
Original Article

The International Journal of High
Performance Computing Applications
1–8
� The Author(s) 2015
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342015593158
hpc.sagepub.com

High-performance conjugate-gradient
benchmark: A new metric for ranking
high-performance computing systems

Jack Dongarra1, Michael A Heroux2 and Piotr Luszczek3

Abstract
We describe a new high-performance conjugate-gradient (HPCG) benchmark. HPCG is composed of computations and
data-access patterns commonly found in scientific applications. HPCG strives for a better correlation to existing codes
from the computational science domain and to be representative of their performance. HPCG is meant to help drive
the computer system design and implementation in directions that will better impact future performance improvement.

Keywords
Preconditioned conjugate gradient, multigrid smoothing, additive Schwarz, HPC benchmarking, validation and
verification

1 Introduction

Many aspects of the physical world may be modeled
with partial differential equations (PDEs) and lend a
hand to predictive capability so as to aid scientific dis-
covery and engineering optimization. The high-
performance conjugate-gradient (HPCG) benchmark is
used to test a high-performance conjugate (HPC)
machine’s ability to solve these important scientific
problems. To that end, the primary scope of the project
is to measure the execution rate of Krylov subspace sol-
vers on distributed-memory hardware. In doing so,
HPCG aims to increase the prominence of sparse
matrix methods and put them on an equal footing with
other benchmarks of high-end machines.

Over the years, the field of iterative methods has
grown in significance, and today it offers a wide range
of algorithms that form the backbone of non-linear and
differential equation solvers. HPCG aims to tackle the
complexity of the field by offering a simple test that rep-
resents the performance characteristics of these algo-
rithms. In particular, the conjugate-gradient algorithm
and a symmetric Gauss–Seidel preconditioner were cho-
sen for measurement and they are used to solve the
Poisson differential equation on a regular three-
dimensional grid discretized with a 27-point stencil.

The HPCG benchmark (Dongarra and Heroux,
2013) is a tool for ranking computer systems based on a
simple additive Schwarz, symmetric Gauss–Seidel pre-
conditioned conjugate-gradient solver. HPCG is similar

in its purpose to HPL (Dongarra et al., 2003) which is
currently used to rank systems as part of the TOP500
project (Meuer et al., 2013), but HPCG is intended to
better represent how today’s applications perform.

HPCG generates a regular sparse linear system that is
mathematically similar to a finite element, finite volume or
finite difference discretization of a three-dimensional heat
diffusion equation on a semi-regular grid. The problem is
solved using domain decomposition (Smith et al., 1996)
with a conjugate-gradient method that uses an additive
Schwarz preconditioner. Each subdomain is precondi-
tioned using a symmetric Gauss–Seidel sweep.

The HPL benchmark (Dongarra et al., 2003) is one
of the most widely recognized and discussed metrics for
ranking high-performance computing systems. When
HPL gained prominence as a performance metric in the
early 1990s there was a strong correlation between its

1Department of Electrical Engineering and Computer Science, University

of Tennessee, USA; Computer Science and Mathematics Division, Oak

Ridge National Laboratory, ORNL School of Mathematics and School of

Computer Science, University of Manchester, UK
2Scalable Algorithm Department, Sandia National Laboratories,

Albuquerque, New Mexico
3Department of Electrical Engineering and Computer Science, University

of Tennessee, USA

Corresponding author:

Piotr Luszczek, University of Tennessee, 1122 Volunteer Blvd Street 203,

Knoxville, TN 37996-3450, USA.

Email: luszczek@eecs.utk.edu

 at UNIV OF TENNESSEE on December 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

predictions of system rankings and the ranking that
full-scale applications would realize. Computer-system
vendors pursued designs that would increase HPL
performance, which would in turn improve overall
application performance. Currently, HPL remains tre-
mendously valuable as a measure of historical trends,
and as a stress test, especially for the leadership class
systems which are pushing the boundaries of current
technology. Furthermore, HPL provides the HPC com-
munity with a valuable outreach tool, understandable
to the outside world. Anyone with an appreciation of
computing is impressed by the tremendous increases in
performance that HPC systems have attained over the
past few decades in terms of HPL. At the same time,
HPL rankings of computer systems are no longer so
strongly correlated to real application performance,
especially for the broad set of HPC applications gov-
erned by differential equations, which tend to have
much stronger needs for high bandwidth and low
latency. This is tied to the irregular access patterns to
data that these codes tend to exhibit. In fact, we have
reached a point where designing a system for good
HPL performance can actually lead to design choices
that are wrong for the real application mix, or add
unnecessary components or complexity to the system.
Worse yet, we expect the gap between HPL predictions
and real application performance to increase in the
future. Potentially, the fast track to a computer system
with the potential to run HPL at 1 Eflop/s (1018

