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ABSTRACT
This work presents a vision of future water resources hydrodynamics codes that can fully utilize the

strengths of modern high-performance computing (HPC). The advances to computing power,

formerly driven by the improvement of central processing unit processors, now focus on parallel

computing and, in particular, the use of graphics processing units (GPUs). However, this shift to a

parallel framework requires refactoring the code to make efficient use of the data as well as changing

even the nature of the algorithm that solves the system of equations. These concepts along with

other features such as the precision for the computations, dry regions management, and input/

output data are analyzed in this paper. A 2D multi-GPU flood code applied to a large-scale test case is

used to corroborate our statements and ascertain the new challenges for the next-generation

parallel water resources codes.
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INTRODUCTION
Water resources modeling has reached an interesting point

where the complexities of our codes and the capabilities of

computers are pushing us in two different directions. On

the one hand, we recognize that an inordinate amount of

time is spent both debugging codes and building/maintain-

ing the cadre of experts to adapt codes for new science.

On the other hand, we want to take advantage of the
latest, fastest, biggest computers that expand our modeling

capabilities. The first pressure moves us toward object-

oriented, reusable, and modular techniques, but these

same techniques create communication bottlenecks limiting

the effectiveness of high-performance computing (HPC).

HPC generally refers to the use of supercomputers and

parallel processing to solve advanced problems; however,
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the tools and techniques developed in today’s HPC environ-

ments will also end up in tomorrow’s engineering/science

workstations and will be integral to on-demand cloud com-

puting services. The conventional single central processing

unit (CPU) environment is no longer sufficient for computa-

tionally intensive tasks, having made way to CPU clusters,

computers using single graphics processing units (GPUs),

and combining for the latest morphology: clusters of GPUs.

HPC systems, in general, and GPU systems, in particu-

lar, have the potential to significantly reduce overall

computational times by calculating multiple operations in

a single clock tick. A serial computer can only compute a

single operation in a clock tick, so the overall computational

time is determined by the chip speed – which (as discussed

below) is no longer improving. Multiple CPU systems using

both OpenMP and message-passing interface (MPI) strat-

egies (shared and distributed memory parallelization) have

been widely used over the past two decades. In a single

clock tick, these approaches provide as many operations

as there are computational cores. With multi-CPU systems,

the controlling computational burden often shifts from the

number of operations to the communication between pro-

cessors. However, GPU computing has emerged in the last

few years as one of the most promising and affordable

pathways of acceleration due to its massively parallel

architecture. A single GPU effectively contains more

computational cores than all but the largest multi-CPU

HPC machines but has the advantage of simpler communi-

cation between the cores. Furthermore, this technology

can also be combined with OpenMP and MPI (the so-

called multi-GPU) to achieve even faster computations,

allowing models to cover larger temporal and spatial

scales at finer grid resolution for water resources hydro-

dynamics problems. However, massive parallelization

using HPC brings to the scene two actors that become

crucial in the development of efficient models: the structure

of data and communication and the choice of algorithm type

and implementation within a HPC platform.

Parallel computing has yet to become ubiquitous in

mainstream (non-research) computing as the advances are

accompanied by two types of increased costs: (1) costs for

organizations to create, debug, and maintain new parallel

codes and (2) costs for users to adopt and train with

new codes. Research codes are developed to advance the
om http://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
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state-of-the-art and, unless driven by demand outside an

organization, relatively little attention is paid to readability,

usability, and maintainability. Thus, the return on invest-

ment for parallelization in a non-research organization

will be small unless (1) new codes offer attractive speed-up

such that the value gained by increased productivity is

greater than the cost of moving to a new framework, (2)

improved usability and the maintenance of parallel codes

have consistent funding streams either inside or outside

the user organization, and (3) HPC moves beyond research

organizations and into everyday computing to widen the

acceptance of parallelization. Presently, non-research users

typically use multi-core machines to run multiple model

cases, so they already have 10× to 30× overall production

speed-up using conventional 10–30 core desktop machines.

Therefore, for parallel codes to be attractive to non-research

users, they need 100× or 1,000× speed-up over the serial

code, which requires moving to HPC and away from desk-

top machines. However, we are at a tipping point in which

the increasing popularity and availability of low-priced

cloud services (such as those offered by Amazon or

Google with HPC and GPU workstations) are building the

non-research community interest, acceptance, and experi-

ence with HPC. Consequently, developing new parallel

water resources codes and making them broadly available

to the community are a timely issue.

In this paper, we explore some of the reasons why the

tension between reusability and computational efficiency

will push us inexorably toward HPC for water resources

hydrodynamics. We will discuss why serial computing is a

dead end (see the ‘Moore’s law is dead – for serial comput-

ing’ section), the challenges of data communication across

processors (see the ‘The logistics of data – a thought

problem’ section), and how algorithm choice and the

implementation can affect parallelization (see the ‘How

algorithm choice, data structure, and the implementation

affects performance’ section), thus making it difficult to

port legacy serial codes to HPC. We close with an illus-

tration and discussion of a benchmark test case (see the

‘Benchmark problem: 2D flood code using CUDA and

MPI’ section) on a GPU cluster to bolster our statements.

For this case, the performance of different implementations

inside a physically based 2D shallow water model is

analyzed.



Figure 1 | Logarithm of the processor clock rate for Intel desktop processors running

SPEC CPU benchmarks, by the first availability date of tested hardware

(revised using data from Flamm (2017)).
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MOORE’S LAW IS DEAD – FOR SERIAL COMPUTING

Although Moore’s law was originally a statement about the

number of transistors on a standard silicon chip, as a practi-

cal matter it translated into a doubling of the computer clock

rate (frequency) every 18 months – i.e., more transistors

allowed shorter times between successive operations on a

chip. On a serial computer, every operation takes one or

more clock ticks, so a 2.0 GHz computer can handle roughly

twice the operations of a 1.0 GHz machine. Of course, this is

a gross simplification – the chip architecture, bus speed,

cache size, etc., will all affect the overall computational

speed. Nevertheless, from the perspective of our classic

hydrodynamics models from the 1970s through early 2000s,

the computer clock rate was the principle factor controlling

how fast a code executed – and thus the size of the grid

cells, the allowable time step, and the type of the numerical

algorithm provided the most efficient solution. For example,

if we consider a 2D hydrodynamics model that is constrained

by a Courant condition, we find that doubling of the clock

rate could either be used to double a model’s area of coverage

(at a fixed grid size) or, for a fixed domain, decrease the indi-

vidual cell area by 37%. Note that the practical grid

resolution does not linearly decrease with the increasing

clock rate as the model time step must also be reduced. In

any case, the leap forward in what we could model every

18–24 months made the 1990s and early 2000s a golden

era for advances in hydrodynamic modeling.

