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	is paper presents ideas for using coordinate-free numerics in modern Fortran to achieve code 
exibility in the partial di�erential
equation (PDE) domain. We also show how Fortran, over the last few decades, has changed to become a language well-suited for
state-of-the-art so�ware development. Fortran’s new coarray distributed data structure, the language’s class mechanism, and its
side-e�ect-free, pure procedure capability provide the sca�olding on which we implement HPC so�ware. 	ese features empower
compilers to organize parallel computations with e�cient communication. We present some programming patterns that support
asynchronous evaluation of expressions comprised of parallel operations on distributed data.We implemented these patterns using
coarrays and the message passing interface (MPI). We compared the codes’ complexity and performance. 	e MPI code is much
more complex and depends on external libraries.	eMPI code on Cray hardware using the Cray compiler is 1.5–2 times faster than
the coarray code on the same hardware. 	e Intel compiler implements coarrays atop Intel’s MPI library with the result apparently
being 2–2.5 times slower than manually coded MPI despite exhibiting nearly linear scaling e�ciency. As compilers mature and
further improvements to coarrays comes in Fortran 2015, we expect this performance gap to narrow.

1. Introduction

1.1. Motivation and Background. 	e most useful so�ware
evolves over time. One force driving the evolution of high-
performance computing (HPC) so�ware applications derives
from the ever evolving ecosystemofHPChardware. A second
force stems from the need to adapt to new user requirements,
where, for HPC so�ware, the users o�en are the so�ware
development teams themselves. New requirementsmay come
from a better understanding of the scienti
c domain, yielding
changes in the mathematical formulation of a problem,
changes in the numerical methods, changes in the problem
to be solved, and so forth.

Oneway to plan for so�ware evolution involves designing
variation points, areas where a program is expected to accom-
modate change. In aHPCdomain like computational physics,
partial di�erential equation (PDE) solvers are important.

Some likely variation points for PDE solvers include the
formulation of the PDE itself, like di�erent simpli
cations
depending on what phenomena is studied, the coordinate
system and dimensions, the numerical discretization, and
the hardware parallelism. 	e approach of coordinate-free
programming (CFP) handles these variation points naturally
through domain-speci
c abstractions [1]. 	e explicit use of
such abstractions is not common in HPC so�ware, possibly
due to the historical development of the 
eld.

Fortran has held and still holds a dominant position in
HPC so�ware. Traditionally, the language supported loops
for traversing large data arrays and had few abstractionmech-
anisms beyond the procedure. 	e focus was on e�ciency
and providing a simple data model that the compiler could
map to e�cient code. In the past few decades, Fortran has
evolved signi
cantly [2] and now supports class abstraction,
object-oriented programming (OOP), pure functions, and
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a coarray model for parallel programming in shared or
distributed memory and running on multicore processors
and some many-core accelerators.

1.2. Related Work. CFP was 
rst implemented in the context
of seismic wave simulation [3] by Haveraaen et al. and Grant
et al. [4] presented CFP for computational 
uid dynamics
applications. 	ese abstractions were implemented in C++,
relying on the language’s template mechanism to achieve
multiple levels of reuse. Rouson et al. [5] developed a
“grid-free” representation of 
uid dynamics, implementing
continuous but coordinate-speci
c abstractions in Fortran
95, independently using similar abstractions to Di�pack
[6]. While both C++ and Fortran 95 o�ered capabilities
for overloading each language’s intrinsic operators, neither
allowed de
ning new, user-de
ned operators to represent the
di�erential calculus operators, for example, those that appear
in coordinate-free PDE representations. Likewise, neither
language provided a scalable, parallel programming model.

Gamma et al. [7] 
rst introduced the concept of patterns
in the context of object-oriented so�ware design. While they
presented general design patterns, they suggested that it
would be useful for subsequent authors to publish domain-
speci
c patterns. Gardner et al. [8] published the 
rst text
summarizing object-oriented design patterns in the context
of scienti
c programming. 	ey employed Java to demon-
strate the Gamma et al. general patterns in the context of a
waveform analyzer for fusion energy experiments. Rouson
et al. [9] published the 
rst text on patterns for scienti
c
programming in Fortran and C++, including several Gamma
et al. patterns along with domain-speci
c and language-
speci
c patterns. 	e Rouson et al. text included an early
version of the PDE solver in the current paper, although no
compilers at the time of their publication o�ered enough
coverage of the newest Fortran features to compile their
version of the solver.

	e work of Cann [10] inspired much of our thinking on
the utility of functional programming in parallelizing scien-
ti
c applications.	e current paper examines the complexity
and performance of PDE solvers that support a functional
programming style with either of two parallel programming
models: coarray Fortran (CAF) and the message passing
interface (MPI). CAF became part of Fortran in its 2008
standard. We refer the reader to the text by Metcalf et al. [2]
for a summary of the CAF features of Fortran 2008 and to
the text by Pacheco [11] for descriptions of the MPI features
employed in the current paper.

1.3. Objectives and Outline. 	e current paper expands upon
the 
rst four author’s workshop paper [12] on the CAF PDE
solver by including comparisons to an analogous MPI solver

rst developed by the 
�h author. We show how modern
Fortran supports the CFP domain with the language’s pro-
vision for user-de
ned operators and its e�cient hardware-
independent, parallel programming model. We use the PDE
of Burgers [13] as our running theme.