floating-point calculations per second) is a design that
may be very unattractive for our real applications.
Without some intervention, future architectures tar-
geted towards good HPL performance will not be a
good match for our applications. As a result, we seek a
new metric that will have a stronger correlation to our
application base and will therefore drive system
designers in directions that will enhance application
performance for a broader set of HPC applications.

2 Related work

Similar benchmarks have been proposed and used
before. In particular, the NAS Parallel Benchmarks
(NPB) (Bailey et al., 1994; 1995, der Wijngaart, 2002)
include a conjugate-gradient benchmark and it shares
many attributes with the HPCG benchmark. Despite
the wide use of this benchmark, it has the critical design
decision that the matrix is chosen to have a random
sparsity pattern with a uniform distribution of entries
per row. This choice has led to the known side effect
that a two-dimensional distribution of the matrix
achieves optimal performance. Therefore, the computa-
tional and communication patterns are non-physical.
Furthermore, no preconditioning is present, so the
important features of a local sparse triangular solver
are not represented and are not easily introduced, again

because of the choice of using a non-physical sparsity
pattern. Although the NPB conjugate gradient has
been extensively used for HPC analysis, it does meet
the criteria for our target application mix and, conse-
quently, we do not consider it to be appropriate as a
broad metric for our effort.

A lesser known but nonetheless relevant benchmark,
the iterative solver benchmark (Dongarra et al.,
2001), specifies the execution of a preconditioned
conjugate gradient and generalized minimal residual
(GMRES) iteration using physically meaningful spar-
sity patterns and several preconditioners. As such, its
scope is broader than what we propose here, but this
benchmark does not address scalable distributed-
memory parallelism or nested parallelism.

The HPL benchmark (Dongarra et al., 2003) has been
a yardstick of supercomputing performance for over four
decades and a basis for the biannual TOP500 (Meuer et
al., 2013) list of the 500 world’s fastest supercomputer for
over three decades. HPCG has a similar aim by measuring
the computation and communication patterns currently
prevalent in a vast number of applications of computa-
tional science at multiple scales of deployment. HPCG
measures the performance of the sparse iterative solver in
order to reward balanced system design as opposed to
stressing a specific hardware components exercised by
HPL. This has been elaborated in detail above.

The HPC Challenge Benchmark Suite (Dongarra
and Heroux, 2013, Luszczek et al., 2006, Luszczek and
Dongarra, 2010) has established itself as a performance
measurement framework with a comprehensive set of
computational and, more importantly, memory-access
patterns that build on the popularity and relevance of
HPL but add a much richer view of benchmarked hard-
ware. In comparison to HPCG, the most differentiating
factor tends to be the focus on a multidimensional view
of the tested system that does not focus on a single fig-
ure of merit. Instead, the HPC Challenge delivers a suite
of performance metrics that may be filtered out, com-
bined or singled out according to the end user needs and
application profiles. Also of importance is the fact that
the HPC Challenge does not include a component that
measures sparse-solver performance directly but instead
it would have to be derived out of various bandwidth
and latency measurements and performed across the
memory hierarchy and the communication interconnect.

3 Background and goals

HPCG is designed to measure performance that is rep-
resentative of many important scientific calculations,
with low computation to data-access ratios, which we
call Type 1 data access patterns. To simulate these pat-
terns that are commonly found in real applications,
HPCG exhibits the same irregular access to memory
and fine-grain recursive computations.

2 The International Journal of High Performance Computing Applications

 at UNIV OF TENNESSEE on December 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

In contrast to the new HPCG metric, the HPL is a
program that factors and solves a large dense system of
linear equations using Gaussian elimination with par-
tial pivoting. The dominant calculations in this algo-
rithm are dense matrix–matrix multiplication and
related kernels, which we call Type 2 patterns. With
proper organization of the computation, data access is
predominantly unit stride and its cost is mostly hidden
by concurrently performing computations on previ-
ously retrieved data. This kind of algorithm strongly
favors computers with very high floating-point compu-
tation rates and adequate streaming memory systems.
The performance issues related to the Type 1 patterns
may be fully eliminated when the code only exhibits
Type 2 patterns, and this may lead hardware designers
to not include Type 1 patterns in the design decisions
for next-generation systems.

