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�is paper presents a review of high performance damage-resistant seismic resistant structural (DRSRS) systems for the sustainable
and resilient city. Firstly, the motivation and the basic principle as well as methodology of the developing DRSRS system are brie	y
illustrated.�en, the structural detailing and the seismic behaviors of three types of existingDRSRS systems, namely, the replaceable
structural element (RSE), rocking seismic resisting structural (RSRS) system, and self-centering seismic resisting structural (SCSRS)
system, are summarized in detail. �e theoretical and extensive experimental study results indicated that the three existing types of
DRSRS system canminimize the postdamage a
er loading. Types of energy dissipation devices and dampers, as well as fuse sections,
can largely enhance the energy dissipation capacity of the proposed structural system. Many numerical and �nite element models
have been proposed to analyze the dynamic and static cyclic responses of them.�e residual deformation a
er the dynamic response
is smaller compared to that following the cyclic response. �en, the current research challenges of DRSRS system are illustrated,
and the new research highlights that emerged in recent years are stated. Finally, the conclusions of this paper are summarized;
furthermore, the recommendations for the future studies are pointed out at the end of the paper.

1. Introduction

�e majority of the world’s population, over 3.96 billion
people, lives in cities [1]. As the centers of population,
politics, and economics activity as well as culture, the natural
hazards bring more severe destructions and disasters to cities
compared to before. �erefore, the sustainable and resilient
city has been paid more and more enthusiasm in recent
years. A “resilient city” is demanded to quickly rehabilitate
or maintain its essential functions from any shock or stress
[2]. �e shocks or stresses include heat waves, storms,
earthquake, 	ood, and an accelerated rate of sea level rise.

�e Wenchuan earthquake in 2008 caused 86000 deaths
and approximately 138.33 billion USD economical loss [3].
�eGreat Kobe earthquake led 6434 deaths and caused about
170 billion USD loss in economics [4]. 15870 persons died
in the Great East Japan Earthquake which caused about 100

billion loss USD in economics [5]. �e 7.8 magnitude earth-
quake in Nepal in April 2015 occurred with close to 9,000
victims and 6 billion USD estimated losses including damage
reported in India, China, and Bangladesh [6]. On 16 April
2016, a series of earthquakes hit Kumamoto, Japan, leading
to 64 deaths and infrastructure damage of approximately
5.6 billion USD. On the same day, an earthquake attacked
Ecuador andmurdered 668 people [7]. In August 2016, Italy’s
Umbria region su�ered from a 6.2 earthquake that caused
293 deaths and le
 4000 people homeless; the damage is
estimated at 3.96 billion USD [8]. Other invisible losses in
culture, human emotion, and quality of life are inestimable.

�e earthquake caused a mass of economical loss and
destructions of infrastructures; this leads to big di�culty
for the sustainable and resilient city. �us the American
and Japanese earthquake engineering researchers pointed
out that the resilient city needs to be the next objective of
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earthquake engineering at the seventh joint planningmeeting
of NEES/E-Defense Collaborative Research on Earthquake
Engineering [9]. Actually, to minimize the residual deforma-
tion of engineering structure a
er an earthquake, engineers
and researchers have developed some innovative structure
systems including replaceable structural element (RSE) and
rocking seismic resisting structural (RSRC) system as well as
self-centering seismic resisting structural (SCSRS) system in
recent decades; all the above-mentioned structural systems
are called high performance damage-resistant seismic struc-
tural (DRSS) system in this paper.

�eRSE is developed through actively arti�cially forming
relative weakening structural element which will be easily
failed before other protective structural elements and can be
easily replaced a
er an earthquake; as a result, the whole
structure can be quickly rehabilitated and desterilized. So
far, the most popular studied DRSRS systems are RCRC
system and SCSRS system that is created in accordance with
the elastic gap opening mechanisms to so
en the seismic
response of the structure; posttension tendon or strand is
used to return the whole structure to a plumb position. In
order to dissipate the seismic energy, the energy dissipating
devices or types of dampers are usually included in the
DRSRS system. In addition, using the inherent strong elastic
recovery force of high strength tension longitudinal bar to
pull the structure back a
er loading is another new way to
develop the DRSRS system in recent years.

�e objectives of this paper are to review the current
research status of high performance DRSRS systems and
to outline current research challenges for the aforemen-
tioned structural systems. First, the motivation and the
basic principles, as well as methodology of DRSRS system,
are brie	y reviewed. �en, the seismic behaviors of several
current di�erent types of DRSRS systems including the RSE,
RCRC, and SCSRS systems are overviewed in detail. Finally,
some current research challenges and the recommendations
for future studies for DRSRS system are summarized and
discussed.

2. Motivation of High
Performance DRSRS Systems

For the sake of protecting the lives of the occupants, struc-
tures are typically designed for “life-safety” performance
according to the most modern building codes and are
expected to undergo signi�cant structural or nonstructural
damage referred as residual deformation during a severe
earthquake. Repairing damaged structureswith large residual
deformation is expensive and time-consuming, even the
structures with signi�cant severe residual deformation have
to be demolished due to the high cost.

Since the 1990s, the performance-based design method
has been adopted by most engineers and researchers in
the world, and this designed method has been developed
three generations [10–12]. It is expected that the structure
designed according to the performance-based designmethod
can have prospective seismic behaviors to withstand the
possible earthquake and have the safety to protect the lives of
the occupants and that the seismic damage of the structure

due to the possible earthquake can be controlled within
the expectant degree. �e principle of “undamaged under
minor earthquake, repairable under moderate earthquake,
and uncollapsed under large earthquake” proposed by the
Chinese seismic code and Japanese seismic code is similar
to the purpose of the performance-based design method.
However, due to the uncertainty of the earthquake, the
structures possibly su�er from larger earthquake than the
predicted level, causing the seismic damage of structure to be
more serious than the predicted damage. �e structures with
severe seismic damage bring a big di�culty to the repairing
of building and the rehabilitation of the society.

�e reconstruction a
er the Kobe Earthquake lasted 10
years and the money for reconstruction reached up to 145
billion USD [13]. A
er the Great East Japan Earthquake
in 2011, the �rst time budget fund applied from Japan
government for the reconstruction is up to 35 billion USD,
which could not satisfy the need of reconstruction; this also
caused a heavy burden on the Japanese economy [14]. �e
estimated cost of rebuilding a
er the earthquake occurred in
Christchurch, New Zealand, in 2011 is 28 billion USD, which
is approximately 20%GDPofNewZealandwithout including
economic losses associated with business downtime, and the
Christchurch reconstruction is still underway until 2014 [15,
16]. �erefore, the importance of minimizing the residual
deformation to make the repairing of structure easier was
pointed out [17, 18].

It is understood that engineering structures with large
residual deformation are harm to the sustainable and resilient
city because it is necessary to consume lots of time and social
wealth for reconstruction a
er the earthquake. Consequently,
there is a consensus to develop a new generation of the seis-
mic resisting structural system to withstand the earthquake,
which has a strong resilient capacity and very small structural
damage a
er the earthquake.

3. Basic Principles and Methodology of
High Performance DRSRS Systems

In order to understand how to control the damage of struc-
ture, it is necessary to understand the mechanism of damage
of the conventional seismic resisting structure. �e conven-
tional approach to earthquake resistant design of buildings
depends upon providing the building with strength, sti�ness,
and inelastic deformation capacity. Figure 1 schematically
shows the seismic performances of the conventional seismic
structural system.

As shown in Figure 1(a), conventional seismic structural
system satis�es the demand of deformation through plastic
hinges at the bottoms of the column and the ends of the
beam. �e conventional seismic resisting structural system
undertakes two responsibilities simultaneously: (1) resisting
the earthquake force through strong sti�ness; (2) dissipating
the earthquake energy through inelastic buckling or yielding
of longitudinal bars and crushing of concrete at compression
zone, as shown in Figure 1(b); this leads to the hysteretic loop
of the conventional seismic resisting system is plump, shown
as in Figure 1(c).However, the plumphysteretic loop indicates
that severe damage and large residual dri
 are possible a
er
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Figure 1: Seismic performance of conventional seismic structural system: (a) seismic resisting structural frame; (b) damage of structural
element; (c) hysteretic curve of lateral force (adopted from [19], copyright 2014 JCI).

the lateral seismic force is removed, shown as in Figure 1(c).
�e stations above indicate that controlling the damage of
a structure should emphasize the interface of two structural
members and the plastic hinge zones.