Section 2 introduces the theme problem and explains
CFP. Section 3 presents the features of modern Fortran
used by the Burgers solver. Section 4 presents programming

patterns useful in this setting, and Section 5 shows excerpts
of code written according to our recommendations. Section 6
presents measurements of the approach’s e�ciency. Section 7
summarizes our conclusions.

2. Coordinate-Free Programming

Coordinate-free programming (CFP) is a structural design
pattern for PDEs [3]. It is the result of domain engineering
of the PDE domain. Domain engineering seeks 
nding the
concepts central to a domain and then presenting these as
reusable so�ware components [14]. CFP de
nes a layered set
of mathematical abstractions at the ring 
eld level (spatial
discretization), the tensor level (coordinate systems), and the
PDE solver level (time integration and PDE formulation). It
also provides abstractions at the mesh level, encompassing
abstraction over parallel computations. 	ese layers corre-
spond to the variation points of PDE solvers [1], both at the
user level and for the ever changing parallel architecture level.

To see how this works, consider the coordinate-free
generalization of the Burgers equation [13]:

��⃗
�� = ]∇

2�⃗ − �⃗ ⋅ ∇�⃗. (1)

CFP maps each of the variables and operators in (1) to
so�ware objects and operators. In Fortran syntax, such a
mapping of (1) might result in program lines of the form
shown in Listing 1.

Fortran keywords are depicted in boldface. 	e 
rst line
declares that u and u t are (distributed) objects in the tensor
class. 	e second line de
nes the parameter value corre-
sponding to ]. 	e third line evaluates the right-hand side of
(1) using Fortran’s facility for user-de
ned operators, inwhich
the language requires to be bracketed by periods: laplacian
(.laplacian.), dot product (.dot.), and gradient (.grad.). 	e
mathematical formulation and the corresponding program
code both are independent of dimensions, choice of coordi-
nate system, discretisationmethod, and so forth. Yet the steps
are mathematically and computationally precise.

Traditionally, the numerical scientist would expand (1)
into its coordinate form. Deciding that we want to solve the
3D problem, the vector equation resolves into three compo-
nent equations. 	e 
rst component equation in Cartesian
coordinates, for example, becomes

�1,� = ] (�1,�� + �1,�� + �1,��)

− (�1�1,� + �2�1,� + �3�1,�) .
(2)

Here, subscripted commas denote partial di�erentiation with
respect to the subscripted variable preceded by the comma;
for instance, �1,� ≡ ��1/��. Similar equations must be given
for �2,� and �3,�.

For one-dimensional (1D) data, (1) reduces to

�1,� = ]�1,�� − �1�1,�. (3)

Burgers originally proposed the 1D form as a simpli
ed
proxy for the Navier-Stokes equations (NSE) in studies of
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class(tensor):: u t, u
real:: nu = 1.0
u t = nu ∗ (.laplacian.u) − (u.dot.(.grad.u))

Listing 1


uid turbulence. Equation (3) retains the di�usive nature
of the NSE in the 
rst right-hand-side (RHS) term and the
nonlinear character of the NSE in the second RHS term.
	is equation has also found useful applications in several
branches of physics. It has the nice property of yielding an
exact solution despite its nonlinearity [15].

Figure 1 shows the solution values (vertical axis) as a
function of space (horizontal axis) and time (oblique axis)
starting from an initial condition of �(�, � = 0) = 10 sin(�)
with periodic boundary conditions on the semiopen domain
[0, 2�). As time progresses, the nonlinear term steepens the
initial wave while the di�usive term dampens it.

3. Modern Fortran

Fortran has always been a language with a focus on high
e�ciency for numerical computations on array data sets.
Over the past 10–15 years, it has picked up features from
mainstreamprogramming, such as class abstractions, but also
catered to its prime users by developing a rich set of high-level
array operations. Controlling the 
ow of information allows
for a purely functional style of expressions; that is, expressions
that rely solely upon functions that have no side e�ects. Side
e�ects in
uence the global state of the computer beyond the
function’s local variables. Examples of side e�ects include
input/output, modifying arguments, halting execution, mod-
ifying nonlocal data, and synchronizing parallel processes.

	ere have been longstanding calls for employing func-
tional programming as part of the solution to programming
parallel computers [10]. 	e Fortran 2008 standard also
includes a parallel programming model based primarily
upon the coarray distributed data structure. 	e advent of
support for Fortran 2008 coarrays in the Cray and Intel
compilers makes the time ripe to explore synergies between
Fortran’s explicit support for functional expressions and
coarray parallel programming. (Released versions of two
free compilers also provide limited support for coarrays: g95
supports coarrays in what is otherwise essentially Fortran 95
and GNU Fortran (gfortran) supports the coarray syntax but
runs coarray code as sequential code. Additionally, gfortran’s
prerelease development branch supports parallel execution
of coarray code with communication handled by an external
library (OpenCoarrays: http://www.opencoarrays.org) [16].
Ultimately, all compilers must support coarrays to conform
to the Fortran standard.)

