
iinlIIII!--IIIi1

L
W

4

' DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

, Government. Neither the United States Government nor any agency thereof, nor any of their

employees, makes any warranty, express or implied, or assumes any legal liability or responsi- ,,

bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Refer-

ence herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the

United States Government or any agency thereof.

Surmised to Pr_cseedings of the Sanibel $ympasia 19£3

High Performance Computing in Chemistry and Massively Parallel

Computers: A Simple Transition?

4.

Rick A. Kendall" p
Mote...utar Science Software

Moiecutar Science Research Center

E,_vironmental Molecular Sciences Labo',atsry

Pasific Northwest Laboratory"
,=,ichtand, WA 99352, USA

Abstract:

A review of the various _rcsiems facing any software deveiouer targeting massively

parallel processinc.. (MPP) ,._vst=ms..is presented. Issues smeclfic to computational

chemistry application ssffwa:e will be also outlined. Computational chemistry software

ported to and aesicned f._r the lntel Touchstone Delta Sumercompu:er will be

discussed. Recomme.caticr'.s for future directions will also be made.

:Tne author may :e reac_ec v;a err,at: E __ken:all@ c,agie.:nl.gov

" " - £ :a:_i." No,.nw._.'.- _- _=-':,_:._.-. :_.:-_-Ee:._.- :v ._---_e_ ,, Memcna: instr,:.':,e-'...-,UE. Ze=-.-..-_-t.- :- Er:.r.-.," J.C.C-i,un=er
C_,m'a:t"_- _"* -" C =':",..,:-Av06- : :-.. i

..,,r
.

! f

HPC in Chemistry and MPP Computers

I. Introduction

The advent of massively paraliel processing (MPP) supercom=uters _ss been an

excitin_ and challenging b=,_et_ to computational science. Many cf the a,c_-_'nms,,,and

,.,,,,,..,,_at_onal chemistry fiel "_ are ve_' com_-te ptheoretical models used by the """'.'-',* "

intensive, and the computationa', chemistry market is an obvious :arge: cf many MRP

vendors. Computational chemis:s have long been at the forefront of utilizing and

developing software on the leading edge of computational technoiogy. The deiive,_, of

firs_ and second generation usabie MFP hardware has enticed many ccmDutational

c.qemislry groups to begin focusin_ """'* ,..=,,,_,,s on the development "" cne..m_s_, software

for parallel computing systems. To c;ate, efforts on modern MP.= svstems are

. :...and national laboratory environ,,,en:s wit_ li_ledistributed among primarily aca.qem" -"

effort, from the vendor ccmmunib'. Lnese efforts also span ,,,= en:]re sse"',"''"..,,,.,,,,of

computational chemistry metho_.3iogies and algorithms (e.g., frcm moJesular modeling

..==n cgnductedand dynamics to full configuration ir'4erastion calculations) and have _'-'-

on the gamut of available MFP hardy-are. Furthermore, these effsr:s .ave ma_e

significant progress, but the use of higb.-pefformance computin; sys_en".s, s2esifisally

massively parallel computers, is far from routine.

In this article 1 outline issues tb,st "_" " ",..,,_.,=nge software development ,.';_:. respect _o a

.. vo,__:_le r',aruv;are industry as a whole with a f3cus on MP_very technoloaically '"'"

systems of toaay and tomorrow. The pers.uestive is that of a cc.m;3u;atisn_.l chemistry

asulication develo._er, and wh_t I see available now and in the nea" f-_ure. No one

can predict long-term trends in the exiremety volatile computer in,dust.',:',so I ,.,,,illnot try,

except to state that software cevelc3ment in the future will be 2ifferen: than t_qe way

s#ulications are aeveloued [csay. In section I1, discussions s; the _enerai issves

regarding MPP technsio'_y and issues pertinent to comouta:ic.qa! chemistry ._

a_iications are presented, tn s=ct_on II1, results of chemistry __u_,,=.....c',s on the intel

Touchstone Delta are prese_:e,i. Csnclusions and recommenca:icr'.s are mace in

section IV.

11. Software Development Issues for MPP Computational Chemistry

Software.

t
!