In general, we advocate that a well-rounded com-
puter system should be designed to execute both Type 1
and Type 2 patterns efficiently, as this combination
allows the system to run a broad mix of applications
and run them well. Consequently, for a meaningful
metric to test the true capabilities of a general-purpose
computer, it should stress both Type 1 and Type 2 pat-
terns; however, HPL only stresses Type 2 patterns, and,
as a metric, is incapable of measuring Type 1 patterns.

Another issue with the existing performance metrics
stems from the emergence of accelerators, which are
extremely effective (relative to CPUs) with Type 2 pat-
terns, but much less so with Type 1 patterns. This is
related to the divide that exists between massively par-
allel throughput workloads and the latency sensitive
ones. For many users, HPL results show a skewed pic-
ture relative to the Type 1 application performance,
especially on machines that are heavily Type 2 biased,
like a machine that features accelerators for the major-
ity of the computational power.

For example, the Titan system at Oak Ridge
National Laboratory has 18,688 nodes, each with a 16-
core, 32GiB AMD Opteron processor and a 6GiB
NVIDIA K20GPU (Facility, 2013b). Titan was the
top-ranked system on TOP500 in November 2012 using
HPL; however, in obtaining the HPL result on Titan,
the Opteron processors played only a supporting role
in the result. All floating-point computation and all
data was resident on the GPUs. In contrast, real appli-
cations, when initially ported to Titan, will typically
run solely on the CPUs and selectively off-load compu-
tations to the GPU for acceleration (Facility, 2013a,
Joubert et al., 2009).

The HPCG Benchmark can help alleviate many of
the problems described above by using the following
principles.

1. Provides coverage of the major communication and

computational patterns: the major communication

patterns (both global and neighborhood collec-
tives) and computational patterns (vector updates,
dot products, sparse matrix–vector multiplications,
and local triangular solver) from our production
differential equation codes, both implicit and expli-
cit, are present in this benchmark. Emerging asyn-
chronous collectives and other latency-hiding
techniques can be explored in the context of
HPCG and aid in their adoption and optimization
in future systems.

2. Represents a minimal collection of the major pat-

terns: HPCG is the smallest benchmark code con-
taining these major patterns while at the same time
representing a real mathematical computation
(which aids in the validation and verification
efforts).

3. Rewards investment in high performance of collec-

tives: neighborhood and all-reduce collectives rep-
resent essential performance bottlenecks for our
applications and can benefit from high-quality sys-
tem design, improving the performance of HPCG
will improve the performance of real applications.

4. Rewards investment in local-memory system perfor-

mance: the local-processor performance of HPCG
is largely determined by the effective use of the
local-memory system. Improvements in the imple-
mentation of HPCG data structures, the compila-
tion of HPCG code and the performance of the
underlying system, will improve the HPCG bench-
mark results and real application performance,
along with informing application developers of
new approaches to optimizing their own
implementations.

Any new metric we introduce must satisfy a number
of requirements. Two overarching goals for the metric
are as follows.

1. To accurately predict the system rankings for a tar-
get suite of applications: the ranking of computer
systems using the new metric must correlate
strongly to how our real applications would rank
these same systems.

2. To drive improvements to computer systems to
benefit relevant applications: the metric should be
designed so that, as we try to optimize metric
results for a particular platform, the changes will
also lead to better performance in the identified
real applications; furthermore, computation of the
metric should drive system reliability in ways that
help the applications.

4 CG iteration setup and execution

The HPCG benchmark generates a synthetic discretized
three-dimensional PDE model problem (Mattheij et al.,

Dongarra et al. 3

 at UNIV OF TENNESSEE on December 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

2005), and computes preconditioned conjugate-gradient
iterations for the resulting sparse linear system. The
model problem can be interpreted as a single degree of
freedom heat diffusion equation with zero Dirichlet
boundary conditions. The PDE is discretized with a
finite-difference scheme on a three-dimensional rectan-
gular grid domain with fixed spacing of the nodes.