3.1. Array Language. Since the Fortran 90 standard, the
language has introduced a rich set of array features. 	is
set also applies to coarrays in the 2008 standard as we
demonstrate in Section 3.4. Fortran 90 contained operations
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Figure 1: Unsteady, 1D Burgers equation solution values (vertical
axis) over space (horizontal axis) and time (oblique axis). 1D Burgers
equation solution surface: red (highest) and blue (lowest) relative to
the � = 0 plane.

to apply the built-in intrinsic operators, such as + and ∗, to
corresponding elements of similarly shaped arrays, that is,
mapping them on the elements of the array. Modern Fortran
also allows themapping of user-de
ned procedures on arrays.
Such procedures have to be declared “elemental,” which
ensures that, for every element of the array, the invocations
are independent of each other and therefore can be executed
concurrently. Operations for manipulating arrays also exist,
for example, slicing out a smaller array from a larger one,
requesting upper and lower range of an array, and summing
or multiplying all elements of an array.

	is implies that, in many cases, it is no longer necessary
to express an algorithmby explicitly looping over its elements.
Rather a few operations on entire arrays are su�cient to
express a large computation. For instance, the following array
expressions, given an allocatable real array X, will in the 
rst
line take 1-rank arrays A, B, and C, perform the elemental
functions +, sin, and ∗ on the corresponding elements from
each of the arrays, and pad the result with 5 numbers:

X = [sin(A + B) ∗ C, 0., 1., 2., 3., 4., 5.];
X = X(1 : 5).

In the second line, only the 5 
rst elements are retained.
	us, for arrays A = [0., 0.5708], B = [0.5235988, 1.], and
C = [3, 5], the result is an array X = [1.5, 5., 0., 1., 2.].

3.2. Class Abstraction. Class abstractions allow us to associate
a set of procedures with a private data structure. 	is is the
basic abstraction mechanism of a programming language,
allowing users to extend it with libraries for domain-speci
c
abstractions. 	e Fortran notation is somewhat verbose
compared to other languages but gives great freedom in
de
ning operator names for functions, both using standard
symbols and introducing new named operators, for example,
. dot . as used above.
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Figure 2: Calling sequence for evaluating the RHS of (2) and assigning the result.

	e Fortran class abstractions allow us to implement the
CFP domain abstractions, such as ring and tensor 
elds.
Note that Fortran has very limited generic facilities. Fortran
variables have three intrinsic properties: type, kind, and
rank. Fortran procedures can be written to be generic in
kind, which allows, for example, one implementation to
work across a range of 
oating-point precisions. Fortran
procedures can also be written to be generic in rank, which
allows one implementation to work across a range of array
ranks. Fortran procedures cannnot yet be generic in type,
although there is less need for this compared to in languages
where changing precision implies changing type. In Fortran,
changing precision only implies changing kind, not type.

3.3. Functional Programming. A compiler can do better
optimizations if it knows more about the intent of the code.
A core philosophy of Fortran is to enable programmers to
communicate properties of a program to a compiler without
mandating speci
c compiler optimizations. In Fortran, each
argument to a procedure can be given an attribute, intent,
which describes how the procedure will use the argument
data. 	e attribute “in” stands for just reading the argument,
whereas “out” stands for just creating data for it, and “inout”
allows both reading and modifying the argument. A stricter
form is to declare a function as “pure,” for example, indicating
that the procedure harbors no side e�ects.

Purely functional programming composes programs
from side-e�ect-free procedures and assignments. 	is facil-
itates numerous optimizations, including guaranteeing that
invocations of such procedures can safely execute asyn-
chronously on separate partitions of the program data.
Figure 2 shows the calling sequence for evaluating the RHS

of (2) and assigning the result. Expressions in independent
subtrees can be executed independently of each other, allow-
ing concurrency.

When developing abstractions like CFP, the procedures
needed can be implemented as subroutines that modify
one or more arguments or as pure functions. Using pure
functions makes the abstractions more mathematical and
eases reasoning about the code.

3.4. Coarrays. Of particular interest in HPC are variation
points at the parallelism level. Portable HPC so�ware must
allow for e�cient execution on multicore processors, many-
core accelerators, and heterogeneous combinations thereof.
Fortran 2008 provides such portability by de
ning a par-
titioned global address space (PGAS), the coarray. 	is
provides a single-program, multiple-data (SPMD) program-
ming style that makes no reference to a particular parallel
architecture. Fortran compilers may replicate a program
across a set of images, which need to communicate when one
image reaches out to a nonlocal part of the coarray. Images
and communications are mapped to the parallel architecture
of the compiler’s choice. 	e Intel compiler, for example,
maps an image to a message passing interface (MPI) process,
whereas theCray compiler uses a proprietary communication
library that outperforms MPI on Cray computers. Mappings
to accelerators have also been announced.

For example, a coarray de
nition of the form given in
Listing 2 establishes that the program will index into the
variable “a” along three dimensions (in parenthesis) and one
codimension (in square brackets), so Listing 3 lets image 3,
as given by the this image () function, copy the 
rst element
of image 2 to the 
rst element of image 1. If there are less
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real, allocatable:: a(:,:,:)[:]

Listing 2

if (this image() == 3) then
a(1, 1, 1)[1] = a(1, 1, 1)[2]

end if

Listing 3

than 3 images, the assignment does not take place. 	e size
of the normal dimensions is decided by the programmer.	e
run-time environment and compiler decide the codimension.
A reference to the array without the codimension index, for
example, a (1, 1, 1), denotes the local element on the image that
executes the statement. Equivalently, the expression “a (1, 1, 1)
[this image ()]” makes the reference to the executing image
explicit.