HPC in Che,_/st-y" and MFF Computers

Any software engineering (SE) text warns that the lack of effort in the dasign of

modular and reusable software will eventually cause a complex sc_ware system to

collapse under it's own weight [1]. The concepts of modularity and reusability are

without regard to the particular programming language used for a given software

system. The staffing requirements for maintaining a required but poorly designed .p

application are substantial. Computational chemistry software applic_.tions are not

" immune from this process; in fact many of the software cievelopers in computational

chemistry are graduate students rarely trained in any aspects of modern computer

science or SE. The programming effort is usually the last pan of the theoretical or

model development and is sometimes less interesting to a student trying to finish a

thesis effort.

Computing hardware has undergone a tremendous series of advances over the last

two decades. The supercornputing industry was born in the 1960s, flourished in the

1970s and1980s, and has grown dramatically in the last few years, in the 1970s and

early 1980s, the hardware designs lasted on the order of 5 to 7 years. The doubling of

computer power with advances in hardware technology, and the interface to that

technoiogy, operating systems, optimizing compiler design, etc., progressed at a rate

that allowed software developers time to adapt and make algorithmic modifications

that made optimal use of the computing resources available. !q the last 5 years, the

hardware technology growth curve has drastically change.... With the advent of

reduced instruction set chip (RISC) technology, the period for doubling raw compute

power is now somewhere between 12 and 18 months (see Figure 1) [2]. By the time a

computer system is procured and delivered, it is most likely out of date (although not

obsolete). This ra_id development has even caused the computing industry to

implement leap frog hardware development efforts to keep pace with the demands of

the computing user.base.

The hardware used in the past and today has a standard life cycle [1]. When the

hardware is first delivered or developed, it usually has a high failure rate or is not as

useful as might be exsected. This is sometimes due to the overall software interface to

that hardware. The bugs in the system get worked out, and the system becomes

useful. Then the user community, computational chemis:s included, saturate the

resource to do scientific development and applications. Over time, the system

becomes obsolete due either to inevitable hardware failures or, as is more likely, to the

,u -
°

i
a

HPC in C,bemistry and MPP Computers

fact that the resource can no longer meet the computational requirements of the user

community in a cost effective manner (see Figure 2).

This simplistic "usefulness" model also applies to software as well [1]. The initial

software application usually has a very limited set of functionality. As more robust p

algorithms and additional functionality are implemented, the software becomes more

"useful" to the user community. Without further algorithmic developments the

"usefulness" of a software system will asymptotically approach some steady-state level

and not deviate from that (see Figure 3). What more realistically happens is that as

new functionality is added more bugs and design flaws are uncovered and the failure

rate of the application grows, with the software becoming less "useful." In time,

maintenance and development efforts usually reduce the failure rate and make the

code "useful" again. It h_.s been said that the process of porting an application to an

MPP environment is a process of "rebugging software," and the experience of the

efforts in the computational chemistry community have shown this to be true.

B. Programming Models.

There are a wide variety of specific programming models and tools that can be used to

cevelop a working programming system on a parallel computer [3-6]. The obvious

and key point is that there must be a parallel algorithm for the requisite computational

task(s). The various programming models fall into the traditional classes of data

parallel (DP), shared memory (SM), and distributed data/task models. The la_er is the

common multiple-instruction, multiple-data (MIMD) programming model with message

passing between processors. In practice most developers use a single program MIMD

moael and assign data and tasks based upon the identity of a given processing node.

The basic problem with all programming models is that on any given hardware there

exists a locality of data problem. The program becomes a bookkeeping algorithm that

fincs the data for the computational task at hand.

In traditional SM environments, there is a flat memory, so access to any segment of

memory is uniform. In DP and MIMD you have an obvious data locality problem when

sharing data among processes and tasks. Simple replicated data algorithms

circumvent this by holding a copy of the requisite vectors/matrices on each node. With

the current vendor offerings of 16 to 64 Mbytes per physical processing node, this is a
,

clear limitation. Moreover, the replicated data algorithms do not scale to huncreds or

HPC in Chemistry and MPP Computers

thousands of processors. These obvious problems have caused many vendors to look . -

at globally addressed memory that is physically distributed. This gives the

programmer the look and feel of a SM programming environment, a major benefit, but

there are potentially drastic performance penalties for accessing non-local memory.

This brings the data locality problem back to the programmer and the software tools

available on the system. Now that several general aspects of various programming

models have been outlined, a discussion of each in more detail follows.