To reduce the damage of conventional seismic resist-
ing structural system, more advanced techniques are not
to strengthen the structure, but to so
en the earthquake-
generated forces acting upon it. Among the most important
advanced techniques of earthquake resistant design and
construction are (1) energy dissipation devices and (2) base
isolation. In particular, the base-isolated structure reduces the
damage through a series of bearing pads which are placed
between the building and the foundation. �e foundation
and the upper building are separated, and the connection
between them is weakened. �e bearing pads dissipate the
most seismic energy, while the base-isolated structure itself
escapes the deformation and damage.

�e principle of weakening the connection between
upper structure and the foundation is adopted into devel-
oping the rocking structural system. �e upper structure-
foundation intersection of the rocking structure could under-
take the compressive force but could not bear the tensile force.
A certain upli
 (rocking) is promised at the upper structure-
foundation intersection under the lateral earthquake load;
however, the upper structure does not bear the bending
deformation, as shown in Figure 2(a).�eweight of structure
returns the whole structure back to the vertical location
without orwith little residual deformation.�eposttensioned
tendons or strands are included to provide the restoring force
for the rocking structure, as shown in Figure 2(b). Figure 2
implies that the damage of both two structures is eliminated
by the rocking weakening behavior at the intersection;

however, the resilient forces are di�erent. �e self-centering
forces of structural systems shown in Figures 2(a) and 2(b)
are provided by the uncontrolled gravity of structure and the
controlled recovery force of tendon or strand, respectively.
In order to distinguish them, two types of structures shown
in Figures 2(a) and 2(b) are called rocking seismic resisting
structural (RSRS) system and self-centering seismic resisting
structural (SCSRS) system in this paper, respectively.

On the other hand, the RSE is based on the mechanism
that the structure fails in the relative weak location under
loading. �e RSE designed at the relative weakening location
can be easily replaced a
er the earthquake; as a result, the
entire structure can be quickly rehabilitated and desterilized.

In order to enhance the seismic energy dissipation capac-
ity, types of energy dissipation devices and dampers, as well
as fuse sections, are included the DRSRS systems including
the RSE and RSRS system as well as the SCSRS system.

4. Replaceable Structural Elements

As is well known, there is somehow an essential mechanism
that the structure failed at the weakening structural elements
under loading condition. Consequently, it is possible that the
structure failed at one or some arti�cial weakening structural
elements which are called RSE. In general, RSE is used by
mechanics; application in structural engineering is limited
and focuses on the steel structure and bridge structure as well
as the precast structural system until now.

4.1. Bridge Engineering Structure. A new concept [20] for
bridge tower designs in seismic zones using sacri�cial inelas-
tic shear link schemes was adopted by TY Lin International
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Figure 2: �e principles of RSS system and SCS system: (a) DRSRS system; (b) SCSRS system.
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Figure 3: Concept of shear links of San Francisco–Oakland Bay Bridge (adopted from [20], copyright 2004 ASCE).

in 2000, shown in Figure 3. �e sacri�cial inelastic shear
link could enable the new San Francisco–Oakland Bay Bridge
(SFOBB) signature tower sha
s to remain elastic during large
seismic events and capable of carrying the large axial loads
delivered by the suspension cables. In addition, the shear
links are bolted to the tower sha
s; therefore, the links are
replaceable if required a
er large seismic events. It was shown
that the inelastic tower links could be used to tune the
dynamic response of bridge towers in regions of high seis-
micity through global seismic time history analysis [33].

4.2. Coupling Beam of Shear Wall System. �e RSE design
philosophy is most applied to coupling beam between wall
systems. Fortney et al. �rstly proposed a new type of fuse cou-
pling beam (FCB) [21, 22], as shown in Figure 4. It is assumed
that all inelastic deformations will be concentrated in the
middle section (fuse section) of the beam such that the two
outer steel beam parts could be protected. �e fuse section is
connected to the outer steel beam section via the 	ange splice
plates at top and bottom 	ange and web splice plate, as well as

slip critical bolted connections. �e compared experimental
results showed that FCB led to early energy dissipation
and lower sti�ness relative to the typical steel coupling
beam (SCB); nevertheless, postdamage repair/replacement
di�culties and expenses are minimized [22]. Additionally,
in order to enhance the sti�ness and energy absorption
capacity and to reduce construction di�culties of RSE, some
innovated alternative schemes were performed [34, 35].

Lu et al. proposed three types of steel coupling beams
for the shear wall structural system with replaceable fuse
[23, 43], as shown in Figure 5. Type I fuse is a steel I-beam
whose web has a diamond-shaped hole; type II fuse is two
webs of the steel I-beam, �lled with lead between the webs;
type III is two round steel tubes, �lled with lead in the tube.
�e experimental results indicated that the shear capacities
of shear wall systems with replaceable fuses were close to that
of the conventional shear wall system.Moreover, the inelastic
deformation and damage of specimens were concentrated in
the fuse section as expected [44, 45]. In order to reduce the
damage at the bottom of the shear wall, new replaceable foot
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Figure 5:�e new replaceable coupling beams proposed by Lu: (a) type I; (b) type II; (c) type III. (adopted from [23], copyright 2013 Journal
of Earthquake Engineering and Engineering Vibration).

parts for the shear wall were proposed [46]; it was exper-
imentally revealed that the proposed foot parts wall could
greatly minimize the damage at the bottom of the shear wall.
Similar to the replaceable coupling beam type III proposed
by Deng et al., replaceable steel truss coupling beams were
developed and used into the shear wall structural system
[47, 48].

�e replaceable steel coupling beam (RSCB) shown as in
Figure 6 was proposed by Ji et al. [24]. �e cyclic behavior
of short shear link was experimentally studied in detail [49].
Furthermore, the scheme of proposed RSCB was further
innovated and the seismic behaviors were experimentally
numerically studied [24, 50]. �e test results showed that the
wall systems with shear link had a good shear strength and
large inelastic rotation capacity; in particular, the damaged
shear link was replaced within very short time [50].

�e replaceable steel coupling beams (RSCB) aforemen-
tioned can be taken as shear links with weakening section
relative to protected normal beam segment and shear walls;
the earthquake energy is dissipated by RSCB through inelas-
tic deformation. If the RSCB is attached to a damper, more
earthquake energy can be dissipated, and the shear wall can

be preferably protected. Chuang et al. used a friction damper
in the replaceable coupling beam of shear wall to enhance the
earthquake energy dissipation capacity [25]. Figure 7 shows
the con�guration of the proposed friction damper which
consists of two sets of an I-beam, a gusset plate, a steel plate for
connection, and a brass plate used as the friction material, as
shown in Figures 7(a) and 7(b). �e earthquake energy
is dissipated by the friction damper through the vertical
deformation of the slot hole, shown as in Figure 7(c).

Teng et al. developed a mild metallic beam damper for
coupled shear wall system [26], as shown in Figure 8; the pro-
posed beam damper is a steel plate with low yielding strength
and rectangular column holes. �e experimental results
showed that the global buckling in plane occurred under
loading, and the damper behaved with great energy dissipa-
tion capacity [26]. �e pseudodynamic test result indicated
that the proposed mild metallic beam damper could reduce
the seismic response of shear wall system and make the
earthquake energy larger [58].

Mao et al. proposed a type of shapememory alloy damper
(SMA) to dissipate the earthquake energy of coupling beam
in RC frame-shear wall structural system [27]; the assembly
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by the 	exural deformation of walls (adopted from [25], copyright 2009 Structural Design Tall Spectral Building).

of SMA is schematically shown in Figure 9.�e SMA damper
contains four steel components (assembly parts I–IV) and
two groups of SMA wires (group A and B); the earthquake
energy is dissipated through tension of SMA wires located
around the ears on part II and III (or part II and IV) when
relative vertical displacement occurs between cantilever shear
wall ends.