The global domain dimensions are (nx 3 Px) 3

(ny 3 Py) 3 (nz 3 Pz) where nx 3 ny 3 nz are the
local subgrid dimensions in the x, y and z dimensions,
respectively, assigned to each Message Passing
Interface (MPI) process. The local grid dimensions are
read from the data file hpcg.dat, or could also be
passed in as command line arguments. The dimensions
Px 3 Py 3 Pz, constitute a factoring of the MPI pro-
cess space that is computed automatically in the HPCG
setup phase. We impose ratio restrictions on both the
local and global x, y and z dimensions, which are
enforced in the setup phase of HPCG.

HPCG then performs m sets of n iterations, using the
same initial guess each time, wherem and n are sufficiently
large to test the system resilience and ability to remain
operational. By doing this, we can compare the numerical
results for ‘correctness’ at the end of each of the m sets. A
single-set computation is shown in Algorithm 1.

The setup phase constructs a logically global, physi-
cally distributed sparse linear system using a 27-point
stencil at each grid point in the three-dimensional
domain, such that the equation at point (i, j, k) depends
on the values of its location and 26 surrounding neigh-
bors. The matrix is constructed to be weakly diagonally
dominant for the interior points of the global domain,
and strongly diagonally dominant for the boundary
points, reflecting a synthetic conservation principle for
the interior points and the impact of zero Dirichlet
boundary values on the boundary equations. The result-
ing sparse linear system has the following properties:

� a sparse matrix with 27 nonzero entries per row for
interior equations and 7 to 18 nonzero terms for
boundary equations;

� a symmetric, positive definite, nonsingular linear
operator;

� the boundary condition is reflected by subtracting
one from the diagonal.

� a generated known exact solution vector with all
values equal to one;

� a matching right-hand-side vector; and
� an initial guess of all zeros.

The central purpose of defining this sparse linear
system is to provide a rich vehicle for executing a collec-
tion of important computational kernels; however, the
benchmark is not about computing a high-fidelity solu-
tion to this problem. In fact iteration counts are fixed
in the benchmark code and we do not expect conver-
gence to the solution, regardless of problem size. We do
use the spectral properties of both the problem and the
preconditioned conjugate-gradient algorithm as part of
software verification.

The conjugate-gradient method allows the code to
maintain the orthogonality relationship with a short
three-term recurrence formula. This, in turn, allows the
linear system data to be scaled arbitrarily without wor-
rying about the excessive growth of storage require-
ments for the orthogonal basis.

The regularity of the discretization grid of the model
PDE gives plenty of opportunity to optimize the sparse
data structure for efficient computation. There are
known results of how to optimally partition and reor-
der the mesh points to achieve good load balance, small
communication volume and good local performance.
We feel that allowing such optimizations would violate
the spirit of the benchmark and trivialize its results.
Instead, we insist that the knowledge of the regularity of
the problem should not be taken into consideration when
porting and optimizing the code for the user machine.
The discretization should be treated as a generic mesh
without any properties known a priori. In exchange, the
users may take advantage of the simplicity of the mesh
to find problems with their optimizations since many
aspects of the optimal solution are known in closed form
and can serve as a useful debugging tool.

In a similar fashion, we prohibit the use of knowl-
edge of the problem when performing the conjugate-
gradient iteration. However, we recognize that the users
may wish to use the knowledge of the spectrum of the
discretization matrix to estimate the accuracy of their
optimized solver.

5 Elements of multigrid and coarse grid
solve

The multigrid method is considered by many as being
ideally suited for elliptic PDEs but by varying the

Algorithm 1: Preconditioned conjugate-gradient algorithm
used by HPCG.

~p0 ~x0,~r0 ~b� A~p0

for i = 1,2, to max_iterations do
~zi M�1~ri�1

if i = 1then
~pi ~zi

ai dot prod(~ri�1,~zi)
else

ai dot prod(~ri�1,~zi)
bi ai/ai 2 1

pi bi
~pi�1 +~zi

ai dot prod(~ri�1,~zi)=dot prod(~pi,A~pi)
~xi+ 1 ~xi +ai~pi;
~ri ~ri�1 � aiA~pi

if ~rik k2\tolerance then
STOP

4 The International Journal of High Performance Computing Applications

 at UNIV OF TENNESSEE on December 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