The Shared Memory programming model is probably the most widely used and best

understood model simply because of the amount of time that the computational

community has used this technique, but few quantum chemistry coses make use of

this programming model even today. There are several specific approaches that have

been implemented on UNIX Workstations and on various low and high end

supercomputers (Silicon Graphics, Stardent, Alliant, Convex, Cray, etc.). The general

scheme used to parallelize applications is to identify shared and private segments of

memory and have the owner compute a specific portion of the shared data structures

and all of the private dataJtasks available to the specific process. There has been

much compiler work done on this programming model and it is reasonably well

understood by the computer science field. Programmers can tune and optimize their

code using compiler directives that help the compiler understand the application

layout. This is in my estimation the most efficient parallel programming model for

computational chemistry applications in wide use today. Unfortunately, the underlying

hardware is not scalable; it is very expensive to realistically extend to large numbers of

processors (e.g., greater than 100) and very large memory slzes (e.c., greater than 10

Gwords). This has forced the development of the above mentioned global accessible

memory that is physically distributed (e.g., Kendall Square Research, Cray Research

Inc. T3D, etc.). The overall programming model stays the same, but there is an added

task of making sure the Uata locality is preserved to avoid thrashing of pages from non-

local processors.

The data parallel programming model is one that has been used primarily on the

SIMD architectures by design but is not limited to these machines. This is also the

underlying principle behind the High Performance FORTRAN (HPF) language

specification [7], which augments the recently stanaardized FORTRAN.90. HPF offers

the ability to distribute vectors and matrices across the processes on a machine via

compiler directives an:: '_"-" --' is '_'"' +",.,=..,a,,--Lionstateme *_n_... The D= ru!e sTtnum ,,,=. _,,e owr',er

HPC in Chemistry and MPP Computers

computes the portion of the matrix/vector that it controls. The DP programming model " "

works extremely well if there is no load balancing or data dependencies across

processes (Finite Element or grid calculations, Fourier transforms, etc.). In a pure

SIMD program, load imbalance causes many processors to be idle at either the

beginning or end of a series of parallel tasks. HPF offers extrinsic procedures or ,

routines to handle access to message passing facilities that can handle data

dependency aspects. Most computational chemistry algorithms have either very

irregular data structures or access a regular data structure in an irregular fashion and

are thus not suited for pure DP programming models. For example, in the formation of

the closed shell Fock matrix, a two electron integral contributes to six independent

Fock matrix elements all of which may not be accessible in a given distribution of the

Fock matrix. The HPF draft standard acknowlectges the difficulties of irregular data

structures or access to data structures, and.there are plans for a follow-on language

specification that will address irregularity issues. There is great potential for such

standard languages or extensions to existing languages once this issue is addressed.

The message passing programming model is probably the most widely used

programming model on distributed memory architectures. Tile basic principles are

that every process has a local memory addressable only by that specific processor,

and it can only access non-local information by passin_ a message to another

processor that has other needed data. Tasks and the required data structures can be

farmed out to various processors via these messages and the parallel calculation

performed. Messages can usually be sent synchronously or asynchronously, but this

is system dependent. Synchronous messages require the cooperation of both

processors. Asynchronous message passing can be useful but requires buffer space

for messages to make them effective. The ability to pass asynchronous messages

offers a more robust programming environment because it does not require a

sequential bottleneck of the sending and receivinc processDrs. A message passing

program makes the s_eed and latency o'_the underlying har,dware an important aspect

of the algorithm and software design. If the application recuires only short messages,

then the latency or overhead "for sending each message is important (e.g., molecular

Cynamics simulations). If the application requires a "_ewmessages that are relatively

large (~ 1 Mb_te), then the speed or bandwidth of the uncJerlying communication

network is important (e.g., a replicated data Hartree Fock code). Many computationa!

chemistry applications contain both aspects. The genera! course grained aspect of

l,,_eur8 ma,":ree Fcck """""_"-=_.. _=R=,¢,,_,, ar_ =re _ro2rammino mg:e'

i q

HPC in Chemistry and MPP Computers

and the currently available vendor offerings. More complicated and useful chemistry " .-

applications have finer granularity and are thus limited by the underlying

communication network (e.g., Multiconfiguration Self Consistent Field energy and

energy derivative methods).