Kumagai et al. developed a type of RC shear wall struc-
tural system with coupling beam damper [28, 29], as shown
in Figure 10.�e coupling beam damper is a rectangular steel
shear plate with a low yielding point, which is connected to
the steel beam embedded in shear walls. Experimental result
showed that the proposed coupling beam damper behaved
with stable hysteretic response, and the load carrying capacity
did not deteriorate up to 1/20 dri
 angle. So far, there were
nine building structures adopting the proposed coupling
beam damper [59].

A new viscoelastic coupling damper (VCD) device was
developed by Lyons et al. [30] to use into the coupled wall
of the high-rise building. As shown in Figure 11, the VCD
consists of multiple layers of viscoelastic (VE) material,
placed between layers of steel plate which are anchored at
alternating ends to the coupled RC walls using a number

of di�erent connection details. In addition, ductile “fuse”
mechanism can be added in series with the VE material. �e
experimental result validated that the VE material exhibited
stable hysteretic behavior under the loading conditions that
are expected in high-rise buildings under wind and earth-
quake loading. �e full-scale test results also demonstrated
the targeted viscoelastic response during the wind and low-
level earthquake loading and the targeted viscoelastic-plastic
response for extreme earthquakes, where the response is a
combination of the VE response and the nonlinear behavior
of the structural fuses [60].

Kim et al. proposed a hybrid energy dissipative device
(HEDD) applicable to RC shear wall structural system which
consists of U-shaped steel plates and high damping rubbers
[31, 32]; the HEDD is schematically shown in Figure 12. �e
high damping rubber damper placed between the casings
(Casing 1 and Casing 2) is designed to accommodate shear
deformation when the rotation of building occurs. Experi-
mental investigationswere conducted to validate the excellent
seismic performances of RC shear walls connected by hybrid
energy dissipative coupling beams.

Kurama and Shen proposed unbonded posttensioned
hybrid coupled wall for shear wall structural system [36],
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shown as in Figure 13; reinforced concrete walls are coupled
using steel beams and unbonded posttensioning, without
embedding the beams into the walls. �e beam-to-wall con-
nection regions include top and bottom angles bolted to the
beam 	anges and to steel plates embedded in the walls (using
welded headed studs); the angles are to yield and provide
energy dissipation during an earthquake and resist sliding of
the beams along the beam-to-wall connections. �e seismic
behavior of the proposed unbonded posttensioned hybrid
coupled wall was experimentally studied in detail [67, 68].
�enonlinear load-deformation behavior of proposed hybrid
coupled wall system was analyzed, and a simple design
method based on �ber elements to estimate the nonlinear
load-deformation was proposed. �e results indicated that
unbonded posttensioned steel coupling beams with initial
sti�ness similar to embedded steel beams can be designed to
provide stable levels of coupling without experiencing signif-
icant damage over large nonlinear cyclic deformations [69,
70], and the design approach was proposed for the unbonded
posttensioned hybrid coupled shear wall structural system
[71].

4.3. Frame Structural System. In order to prevent damage to
columns or in�ll walls and to minimize life-safety hazards
during potentially earthquakes, Aliaari et al. developed a seis-
mic in�ll wall isolator subframe (SIWIS) system [37, 72, 73],
shown as in Figure 14. �e SIWIS system consists of two
vertical and one horizontal sandwiched light-gauge steel
studs with “rigid-brittle” elements in the vertical members.
As a “sacri�cial” component or a “structural fuse” to protect
the in�ll wall and frame from failure, the SIWIS is designed to
allow in�ll wall-frame interaction under wind loading and
minor-to-moderate earthquakes for reduced building dri

but to disengage them under damaging events. �e seismic
performances of SIWIS system were experimentally investi-
gated in detail [37, 74] and analyzed using nonlinear �nite

element models [75, 76]. Analysis results showed that the
concept of SIWIS system works in providing initially high
sti�ness followed by an isolation of in�ll wall from interaction
with the con�ning frame. Practical design guidelines are
proposed, and the result of the study demonstrates that the
proposed isolation system has merits and can potentially
improve the seismic performance of masonry in�ll walls by
protecting the in�ll wall and the frame from damage due to
their interaction [77].

5. Rocking Seismic Resisting
Structural Systems

In 1963 the �rst time analysis of the rocking motion of
structures was performed byHousner who found that several
golf-ball-on-a-tee types of elevated water tanks survived the
ground shaking due to the e�ect of upli
 despite the appear-
ance of instability; on the other hand, much more stable-
appearing reinforced concrete, elevated water tanks were
severely damaged during the Chilean earthquakes of May
1960 [81].

Since the 1970s, the principle of rocking motion of struc-
ture was largely applied to research on the seismic resisting
structural system.Hukelbridge andClough studied the e�ects
of allowing column upli
 in steel building frames on seismic
response under severe seismic loading; the table test results
indicated that allowing column upli
 was shown for this
frame to signi�cantly reduce both the seismic loading and
ductility demand [82, 83]. Priestley et al. veri�ed the mech-
anism of energy dissipation of rocking structural system
through table test and proposed a simple design method for
assessing maximum rocking displacements, using equivalent
elastic characteristics and a response-spectra approach [84].
Basically, the analysis of the seismic response of rocking
structural system under the earthquake lateral loading was
gradually deeply studied before the 1980s [85–88].

A
er completing the theoretical mechanism analysis of
the seismic response of rocking structural system, the exper-
imental studies on types of engineering structural systems
such as bridge engineering and building structures were
started from the 1990s. �e methodologies of rocking struc-
tural system were through not only so
ening the connection
between structure and foundation but so
ening the connec-
tion between structural elements such as beam-column joint.

5.1. Rocking Bridge Pier Structure. Aslam et al. studied the
rocking motion of a major pier in the bridge, a semirigid
seismic connection was used at the base of the pier and the
rocking of the pier was permitted to take place during the
future major earthquakes [87, 88]. Priestley et al. proposed
rocking bridge pier as a strengthened design and seismic
design schemeof bridge engineering [89].Mander andCheng
developed a new paradigm called Damage Avoidance Design
(DAD), in which the bridge piers is free to rock under large
lateral loads such that damage is avoided by the special detail-
ing of the connections [90]. Mashal et al. used dissipative
controlled rocking (DCR) systems with types of external
and internal dissipation devices into Accelerated Bridge
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Construction (ABC) to enhance the seismic behavior of
Accelerated Bridge Construction (ABC) structures [91].

5.2. Rocking Concrete Frame System. Roh used the “rock-
ing columns,” a type of double hinged gravity column or
cracked base and top column which resists vertical loads
with minimum or no lateral strength, to reduce the strength
of the part of the lateral load resisting system (i.e., weaken
the structure) for controlling the story accelerations [92].
Roh and Reinhorn �rstly proposed a macroscopic analytical
approach applicable for analysis of rocking column [93]. �e
proposed model is veri�ed through the quasi-static cyclic of
1 : 3 scale rocking column and the IDARC2D computational
model [94]. Subsequently, the seismic performance of a span
prototype structure with the proposed rocking column and
damper was analyzed; the results indicated that the proposed
rocking column and damper could e�ectively reduce the
seismic response of structure [93].

Cao et al. [95] developed a new type of connection to
assemble the frame and concrete rocking walls; test results
showed the rocking wall with the novel connections e�ec-
tively controlled the interstory dri
 concentration and en-
dowed the structure with a uniform deformationmode when
subjected to di�erent loading patterns.

5.3. Rocking Steel Frame System. Eatherton et al. of Stanford
University experimentally investigated the seismic behaviors
of controlled posttensioned rocking steel framed buildings
with replaceable energy dissipation fuses [38]; the rocking
steel framed building is as shown in Figure 15; the exper-
imental results indicated that the proposed rocking steel
frame exhibited excellent recovery properties, and the seismic
energy dissipation and damage were concentrated in the
replaceable fuse elements. Midorikawa et al. conducted the
three-dimensional table test of posttensioned steel frame in
2009 [96, 97], and Ma et al. performed a table test of 2 : 3
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Figure 15: Posttensioned controlled rocking steel framed building with replaceable energy dissipation fuses (adopted from [38], copyright
2008 the 14th WCEE).

scale steel frame with controlled rocking column and earth-
quake energy dissipation device in E-Defense of Japan [98],
Eatherton et al. also conducted similar test on this kind of
steel frame [99].