A dilemma arises when writing parallel operations on
the aforementioned tensor object by encapsulating a coarray
inside it; Fortran prohibits function results that contain coar-
rays. Performance concerns motivate this prohibition; in an
expression, function results become input arguments to other
functions. For coarray return values to be safe, each such
result would have to be synchronized across images, causing
severe scalability and e�ciency problems. 	e growing gap
between processor speeds and communication bandwidth
necessitates avoiding interprocessor coordination.

To see the scalability concern, consider implementing the
expression (� ∗ �)� using 
nite di�erences with a stencil of
width 1 for the partial derivative, with data � being spread
across images on a coarray. 	e part of the partial derivative
function �� executing on image � requires access to data from
neighboring images � + 1 and � − 1. 	e multiplication � ∗ �
will be run independently on each image for the part of the
coarray residing on that image. Now, for (�∗�)� on image � to
be correct, the systemmust ensure that �∗� on images �−1, �,
and � + 1 all have 
nished computing and stored the result in
their local parts of the coarray. Likewise, for the computation
of (� ∗ �)� at images � − 1 and � + 1, the computation of � ∗ �
at images � − 2, � − 1, and � and �, � + 1, and � + 2, respectively,
must be ready. Since the order of execution for each image is
beyond explicit control, synchronization is needed to ensure
correct ordering of computation steps.

Because analyzing whether and when synchronization
is needed is beyond the compiler, the options are either
synchronizing at return (with a possibly huge performance
hit) or not synchronizing at return, risking hard to track data
inconsistencies. 	e aforementioned prohibition precludes
these issues, by placing the responsibility for synchronization
with the programmer yet allowing each image to continue
processing local data for as long as possible. Consider the call
graph in Figure 2. 	e only function calls requiring access to

nonlocal data are the 6 calls to the partial derivatives on the
top row. 	e remaining 9 function calls only need local data,
allowing each image to proceed independently of the others
until the assignment statement calls for a synchronization to
prepare the displacement function � for the next time-step by
assigning to �1,�.

4. Design Patterns

Programming patterns capture experience in how to express
solutions to recurring programming issues e�ectively from
a so�ware development, a so�ware evolution, or even a
performance perspective. Standard patterns tend to evolve
into language constructs, the modern “while” statement
evolved from a pattern with “if” and “goto” in early Fortran.

Patterns can also be more domain-speci
c, for example,
limited to scienti
c so�ware [9]. Here we will look at patterns
for high-performance, parallel PDE solvers.

4.1. Object Superclass and Error Tracing. Many object-
oriented languages, from the origins in Simula [17] and
onwards, have an object class that is the ultimate parent of
all classes. Fortran, like C++, does not have a universal base
class. For many projects, though it can be useful to de
ne a
Fortran object class that is the ultimate parent of all classes in
a project, such an object can provide state and functionality
that are universally useful throughout the project. 	e object
class itself is declared abstract to preclude constructing any
actual objects of type object.

	e object class in Listing 4 represents a solution to the
problem of tracing assurances and reporting problems in
pure functions. Assertions provide one common mechanism
for verifying requirements and assurances. However, asser-
tions halt execution, a prohibited side e�ect. 	e solution is
to have the possible error information as extra data items
in the object class. If a problem occurs, the data can be set
accordingly and passed on through the pure expressions until
it ultimately is acted upon in a procedure where such side-
e�ects are allowed, for example, in an input/output (I/O)
statement or an assignment.

	e object class in Listing 4 allows tracking of the
de
nedness of a variable declared to belong to the object
class or any of its subclasses. Such tracking can be especially
useful when dynamically allocated structures are involved.
	e is de
ned function returns the value of the user de
ned
component. 	e mark as de
ned subroutine sets the value
of user de
ned to .true.. Using this systematically in each
procedure that de
nes or uses object data will allow a trace
of the source of uninitialized data.

A caveat is that the object class cannot be a superclass
of classes containing coarrays because the compiler needs
to know if a variable has a coarray component or not. We
therefore need to declare a corresponding co object class to
be the superclass for classes with coarray components.

4.2. Compute Globally, Return Locally. 	e behavioural
design pattern compute globally, return locally (CGRL) [9]
has been suggested as a way to deal with the prohibition on
returning coarrays from functions.
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type, abstract:: object
logical:: user de
ned = .false.

contains
procedure:: is de
ned
procedure:: mark as de
ned

end type

Listing 4

In CGRL, each nonlocal operator accepts operands that
contain coarrays. 	e operator performs any global commu-
nication required to execute someparallel algorithm.On each
image, the operator packages its local partition of the result
in an object containing a regular array. Ultimately, when
the operator of lowest precedence completes and each image
has produced its local partition of the result, a user-de
ned
assignment copies the local partitions into the global coarray
and performs any necessary synchronizations to make the
result available to subsequent program lines. 	e asymmetry
between the argument and return types forces splitting large
expressions into separate statements when synchronization is
needed.