The final programming model that I would like to discuss is that of distributed data.

This programming model borrows strongly from that of the Linda language [8]. The

concept is straightforward and is really an extension to any of the above programming

mociels. The concept is similar to that of elaborate memory paging algorithms used in

many time sharing computers today. In Linda, the user has the concept of a tuple as

an abstract data object that can be stored to and retrieved from "tuple space" as well

as user defined functions that can be used to transform the data via an "eval" call. The

advantage of having this "secondary" memory storage is that the location of the data

and the mechanisms for moving or "paging" the data are removed from the

programmer. This gives the look and feel of a segment of "shared" memory that {s

accessible by all processes. There are potentially performance problems with the way

the distributed data is accessed, stored, and transformed, but the distributed data

programming model lessens the impact on computational programmers using

distributed computing models. The details of the storing and retrieving data from the

distributed aata space can be implemented in shared memory or message passing

allowing applications to be more portable. Harrison has developed and successfully

demonstrated a distributed data model for the intel Touchstone Delta supercomputer

that uses the interrupt driven mechanisms available on that machine [9]. Similar work

has been 0one by Rendell et. al. specifically for the closed shell coupled cluster

algorithm [10]. in general, computational chemistr7 applications will not need the full

functionality of a Linda type implementation, but only well defined data types (e.g., br

FORTRAN integer, double precision, character, etc.)[@]. This "functionality is projected

to be the first useful programming model for the next generation of scalable

computational chemistry applications.

C. _ortabitkv and Resource Utilization.

Portability is an issue that has plagued FORTRAN computational chemistry

applications for many years. Unlike many modem languages, there is no language

s#esific mechanism for isolating machine depenaent coae in FORTRAN. There are

sever_l H_:=,-=r_t-_"",,',_"h=s that can be uses to .,'J.--'around thi_ _roblem. Man,, free

HPC in Chemistry and MPP Computers

and some commercial systems for FORTRAN code maintenance exist and are widely " "

used by the computational chemistry community. Writing onty FORTRAN77 or

FORTRAN90 is not a viable option because many chemistry applications interface with

the system environment to get timing information, use special disk I/O routines, check

system runtime characteristics, etc. The various complexities of the above mentioned ,

programming models will also add to the overall complexity of a "portable" application.

A review of the computational chemistry literature over the last few years, shows that

chemists will use as many of the theoretical models as is feasible for the solution of a

given chemistry problem. This aspect alone will compel the integration of

computational chemistry applications into a suite of functionality with a common "user

interface." The development of this interface is a research to_ic in its own right and

beyond the scope of this article. It is imperative that the core functionality application

suite use modularity and more commercial-style software practices (e.g., long-term use

or reuse of software) to maintain the integrity of applications across the various

platforms, from the workstation to the high performance computing supercomputer.

Resource utilization is an issue that will have to be addressed by both the user and

vendor communities. Users are accustomed to sharing workstations and traditional

supercomputers based on a round robin or time-slice muitiuser scheduling system.

On current MPP offerings this is simply not feasible. The scheduling of resource

utilization is a research topis in the computer science field. Users will have to become

accustomed to more batch utilization and space sharing of the resources. The disk i/O

capacity is usually the limiting "factor. For example, on the lntel Touchstone Delta

supercomputer there are 512 compute nodes with 16 Mbytes of memory each, for a

total of 8 Gbytes of memory. The aggregate 1/Orate on that machine under the normal

operating system is less than 12 Mbytes/sec. This means to roll out a job using all

nodes would require at least 11 minutes. The next generation MPPs will not be much

better because the I/O subsystem is the least improved component. Again this is an

active computer science research topic. The computational chemistry community

cannot and will not wait for these problems to be solved. This means that the

application developers must be more aggressive in checkpointing ti_eir own

algorithms with only the requisite restart data being written to disk.

II1. Review of Chemistry Applications.

HPC in Chemistry and MPP Computers

The use of parallel applications in chemistry is not a new idea. Reports of using - - "

available parallelism on minicomputers date back to the early and mid-1980s [11-15].