But everything changed around 2004. From that point

forward, improvements in the processor clock rate slowed

as shown in Figure 1. Over the past 15 years, the improve-

ments in the effective computational speed have been

mainly associated with chip architecture, bus throughput,

or multi-core/multi-thread operations. That is, with regard

to serial computation – Moore’s law is dead (Flamm ).

However, if we consider the increased speed available

through parallel processing, then computer capabilities con-

tinue to rapidly expand and Moore’s law is very much alive.

In early 2019, the latest commercially available CPU has

32 cores (64 threads) on a single chip and is priced at

about US$ 1,800. This chip is the equivalent of the high-

performance Beowulf computing cluster of only 15 years

ago – but for less than 10% of the price.
://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
So, why does the end of Moore’s law for serial compu-

ters matter to water resources? In short, unless a model is

written to take advantage of parallel processing, the speed-

up advantage of today’s computers for the model itself is

small. Here, we have the crux of the problem: our legacy

hydrodynamic models have been written with algorithms

designed for a world of serial processing, and these algor-

ithms typically do not ‘scale’ well on the parallel

architecture. That is, a code that perfectly ‘scales’ will get

1,000× speed-up with 1,000 cores, but this requires solution

algorithms designed from the ground up for parallel proces-

sing (see the ‘How algorithm choice, data structure, and the

implementation affects performance’ section, below).

Simply put, our legacy water resources codes are not get-

ting faster as computers get more parallel. Whether or not

this matter depends on your viewpoint on artificial intelli-

gence (AI) and machine learning (ML) versus mechanistic

models. The advantage of AI–ML methods is that they

are easily ‘chunked’ into sections for parallel processing

across any size of the machine and do not have the com-

munications burden (see ‘The logistics of data – a thought

problem’ section) of our legacy mechanistic codes. We

expect the speed of AI–ML models to continue to increase

linearly with advances in multi-core machines. Thus, if the

speed of mechanistic models remains stagnant, then the

AI–ML models will win out by solving problems that
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mechanistic models cannot (although AI–ML will require

extensive data and training). Our view is that both AI–ML

and mechanistic models are needed to advance science

and both model types should be designed for multi-core

computation. Indeed, we believe that one of the greatest

long-term applications will be using mechanistic models to

train AI–ML where only sparsely observed data are avail-

able. We see a future where AI–ML models are an

extension of mechanistic water resources models and not

a replacement.
THE LOGISTICS OF DATA – A THOUGHT PROBLEM

Efficient parallel code execution balances computation

against communication. The latter can be thought of as the

‘logistics of data’ – getting the right data at the right time

to the right processor core. The challenge can be readily

illustrated with a thought problem: imagine a system that

is defined by 106 computational elements where we need

10 operations per element for each time step of an initial

value problem. Nominally, we have 107 operations per

time step, which is the expected time scale for the compu-

tation of a single time step on a serial computer. Let us

further imagine that we have a machine with 104 cores –

i.e., each core handles 102 elements and is thus responsible

for 103 operations per core per time step. In a perfectly effi-

cient parallel operation, the computational time per model

time step would scale on 107=104 ¼ 103 computational

operations, i.e., 104 times faster than the serial computation

of 107 operations. This result is our ideal – a code where data

logistics do not matter and we get linear speed-up by increas-

ing the number of processors.

Now let’s consider how the logistics of data affect the

computation. We start at some time step n with every

element having its own memory and storing all the data

for the problem – this is known as a single program, multiple

data (SPMD) parallel system. Each processor independently

computes the nþ 1 time-step data for its 102 elements,

which provides a condition where each processor knows

its own new data as well as the old data across the entire

system, but it knows nothing of the new computations on

the other processors. The processors now must communi-

cate. If every element requires the nþ 1 data from every
om http://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
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other element to compute the following nþ 2 time step –

which is a big ‘if’ as discussed below – then each of the

104 processors must push its 102 pieces of time nþ 1 data

out to 9,999 other processors. The resulting data communi-

cation problem scales on 102 × 104 × 9, 999 ≈ 1010. Thus, a

complete time step requires the time for both 103 compu-

tational clock ticks (107 operations in parallel across the

104 processors) and 1010 communication operations. Note

the contrast with a serial computer that requires 107 compu-

tational operations but has zero communication operations.

Thus, parallel computing is essentially a tradeoff of compu-

tational clock ticks for communication operations, which

is only efficient if the time costs of data logistics are less

than the time costs of computation.

It should now be clear that the ‘bus’ that exchanges data

across processors plays a critical role in parallel solution effi-

ciency. A related capability is the ‘cache’ that stores data

locally on a multi-core processor for fast access. The ideal

parallel efficiency for our thought problem above will only

be achieved if the bus/cache capacities are sufficient to

handle 1010 simultaneous data transfers. This problem is

similar to handling traffic in the city – given enough lanes

and a high enough traffic speed we can (in theory) handle

every car on the street at the same time – but realistically

we may not have the lanes available when we need them.

The key point is that the parallel performance of a code

depends on how much data need to be passed between pro-

cessors relative to the data transfer bandwidth provided by

the machine.

Our thought problem above is arguably a ‘straw man’ as

it assumes that all data throughout the domain are needed to

compute the solution at any given point. Although this is

true for some problems, for most water resources models

the local domain of data dependency is physically limited

by the speed of information propagation through the

system. For example, information on backwater effects in

rivers propagate upstream at the gravity wave speed,

which limits the domain neighborhood for the data that

affects any particular point over a given time interval. Unfor-

tunately, as discussed in ‘How algorithm choice, data

structure, and the implementation affects performance’ sec-

tion below, the choice of numerical discretization methods

can artificially inflate the domain that mathematically (if

not physically) affects the solution at a point. Thus, our
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straw man thought problem can become a real problem if

our numerical algorithms require extensive data transfer.

