational Finance, 2(4):61–73, 1999.

4. R. K. Thulasiram and P. Thulasiraman. Performance Evaluation of a Multithreaded
Fast Fourier Transform Algorithm for Derivative Pricing. The Journal of Supercom-
puting, 26(1):43–58, Aug. 2003.

5. C.Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM:
Frontiers in Applied Mathematics, Philadelphia, PA, 1992.

6. D. H. Bailey. FFTs in External or Hierarchical Memory Fourier. The Journal of
Supercomputing, 4, 1990.

7. J.W. Cooley, P.A. Lewis, and P.D. Welch. The Fast Fourier Transform and its
Application to Time Series Analysis. Wiley, New York, 1977. In statistical Methods
for Digital Computers.

8. A. Grama and A. Gupta and G. Karypis and V. Kumar. Introduction to Parallel
Computing. Addison Wesley, New York, NY, Second edition, 2003.

9. S. Barua. Fast Fourier Transform for Option Pricing: Improved Mathematical Mod-
eling and Design of an Efficient Parallel Algorithm. Master’s thesis, University of
Manitoba, Winnipeg, MB, Canada, July 2004.


	High Performance Computing for a Financial Application Using Fast Fourier Transform
	1 Introduction
	2 Drawback of an Existing FFT Model and Improved Model for Option Pricing
	3 An Effective Parallel FFT Algorithm
	4 Results and Discussions
	5 Conclusions
	References