5. Implementation Example

In this section, we implement the functions needed to
evaluate (2), as illustrated in Figure 2. We follow the CGRL
pattern: the derivation functions take a coarray data structure
and return an array data structure, the multiplication then
takes a coarray and an array data structure and return an
array data structure, and the remaining operators work on
array data structures.	e assignment then synchronizes a�er
assigning the local arrays to the corresponding component of
the coarray.

To avoid cluttering the code excerpts with error-
forwarding boiler plate, we 
rst show code without this
and then show how the code will look with this feature in
Section 5.4.

5.1. Array Data Structure. First, we declare a local tensor
class with only local array data. It is a subclass of object. 	e
ampersand (&) is the Fortran line continuation character and
the exclamation mark (!) precedes Fortran comments. 	e
size of the data on each image is set by a global constant, the
parameter local grid size (see Listing 5).

	e procedure declarations list the procedures that the
class exports. 	e generic declarations introduce the oper-
ator symbols as synonyms for the procedure names. 	e
four functions that are of interest to us are implemented
in Listing 6.

	ese are normal functions on array data. If executed in
parallel, each image will have a local instance of the variables
and locally execute each function. Notice how we use the
Fortran operators “+” and “−” directly on the array data
structures in these computations.

type, extends(object):: local tensor
real:: f(local grid size)

contains
!. . .
procedure:: add
procedure:: assign local
procedure:: state
procedure:: subtract
generic:: operator(+) => add
generic:: operator(−) => subtract
generic:: assignment(=) => assign local
!. . .
end type

Listing 5

pure function add(lhs, rhs) result(total)
class(local tensor), intent(in):: lhs, rhs
type(local tensor):: total
total%f = 1hs%f + rhs%f

end function
pure subroutine assign local(lhs, rhs)
class(local tensor), intent(inout):: lhs
real, intent(in):: rhs(:)
lhs%f = rhs

end subroutine
pure function state(this) result(my data)
class(local tensor), intent(in):: this
real:: my data(local grid size)
my data = this%f

end function
pure function subtract(lhs, rhs) &
result(di�erence)
class(local tensor), intent(in):: lhs, rhs
type(local tensor):: di�erence
di�erence%f = 1hs%f − rhs%f

end function

Listing 6

5.2. Coarray Data Structure. Listing 7 is the declaration of a
data structure distributed across the images.

	e coarray declaration allows us to access data on other
images.

	e partial derivative function takes a coarray data
structure as argument and returns an array data structure.
	e algorithm is a simple 
nite di�erence that wraps around
the boundary. 	e processing di�ers depending on whether
this image () is the 
rst image, an internal image, or the last
image num images(). An internal image needs access to data
from the next image above or below. 	e extremal images do
a wrap-around for their missing neighbors (see Listing 8).

In the tensor class, the local tensor class is opaque,
disallowing direct access to its data structure. Only proce-
dures from the interface can be used. 	ese include a user-
de
ned assignment implicitly invoked in the penultimate
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type, extends(co object):: tensor
private
real, allocatable:: global f(:)[:]
contains
!. . .
procedure:: assign local to global
procedure:: multiply by local
procedure:: add to local
procedure:: x => df dx
generic:: operator(∗) => &

multiply by local
generic:: assignment(=) => &

assign local to global
!. . .
end type

Listing 7

line of the df dx function. Note again how most of the
computation is done by using intrinsics on array data.We also
make use of the Fortran 2008 capability for expressing the
opportunity for concurrently executing loop traversals when
no data dependencies exist fromone iteration to the next.	e
“do concurrent” construct exposes this concurrency to the
compiler.

	e partial derivative functions, the single derivative
shown here, and the second derivative (omitted) are the
only procedures needing access to nonlocal data. Although a
synchronization must take place before the nonlocal access,
the requisite synchronization occurs in a prior assignment
or object initialization procedure. Hence, the full expres-
sion evaluation generated by the RHS of (2) occurs asyn-
chronously, both among the images for the distributed
coarray and at the expression level for the pure functions.

	e implementation of the add to local procedure has
the object with the coarray as the 
rst argument and a local
object with 
eld data as its second argument and return type
(see Listing 9).

	e rhs%state () function invocation returns the local
data array from the rhs local tensor and this is then added
to the local component of the coarray using Fortran’s array
operator notation.

Finally, the assignment operation synchronizes when
converting the array class local tensor back to the coarray
class tensor (see Listing 10).

A�er each component of the coarray has been assigned,
the global barrier “sync all” is called, forcing all images
to wait until all of them have completed the assignment.
	is ensures that all components of the coarray have been
updated before any further use of the data takes place.
Some situations might also necessitate a synchronization
at the beginning of the assignment procedure: to prevent
modifying data that another image might be accessing. Our
chosen 2ndorder Runge Kutta time advancement algorithm
did not require this additional synchronization because no
RHS expressions contained nonlocal operations on the data
structure appearing on the LHS.

5.3. MPI Data Structure. Developing applications using MPI
necessitates depending on a library de
ned outside any
programming language standard. 	is o�en results in proce-
dural programming patterns instead of functional or object-
oriented programming patterns. To make a fair comparison,
we will employ a MPI data structure that uses the array data
structure shown in Section 5.1. In theMPI version, the 1Dgrid
was partitioned across the cores using a periodic Cartesian
communicator, as shown in the code listing in Listing 11.