There are a few current research efforts around the world specifically targeted at the

development of software on current and future generation MPPs. These include

mostly academic and national laboratory efforts, although a few vendors have openly

stated that they have started a port of the Gaussian software in collaboration with

Gaussian, Inc. The academic research efforts include GAMESS-USA from Mark

Gordon's group at Iowa State University, DISCO from Jan AlmlSf and coworkers at

University of Minnesota, Columbus from Hans Lischka at the University of Vienna (in

collaboration with the Ohio State University and Argonne National Laboratory),

various applications from Bill Goddard at Caltech and a new initiative at the San Diego

Supercomputer Center initiated by Peter Taylor. The national laboratory efforts

include various chemistry applications at Argonne National Laborator3,, Pacific

Northwest Laboratory, Sandia National Laboratories, the National Institutes of Health,

and the SERC Daresbury Laboratory in England. This list does not encompass all

researchers working on or planning MPP application development but does include

the research groups that have significant resources for their efforts. I have also limited

the list to efforts I have some direct knowledge of the software being developed.

Molecular dynamics (MD) applications have been using MPP systems from the

beginning of the development of these parallel computing systems. Various

algorithms have been cieveloped: systolic loop, linked cells, and replicated data

systems[16,17]. Due to the relatively small memory requirements of most MD

applications, the replicated data algorithms have been most widely used (c.f., Re1.16.).

The advent of larger memory capacities and faster communication subsystems with

aecreased latency characteristics on next generation MPPs will keep the replicated

data algorithms in wide use over the next few years. The same technological

advances will also allow the refinement and improved performance of the other

parallel algorithms that have been implemented. The replicateo data algorithms do

not scale to thousands of nodes and thus MD applications will need further

development once the scientific aemands of the applications increase. The MD

applications are approaching routine utilization of current MPP systems and are

generating results that require the increased computational resources available at

various MPP sites.

i i

HPC in Chemistry and MPP Computers

• B,

Traditional ab initio software applications have hao much less routine development on.

MPP machines. Simple replicated data algorithms are useful but the memory size on

most MPP machines ranges from 16 to 32 Msytes per node, which is a severe

limitation. For example, in a replicated data Hartree Fock code, the entire density

matrix and Fock matrix would be stored on each node. This would allow each integral

to be pa,qially summed with the appropriate density matrix element into the requisite

six Fock matrix elements. Once all integrals are computed, the "partial" Fock matrices

would then be globally combined into the full Fock matrix and diagonalized. After a

new Uensky matrix was tormed and broadcast to each process the iterative processor

would continue. This scheme replicates two N2 matrices and is thus paraltel over the

N4/8 integral generation work. However, on a machine that has 16 Mbytes of memory

there could be no more than two 100Oxl000 square matrices in core memory. In

reality the operating system takes up some memory, the software uses memory and

thus there is room for much fewer matrix elements. The thrust of most efforts is to go

beyond this limitation by distributing the data structures of a given calculation to allow

the problem to scale to the full memory of tne machine and not the limitations imposed

by the per node memory. From this simple example, it is hopefully clear that the

transition to MPP software development also requires more up front analysis of the

algorithmic designs.

In the ab3ve Hartree Fock spplication domain the type of distribution has different

computation, communication, and memory traaeoffs. Colvin and coworkers [18] have

imuiemented an apDlication that distributes both tne Fock and density matrices that

rec,uires N4/2 instead of the typical N4/8 inteora! generation work. This distribution

scheme also can suffer from toad imbalance in the parallel integral computation. In

this distribution scheme a lack of memory has been traded for more integral

com;:)utation. The most promising technique to sate, is that of Foster[19] who has

develope.d a distribution scheme tnat stores O(N) Fock and density,matrix elements on

each processor but it,is based on the following assumptions. Tne integrals all cost the

same number of flops and are computed one at a time (i.e., not in arouDs over _h=l_<_

Unfortunately, these assumptions are not in tine with modern efficient ancJparaltel

integral algorithms. In this distribution scheme communication is increased to allow ior

a fixed computational cost of tne integral evaluation However, Foster's efforts do show

promise once the shell _,,',,',',,,.,,._,,,",_'_,=of interra!s.,is ad,_:essed.

o •

HPC in Chemistry and MPP Computers

Even with the above mentioned problems, there are several useful ab initio ..

applications in use on MPP systems• GAMES-USA, GAMES-UK and Columb:]s are

now in production use by their respective groups on intel MIMD machines with specific

functionality (i.e., not all) parallelized [20-23]. Harrison and Stahlberg have

implemented an object oriented style full Cl code on the intel Touchstone Delta

supercomputer that sustains 4 GFLOPS (20% of peak performance) [24]. The

distributed data mo0els used by Harrison and Stahlberg were implemented by

Rendell and coworkers in his coupled cluster singles and doubles code [10].