5.4. Rocking Concrete Shear Wall System. Anderson stud-
ied the in	uence of the rocking of foundation on seismic
response of the shear wall under seismic loading through
the proposed computational model [100]. Gajan and Kutter

[101, 102] proposed that using rocking footings in place of, or
in combination with, structural base isolation and energy
dissipation devices improves the performance of the structure
during seismic loading; results showed that a footing with
large �/�� ratio (� is actual footing area, and �� is the area
required to support the vertical and shear loads) possesses a
well moment capacity that is insensitive to soil properties and
su�ers small permanent settlements [101].�e e�ects of static
vertical factor of safety (�SV) and the applied normalized
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moment-to-shear ratio (�/��) at the footing-soil interface
on footing-soil system behavior were analyzed; the results
indicated that, for a particular �SV, footings with a large
moment-to-shear ratio dissipate considerably more energy
through rocking and su�er less permanent settlement than
footings with a low moment-to-shear ratio [103].

Ajrab et al. [39] designed a six-story rocking wall-
frame building with various supplemental system con�gura-
tions which include prestressed tendons and energy dissipa-
tion devices using performance-based design methodology,
shown as in Figure 16. Seismic performance and response
evaluation, using nonlinear time history analyses, suggests
that desired performance levels, minor to no damage, can be
achieved with added equivalent viscous damping, and the
seismic response was not sensitive to the prestress level in
tendons and to wall base width. However, this rocking wall-
frame building system is complicated such that it could not
be extensively applied into constructions.

Lu [104] analyzed the in	uences of rocking wall and wall-
neutral axis as well as the 3D e�ect on the seismic response
of RC wall-frame; the result indicated that uncontrolled wall
rocking could cause beam-wall connection failure, leading to
accelerated deterioration of the entire system. Pushover and
dynamic time history analyses showed that by incorporating
wall-neutral axis migration, more satisfactory prediction of
the inelastic response of the wall-frame can be made. A
systematic improvement of the wall-frame inelastic behavior
can be achieved by involving the 3D e�ect.

Hitaka and Sakino [40] developed a new type of hybrid
coupled wall (HCW) system which consists of rolled steel
coupling beams, reinforced concrete (RC) wall piers, and
concrete-�lled tube (CFT) short columns, shown as in Fig-
ure 17. In this new system (HCW), the bases of the wall piers
are connected to the base beams only through CFT short
columns, and the yielding occurs in the coupling beams and
the short columns. �e experimental results indicated that
the proposed HCW could fail in the expected location such

as the coupling beam and CFT column with ductile behavior
and large energy dissipation.

Wiebe and Christopoulos [105, 106] considered that
structural forces of the base-rocking system can be increased
signi�cantly even when the base moment is limited because
of higher mode e�ects. �ey suggested that higher mode
e�ects may be substantially reduced by designing to allow
rocking to occur at multiple locations over the height of a
base-rocking system.�e statistical study results showed that
the bending moment envelope above the base of the wall is
greatly reduced by providingmultiple rocking sections, while
the peak displacements do not increase in magnitude or in
variability.

Mulligan et al. [107] analyzed a scaled semiactive rocking
wall system using real-time, high-speed hybrid testing. �e
results showed that the semiactive devices are controlled to
provide supplementary resistance only for the upward rock-
ing motion of the wall, providing semiactive energy dis-
sipation over half of each cycle and relying on radiation
damping for the other half. Marriott et al. [108] proposed a
displacement-based retro�t procedure based on targeting
prede�ned performance criteria, such as joint shear and/or
column curvature deformation limits; an extensive experi-
mental program investigating the use of rocking wall sys-
tems to retro�t existing poorly detailed frame structures is
promised.

Wada et al. [41] developed a retro�t system of prestressed
concrete rocking walls and steel dampers to control the
seismic damage mode and increase the strength and energy
dissipating capacity of an 11-story steel reinforced concrete
frame in Japan, shown as in Figure 18.�e extensive nonlinear
time analyzed results showed that the rocking system can
signi�cantly reduce both the seismic responses to di�erent
earthquake ground motions and their scattering.

5.5. Rocking Masonry Structural Wall System. Toranzo et al.
used the principle of rocking wall system into con�ned
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Figure 18: Structural retro�tting of rocking walls and steel dampers in Tokyo Institute of Technology (adopted from [41], copyright 2009
Applied Technology Council).

masonry structural system [42, 109–111], shown as in Fig-
ure 19. A shake table investigation was conducted to validate
the concept of rocking walls as primary seismic systems; as
the inherent damping of this system was low, a pair of sup-
plemental steel hysteretic energy dissipating dampers were
used at the base of the wall. �e results indicated that with
careful detailing, not only the damage was eliminated but the
structure recenters itself following a large earthquake. �ey
considered that the rocking wall concept can be extended to
any rocking wall system.

5.6. Rocking Timber Structural System. Loo et al. [51] used
a new concept in shear wall design into timber shear wall
structure; the new concept involves the use of slip-friction
connectors in lieu of traditional hold-down connectors [112],
as shown in Figure 20. Slip-friction connectors, originally

developed for the steel framing industry, rely on themobiliza-
tion of friction across steel plates to resist loading up to a pre-
determined threshold. Upon this threshold being exceeded,
relative sliding between the steel plates allows the shear wall
to be displaced in an inelastic manner. �e numerical results
suggested that slip-friction connectors hold the promise of
being able to e�ectively protect sheathing, framing, and
nail connections from excessive stresses and deformations
during earthquake events of design level intensity or higher.
Kishiki andWada also utilized the philosophy of rocking into
timber structural system and designed controlled wood wall
structural system [113].

5.7. Rocking Core Wall System. �e numerical results per-
formed by Nielsen et al. [114] showed that the rocking core
wall structural system possesses the recentering capacity due
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Figure 19: �ree-story rocking con�ned masonry wall: (a) the
elevation of the wall; (b) details of the energy dissipations (adopted
from [42], copyright 2004, 13 WCEE).

to the e�ect of gravity, and the moment at the foundation
of rocking core wall structural system is smaller by 30%
than that of common core wall structural system having
�xed foundation. Zhou et al. also obtained similar numerical
results through compared analysis [115].

6. Self-Centering Seismic Resisting
Structural Systems

On the basis of rocking structural system, the posttensioned
tendons or strands are included into to externally provide a
self-centering capacity to the structural system. �e seismic
resisting structural system with posttension is called self-
centering seismic resisting structural systems (SCSRSS).

6.1. Self-Centering RC Frame System. Priestley and Tao [52]
developed a new type of self-centering precast concrete frame
using partial debonded prestressing tendons in which the
beam can rotate; the beam-column interface is shown as in
Figure 21. Cheok and Lew [116] experimentally veri�ed
the above-mentioned self-centering precast concrete frame
system.

In 1996, Priestley and MacRae developed precast con-
crete beam-column joint subassemblage with two ungrouted
posttensioned tendons, shown in Figure 22, and performed
experiment under cyclic reversal seismic load; the test results
showed that energy absorption of the hysteretic response was
larger than expected, and the residual displacements were
negligible [53]. El-Sheikh et al. conducted pushover analysis
and time history analysis of the developed precast concrete
beam-column joint subassemblage [117]. Cai et al. [118] devel-
oped a kind of new self-centering posttensioned precast con-
crete beam-column connection in which prestressed bar was
used to provide the self-centering capacity to structures and
the steel angle clamped at the beam-column joint was used to
dissipate the energy. Lu et al. [119] conducted a shake table test
of a self-centering reinforced concrete frame; test results indi-
cated that the designed reinforced concrete frame has good

seismic performance and self-centering capacity subjected to
earthquake groundmotions; the self-centering structures can
undergo large deformation withminor residual displacement
a
er the strong earthquake excitations.

Morgen and Kurama developed a new type of friction
damper for unbonded posttensioned precast concrete build-
ing moment frame structures in seismic regions, shown as in
Figure 23; the proposed friction dampers were placed at
beam-column joints. �e compared test results showed that
the dampers can provide a signi�cant amount of supple-
mental energy dissipation at the beam ends, while the self-
centering capability of the structure is preserved [54].