Using this communicator allowed us to reorder the
processor ranks to make the communication more e�cient
by placing the neighbouring ranks close to each other.
	e transfer of data between the cores was done using
MPI SENDRECV, as shown in Listing 12. As in the case of
the coarray version, nonlocal data was only required during
the computation of the partial derivatives. 	e MPI version
of the 
rst derivative function is shown in Listing 12.

MPI SENDRECV is a blocking routine which means
that the processor will wait for its neighbor to complete
communication before proceeding. 	is works as a de facto
synchronization of the data between the neighbours ensuring
that the data is current on all the processors. 	e c double
kind parameter used to declare the real variables in Listing 12
is related to the kind parameter MPI DOUBLE PRECISION
in the MPI communication calls. 	ese must be in sync,
ensuring that the Fortran data has the same format as that
used in MPI calls, viz. double precision real numbers that are
compatible with C.

5.4. Error Tracing. 	e error propagating pattern is illus-
trated in the code in Listing 13.

	e ! Requires test in Listing 13 checks that the two
arguments to the add function have the de
nedness attribute
set. It then performs the actual computation and sets the
de
nedness attribute for the return value. In case of an error
in the input, the addition does not take place and the default
object value of unde
ned data gets propagated through this
function.

	e actual validation of the assurance and reporting
of the error takes place in the user-de
ned assignment
or I/O that occurs at the end of evaluation of a purely
functional expression. 	e listing in Listing 14 shows this for
the assign local to global procedure.

More detailed error reporting can be achieved by supply-
ing more metadata in the object for such reporting purposes.

6. Results

6.1. Pattern Tradeo�s. 	is paper presents two new patterns:
the aforementioned object and the CGRL patterns.	e object
pattern proved to be lightweight in the sense of requiring sim-
ple Boolean conditionals that improve the code robustness
with negligible impact on execution time. 	e object pattern
is, however, heavyweight in terms of source-code impact:
the pattern encourages having every class extend the object
superclass, and it encourages evaluating these conditionals
at the beginning and end of every method. We found the
robustness bene
t to be worth the source-code cost.
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function df dx(this)
class(tensor), intent(in):: this
type(local tensor):: df dx
integer:: i, nx, me, east, west
real:: dx
real:: local tensor data(local grid size)
nx = local grid size
dx = 2. ∗ pi/(real(nx) ∗ num images())
me = this image()
if (me == 1) then
west = num images()
east =merge(1, 2, num images() == 1)
else if (me == num images()) then
west = me − 1
east = 1
else
west = me − 1
east = me + 1
end if
local tensor data(1) = 0.5 ∗ (this%global f(2) − this%global f(nx)[west])/dx
local tensor data(nx) = 0.5 ∗ (this%global f(1)[east] − this%global f(nx – 1))/dx
do concurrent(i = 2 : nx − 1)
local tensor data(i) = 0.5 ∗ (this%global f(i + 1) − this%global f(i − 1))/dx
end do
df dx = local tensor data

end function

Listing 8

function add to local(lhs, rhs) result(total)
class(tensor), intent(in):: lhs
type(local tensor), intent(in):: rhs
type(local tensor):: total
total = lhs%state() + rhs%global f(:)
end function

Listing 9

subroutine assign local to global(lhs, rhs)
class(tensor), intent(inout):: lhs
class(local tensor), intent(in):: rhs
lhs%global f(:) = rhs%state()
sync all
end subroutine

Listing 10

	e CGRL pattern is the linchpin holding together the
functional expression evaluation in the face of a perform-
ance-related language restriction on coarray function results.
	e bene
t of CGRL is partly syntactical in that it enables
the writing of coordinate-free expressions composed of
parallel operations on coarray data structures. CGRL also

o�ers potential performance bene
ts by enabling particular
compiler optimizations. Fortran requires that user-de
ned
operator to have the “intent (in)” attribute, which precludes
a common side e�ect: modifying arguments. 	is goes a
long way toward enabling the declaration of the operator
as “pure,” which allows the compiler to execute multiple
instances of the operator asynchronously. One cost of CGRL
in the context of the CFP pattern lies in the frequent creation
of temporary intermediate values. 	is is true for most
compilers that deal naively with the functional programming
style, as precluding the modi
cation of arguments inherently
implies allocating memory on the stack or the heap for each
operator result. 	is implies a greater use of memory. It also
implies latencies associated with each memory allocation.
Balancing this cost is a reduced need for synchronization
and the associated increased opportunities for parallel exe-
cution. A detailed evaluation of this tradeo� requires writing
a numerically equivalent code that exploits mutable data
(modi
able arguments) to avoid temporary intermediate
values. Such a comparison is beyond the scope of this paper.
More advanced approaches to compiling functional expres-
sions exist, as demonstrated by the Sisal compiler [10]. It
aggressively rearranges computations to avoid such memory
overhead. Whether this is possible within the framework of
current Fortran compilers needs to be investigated.