discretization it is possible to apply successfully to a
much larger class of linear and non-linear PDEs
(Trottenberg et al., 2001: 2). As described so far,
HPCG does directly characterize all of the computa-
tional and communication patterns exhibited by multi-
grid solvers. Specifically, the dominant performance
bottleneck at coarse-grid levels is latency rather than
bandwidth that dominates the message exchanges at
the fine grid levels and dot products of the precondi-
tioned conjugate-gradient method. For that reason,
version 2.0 of HPCG introduced a multigrid compo-
nent in the reference code to model the behavior of
multi-level methods. The problem that we faced when
introducing this new functionality was the potential of
a substantial increase in the code complexity. To mini-
mize the impact of the change, we reused the existing
components and recast them in terms of commonly
used parts of a typical multigrid solver. The smoother/
solver for all of the levels of our simulated geometric
multigrid is the Gauss–Seidel (locally) preconditioned
conjugate-gradient solver. The mesh coarsening and
refinement (restriction and prolongation) is done based
on halving the number of points in every dimension
and thus each coarse-grid level has eight times as few
points as the neighboring fine-grid level.

Just as in the case of the preconditioned conjugate
gradient, our goal is only to provide basic components,
rather than a complete multigrid solver. Consequently,
we do not include either the full V nor W cycles and
neither do we perform an accurate solve at the coarsest
grid level. Instead we limit the number of grid levels to
three, resulting in a 256-fold reduction in the number
of grid points, which is sufficient to address most of the
bandwidth-latency bottlenecks and expose the perfor-
mance of common algorithmic trade-offs. We also cap-
tured in this limited implementation the prevalent
recursive patterns of code execution and the integer
arithmetic required to capture some of the mesh
manipulation.

6 Validation and verification components

HPCG detects and measures variances from bitwise
identical computations because it is widely believed that
future computer systems will not be able to provide
deterministic execution paths for floating-point compu-
tations. Because floating-point addition is not associa-
tive, thus we may not have bitwise reproducible results,
even when running the same exact computation twice
on the same number of processors of the same system.
This is in contrast with many of the MPI-only applica-
tions today, and presents a big challenge to applications
that must certify their computational results and con-
duct debugging in the presence of bitwise variability.
HPCG makes the deviation from bitwise reproducibil-
ity apparent.

To detect anomalies during the iteration phases,
HPCG computes preconditions, post conditions, and
invariants. These are likely to eliminate the majority of
errors that might creep in when implementing an opti-
mized version of the benchmark.

The computational kernels in HPCG may be opti-
mized by the end user to fully take advantage of the
tested hardware. A reference code that we provide is
focused on portability, which may often have negative
effects on the performance of a specific system. To vali-
date the user-provided kernels, HPCG includes a sym-
metry test for the sparse matrix multiply with
discretization matrix A, jxtAy2 ytAxj, and for the sym-
metric Gauss–Seidel preconditioner M, jxtMy2 ytMxj.

A spectral test is also included in HPCG to test for
the fast convergence of the conjugate-gradient algo-
rithm on a modified matrix A that is close to being
diagonal. The theoretical framework underlying the
conjugate-gradient solver (Saad, 2003) guarantees a
short and fixed number of iterations for such matrices
and the invalid optimizations attempted by the user
should violate this property. The spectral test is meant
to detect potential anomalies in the optimized imple-
mentation related to inaccurate calculations and con-
vergence rate changes due to user-defined matrix
ordering.

7 Allowed and disallowed optimizations

Good performance results from a HPCG run may only
be achieved after hardware specific optimizations.
Unfortunately, in the reference implementation of the
benchmark, it is nearly impossible to keep up with
hardware progress and include the optimizations
required on the contemporary supercomputing plat-
forms. Instead, we aim for simplicity of the reference
implementation and offer here a number of ideas for
improving performance for user runs.

One of the performance-critical aspects of efficient
sparse computations is partitioning and ordering of the
mesh points. By default, HPCG uses the lexicographi-
cal ordering; however, the user can change this in order
to achieve more optimal results. For example, using
red–black ordering is especially beneficial in the Gauss–
Seidel preconditioner that is inherently sequential with-
out the appropriate renumbering of elements. The num-
bering scheme established by the user before the
iterations begin is carried throughout the timed compu-
tations in user-defined data structures and is passed to
the computational kernels that may then take advan-
tage of the user ordering by providing a specialized
kernel.