6.2. Self-Centering RC Shear Wall System. Kurama et al. [55,
120–122] utilized unbonded posttensioned tendon or PT bar
across horizontal joints to develop precast concrete wall,
shown as in Figure 24; the unbonded posttensioned precast
walls can so
en and undergo large nonlinear lateral dis-
placements with little damage, and the nonlinear behavior is
primarily due to the opening of gaps along the horizontal
joints; however, the energy dissipation capacity was low.
Consequently, Kurama et al. [123, 124] used supplemental
viscous damping to reduce the lateral dri
 of unbonded
posttensioned precast concrete walls under earthquakes; the
nonlinear dynamic time history analyses showed that the
proposed energy dissipation system was e�ective in reducing
the maximum roof dri
 to prevent signi�cant damage to
the walls, and Perez et al. [125, 126] also performed similar
experiments and analysis. Smith et al. [127, 128] used the
posttensioned tendon or PT bar technology into the hybrid
wall which was constructed by stacking rectangular precast
concretewall panels across horizontal joints at the 	oor levels.

Holden et al. [129, 130] innovated the unbonded postten-
sioned precast concrete wall proposed by Kurama by adding
longitudinal mild steel reinforcement crossing the joint
between the walls and the foundation to enhance energy dis-
sipation capacity. Marriott et al. [131] conducted shake table
test of the proposed wall system with variable dampers; the
test results showed that the proposed wall system had a great
self-centering capacity. Sritharan et al. [56, 132] designed
a jointed wall system in which two or more single precast
walls designed with unbonded posttensioning are connected
to each other with the help of special connectors along the
vertical joints, as shown in Figure 25.

Panian et al. [133, 134] believed that the shear wall
system with posttensioned prestressed tendon has a better
economic bene�t and seismic result. Furthermore, Stevenson
et al. [135] had utilized posttensioned prestress steel bar
into the design of shear walls in David Brower Center to
resist the potential earthquake. Rahman and Sritharan [136]
proposed the calculated model of a self-centering shear wall
system. Pennucci et al. [137, 138] proposed the displacement-
based design method of precast shear walls with additional
dampers. Aaleti and Sritharan [139] proposed a simpli�ed
method to characterize the seismic responses of unbonded
posttensioned precast wall systems. Erkmen and Schultz
[140] performed a series of compared tests to study the
self-centering capacity of precast walls. Twigden et al. [141]
investigated a single posttensioned concrete wall subjected to
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pseudostatic cyclic loading, high-speed cyclic loading, free
vibration, and dynamic forced-vibration testing.

6.3. Self-Centering Steel Frame System. Ricles et al. [57] of
Lehigh University designed a new kind of steel beam-column
interface connection of moment resisting frames (MRFs)
with self-centering capacity using posttension high strength
strands, shown as in Figure 26; the top and seat angles
are added to provide energy dissipation and redundancy
under seismic loading. �is new type of connection has the
following advantages: (1) �eld welding is not required; (2) the
connection sti�ness is similar to that of a welded connec-
tion; (3) the connection is self-centering; and (4) signi�-
cant damage to the MRF is con�ned to the angles of the
connection. Time history analysis results showed that the
seismic performance of a posttensioned steel MRF subject to
the earthquake records exceeds the performance of an
MRF with typical welded connections subject to the same
earthquake records. Consequently, many other researchers
innovated this new type of steel beam-column connection
[66, 142, 143], Rojas et al. [144] added a posttensioned friction

Duct for beam 
tendonSpirals

Figure 22: Precast concrete beam-column joint subassemblage with
twoungrouted posttensioned tendons (adopted from [53], copyright
1996 PCI Journal).

damped connection (PFDC) into the above-mentioned steel
beam-column connection to enhance the earthquake energy
dissipation capacity.

Sause et al. [64, 145] developed self-centering moment
resisting frames (SC-MRFs) and self-centering concentrically
braced frame (SC-CBF) systems with the goal of providing
adequate nonlinear dri
 capacity without signi�cant damage
or residual dri
 under the design basis earthquake. Both
experimental results and analytical results indicated that all
SC-MRFs and SC-CBF possess self-centering behavior, and
no signi�cant structural damage occurred. In order to use
this new types of MRFs and SC-CBF into design and con-
struction, the performance-based seismic design approach
for PT steel frame systems was proposed; seismic perfor-
mance levels, seismic input levels, structural limit states and
capacities, and structural demands for PT frame systemswere
de�ned; the design objectives were outlined; design criteria
were given; and a step-by-step design procedure was given
[65].

Clayton [61] developed the self-centering steel plate shear
wall (SC-SPSW) system, shown schematically in Figure 27,
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Figure 24: Unbonded posttensioned precast wall: (a) elevation; (b) cross section near base. (adopted from [55], copyright 1999 PCI Journal).

which consists of thin steel web plates that resist lateral loads

and dissipate energy through the development of diagonal
tension �eld action, just as in conventional SPSWs. How-
ever, the moment resisting beam-to-column connections of
conventional SPSWs are replaced by posttensioned beam-
to-column connections to introduce the recentering capabil-
ity. Winkley [146] conducted comprehensively experimental

studied in detail, and Clayton et al. [147, 148] proposed
design method applicable for the SC-SPSW based on the
experiments.

6.4. Self-Centering Masonry Structural Wall System. Wight
et al. studied seismic response of partially grouted post-
tensioned concrete masonry (PCM) walls with unbonded
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tendons by means of shake table testing. �e shake table
tests demonstrated the self-centering nature of posttensioned
masonrywalls and their ability to achieve large displacements
with minimal accumulation of damage [149, 150].

Laursen and Ingham [151, 152] found that the energy
dissipation capacity of the posttensioned fully grouted con-
crete masonry (PCM) wall is limited but can be enhanced by
incorporating the internal energy dissipationmild steels with
“dog-bone” shape [153, 154]. �e energy dissipation device
has little in	uence on the decrease of the ductility capacity
[155].

Hassanli et al. investigated the in	uence of axial stress
ratio on seismic behaviors of unbonded posttensioned
masonry wall (PT-MW) [156–160]; both experimental and
numerical results showed that low axial stress ratio causes
higher increase in lateral strength and better displacement
ductility, but larger residual dri
 to PT-MW; the axial stress
ratio is limited to 0.15. �e wall length is another most in	u-
ential factor contributing to the rotation and the compression
zone length of unbonded PT-MW. Both axial stress ratio
and wall length are used to predict the 	exural strength of
unbonded PT-MW.

6.5. Self-Centering Timber Structural System. �eNMITArts
and Media Building is the new generation of multistory
timber structures which employs an advanced damage avoid-
ance earthquake design that is the �rst in the world for a
timber building [62]. As shown in Figure 28, the NMIT
seismic system relies on pairs of coupled LVL shear walls
that incorporate high strength steel tendons posttensioned
through a central duct. �e walls are centrally �xed to
allow them to rock during a seismic event. A series of U-
shaped steel plates placed between the walls form a coupling
mechanism and act as dissipators to absorb seismic energy.
�e design allows the primary structure to remain essentially
undamaged while readily replaceable connections act as
plastic fuses.

6.6. Self-Centering Bridge Pier Structural System. Cheng
developed a self-centering bridge model that can eliminate
residual deformations a
er earthquakes [63]. A bridgemodel
consists of two precast RC bridge columns posttensioned to
the concrete deck and foundations by high strength rods,
as shown in Figure 29. �e hybrid system is extended to
bridge engineering, in which precast elements are connected
via posttensioning techniques; self-centering and energy
dissipating properties are adequately combined to achieve the
target maximum displacement with negligible residual dis-
placements; the reliability of hybrid system was con�rmed by
quasi-static cyclic and nonlinear time history analysis based
on lumped plasticity numerical models [161].

Mohanmed et al. utilized the concrete segment which has
hollow double skin cross section and situated it within the
plastic hinge zone of bridge column, to mitigate the damage
a
er earthquake; simultaneously, they used the unbonded PT
strands locatedwithin the void of the inner skin to provide the
self-centering force for bridge column [162–165].�e shaking
table test result showed that the residual dri
 of the bridge
column proposed by Ayman and EIGawady was smaller than
the conventional RC bridge column [166]. However, the void
of the hollow cross section of the proposed bridge column
in�lled by concrete had better seismic performance because
the twist angle was smaller when it was subjected to the
bidirectional cyclic loading [167].