6.2. Performance. We have investigated the feasibility of our
approach using the one-dimensional (1D) form of Burgers
equation, (3). We modi
ed the solver from [9] to ensure
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subroutinempi begin
integer:: dims(1), periods(1), reorder
! prevent accidentally starting MPI
! if it has already been initiated
if (program status .eq. 0) then
callMPI INIT(ierr)
callMPI COMM SIZE(MPI COMM WORLD, num procs, ierr)
callMPI COMM RANK(MPI COMM WORLD, my id, ierr)
! Create a 1D Cartesian partition
! with reordering and periodicity
dims = num procs
reorder = .true.
periods = .true.
callMPI CART CREATE(MPI COMM WORLD, 1, dims, periods, reorder, MPI COMM CART, ierr)
callMPI COMM RANK(MPI COMM CART, my id, ierr)
callMPI CART SHIFT(MPI COMM CART, 0, 1, le� id, right id, ierr)
program status = 1
endif

end subroutine

Listing 11

function df dx(this)
implicit none
class(tensor), intent(in):: this
type(tensor):: df dx
integer(ikind):: i, nx
real(c double):: dx, le� image, right image
real(c double), dimension(:), allocatable, save:: local tensor data
nx = local grid resolution
if (.not.allocated(local tensor data)) allocate(local tensor data(nx))
dx = 2. ∗ pi/(real(nx, c double) ∗ num procs)
if (num procs > 1) then
callMPI SENDRECV(this%global f(1), 1,

MPI DOUBLE PRECISION, le� id, 0, right image, 1,
MPI DOUBLE PRECISION, right id, 0, MPI COMM CART,
status, ierr)

callMPI SENDRECV(this%global f(nx), 1,
MPI DOUBLE PRECISION, right id, 0, le� image, 1,
MPI DOUBLE PRECISION, le� id, 0, MPI COMM CART,
status, ierr)

else
le� image = this%global f(nx)
right image = this%global f(1)

end if
local tensor data(1) = 0.5 ∗ (this%global f(2) − le� image)/dx
local tensor data(nx) = 0.5 ∗ (right image − this%global f(nx − 1))/dx
do concurrent(i = 2 : nx − 1)
local tensor data(i) = 0.5 ∗ (this%global f(i + 1) − this%global f(i − 1))/dx

end do
df dx%global f = local tensor data

end function

Listing 12
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pure function add(lhs, rhs) result(total)
class(local tensor), intent(in):: lhs, rhs
type(local tensor):: total
! Requires
if (lhs%user de
ned() .and. &
rhs%user de
ned()) then
total%f = lhs%f + rhs%f
! Ensures
call total%mark as de
ned

end if
end function

Listing 13

subroutine assign local to global(lhs, rhs)
class(tensor), intent(inout):: lhs
class(local tensor), intent(in):: rhs

! Requires
call assert(rhs%user de
ned())
! update global 
eld
lhs%global f(:) = rhs%state()
! Ensures
call lhs%mark as de
ned
sync all

end subroutine

Listing 14

explicitly pure expression evaluation. 	e global barrier
synchronization in the code excerpt above was replaced by
synchronizing nearest neighbors only (see Listing 15).

Figure 3 depicts the execution time pro
le of the dom-
inant procedures as measured by the tuning and analysis
utilities (TAU) package [18]. In constructing Figure 3, we
emulated larger, multidimensional problems by running with

1283 grid points on each of the 256 cores. 	e results
demonstrate nearly uniform load balancing. Other than the
main program (red), the local-to-global assignment occupies
the largest inclusive share of the runtime. Most of that
procedure’s time lies in its synchronizations.

We also did a larger weak scaling experiment on the
Cray. Here, we emulate the standard situation where the user
exploits the available resources to solve as large a problem as
possible. Each core is assigned a 
xed data size of 2 097 152
values for 3 000 time steps, and the total size of the problem
solved is then proportional to the number of cores available.
	e solver shows good weak scaling properties; see Figure 4,
where it remains at 87% e�ciency for 16 384 cores. We
have normalized the plot against 64 cores. 	e Cray has an
architecture of 24 cores per node, so our base measurement
takes into account the cost due to o�-node communication.

Currently, we are synchronizing for every time step, only
reaching out for a couple of neighboring values (second
derivative) for each synchronization. We may want to trade

if (num images() == 1 .or. &
num images() == 2) then

sync all
else
if (this image() == 1) then
sync images([2, num images()])
elseif (this image() == num images()) then
sync images([1, this image() − 1])
else
sync images([this image() − 1, &

this image() + 1])
endif
endif

Listing 15

some synchronization for duplication of computations. 	e
technique is to introduce ghost values in the coarray, dupli-
cating the values at the edge of the neighboring images.	ese
values can then be computed and used locally without the
need for communication or synchronization. 	e optimal
number of ghost values depends on the relative speed
between computation and synchronization. For example,
using 9 ghost values on each side in an image, should reduce
the need for synchronization to every 8th time step, while it
increases computation at each core by 18/1283 = 1.4%. 	e
modi
cation should be local to the tensor class, only a�ecting
the partial derivative (the procedures needing remote data)
and assignment (the procedure doing the synchronization)
procedures. We leave this as future work.