In water resources, we generally do not have control

over the computer architecture that provides the bus

capacity, but we do have some say in the data transfer

required by our algorithms. For our codes to operate effec-

tively over a wide range of parallel and cloud computers,

the data-dependency domain for any computational element

should be limited (as much as possible) so as to minimize

data transfers.
HOWALGORITHM CHOICE, DATA STRUCTURE, AND
THE IMPLEMENTATION AFFECTS PERFORMANCE

Overview

In this section, we discuss some of the details that might not

be readily apparent when moving from serial to HPC paral-

lel programming. This includes the choice of the time-

marching scheme (see the ‘Implicit versus explicit’ section),

the data structures (see the ‘Data structure’ section), the pre-

cision used in computations (see the ‘Single versus double

precision’ section), handling of dry cells (see the ‘Computing

over wet space or all space?’ section), and issues with input/

output (I/O) (see the ‘Challenges and bottlenecks with

input/output (I/O) data’ section). Addressing these issues

should mean that a legacy water resources code needs to

be entirely re-written, or even completely re-thought, for

an efficient parallel implementation.

Implicit versus explicit

One of the first concepts taught in the solution of time-

dependent numerical modeling is ‘explicit’ versus ‘implicit’

algorithms. Although both implicit and explicit algorithms

have seen wide use through the literature – arguably with

similar emphasis in the 1960s and 1970s – the implicit algor-

ithms became a dominant force in finite-difference models

of hydrodynamics in the 1980s and 1990s with the develop-

ment of efficient linear solvers (Smith ), the SIMPLE

pressure method (Patankar ), and semi-implicit solution

methods for free-surface flows (Casulli ; Casulli &

Zanolli ). However, many finite-element hydrodynamics
://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
solvers continued to use explicit solution methods, arguably

due to the computational expense associated with satisfying

the global finite-element problem posed in an implicit form.

Implicit methods are often favored because of their abil-

ity to time-march an unsteady problem at a larger time step

than allowed with an explicit model. This advantage of the

implicit approach is also the source of its major drawback.

The solution of the matrix inversion problem [x] ¼ [A]�1[b]

implies that the solution at any point in space can (in

theory) influence any other point in space – which is what

allows an arbitrarily large time step and simultaneously

implies an undesirable global data dependency (i.e., our

extreme thought problem in ‘The logistics of data – a thought

problem’ section). To illustrate, we can imagine a simple dis-

crete problem for i ∈ {1 . . .m} elements where the time-

march of the ith element depends only on its neighbors,

designated as iþ 1 and i� 1. Each element has an algebraic

equation of the form

αi�1xi�1 þ βixi þ γiþ1xiþ1 ¼ bi

where α, β, and γ are coefficients and the subscripts rep-

resent the element location in a vector. The simultaneous

solution of all the equations and their dependencies is

through a tridiagonal matrix [A] of size m ×m where the

only non-zero elements are α, β, and γ values along three

main diagonals. Even this simple matrix will have an inverse

[A]�1 where every term is non-zero. Thus, the solution for

the xi element is, in general

xi ¼ A�1
i,1 b1 þA�1

i,2 b2 þ . . .þA�1
i,mbm

Because of this implicit formulation, a stable solution

can (theoretically) be obtained at any size of the time

step as information can travel anywhere throughout the

domain (i.e., through the Ai,j coefficients) in a single time

step. Note that a stable solution at a large time step can

be highly inaccurate, so the advantage of unlimited stab-

ility is curtailed by the need to solve at a time step that is

consistent with the underlying temporal variability in the

physics. For example, for estuarine tidal dynamics, model

stability at a daily time step is irrelevant as a much smaller

time step is required to resolve sub-daily tidal oscillations.
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In any case, the long time-step advantage for serial

machines becomes a disadvantage for parallel machines

because the source term vector, [b], is generally dependent

on the solution [x] from a prior time step. Similarly, nonli-

nearities in the governing equation imply the coefficients of

the A matrix can be functions of both space and time,

which must be handled either by time lagging (using time

n for an approximation of time nþ 1 values) or with a non-

linear matrix solver. These dependencies imply that all

data from the prior time step across the entire domain

must be provided to each computational core – i.e., a

single location must have access to the entire domain of

data at every time step. It follows that this global transport

of information for a large time step with an implicit solver

requires global data dependency, with all the disadvantages

for parallelization discussed in the ‘The logistics of data – a

thought problem’ section. Having said that, implicit

schemes can be found in the literature using domain

decomposition algorithms across multi-core machines

(Yang et al. ), and they can be advantageous when

the processes occur at different time scales (Evans et al.

). Furthermore, the disadvantages of implicit methods

can be reduced with the use of standard linear algebra

tools such as preconditioners.

In contrast to implicit algorithms, explicit algorithms are

based on the idea that the local time n data can be used to

predict the time nþ 1 data without recourse to global infor-

mation. Note that herein, we constrain our discussion on

finite-difference, finite-volume, and discontinuous Galerkin

algorithms – neglecting finite-element algorithms as they

generally require a global solution even when using an expli-

cit time advance. Explicit time-marching methods are

inherently constrained by a Courant condition: the local

propagation of information must be at a CFL number

below some cutoff, which is typically near unity. Formally,

the CFL number is defined as cΔtΔx�1 where c is the

speed of information propagation (e.g., velocity, gravity

wave speed, and acoustic wave speed), Δt is the time step,

and Δx is the spatial discretization. Thus, for a fixed value

of c (which depends on physics), the time step is linearly

related to the spatial discretization. It follows that explicit

methods inherently limit the domain of dependence of a

model time step to its immediate neighbors, which limits

the data transfers if the data structure and connectivity is
om http://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
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well designed for the number of computing cores, as dis-

cussed in the ‘Data structure’ section.

Overall, for some interval of the modeled time, an expli-

cit algorithm will use more computational operations (due

to smaller time steps) than an implicit algorithm. However,

the data transfer requirements are generally far less for the

explicit approach. Indeed, for any implicit algorithm in a

problem with true global data dependency (e.g., solving

incompressible flow in a pressurized pipe), the communi-

cation problem will scale as Ne=cN2
c , where Nc is the

number of processor cores and Ne=c is the number of

elements solved per core. That is, each of the Nc processors

must push all of its Ne=c data items to the Nc � 1 other cores.