Guo et al. [168, 169] developed a self-centering bridge
pier system connected by unbonded posttensioned tendons
to minimize the residual deformation a
er the earthquake
and mild steel to stably dissipate the earthquake energy.

Dong et al. developed a new type of brace (SC-BRB) for
bridge column system; the SC-BRB consists of the traditional
buckling restrained brace (BRB) having excellent energy
dissipation capacity and the self-centering brace (SC brace).
�e numerical results demonstrated that the bridge equipped
with the SC-BRB system has smaller residual displacement
and amoderate energy dissipation capability compared to the
ones equipped with traditional BRB and SCB systems [170].

7. Analysis and Design Seismic Behavior of
DRSRS System

�e high performance damage-resistant seismic resisting
structural (DRSRS) system is capable of eliminating the most
or full residual deformation when the lateral load is removed.
In general, the DRSRS system consists of posttensioned bar
(PT) and energy dissipation element (EDE) such that the
dominant structural element can be protected through the
gap opening mechanism, and the PT is used to eliminate the
residual deformation due to the self-centering capacity of it,
the EDE is used to dissipate the earthquake energy.

�e PTs contain high strength strands, tendons, or bars
[57, 68, 171], and the PTs should have high strength and high
yield strain.�eEDEs consist of hysteretic damping elements,
viscous damping elements, and frictional damping elements.
Hysteretic damping elements used in self-centering systems
include buckling restrain braces [172–174], short yielding
elements similar to the buckling restrain braces [175, 176],



Shock and Vibration 17

Weld access

hole

Buckling bar

(a)

Shim plate

Flange reinforcing 

plate

Washer plate

Angle

posttensioned
strands

(b)

Figure 26: Moment connections: (a) pre-Northridge welded connection; (b) posttensioned connection (adopted from [57], copyright 2001
Journal of Structural Engineering, ASCE).

posttensioned
tendon

HBE

HBE

V
B

E

V
B

E
V

B
E

V
B

E

V
B

E

V
B

E

VBE: vertical boundary elements 

HBE: horizontal boundary elements

Figure 27: Schematic elevation of intermediate story of SC-SPSW (adopted from [61], copyright 2010 University of Washington).

unbonded mild steel reinforcement [177, 178], steel rein-
forcement with reduced sections [129], yielding anchor bolts
[179], fuse plates [180], yielding end plates [181, 182], yielding
angles [69, 183], web hourglass pins [184], and tapered steel
cantilever plates [111]. �e frictional damping elements used
contain frictional slide plate [185], frictional plates with
spring washers [186], frictional fuse angle with slotted holes

[187], and viscous 	uid damper [188] embedded in the foun-
dation or mounted beside the columns above the foundation.

�e hysteretic behavior of structural systems with PT
and EDE is as shown in Figure 30; the PT has strong
recentering force to pull the whole structural element back,
shown in Figure 30(a); however, it has little energy dissipation
capacity. �e EDEs have great energy dissipation capacity,
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shown as in Figure 30(b); consequently, they are incorporated
into the DRSRS system to enhance the energy dissipation
capacity, as shown in Figure 30(c).�e overall response of the
DRSRS system can be decomposed into the nonlinear elastic
contribution from the prestressed tendon or strand (PT) and
the bilinear elastoplastic hysteretic contribution from the
energy dissipation element (EDE).

7.1. Analysis of Monotonic Seismic Behavior and Design of
DRSRS System. To estimate the seismic behavior of DRSRS
system in numerical method, some works have been per-
formed. Wight [189] developed a �nite element model to
assess the monotonic response of posttensioned masonry
wall; a reasonable seismic strength and postrocking behavior
could be simulated; however, the initial sti�ness was overes-
timated and the strength degradation could not be predicted.
Smith et al. [127, 128] attempted to use two di�erent analytical
models to evaluate the seismic behaviors of the test structure:
a �ber-element model (DRAIN-2DX) and a �nite element
model (ABAQUS); in the models the �ber beam-column
elements are to represent the precast wall panels and truss
elements for the unbonded PT steel.

A �nite elementmodel was proposed by Ryu et al. [190] to
analyze the reversed cyclic seismic response of unbonded
posttensioned (PT) fully grouted clay brick walls, and a
good comparison between the experimental results and the
numerical results was presented. �e ABAQUS so
ware was
used by Henry et al. [191] to the cyclic lateral load response
of the PreWEC which consists of a precast wall with end
columns.�eprecast wall and the end columns are connected
by some O-shape connectors. �e model could predict good
results of the PreWEC system for both the global and local
responses.

�e multispring element to model the opening and
closing of the gap at the critical interface section is used to

predict the seismic behavior of the hybrid pier systems
[161, 192]. Li et al. [193] utilized the ABAQUS numerically to
study the seismic performance of precast segmental concrete
columns reinforced by the posttensioned tendon at the center
of the cross section; the opening and closing between the
concrete segments are simulated by using the surface to
surface contact elements. �is �nite element method could
rationally estimate the self-centering behaviors of test col-
umns subjected to the cyclic loading.

Although the �nite elementmethod can e�ectively evalu-
ate the seismic response, it involves computational di�culties
that make it unsuitable for the designer. Kurama et al.
[55] assumed that the responses of posttensioned concrete
wall can be characterized by some limit states, graphically
shown in Figure 31. As the wall displacement increases, the
limit states are summarized: (1) decompression state, which
identi�es the initiation of a gap opening along the horizontal
joint between wall and foundation; (2) so
ening state, which
identi�es the beginning of signi�cant reduction in the lateral
sti�ness of the wall due to the gap opening along the hori-
zontal joint and the nonlinear behavior of the concrete in
compression; (3) yielding state, which identi�es the point at
which the posttensioned steel yields; (4) failure state, which
identi�es the axial-	exure of the wall which occurs as a result
of crushing of the con�ned concrete. Furthermore, the design
approach, design objectives shown in Figure 31, design crite-
ria, and seismic design procedure were proposed in detail by
Kurama et al. [55].

Perez et al. [126] proposed a trilinear model to predict
the nonlinear lateral response of unbonded PT-CWs based
on the above-mentioned limit states shown as in Figure 31.
Aaleti and Sritharan [139] developed a simpli�ed approach
using a trilinear function of the neutral axis depth at a dri
 of
2%. Hassanli et al. [194] developed an analysis procedure to
characterize the lateral force behavior of unbonded postten-
sioned concrete walls (PT-CWs) based on the mechanics of
rocking walls and geometric compatibility conditions; the
force-displacement curve of unbonded PT-CW could be
predicted with a very good accuracy.

Madan et al. [195] proposed an analytical approach for
predicting the nonlinear in-plane 	exural behavior of lon-
gitudinally posttensioned hollow block masonry shear walls
under reversed cyclic lateral loading based on a modi�ed
�ber-element model. Kalliontzis and Schultz [196] developed
a simpli�ed procedure based on the equivalent stress block
analysis and the neutral axis depth (NAD) versus wall
rotation relationship proposed by �omas and Sritharan
[197]; the comparison with the �nite elementmethod showed
that the above-proposed analysis method could adequately
capture the experimental force-displacement responses. Fur-
thermore, the in-plane 	exural strength of unbonded PT-CW
for the designer can be evaluated using the equation proposed
by Hassanli et al. [160].

For the self-centering posttensioned steel frame (SCPTSF)
systems, the desired limit state progressions of the SCPTSF system
using PT bars and PT strands are schematically shown in
Figures 32(a) and 32(b). Similar to the self-centering concrete
wall system, the limit states of SCPTSF system are summa-
rized as follows [64, 65]: (1) decompression and upli
 of the



Shock and Vibration 19

Steel plate

Precast 
column

Disc spring

Unbonded 
tendons

Steel base

Cap beam and deck

Figure 29: A self-centering designed bridge model (adopted from [63], copyright 2008 Engineering Structures).

M
o

m
en

t

Dri�

(a)

M
o

m
en

t

Dri�

(b)

M
o

m
en

t

Dri�

(c)
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dissipation element (EDE); (c) moment-dri
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“tension” column at the base; (2) yielding of the PT steel: this
limit state progression depends on the type of PT steel used
and the type of self-centering system; the rocking steel braced
frames with PT bars; this limit state is due to the yielding of
PT bar, shown in Figure 32(a); for themoment resisting frame
with PT strands, the limit state is caused by system, shown in
Figure 32(b); (3) signi�cant yielding of the beams, columns,
or braces of self-centering braced frame; (4) failure of the
beams, columns, or braces of the self-centering braced frame
or PT strand yields. Similar research works were done by
Garlock et al. for SCPTSFS [65], as shown in Figures 32(a)
and 32(b).