Another likely source of improved performance
could be the use of system-specific communication
infrastructure: both the hardware and the software that
takes full advantage of the communication network.

Dongarra et al. 5

 at UNIV OF TENNESSEE on December 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

The reference implementation uses a small set of MPI
functions that are very likely to be portable across a
wide range of distributed-memory systems and, if opti-
mized, will deliver a good portion of the optimal per-
formance; however, the custom implementations of
HPCG are likely to contain a bigger variety of commu-
nication options. In MPI, there is a possibility of
improving performance with various communication
modes, such as one-sided, buffered, ready or persistent.
It is also possible to use newer additions to the MPI
standard such as the neighborhood collectives (Hoefler
et al., 2007), which has by now become much more pre-
valent and thus is likely to be optimized for the inter-
connect hardware by the system vendors or integrators.
There of course also exists the possibility to go beyond
the MPI standard and use lower-level application pro-
gram interfaces such as the Common Communication
Interface. This might not be an option for large code
bases but it would be feasible within the context of
HPCG where only a handful of communication scenar-
ios are used. We do not envision at this point the need
to use vendor-specific interfaces and the reference
implementation is restricted to the widely implemented
subset of the MPI standard.

The commonly used optimization in sparse iterative
methods is aimed at matrix–vector multiplication
(Byun et al., 2012, Im et al., 2004, Liu et al., 2013,
Vuduc et al., 2005). As with other optimizations, we
opt not to include hardware-specific code in the refer-
ence implementation and instead we provide the user
with a set of interfaces and data structures that allow
them to easily include many of the existing implementa-
tions of these computational kernels.

In order to maintain the wide applicability of the
HPCG results and optimizations, we explicitly prohibit
the use of knowledge of either the sparsity pattern of
the discretization of the matrix (this includes the sym-
metry of the discretization), its structure and connectiv-
ity pattern, or the dimensionality of the domain. In our
view, this invites the use of generic methods for matrix
partitioning and hardware-specific optimization of the
computational kernels.

At a higher level of abstraction, the knowledge of
the spectral properties of the matrix could be used to
artificially accelerate the conjugate-gradient iterations
or provide a nearly optimal preconditioner. This might
strike as an artificial constraint, because in practice it is
always beneficial to take advantage of any numerical
properties of the matrix; however, for an unknown
problem structure and spectrum it is usually more
costly to obtain this kind of information rather than to
perform conjugate-gradient iteration barring any
knowledge that can come from the domain that origi-
nated the PDE. In a similar vein, we do not allow the
use of variants of the conjugate-gradient method that
completely bypass the challenging aspects of the classic

rendition of the algorithm. Some examples of this
would be the reordered variants of the conjugate-
gradient (Chronopoulos and Gear, 1989, D’Azevedo et
al., 1993, Dongarra and Eijkhout, 2003, Eijkhout,
1992, Meurant, 1987) or pipelined conjugate-gradient
(Ghysels and Vanroose, 2012).

8 Performance results

HPCG has already been run on a number of large-scale
supercomputing installations in Europe, Japan and the
USA. It is not feasible to list them all here for lack of
space and also due to the early nature of the results, as
the community is gaining experience in running the
code. Instead, we present very preliminary results from
a fairly small-scale deployment. This is presented in
Figure 1 and should not be interpreted as official
results for the tested system but rather as a preliminary
comparison between the results that can be expected
from HPCG and what is commonly reported as a result
for HPL. The figure clearly shows a number of trends.
Firstly, HPL follows relatively closely the peak perfor-
mance of the machine – a fact well known to the bench-
marking practitioners and most HPC experts.
Secondly, HPCG exhibits performance levels that are
far below the levels seen by HPL; again, this hardly
comes as a surprise to anybody in the high-end and
supercomputing fields and may be attributed to many
factors with the most commonly cited one being the so-

Figure 1. One of the early performance results from running
HPCG and HPL on up to 32 nodes or 512 MPI processes. Two
versions are provided, with the semi-logarithmic scale (top) and
logarithmic scale (bottom).

6 The International Journal of High Performance Computing Applications

 at UNIV OF TENNESSEE on December 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

called ‘memory wall.’ Finally, it is worth noting that,
despite low absolute values, HPCG scales equally well
when compared with HPL, which might be attributed
to the custom interconnection of the tested system.