More simply, let Ne ¼ Ne=cNc be the number of compu-

tational elements, from which it follows that the implicit

algorithm communication scales as NeNc. In contrast, an

explicit approach will have communication that scales on

Nb=cNc where Nb=c is the number of bounding elements

per core – which is where communication between cores

takes place. It follows that as long as Nb=c ≪ Ne, the explicit

algorithm will have a substantial advantage in data transfer.

In particular, where a problem can be posed as a network

(e.g., water distribution or stormwater systems), the data

structure can be arranged to minimize Nb=c.

In practice, the situation is not quite as bleak for implicit

solutions as the above implies – the physical dependencies

between locations depend on the physical transport of

information (by velocity, gravity wave, or acoustic wave),

so the [A]�1 matrix will have many near-zero terms that

can be effectively neglected in iterative solution methods

(Houzeaux et al. ; Bruno et al. ). There has been

extensive work done on parallel linear and nonlinear solvers

to automatically break a matrix into pieces for effective dis-

tribution across a large number of processors. Arguably, the

main difference between using implicit solvers and explicit

solvers is who is responsible for making the code more par-

allel. For implicit codes, we are unlikely to be able to match

the speed and parallelization of prepackaged matrix solvers

designed by numerical linear algebra experts. Thus, if we for-

mulate our models based on implicit algorithms, we will also

rely on others to build, test, and maintain the linear/non-

linear solver. Furthermore, our codes must be designed

with data structures that are efficiently used by the solver,

which narrows our flexibility in the code design. In contrast,
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when we formulate the numerical model as an explicit time-

march, we have complete control over the parallelization

and data structure. We can build our models to take advan-

tage of the peculiarities of our discipline, which are quite

different from those in the computational fluid dynamics,

ocean, and atmospheric modeling communities that domi-

nate discussions of high-end parallelization.

We believe that the next-generation water resources

hydrodynamics models should predominantly use explicit

algorithms with data structures (see ‘Data structure’ section,

below) that minimize inter-processor communications.

Where implicit methods are desired or deemed necessary,

the matrix solvers should not be written by water resources

scientists and engineers but instead should use open-source

high-performance numerical analysis code modules that

have been designed and tested by parallel processing experts

(Babuska & Guo ; Blackford et al. ; Anderson et al.

; Heroux et al. ; Kolev & Dobrev ). Note that

implicit codes need to optimize their data structures with

respect to the matrix solver – which will typically disadvan-

tage object-oriented codes.

Data structure

The performance of an explicit time-marching algorithm is

influenced by the relationship between the compactness of

data storage for each computational core and the number

of neighbor communications required by each compu-

tational element (i.e., Nb=c in the ‘Implicit versus explicit’

section). Let us return to our (see the ‘The logistics of

data – a thought problem’ section) thought problem of 106

elements on a 104 core machine (102 elements per core).

We imagine an explicit algorithm where the time advance

of the i element depends only on two physical neighbors –

e.g., a single line of piping. If the data space is arranged,

so the physical neighbors are also the data storage neighbors

i� 1 and iþ 1, then each core will be required to pull only

two pieces of data from two adjacent cores – i.e., the simul-

taneous communication problem scales on 2 × 104 as only

two bounding elements between each core need data from

another core. In contrast, we can imagine a random distri-

bution within a data vector, e.g., a random element

located at i ¼ 1, 743 that has neighbor data stored at

i ¼ 74 and i ¼ 9, 235, which are not computed on the
://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
same core. For this random data distribution, the communi-

cations pull across cores scales on 2 × 102 × 104, i.e., each

element pulls two pieces of data from different cores. To

put this in more general terms, the random data distribution

for an explicit method has Nb=c ∼ Nf=eNe=c where Nb=c is the

number of bounding elements per core, Nf=e is the number

of faces per element, and Ne=c is the number of elements

per core. As discussed in the ‘Implicit versus explicit’ sec-

tion, this implies an explicit communication time scale

such that Nb=cNc ¼ Nf=eNe=cNc. In contrast, an optimum

data distribution has communication scaling on Nf=eNc.

Thus, where Ne=c ≫ 1, the relationship between the data

structure and core communication will be important to the

overall efficiency of the algorithm. Conversely, as Ne=c ∼ 1,

i.e., Nc ! Ne, the communication burden will come to dom-

inate even a well-designed data structure. GPU machines

introduce an interesting technological twist as they provide

a structured arrangement of cores that is similar to a recti-

linear grid in a Cartesian space. Thus, structured meshes

are more convenient for this paradigm – nevertheless,

some reordering algorithms have been successfully applied

to improve the speed-up when dealing with unstructured

meshes (Lacasta et al. ). One of the ironic aspects of

the introduction of GPU machines is that many 2D and

3D structured-grid codes in the past 20 years have been

reformulated to represent space as 1D vectors to make

better use of serial processing (Herzfeld ).

The important point on data structures is that the data

arrangement that is optimum for a given systemofNe elements

ona set ofNc coresmaynot beoptimal if the numberof cores is

doubled or if the system itself changes connectivity. As yet, we

do not have a general approach to optimizing data structures

for parallel water resources problems as a function of the

system type, connectivity, the number of elements, and the

number or arrangement of processing cores. Non-optimal

data structures are unlikely to scale well as the number of par-

allel cores is increased, so addressing this issue in a general

way is critical to building robust models that are not made

obsolete by rapid advances in computer science.

Single versus double precision

Most compilers have an option to use either single- or

double-precision computation – a choice that is completely
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open to the programmer. The difference between

approaches is the number of bits that are used to represent

the real number: single-precision floating point arithmetic

uses 32-bit floating point numbers, whereas double precision

uses 64 bit.

The use of single-precision real numbers is generally

deprecated in modern serial CPU systems because the

reduced precision does not provide any significant advan-

tage, i.e., there is only a slight computational speed-up

despite the dramatic loss in precision. However, GPU pro-

cessors arose from chips optimized for single-precision

operations because double precision is unnecessary for

graphics displays viewed by the human eye. The high

speed of single-precision GPUs provides opportunities for

significantly improving the HPC computational speed

when reduced precision can be tolerated (Itu et al. ;

Váňa et al. ).