7.2. Residual Deformation of DRSRS System. �eDRSRS sys-
tem is developed to eliminate the residual deformation, and
its self-centering capacity is characterized by the resistances
due to the restoring force from PT and the force in the energy
dissipation element. Two independent response parameters�

and � were considered to control the self-centering capacity
ofDRSRS system, shown as in Figure 33; the coe�cients� and
� re	ect the postyielding sti�ness and the energy dissipation
capacity of the DRSRS system, respectively. �e in	uence of
the variation of the parameters � and � on the hysteretic
behavior and ductility of DRSRS SYSTEM was discussed in
detail, the displacement ductility was reduced in all cases for
increasing values of � and � [78]; the residual dri
 decreases
with increasing the postyielding sti�ness� anddecreasing the
coe�cient � [198].

Christopoulos et al. [199, 200] estimated the residual
deformations of the SDOF and MDOF systems which are
representative of frame structures, the analysis results showed
that the residual deformations are signi�cantly sensitive to
the hysteretic rules, the postyielding sti�ness, the expected
global inelastic mechanisms, and the seismic intensity.

Although the response of self-centering system can be
characterized as an idealized 	ag-shape behavior, it is no
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Figure 31: Base shear-roof dri
 relationship and design objectives
of SCPTPSWS (adopted from [55], copyright 1999 PCI Journal).

possible to exist for the real entire structure system due
to (1) the interaction with other structural and/or non-
structural elements in a building [198, 201] and (2) the
fact that the responses of the PT member and energy
dissipating components cannot be simply added together
because energy dissipating elements are only engaged a
er
decompression followed by upli
 at the tension zone
[202].

�e realistic hysteresis response of a self-centering struc-
tural system needs to consider the e�ects of dynamic self-
centering capacity. Christopoulos et al. found that the resid-
ual dri
 at the end of dynamic response is typically less than
the maximum residual dri
 of the cyclic hysteretic loop
due to the postpeak behavior called the “shake-down” phe-
nomenon, respectively [199, 203]. Henry et al. [202] found
that the residual dri
 ratio, which is de�ned as the ratio of
the residual dri
 at the end of the dynamic analysis to the
maximum static or cyclic residual dri
, has no signi�cant
correlation with the fundamental period, hysteretic energy
dissipation, the ground motion parameters, and the viscous
damping of structural system by investigating the dynamic
self-centering behavior of the PreWEC concrete wall system.
Henry et al. further established the residual dri
 limit for
the real self-centering PreWEC concrete wall system, which
is limited to 0.2% for a design level earthquake and 0.3% for a
maximum considered earthquake, based on the recommen-
dations by Rahman and Sritharan [136, 178].

For designing the expected self-centering PT concrete
member, ACI design guidelines [204] limited the moment
contribution from energy dissipating (ED) reinforcement so
that it must be less than 50% of the probable 	exural moment
of the member, and the value proposed in New Zealand
[205] is 46%. ITG-5 [206] indicated that the self-centering
capacity may be signi�cant loss if the ED device contributes
more than 40% of the 	exural capacity. Henry et al. [202]
found that the PT and ED moment contributions are only
critical when the structure is unloaded to zero, meaning
that the above-proposed value may result in conservative
and unconservative estimation of the self-centering ability of
structure.

8. Current Research Challenges in High
Performance DRSRS Systems

8.1. Floor Diaphragm Connections in DRSRS Systems. In
conventional moment resisting frame, the seismic inertial
forces are transferred from the 	oor diaphragm to each beam;
however, thismechanism is problematic for the self-centering
moment resisting frame, because gap opening at the connec-
tions causes a PT frame to “expand” a
er decompression, as
shown in Figure 34 [65]. In the deformed position, the
distance between the column centerlines is larger than in the
original undeformed position due to connection gap open-
ing, and the PT frame expansion increases with the number
of bays, shown in Figure 34(b).

To resolve this problem, many approaches were studied.
One detailed approach was proposed in which the 	oor
diaphragm in the moment resisting frame per 	oor is
attached to one beam, and the 	oor diaphragm and beams in
all other bays are noncomposite, which permits the beam to
move relatively to the 	oor diaphragm [65]. It is proposed that
the beam-column connection can rock at the beam bottom
	angewhile the beam top 	angewith the column is preserved
all the time [207]. A sliding slab is used tominimize restraints
on the expansion of the PT frame, inwhich a composite slab is
rigidly connected to the beams in a single bay of the PT frame,
and a sliding device is installed between the 	oor beams and
the beams in other bays such that the slab is allowed to slide
[208, 209].

Henry et al. [191, 210] proposed an isolated 	oor connec-
tion to minimize the damage of the 	oor due to the rocking
wall, in which the 	oor is connected to the end column of the
rocking wall system, and the end column is connected with
the wall using some O-shape connectors.

8.2.HigherMode E
ects. Some studies [211, 212] have demon-
strated that the higher modes contribute signi�cantly to the
force demands of controlled rocking frame members, so
rocking does not fully limit the peak seismic forces because
of higher mode e�ects. To limit higher mode e�ects in con-
trolled rocking steel frames, Wiebe et al. [105, 213–215] pro-
posed two types of higher mode mitigation mechanisms: the
�rst mitigation mechanism is formed by allowing the upper
section of the frame to rock, so as to better control the mid-
height overturning moment; the second mitigation mecha-
nism is formed by replacing the conventional �rst-story brace
with a self-centering energy dissipative (SCED) brace, so
as to better control the base shear. Experimental and numer-
ical results suggested that the proposed mechanisms can
enable better capacity design by reducing the variability of
peak seismic force demands without causing excessive dis-
placements. Although this approach could reduce the e�ect,
further research is needed on this topic.

8.3. Collapse Safety Assessment. �e DRSRS system is devel-
oped to reduce or eliminate residual deformation under
design seismic level; however, it is still possible to undergo the
very rare and intense earthquakes which are not included in
the predicted design seismic level, meaning that the DRSRS
system may collapse. So far studies on this topic are very
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Figure 32: Base shear-roof dri
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limited [216, 217] and the research on this topic should be
ongoing.

8.4. Life Cyclic Cost Assessment. In general, the structural sys-
temof self-centering structures is di�erent from conventional
structural system, which leads to additional complexity in
design, fabrication, and erection of the self-centering system.
For example, the anchorage construction of prestress tendon
in the foundation is di�cult, which may increase construc-
tion costs; as a result, even the savings due to the damage-
free performance will o�set the increased initial cost over
the life of the structural system. �us, life-cycle cost analysis

must consider not only the structural repair costs but all
elements of the structure. Studies on quantifying the life-cycle
costs of DRSRS system are ongoing [218–221] and need to be
further researched in future.

8.5. Building Code Provision for Design. �e purpose of the
DRSRS system di�ers from the conventional structure, so the
designmethodology and the detailing requirement of DRSRS
system will be very di�erent from the conventional structure.
Despite the attempts to propose design approaches for the
precast posttensionedwall system and the posttensioned steel
frame system [55, 65], the entire design system which should
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Figure 33: Idealized pseudo-force-dri
 relationship of DRSRS
SYSTEM (adopted from [78], copyright 2002 John Wiley & Sons,
Ltd).

be included in building code provision to guide the design of
DRSRS system in the actual construction has not been
established yet.

8.6. Assessment of In�uence of Prestress Lost on the Structural
System. So far the most popular DRSRS system mainly uses
the prestress tendon or strands (PT) to provide the self-
centering capacity. As is well known, the prestress methodol-
ogy has inherent shortcoming “prestress loss.” Consequently,
for the DRSRS system using the PT, how to evaluate the loss
in the stress of the PT at large lateral deformation and the
in	uence of the loss on seismic performances of structures is
the unavoidable problem for using the PT bar, especially the
prestress loss that lasts within the long serviceable period of
DRSRS system.