Feyereisen and coworkers [25] nave implemented a master/slave replicated data

version of Alml6f and coworkers DISCO SCF/MP2 program on the lntel Touchstone

Delta supercomputer using a message passing library.. TCGMSG, written by

Harrison[26]. DISCO has also been ported to workstation clusters using TCGMSG,

LINDA, PVM, and = _ =_" "_X, R_,_,_[O]. For all these codes to become production quality the

above mentioned scaling issues (with respect to problem size and machine size) need

to be addresses. These oevelopments show great promise and are likely to be the

foundation of _, ' _';"a,., In,,,,., a_;31isationsdeveloped in the future. I would recommend the

reading some of t,',e s.oecifi3 references for more cietails of the implementation and

performance parame:.ersof each of these codes on current MPP systems.

i I

HPC in Chemistry and MPP Computers

IV. Conclusions. " - -

What is needed to bring MPP into routine computational chemistry production? This

can summed up in one word, software. This means both the software to facilitate

application developments and the application software itself. It is unlikely that the

large industrial user community will convert to MPP utilization until the commercial

software base or high quality, high performance software from academic and national

laboratory efforts is available for use on these high performance supercomputers or

MPPs. The commercial software developers probably will not make the effort until a

more significant market exists. This will require the computing environments on the

MPP machines to be much more robust, and a pool of experienced development

personnel must become available to commercial software companies from the

academic areas.

The development of new algorithms and associated software must keep abreast of

changes in the computing environments available. In this article i have attempted to

point out a subset of the issues that need to be considered and addressed by both the

computational science and computer science communities. MPP development has

coerced a coupling of these disciplines and this coupling provides a new opportunity

to guide the development to the solutions of some of these issues. No one discipline

can solve all the problems that exist or tnat will be uncovered over the next, decade. I

have also tried to point out some of the problems associated with computational

chemistry applications with res;3ect to MPP development and production use. The

impsrtant factor here is doing the chemistry required to solve problems posed to us

either in basic or applied research. MPPs are an obvious tool to use due to the

computational requirements of the theoreticalmodels used today and that will be used

in the future. I have also outlined a subset of the research efforts currently in place.

Beyond the required computational science training and education, it is impom,ant that

software development groups get access to the latest technology to develop and refine

research ideas. Moreover, collaborative efforts with computer science and other

computational science efforts are essen:ial 1or the development of MPP software. In

regarcts to the question I have posed in the title, is the transition to MPP high

performance computing a sim31e one? ! hope so.

t

i i

HPC in Chemistry and MPP Computers

V. Acknowledgments. - ..

This work was performed under the auspices of the Office of Environmental

Restoration and Waste Management, U. S. Department of Energy under the

Environmental and Molecular Sciences Laboratory Project D-384 and under contract ,

DE-AC06-76RLO 1830 with Battelle Memorial Institute, which operates the Pacific

Northwest Laboratory. I would also like to thank R. J. Harrison, M. F. Guest, A. P.

Rendell, R. L. Stevens, and R. J. Littlefield for valuable insight and review of the

manuscript. I gratefully acknowledge the support of the Sanibel organizing committee

for their partial support in attending the 1993 Sanibel Symposium. Some of the

research efforts described in this article use in part the Intel Touchstone Delta System

operated by Caltech on behalf of the Concurrent Supercomputing Consortium.

Access to this facility was provided by Pacific Northwest Laboratory

"13

|
|

HPC in Chemistry and MPP Computers

_ References"
1. R.S. Pressman, "Software Engineering a Practitioner's Approach", Thircl Edition,

McGraw Hill, Inc. (1992).

_. D. F. Feller private communication.K. M. Chandy and J. Misra, "Parallel Program Design", Addison-Wesley
Publishing Company, Inc. (1988).