The main advantage of double precision is that machine

epsilon (relative error due to rounding) is 10�15, which

implies the accumulation of the numerical truncation error

cannot build rapidly in a time-accurate simulation. In con-

trast, machine epsilon for single precision is typically 10�6,

which can compromise the overall accuracy of a numerical

scheme and/or the convergence of an iterative method. In

general, double precision is necessary when (i) tiny relative

differences are significant, (ii) large variations in the vari-

ables are expected, or (iii) a long time period is simulated.

Indeed, single-precision computations would be irrele-

vant except for two facts: (1) single precision uses half the

memory, which has implications for both storage and com-

munications and (2) GPUs are significantly faster with

single-precision computations.

Depending on the graphics card, single-precision GPU

computation can be up to eight times faster than double pre-

cision. Furthermore, memory requirements can be a limiting

factor for large-scale problems and using single precision

allows storage of twice the computational area. Finally,

data transfers and communications between nodes in

multi-GPU computing and between device/host are doubled

with double-precision numbers, which can cause a bottle-

neck that slows the overall simulation time.

Thus, although our legacy water resources hydrodyn-

amics models are designed, calibrated, and validated with

double-precision numbers, there are good reasons to work
om http://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
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toward adapting such models to single-precision numbers

for use on fast GPU machines. As yet, we simply do not

know what portions of our algorithms could be robust on

single-precision machines, or what new techniques could

be used to control error accumulation.

Computing over wet space or all space?

Although models for hydrology and atmospheric science

typically involve a space-filling grid, hydrodynamic models

for flow across the landscape must answer an important

question – do we compute over only the cells that are wet

at this moment, or do we include all the cells in the land-

scape that might potentially become wet? For serial

computers and multi-CPU machines with only a few pro-

cessors, the answer is clear: compute only on the actually

wet cells as any computational cycles spent on dry cells

are wasted. Indeed, part of the popularity of unstructured

and adaptive meshes in water resources hydrodynamics is

the ability to a priori limit the computational domain to

the wet area without the ‘wasted’ space implied by a 2D-

structured grid with dry cells. Of course, the ‘wasted’

space in a 2D-structured grid is readily overcome with 1D

array mapping (Herzfeld ), but that returns us to the

problem of optimum data arrangement for communication

as discussed in the ‘Data structure’ section.

Massively parallel multi-CPU and GPU computers

change the calculus for handling the wet/dry problem. In a

serial computer, the wet/dry problem is addressed with an

‘if’ statement that simply skips the computational cycle for

a dry cell and the compute point moves onto the next cell.

This approach is also valid for a small multi-CPU machine

where a large number of computational elements are

assigned to each compute node. However, for an efficient

massively parallel computation, the grid cells become geo-

graphically constrained – i.e., there is an advantage (in

communication) for all the grid cells on a particular compute

node being in the same local geographic area, which means

that it is likely that a simple ‘if’ approach (or ‘where’ in For-

tran) will result in many (or even all) of the cells at some

compute nodes being dry. Thus, the traditional approach to

handling the wet/dry dilemma for water resources hydrodyn-

amics can result in load imbalance and computational

inefficiencies that can affect scalability (Tallent et al. ).
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For strict computational efficiency and load balancing,

the obvious answer for a GPU machine is to routinely recal-

culate and redistribute the wet cells over the compute nodes.

However, such recalculation and redistribution have its own

costs (Brodtkorb et al. ). At this time, it is not clear how

best to balance the inefficiencies of computing dry cells

versus the inefficiencies of redistributing data across the

compute nodes. What is clear is that finding effective

approaches for handling the wet/dry conundrum will deter-

mine how well our water resources hydrodynamics models

make use of the next generation of computers.

Challenges and bottlenecks with I/O data

Although HPC allows faster computations over larger

machine memory spaces, this growth has not been

accompanied by comparable advances in the efficient man-

agement of I/O data (Cardone-Noott et al. ). Indeed, for

hydrodynamics simulation in water resources over large

areas over long timescales, the scalability of an HPC appli-

cation and its overall runtime might depend on how well or

badly managed is the input and output data. Parallel I/O pro-

cedures have been demonstrated to improve I/O scalability

(Behzad et al. ), but these typically require application-

specific tuning to achieve an optimum improvement.

Additionally, performance portability is not guaranteed

when moving to different computers or supercomputers due

to the complexity of custom middleware and hardware

required for parallel I/O. Furthermore, large hydrodynamics

simulations require large input data sets (e.g., topography,

urban infrastructure, rainfall, and groundwater) that might

require the interface with other simulation models or real-

time data sets, which creates additional challenges and poten-

tial computing bottlenecks that cannot be directly solved with

HPC hardware or software improvements.

Output management for hydrodynamic simulations can

be seen as a tradeoff between raw data and statistical proces-

sing designed into the code. For example, to reduce the

output load, it is straightforward to accumulate hydrodyn-

amic model results (at time steps scaling on 1 min) over

15 min or 1 h time scales to output mean, median, and var-

iance along with the instantaneous values at the desired

output time interval. However, such output data are inher-

ently limited in its future use; it is impossible to reprocess
://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
for a different set of statistical metrics to answer questions

not envisioned when the output processing routines were

designed – e.g., the 5 min mean cannot be extracted from

data processed to a 1 h output interval unless it was a

priori designed as an output data type. Thus, raw data

output at a relatively short time interval is preferred when

a large investment of the computer time is made in generat-

ing a simulation data set for future inquiry – which implies

an output bottleneck that can limit HPC scalability.

The format of output data can also be a concern. In gen-

eral, users often prefer ASCII format files for machine

independence and human readability. However, computers

can transfer binary data more quickly as it does not require

an intermediary interpretation step. For large HPC simu-

lations, machine binary outputs will generally be more

efficient and translations to standard ASCII or HTML for-

mats should be considered an offline problem. However,

ASCII output does lend itself to writing individual files

from each GPU (as tested in the ‘Results’ section, below)

rather than a comprehensive binary file that requires coordi-

nation across multiple GPUs. Thus, despite the conventional

wisdom that prefers binary files, there may be opportunities

to optimize output using customized ASCII files or com-

pression (Liu et al. ).