9 Future work

Future work will include a thorough validation testing
of the HPCG benchmark against a suite of applications
on current high-end systems using techniques similar to
those identified in the Mantevo project (Heroux et al.,
2009). Furthermore, we plan to fully specify opportuni-
ties and restrictions on changes to the reference version
of the code, to ensure that only changes that have rele-
vance to our application base are permitted.

Acknowledgements

The authors thank the Department of Energy National
Nuclear Security Agency for the funding provided for this
work.

We also thank Simon Hammond, Mahesh Rajan, Doug
Doerfler and Christian Trott for their efforts to test early ver-
sions of HPCG and for giving valuable feedback.

Funding

This work was supported by the US Department of Energy
(grant number 14-1589).

References

Bailey D, Barscz E, Barton J, et al. (1994) The NAS parallel

benchmarks. Technical Report no. RNR-94-007, NASA

Ames Research Center, USA.
Bailey D, Harris T, Saphir W, et al. (1995) The NAS parallel

benchmarks 2.0. Techinical Report no. NAS-95-020,

NASA Ames Research Center, USA.
Byun JH, Lin R, Yelick KA, et al. (2012) Autotuning sparse

matrix-vector multiplication for multicore. Technical

Report no. UCB/EECS-2012-215, University of Califor-

nia, USA.
Chronopoulos A and Gear C (1989) s-Step iterative methods

for symmetric linear systems. Journal of Computational and

Applied Mathematics 25: 153–168.
D’Azevedo E, Eijkhout V and Romine C (1993) LAPACK

working note 56: Reducing communication costs in the

conjugate gradient algorithm on distributed memory mul-

tiprocessor. Technical Report no. CS-93-185, University

of Tennessee, Knoxville, USA.
der Wijngaart RFV (2002) NAS parallel benchmarks version

2.4. Technical Report no. NAS-02-007, Computer Sciences

Corporation, NASA Advanced Supercomputing (NAS)

Division, USA, October.
Dongarra J and Eijkhout V (2003) Finite-choice algorithm

optimization inconjugate gradients. Technical Report no.

159, LAPACK Working Note, University of Tennessee,

USA.
Dongarra J, Eijkhout V and van der Vorst H (2001) Iterative

solver benchmark. Scientific Programming 9(4): 223–231.

Dongarra J and Heroux M (2013) Toward a new metric for

ranking high performance computing systems. Technical

Report no. SAND2013-4744, Sandia National Labora-

tories, USA.
Dongarra JJ, Luszczek P and Petitet A (2003) The LINPACK

benchmark: Past, present, and future. Concurrency and

Computation: Practice and Experience 15(9): 803–820.
Eijkhout V (1992) LAPACK working note 51: Qualitative

properties of the conjugate gradient and Lanczos methods

in a matrix framework. Technical Report no. CS 92-170,

University of Tennessee, USA.
ORNL Leadership Computing Facility (2013a) Annual

Report 2012–2013, Available at: https://www.olcf.ornl.

gov/wp-content/uploads/2014/03/2013_ARv2M.pdf (acc-

essed 10 August 2015).
ORNL Leadership Computing Facility (2013b) Introducing

Titan — the world’s #1 open science supercomputer, Avail-

able at: http://www.olcf.ornl.gov/titan (accessed 29 May

2013).
Ghysels P and Vanroose W (2012) Hiding global synchroniza-

tion latency in the preconditioned Conjugate Gradient

algorithm. Technical Report no. 12.2012.1, Intel Labs Eur-

ope. Presented at PRECON13, June 19–21, 2013, Oxford,

UK.
Heroux MA, Doerfler DW, Crozier PS, et al. (2009) Improv-

ing performance via mini-applications. Technical Report

no. SAND2009-5574, Sandia National Laboratories.