9. Current New Research Highlights in High
Performance DRSRS Systems

In order to reduce the additional constructed cost due to the
di�culties in the detailing requirement such as the anchorage
of PT and the designation and to avoid the shortcoming of
prestress methodology used in the DRSRS system, recently,
another method to develop resilient concrete structures by
using the inherent elastic resilient capacity of tensile longitu-
dinal bar was proposed, which should be paidmore attention.

In order to obtain enough ductility, Pandey et al. [222–
225] experimentally and numerically found that decreasing
properties of bond strength of longitudinal bars could greatly
improve the ductility of concrete. Tanaka et al. [226] thus
used the unbonded high strength steel bar as the tensile
longitudinal bar to reinforce the concrete columns; the
experimental result showed that the columns exhibited strong
self-centering hysteresis response performance; however, the
lateral resistance capacity is smaller than that calculated by
the current design codes.

To overcome the problems in the method of using PT or
unbonded rebars, Sun et al. [227–229] have recently proposed
using a special ultrahigh strength rebar (SBPDN 1275/1420
rebar) with low bond strength as longitudinal rebar in con-
crete members. �e SBPDN rebar has a spiral groove on its
surface and has a low bond strength of about 1/5 of deformed
rebar [79]; the di�erence between the SBPDN bar and
conventional high strength steel bar USD 685 is shown as in
Figure 35. �e structural detailing of column proposed by
Sun et al. is shown in Figure 36; the reinforcement playout of
the proposed column is the same as that of the conventional
column; however, due to the poor 	exibility of SBPDN rebar,
all the SBPDN bars are anchored by steel tie plates which are
connected by nuts and bolts at both ends and middle contra-
	exure section of column. In addition, due to the ultrahigh
strength of SBPDN rebar, the column section is con�ned by
two semisteel plates which are connected by nuts and bolts
to enhance the shear-resisting capacity such that the shear
failure can be avoided.

In recent years, they performed extensive experimental
study on the seismic behaviors of rectangular or circular
columns reinforced by SBPDNbars; the results demonstrated
that concrete columns using SBPDN rebar and steel plates
exhibited stable cyclic behavior up to large deformation and
very small residual deformation compared to the columns
using conventional high strength steel rebar (USD685) [230–
234].

Wang et al. proposed sustainable and resilient concrete
columns with a large quantity of 	y ash (LQFA) reinforced by
SBPDN bars in order to use largely 	y ash into concrete
construction [19, 80]. �e experimental results of resilient
LQFA concrete columns showed that columns using SBPDN
rebar having low bond strength as the longitudinal bar
had excellent dri
 angle up to 0.04 rad∼0.05 rad and small
residual deformation.

To assess the seismic responses of concrete columns rein-
forced by SBPDN bars having low bond strength, Funato et
al. [79] have proposed an integrated analytical method
that could evaluate reasonably cyclic behaviors of concrete
columns by considering the slippage of longitudinal bars.
�ismethod, however, involves tedious double-loop iteration
procedures to �nd the balanced depth of neutral axis in
the targeted column section and to obtain the slippage of
longitudinal rebars from their anchorage zones. Conse-
quently, Wang [235] proposed a simple analytical procedure
to calculate the structural performances of concrete member
reinforced by steel having di�erent bond strength and an
equation to calculate the deformation at themaximum lateral
load. �e comparison results indicated that the proposed
analytical method and equation could reasonably assess the
seismic responses of concrete column reinforced by steel with
di�erent bond strength level.

10. Conclusions

Beacuse themajority of the population in the world lives con-
centrically in cities, basically, it is consensus to develop high
performance seismic resisting structural (DRSRS) system for
the sustainable and resilient city. �e high cost of repairing
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Figure 35: �e di�erence between conventional steel and SBPDN steel (adopted from [79], copyright 2012 JCI).

the damaged engineering structures a
er earthquake com-
pels engineers and researchers to develop the innovative
structural system which can eliminate the residual deforma-
tion. Based on the principles of “replaceable” and weakening
the connections between structural elements such as upper
structures and foundation, beam-column intersection, three
types ofDRSRS systems are developed and ongoingly studied:
(1) replaceable structural element (RSE); (2) rocking seismic
resisting structural (RSRS) system; (3) self-centering seismic
resisting structural (SCSRS) system.

�is paper summarized the research status and achieve-
ments of the existing DRSRS systems; the main conclusions
are illustrated as follows:

(1) �e test results indicated that the shear wall system
with replaceable coupling beam has smaller poste-
arthquake damage compared to the conventional
shear wall system.�e energy dissipation devices can
be utilized as either an independently replaceable
coupling fuse section or jointly used with replaceable
coupling beam together into the shear wall system.

(2) Rocking seismic resisting structural (RSRS) systems
have been extended into bridge engineering structure,
RC frame system, steel frame system, RC shear wall
system, masonry wall and timber structural system,
and core wall system. �e extensive experimental
study results showed that RSRS systems with types of

energy dissipation devices can greatly limit the dam-
age and the residual deformation of the structural
system a
er loading and can possess good energy
dissipation capacity.

(3) �e posttensioned prestress tendon and strand are
used to provide the self-centering capacity for the
structural system. �e dissipation devices are includ-
ed to enhance energy dissipation capacity of the self-
centering seismic structural (SCSS) systems. Exten-
sive experimental programs indicated that the com-
bination of posttensioned tendon and energy dissi-
pation devices could minimize the damage and the
residual deformation a
er loading and behave with
good energy dissipation capacity.

(4) Types of numerical models including the �nite ele-
ment method can reasonably analyze the cyclic and
dynamical responses of RSRS and SCSS systems.
Some equations have been proposed to design the
self-centering shear wall system.

(5) �e residual deformation at the end dynamic re-
sponse is smaller compared to the static cyclic load-
ing; despite the attempts to propose design limit of
residual deformation for the precast concrete shear
wall system, the analyses of the residual deformation
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2015 JCI).

for other resilient structural forms and for the entire
structural system are limited.

(6) Ongoing challenges for SCSRSS include (1) address-
ing the 	oor diaphragm connections to beam and
column, (2) mitigating the adverse e�ect of higher
mode e�ects, (3) collapse safety assessment, (4) life
cyclic cost assessment, (5) building code provision for
design, and (6) assessment of in	uence of prestress
loss on seismic responses of the structural system.

(7) �e new research viewpoint using high strength steel
bar with the low bond strength to develop the resilient
structural systemwhich showed stable cyclic behavior
up to large deformation and good self-centering ca-
pacity should be paid more attention and enthusiasm
due to its simple structural technology.

11. Recommendations for Future Studies

(1) �e principle of the replaceable structural element
(RSE) should be extensively used to the other struc-
tural system, for example, the plastic hinge zones
of the column and beam and the foot toes of the
wall systems where concrete is crushed due to the
compression in usual. Furthermore, the analysis and
design approach of RSE should be further studied.

(2) �e analysis and experiments on the response of
the entire structural system with self-centering mem-
ber and other nonstructural elements which may

decrease the self-centering capacity should be further
performed.

(3) �e dynamic analysis to determine the residual defor-
mation of the DRSRS system or structural system
using other materials such as high strength FRP rebar
and SBPDN rebar should be conducted. �e design
equation of the residual deformation under reversed
cyclic seismic loading should be proposed.

(4) It is not advocated to use complicated and high cost
engineering technology to develop DRSRS systems;
on the contrary, simple and low-cost technology is
encouraged when considering the future populariza-
tion specially in the poverty area or country.

(5) �e potential imperfections of DRSRS system such as
higher mode e�ect, the connection of 	oor and the
self-centering member, prestress loss, and degrada-
tion in the initial sti�ness should be deeply studied
and eliminated.

(6) Due to the simple structural technology anddetailing,
using high strength steel with poor bond strength
property to develop the self-centering structural
system is an alternative that should be paid more
attention and deeply studied.

Additional Points

Highlights. (i) �e current research status and achievement
of existing DRSRS systems such as replaceable structural ele-
ment, rocking structural system, and self-centering structural
system for sustainable and resilient city are summarized in
detail. (ii)�e current research highlights that emerged using
high strength steel bar with poor bond strength property to
develop DRSRS system are illustrated. (iii) �e current
research challenges of DRSRS system and the recommenda-
tions for the future studies are pointed out and discussed.
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