There are two main input data challenges for HPC in

water resources hydrodynamics: (i) pre-processing of data

sets from disparate sources and (ii) efficient linking with

other simulation models (e.g., groundwater, rainfall, and

coastal inundation). As an example of the former, in devel-

oping a comprehensive flood model across a catchment

with multiple cities, the stormwater infrastructure data and

urban building data from different cities will likely be avail-

able in different data formats and with different accuracies.

The time required to understand, process, and validate the

synthesis of such data can be longer than running the hydro-

dynamics model itself. The second challenge – linking of

models – has been a well-recognized problem that simply

does not have a good answer for HPC. The Open Modeling

Interface (OpenMI) and the Earth Surface Modeling Frame-

work (ESMF) both have aspects for model integration, but

their capabilities are limited for HPC, particularly for GPU

systems (Buahin & Horsburgh ). For the present, the

efficient integration of input for multi-model simulations

for HPC requires customization of the model linkages at
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the model source-code level to prevent communication bot-

tlenecks from dominating the runtime and scalability.

Overall, efficient I/O remains a troubling challenge for

HPC. It is not clear how much effort should be directed at

optimizing I/O through custom software as such methods

might be pushed rapidly into obsolescence by new hard-

ware. For example, NVIDIA recently announced

‘GPUDirect’ storage, which bypasses the CPU in communi-

cating data from GPU local memory to flash storage

(Feldman ). Such advances in hardware are likely to

scale better than any workaround developed in the custom

software.
BENCHMARK PROBLEM: 2D FLOOD CODE USING
CUDA AND MPI

Description

Results for a benchmark 2D flood code are described below

to help illustrate some of the challenges in HPC described in

the section ‘How algorithm choice, data structure, and the

implementation affects performance’. The model solves the

2D shallow water equations on a structured (Cartesian)

mesh by means of a finite-volume, upwind, explicit scheme

based on Roe’s linearization of the governing equations

posed as a Riemann problem. The derivation of the numeri-

cal scheme follows (Murillo & García-Navarro ;

Morales-Hernández et al. ) for the fluxes and bed

slope source terms, including the correct estimation of bed

slope source terms at each edge to avoid dramatic

reductions in the time step size for numerical stability.

Roughness terms are discretized following Xia & Liang

() using a local implicit formulation – note that this

approach does not alter the overall explicitness of the

time-march and does not introduce non-local data depen-

dencies. Thus, the time step is restricted by the Courant

condition. The specific aspects of the method are omitted

here to focus on aspects of parallelization. Further details

about the numerical scheme can be found in Murillo &

García-Navarro (); Morales-Hernández et al. ();

and Xia & Liang (). A flowchart of the implementation

of this code is displayed in Figure 2. Note the colors repre-

senting the different processing groups (I/O, MPI, GPU,
om http://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
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and CPU) are the same as used further below in the analyses

of the results.

The flow chart of Figure 2 follows a classical flow dia-

gram for this type of scheme. A critical aspect of the HPC

computational flow is the domain decomposition. It is

necessary to exchange some data as well as to copy

some information to/from the neighboring subdomains

(halo_copy_to_gpu and halo_copy_from_gpu) using auxili-

ary variables. The communications are done using the

MPI, which is a message-passing library interface specifica-

tion that allows a portable and scalable communication

for large-scale parallel applications. The main feature of

MPI is that it does not need shared memory, which makes

it valuable in the programming of distributed systems (i.e.,

across multiple GPUs), which is unavoidable for large

domains.

As discussed in the ‘The logistics of data – a thought pro-

blem’ section, the main goal of HPC is to subdivide the

computational domain into subdomains of equal or variable

size trying to guarantee the following requirements:

• Each subdomain contains the same amount of compu-

tational effort.

• The communication between the subdomain and its

neighbor subdomain is minimal.

In this work, a 1D row-wise domain decomposition is

applied, which can be imagined as each node having

access to an east–west strip of contiguous data and commu-

nicating with other nodes across north–south boundaries.

Although for the 2D framework there exists other ways of

partitioning (e.g., optimized 2D blocks with east–west and

north–south edges can require less communication with

asynchronous data transfer), the row-wise 1D partitioning

has the advantage of simplicity in its implementation.

Each subdomain sends information to the north

and south neighbor subdomains and receives information

from them. As the MPI subroutines are called in the

CPU, these values are copied for each subdomain to auxili-

ary variables in the CPU. Once the exchange has been

done, these values are copied back to the GPU for the

next iteration.

This 2D flood code is applied to a real-world test case to

evaluate the performance of the scheme. The test case is the

massive flood produced by Hurricane Harvey in the summer



Figure 2 | Flowchart of the GPU implementation.
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2017 along the Gulf Coast of the United States, which was

the heaviest large-scale rainfall event in the US history.

The overall spatial scale of the flooding makes this a challen-

ging test case. The domain is about 7,000 km2, which we

model over a 10-day event (6 days of model spin-up followed

by the heaviest 4 days Hurricane Harvey rainfall). Simu-

lations have been conducted with two Cartesian grid

meshes: coarse (30 m × 30 m) and fine (10 m × 10 m). The

output data interval is set to 1,800 s. Further details can be

found in Dullo et al. ().

The simulations were carried out using Oak Ridge

National Laboratory’s 200 petaflop supercomputer,

Summit, consisting of 4,608 nodes with each node contain-

ing 6 Tesla V100 GPUs. Four different implementations are

considered, as shown in Table 1.
://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
Implementation double wet binary (DWB) is con-

sidered the base implementation, that is, computation in

double precision, writing the information in the binary

format and computing just on wet cells, excluding the dry

cells with an ‘if statement’. Cases single wet binary

(SWB), double all binary (DAB), and double wet ASCII

(DWA) represent variations in the baseline: SWB explores

effects of a single-precision implementation, DAB evalu-

ates the inclusion of all cells during the computation, and

DWA analyzes the impact of writing the information in a

conventional ASCII format in contrast to the binary

format.