Hoefler T, Gottschling P, Lumsdaine A, et al. (2007) Optimiz-

ing a Conjugate Gradient Solver with Non-Blocking Col-

lective Operations. Elsevier Journal of Parallel Computing

33(9): 624–633.
Im EJ, Yelick K and Vuduc R (2004) Sparsity: Optimization

framework for sparse matrix kernels. International Journal of

High Performance Computing Applications 18(1): 135–158.
Joubert W, Kothe D and Nam HA (2009) Preparing for exas-

cale: ORNL leadership computing facility application

requirements and strategy. Technical Report no. ORNL/

TM-2009/308, Oak Ridge National Laboratory, USA,

December.
Liu X, Smelyanskiy M, Chow E, et al. (2013) Efficient sparse

matrix-vector multiplication on x86-based many-core pro-

cessors. In: ICS’13, Eugene, OR, 10–14 June 2013.
Luszczek P and Dongarra J (2010) Analysis of various scalar,

vector, and parallel implementations of RandomAccess.

Technical Report no. ICL-UT-10-03, Innovative Comput-

ing Laboratory, USA.
Luszczek P, Dongarra J and Kepner J (2006) Design and

implementation of the HPCC benchmark suite. CT Watch

Quarterly 2(4): 18–23.
Mattheij RMM, Rienstra SW and ten Thije Boonkkamp

JHM (2005) Partial Differential Equations, Modeling,

Analysis, Computation. Philadelphia: SIAM.
Meuer HW, Strohmaier E, Dongarra JJ, et al. (2013) TOP500

supercomputer sites, 42nd ed. Avaliable from: http://

www.netlib.org/benchmark/top500.html (accessed 10

August 2015).
Meurant G (1987) Multitasking the conjugate gradient method

on the CRAY X-MP/48. Parallel Computing 5: 267–280.
Saad Y (2003) Iterative Methods for Sparse Linear Systems.

2nd ed. Philadelphia, PA: Society for Industrial and

Applied Mathematics.

Dongarra et al. 7

 at UNIV OF TENNESSEE on December 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

Smith BF, Bjørstad PE and Gropp WD (1996) Domain

Decomposition, Parallel Multilevel Methods for Elliptic

Partial Differential Equations. Cambridge, MA: Cam-

bridge University Press.
Trottenberg U, Oosterlee CW and Schüller A (2001) Multi-

grid. London: Academic Press.
Vuduc R, Demmel J and Yelick K (2005) OSKI: A library of

automatically tuned sparse matrix kernels. In: Proceedings

of SciDAC 2005, Journal of Physics: Conference Series,

San Francisco, CA, 2005, pp. 51–530. Bristol, UK:

IOPscience.

Authors’ Bibliographies

Jack Dongarra holds appointments at the University of
Tennessee, Oak Ridge National Laboratory, and the
University of Manchester. He specializes in numerical
algorithms in linear algebra, parallel computing, use of
advanced computer architectures, programming meth-
odology and tools for parallel computers. His contribu-
tions to the HPC field have received numerous
recognitions including the IEEE Sid Fernbach Award
(2004), the first IEEE Medal of Excellence in Scalable
Computing (2008), the first SIAM Special Interest
Group on Supercomputing’s award for Career
Achievement (2010) and the IEEE IPDPS 2011 Charles
Babbage Award. He is a fellow of the AAAS, ACM,
IEEE and SIAM and a member of the National
Academy of Engineering.

Michael A Heroux is a Distinguished Member of the
Technical Staff at Sandia National Laboratories, work-
ing on new algorithm development, and the robust par-
allel implementation of solver components for
problems of interest to Sandia and the broader scien-
tific and engineering community. He leads development
of the Trilinos Project, an effort to provide state of the
art solution methods in a state of the art software
framework. Dr Heroux also works on the development
of scalable parallel scientific and engineering applica-
tions and maintains his interest in the interaction of sci-
entific/engineering applications and high-performance
computer architectures. He leads the Mantevo project,
which is focused on the development of open source,
portable mini-applications and mini-drivers for scien-
tific and engineering applications. Dr Heroux is also
the lead developer and architect of the HPCG bench-
mark, intended as an alternative ranking for the TOP
500 computer systems.

Piotr Luszczek is a Research Director at the University
of Tennessee. His research interests are in large-scale
parallel algorithms, numerical analysis, and high-
performance computing. He has been involved in the
development and maintenance of widely used software
libraries for numerical linear algebra. In addition, he
specializes in computer benchmarking of supercompu-
ters using codes based on linear algebra, signal process-
ing and PDE solvers.

8 The International Journal of High Performance Computing Applications

 at UNIV OF TENNESSEE on December 11, 2015hpc.sagepub.comDownloaded from

http://hpc.sagepub.com/