4. D.W. Heermann and A. N. Burkitt, "Parallel Algorithms in Computational
Science', Springer-Verlag, (1991).

5. K. Hwang and F. A. Briggs, "Computer Architecture and Parallel Processing',
McGraw-Hill, Inc. (1984).

6. G. R. Andrews, "Concurrent Programming Principles and Practice", The
Benjamin/Cummings Publishing Company, Inc. (1991).

f_ The HPF araft standard is available from file transfer from
anonymous

titan.rice.cs.edu. More information can be obtained by sending mail to hpfi-
info@ cs.rice.edu.

8. N. Carriero and D. Gelernter, Communications of the ACM, 32, 444 (1989).

9. R.J. Harrison, Theo. Chim. Acta, 84, 363, (1993).

10. A. P. Rendell, M. F. Guest, and R. A. Kendall, "A Distributed Data Parallel Coupled
Cluster Algorithm" Application to the 2-Hyclroxypyridine/2-Pyridone Tautomerism"
submitted to J. Comp. Chem.

11. R. Seeger, J. Comp. Chem., 2, 168 (1981).

12. R.A. Bair and T. H. Dunning, Jr. J. Comp. Chem. 5, 44, (1984).

!3. E. Clementi, G. Corongiu, J. H. Detrich, H. Khanmohammadbaigi, S. Chin, L.

Domingo, A. Laaksonen, and H. L. Nguyen, "Proc. Int. Symp. Struct. Dyn. Membr.,
Nucleic Acids Proteins", Adenine Press, 49-86, (1985).

14. P. O. Lowdin, Leer. Notes Chem. Supercomput. Simu!. Chemis. 44, 1-48 and
2_4-245, (1986).

15. R.A. Whiteside, J. S. Binkley, M. E. Colvin, and H. F. Schaefer, I!1,J. Chem. Phys.
86, 2185, (1987).

16. W. Smith, Comp. Phys. Commun. 62, 229, (1992) and references therein.

i7. Proceedings of "A Workshop on High Performance Computing and Grand
Challenges in Strus;ural Biology" held at Florida State University, January 24-27,
(!992).

18. M. E. Colvin, C. L. Janssen, R. A. Whiteside, C. H. _ong, Theo. Chim. Acta., 84,
301, (1993).

2_t.. 1.Foster private communication.

T. Windus and M. Gordon private communication.

M. F. Guest, pri,,:-_te communication and "GAMESS-UK Users Guide and

Reference Manual', Revision A.!, SERC Daresbury Laboratory, (1990).

| • p,14- ,22. R.J. Harrison and R. A. Kendall Theo. Chim A,_,a., 79 337 (1991)

T. Kovar and H. Lisshka private communisation
R. H. Harrison and E. A. Stahlberg, "Massively Parallel Full Configuration
Interaction. Benchmark Electronic Structure Calculations on the Intel Touchstone

LJet,P_..,submitted to Journal of Parallel and Distribu;ed Comuuting.

25. M. W. Feyereisen and R. A. Kend_.li, The "' " ,, _, ar,_.:. ,.,n=m. As:=_, 84 2=_ (199",
referenses therein.

a D

HPC in Chemistry and MPP Computers

26. R.J. Harrison, int. J. Quant. Chem. 40, 847 (1991). --

27. M. W. Feyereisen, R. A. Kendall, J. Nichols, D. Dame, J. T. Golab, "An
Implementation of the Direct SCF and RPA Methods on Loosely Coupled
Networks of Workstations" accepted J. Comp. Chem. (1993).

15

• I

HPC in Chemistry and MPP Computers

°

Figure 1. The rate of change of raw compute power available from workstations[2].

16

• m

o ,m

The Evolution of Workstation Technology

Doubling of

50 -- speed every
12 months _ HP 735

O

RS6K 580

¢n 40 -- o

O
..J

=_ ',6K 560
-_ o Doubling of

c. 30 "" speed every
- 18 months

RS6K ,5 50 o 730

o
o

x 20 --

C_

= RS6K 320H

10 ,--
0

SS2 RS6K 3 20
lID

I 1 1 ./ 1

1989 1990 1991 1992 1993

p U

HPC in Chemistry and MPP Computers

_,

Figure 2. Hardware Life Cycle ("Usefulness over time').
t

"_"7

IV o Ill

Hardware

Time

w

HPC in Chemistry and MPP Computers

..==

Figure 3. Software Life Cycle ("UseTulnessover time').

1

E
II levi

E-

,I-I

0
(1)

ssaulnlasrl