The last case introduces an important difference in the

implementation when using multi-GPU computing: in the

ASCII output, each subdomain is in charge of writing its



Table 1 | Tested implementations

Implementation

Precision (see
the ‘Single
versus double
precision’
section)

Wet/all (see the
‘Computing over
wet space or all
space?’ section)

I/O (see the
‘Challenges and
bottlenecks with
input/output (I/O)
data’ section)

DWB Double Wet Binary

SWB Single Wet Binary

DAB Double All Binary

DWA Double Wet ASCII
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own information without joining them in a single file; in

contrast, the binary format gathers the information for

each MPI task and consolidates it within a single domain

before its sequential write.

Note that the data structure challenge described in the

‘Data structure’ section is analyzed by means of different grid

resolutions (consequently different numbers of grid cells)

and the computation onmultiple GPUs. However, the dichot-

omybetween explicit and implicit schemes is outside the scope

of this work. An explicit time-marching algorithm has been

chosen, being more suitable for this type of problems as

argued in the ‘Implicit versus explicit’ section.

Results

The performance of the model with the four implemen-

tations shown in Table 1 is analyzed in Figure 3. Each

implementation is used to run both grid resolutions (30

and 10 m) with a varying number of GPUs: 1, 2, 4, 8, and

16, for a total of 40 test cases. Note that the 30 m grid resol-

ution corresponds to 7.5 M computational cells, whereas the

10 m resolution corresponds to 68 M cells. As the increasing

number of cells is directly related to computational costs, it

is convenient to use 7.5 and 68 M to distinguish the different

grid meshes in the following analyses. To account for system

variability (Evans et al. ), times are measured as the

‘average out of 5’ runs for the same configuration.

The problems of scaling can be quantified by consider-

ing the relative speed-up with respect to 1 GPU which, for

a fixed system size, can be computed as follows:

Speed-up(x GPUs) ¼ Time(1 GPU)
Time(x GPUs)

(1)
om http://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
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The speed-up is plotted in Figure 4 for test cases with 7.5

and 68 M grid cells. The theoretical perfect speed-up is also

included in these graphs. We can obtain further insight into

parallel scaling by evaluating the computational time contri-

bution from different processes, i.e., using the color index

from Figure 2. The breakdown of the computational time

across all 40 simulations is shown in Figure 5.

As another approach for comparison, Figure 6 displays

the average time consumed by each process (CPU, I/O,

MPI, and GPU, from upper-left to lower-right, respectively)

in the logarithmic scale against the number of GPUs used.

The same color represents the same implementation.

Empty symbols refer to the 7.5 M test case, while filled sym-

bols are the 68 M test case.

To better understand how ‘wet’ versus ‘all’ cell compu-

tations (see ‘Computing over wet space or all space?’

section) affect the load balancing, the percentage of the

overall computational time consumed by each process

(CPU, I/O, MPI, and GPU) along the different MPI ranks

is shown for both 7.5 (Figure 7) and 68 M (Figure 8) for

the DWB and DAB test cases. Note that each MPI rank

(from zero to the number of GPUs minus one) is in charge

of computing its own subdomain; therefore, these plots

can be seen as the load balancing between subdomains.

Discussion

The results displayed in Figure 3 show that, unsurprisingly,

the single-precision (SWB) implementation is the fastest

approach, being around 20–40% faster than the baseline

DWB implementation. The DWA implementation is

always the slowest: this case writes the information in the

ASCII format and takes between 40% and 300% of extra

time to run the solution despite the use of individual files

for each GPU. The DAB implementation is the slowest of

the cases using binary output, indicating that the solution

of ‘all’ cells (versus ‘wet’ cells) remains important despite

the wide area inundated during Hurricane Harvey. Natu-

rally, the smaller 7.5 M cases are always faster than the

equivalent 68 M cases, but of greater interest is the contrast

in overall trends as more GPUs are applied. It can be seen

that the 68 M cases remain scalable up to 16 GPUs – i.e.,

the computational time decreases by somewhat less than

50% with each doubling of the applied GPUs. In contrast,



Figure 3 | Wall-clock computational time consumed by each implementation for the test case 7.5 M (left) and the test case 68 M (right). Figure scales are log–log.

Figure 4 | Speed-up with respect to 1 GPU achieved by each implementation for the test case 7.5 M (left) and the test case 68 M (right). Scales are log–log.
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the 7.5 M case shows performance saturation beginning at

about 4 GPUs. Indeed, the 7.5 M model actually requires

more wall-clock time to compute with 16 than 8 GPUs

when using binary data writing.

Additionally, as pointed out in Figure 4, the parallel scal-

ability (closeness to theoretical perfect scaling) for the

present 2D flood model depends on the number of compu-

tational cells. Note that a close comparison of Figures 3

and 4 highlights an interesting effect – in the latter figure,

the DAB and DWA cases have the best scalability but actu-

ally have the worst overall performance in the former figure.

That is, the DAB case introduces the unnecessary solution of

the dry cells, which makes the simulation more scalable (but

slower) simply by making the problem larger. Similarly, the

DWA case introduces inefficient computations through the

ASCII writing that effectively make the number of compu-

tations greater, and because the ASCII writing is separate

for each GPU, the overall parallel scaling is improved. The

lesson here is that the reader must be careful in considering

a speed-up analysis that does not have a corresponding wall-

clock time analysis. Models that obtain scalability by
://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
introducing inefficient computations that extend the wall-

clock time are not what the community needs!

Some additional points can be extracted from Figures 5

and 6:

• I/O time is relatively invariant with the number of GPUs

for the binary output DWB, SWB, and DAB cases. How-

ever, I/O time in binary for a double-precision

computation (DWB and DAB) is higher than that for a

single-precision computation (SWB) although the differ-

ence is not remarkable. The DWA implementation

(ASCII output format) is dramatically slowing the overall

runtime. There is more time spent on writing than com-

puting. However, the I/O time decreases with the

increasing number of GPUs since subdomain writes are

handled separately.

• GPU computation is consistent: more GPUs result in

lowering the GPU computational time. In fact, GPU

time scales according to the number of GPUs, although

a small loss of performance, is seen for 16 GPUs in the

7.5 M cells. That is, the GPUs themselves are never



Figure 5 | Computational time of processes of Figure 2 for each implementation and each test case: 7.5 M cells (upper) and 68 M cells (lower).
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responsible for the decline in scalability. As expected,

there is no noticeable difference between GPU time for

DWB and DWA implementations as the only difference

between these cases is I/O. The SWB GPU time is

faster than DWB since the graphic card is optimized

for single precision. Furthermore, DAB is slower than

DWB since the computations are done in all the

domain instead of only on wet cells.

• For a given resolution, the CPU time is almost constant

for all the simulations and implementations and is a
om http://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
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trivial portion of the overall computational time. How-

ever, it slightly increases from the 7.5 M test case to the

68 M test case. This is consistent since the 68 M test

case requires more iterations inside the temporal loop

to compute the solution (the time step size is smaller)

than the 7.5 M test case.

• The number of communications and the amount of data

to be transferred among subdomains (MPI time) increase

with the number of GPUs and can dominate the GPU

time (e.g., in the case of 16 GPUs with 7.5 M cells).



Figure 6 | Time consumed by each process for the 7.5 M test case (empty symbols) and the 68 M test case (filled symbols). CPU (upper left), I/O (upper right), MPI (lower left), and GPU

(lower right).

Figure 7 | MPI load for the 7.5 M test case for implementations DWB (upper) and DAB (lower).
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Figure 8 | MPI load for the 68 M test case for implementations DWB (upper) and DAB (lower).
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Thus, MPI time is a bottleneck for a large number of

GPUs. It is likely that this effect is exacerbated in

the present model by the use of row-wise domain

decomposition, which does not provide the minimum

communication boundaries. The MPI time for SWB is

slightly lower than that for the baseline DWB. The

reason is purely a question of the amount of information

(number of bytes) exchanged between the subdomains

for single precision rather than double. MPI time in the

DAB implementation is, on average, smaller than in the

DWB approach. The reason for this is due to the MPI

load imbalance that is behind the DWB implementation.

However, as long as the number of GPUs increases, the

difference becomes insignificant. The load imbalance is

discussed below.

Load balancing among subdomains is plotted in

Figures 7 and 8. As observed, the CPU and I/O times are

almost constant among MPI ranks. However, an imbalance

is detected for the GPU computation in the DWB

implementation and is more noticeable in the 68 M test
om http://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
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case. Consequently, this develops into an imbalance in

the MPI time because the subdomains have to exchange

information but cannot do so until the neighbor subdomain

has finished its computation. Indeed, the process of send-

ing/receiving the information to/from the neighboring

subdomains acts as a synchronization, mimicking the

MPI_Barrier statement. On the other hand, the DAB

implementation makes a better balance between MPI

tasks, resulting in an improvement in the scalability.

However, this effect arises by computing over all cells

instead of only wet cells, which is of dubious value.
CONCLUSIONS

Computing on HPC machines presents a number of chal-

lenges to the structure of our legacy water resources

hydrodynamics models. Addressing these challenges

argues in favor of entirely rewriting our codes and/or invent-

ing new algorithms that take advantage of the peculiarities

of HPC machines. As discussed in the ‘The logistics of
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data – a thought problem’ section, the structure of how data

are stored and communicated across computational nodes

will control how effectively we can use massively parallel

machines. Codes whose performance saturates and

degrades as the number of processors increases will not sur-

vive in a world of ubiquitous HPC. To address these issues,

we need to reconsider the fundamentals of our hydrodyn-

amic models, including the underlying algorithms, data

structure, real number precision, and I/O methods (see the

‘How algorithm choice, data structure, and the implemen-

tation affects performance’ section).

The results in the ‘Results’ section illustrate a key conun-

drum of HPC that has yet to be overcome: models are most

scalable on large multi-GPU machines for a large number of

computational elements, but such problems will take a cor-

respondingly longer time to solve, e.g., in the example above

the 68 M case has 9× the grid cells of the 7.5 M case and

takes roughly 9× longer to solve. Furthermore, the compari-

son of the 7.5 M case and the 68 M case demonstrates the

theory outlined in the ‘Data structure’ section that the

relationship between the number of bounding elements

per core and the overall number of elements per core will

be a control on the scalability of communication, i.e., the

68 M case has roughly 9× the number of the elements per

core as the 7.5 M case, but the number of boundary elements

only increases by 3×. Hence, the scalability is better with the

larger system where the ratio of boundary elements to com-

putational elements is smaller. These results illustrate a

danger of analyses focusing on scalability and neglecting

the actual computational time associated with different

algorithm choices. As shown with the computations of the

‘all cells’ versus ‘wet cells’, increasing the number of compu-

tations per core while holding the number of boundary

communications fixed will always improve scalability –

even as the model becomes slower.

A major challenge that we have not addressed is the con-

flict between the modular object-oriented code and the

optimized HPC code. However, above we have described

a range of challenges that require us to carefully design

the structure of our models to take advantage of the

peculiarities of massively parallel computing – an area that

still has substantial unknowns. Today, there are simply no

object-oriented approaches that can step in to do the hard

work of ensuring communications are minimized and the
://iwaponline.com/jh/article-pdf/22/5/1217/761454/jh0221217.pdf
data structure is scalable. Of course, it may be tomorrow

that advances in object-oriented programming will make it

the obvious choice for HPC, but for now, we encourage

model developers to focus on the scalability of the data

structure and communications rather than the reusability

of objects.

We have entered an exciting new era for water

resources hydrodynamics with the decline of serial comput-

ing and the rise of multi-CPU and multi-GPU high-

performance computers. This new era demands a new

focus for the model user community and research organiz-

ations to work together to make parallel water resources

codes more broadly available and practical for users. This

effort will require designing the next generation of codes

with an eye toward long-term maintenance and commercia-

lization rather than just building the next research stage. The

HPC community is aware of the technology transfer pro-

blem and, for more than two decades, has been trying to

address it through the development of open-source high-per-

formance modules and libraries. However, these efforts

have yet to make significant headway within the water

resources community. Indeed, there is a critical open ques-

tion for the community in how to pay for the technology

transfer costs of moving codes from research to engineer-

ing/science usability, as well as the long-term maintenance

costs for such codes. Today’s HPC machines will define

the structure of tomorrow’s desktop workstations and the

cloud computers that will be routinely used by water

resources scientists and engineers for hydrodynamics mod-

eling. One way or another, today’s advances in HPC need

to be translated to the broader community – our models

take a long time to write, debug, and validate, so we need

to be working today on the models that will run on tomor-

row’s computers.
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