We also looked at the strong scaling performance of the
MPI and coarray versions by looking at change in execution
times for a 
xed problem size. 	e strong scaling e�ciency
for two di�erent problem sizes is shown in Figures 5(a) and
5(b). We expect linear scaling; that is, the execution time will
halve when the number of processors are doubled. However,
we see that we obtain superlinear speedup during the initial
doubling of the number of processors. 	is superlinear
speedup is caused by the di�erence in speeds of the cache
memory. 	e large problems cannot 
t entirely into the
heap, and time is consumed in moving objects from the
slower memory to the faster memory. As the problem is
divided amongst more and more processors, the problem’s
memory requirements become smaller, and is able to 
t
in the faster memory that is closer to the processor. 	is
causes the superlinear speedup. As more processors are
added, communication between processors starts to become
expensive, and the speedup drops. We observe superlinear
speedup for both coarray and MPI versions. However, the
much greater speedup seen for the coarray version suggest
that its memory requirements are higher than those of the
MPI version. (	ese numbers may be slightly misleading, as
the MPI version used dynamically allocated data, while the
CAF version used statically allocated data. 	is may cause
the CAF version to use more memory than the MPI version.
Fixing this will causeminor changes in the numbers and close
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Figure 4: Weak scaling of solver for (3) using the coarray version on Cray.

the ratio between the MPI and CAF e�ciency. We will have
these numbers available for the revision of this document.)

	e raw execution times using the di�erent versions on
Intel and Cray platforms are shown in Table 1. We chose a
smaller problem for the strong scaling experiments than for
theweak scaling experiments because of the limited resources
available with the Intel platform. We see that the coarray
version is slower than the MPI version on the same platform
for the same problem size. Comparing the actual runtimes
shown in Table 1 shows that using the Intel compiler, theMPI
version is about 2 to 2.5 times faster than the coarray version.
For the Cray compiler, the MPI version is about 1.5 to 2 times
faster than the coarray version. To understand the di�erence

in runtimes, we analyzed the CAF and MPI versions using
TAU and the Intel compiler. Using PAPI [19] with TAU and
the Intel compiler to count the 
oating-point operations, we
see that the MPI version is achieving approximately 52.2%
of the peak theoretical FLOPS for a problem with 819200
grid points using 256 processors whereas the CAF version is
achieving approximately 21% of the peak theoretical FLOPS.
	e execution times for some of the di�erent functions are
shown in Figure 6. We see that the communication routines
are taking the longest fraction of the total execution time.
However, the coarray syncing is taking signi
cantly longer
than the MPI SENDRECV blocking operation. 	e Intel
coarray implementation is based on its MPI library, and
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Table 1: Execution times for the CAF and MPI versions of the Burgers solver for di�erent problem sizes using Intel and Cray compilers.

Cores

409600 grid points 819200 grid points

MPI CAF MPI CAF

Intel Cray Intel Cray Intel Cray Intel Cray

32 52.675 59.244 154.649 187.204 128.638 131.048 333.682 512.312

64 29.376 28.598 71.051 46.923 58.980 58.887 152.829 192.396

128 19.864 14.169 38.321 21.137 31.396 26.318 69.612 42.939

256 12.060 9.109 23.183 13.553 21.852 12.953 51.957 27.226

512 7.308 6.204 19.080 12.581 12.818 8.413 31.437 18.577
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Figure 5: Strong scaling performance of the coarray andMPI versions of the solver for (3) using di�erent platforms.	e raw execution times
are listed in Table 1.

the overheads of the coarray implementation are responsible
for some of the slowdown. 	e greater maturity of the MPI
library compared to CAF also probably plays a role in the
superior performance of the MPI implementation. So, we
are likely to see the performance gap lessen as compiler
implementations of CAF improve over time.

6.3. Complexity. Other than performance considerations, we
also wanted to compare the pros and cons of the coarray For-
tran (CAF) implementation versus an MPI implementation
of the 1D form of the Burgers equation (3) in terms of code
complexity and ease of development.

	e metrics used to compare the code complexity were
lines of code (LOC), use statements, variable declarations,
external calls, and function arguments. 	e results of this
comparison may be found in Table 2. As seen in Table 2,
theMPI implementation had signi
cantly greater complexity
compared to the CAF implementation for all of the metrics
which were considered. 	is has potential consequences in
terms of the defect rate of the code. For example, comparing

theMPI version with the coarray version listed in Section 5.2,
we see that the basic structures of the functions are almost
identical. However, the MPI SENDRECV communication of
the local grid data to and from the neighbours is achieved
implicitly in the coarray version making the code easier
to read. Counterbalancing its greater complexity, the MPI
implementation had superior performance compared to the
CAF code.

So�ware development time should also be taken into
account when comparing CAF to MPI. Certain metrics of
code complexity have been shown to correlate with higher
defect rates. For instance, average defect rate has been shown
to have a curvilinear relationship with LOC [20]. So, an MPI
implementationmight drive higher defect density and overall
number of defects in a project, contributing to development
time and code reliability. Likewise, external calls or fanout has
shown positive correlation with defect density, also reducing
the relative attractiveness of the MPI implementation [21].
In addition, the dramatically increased number of arguments
for function calls, as well as the larger number of functions
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Metric: time
Value: exclusive
Units: (s)

7.31
5.87

5.074
4.81

4.796

3.116
3.116

2.495
2.488

2.04
2.04
1.86
1.844

MPI Sendrecv()
add �eld [{/home/ha
.TAU application =>
d2f dx2 [{/home/har
df dx [{/home/hari/P
.TAU application =>
MPI Init()
.TAU application =>
.TAU application =>
.TAU application =>
multiply real [{/home
.TAU application =>
assign �eld [{/home/

(a) MPI execution pro
le

Metric: time
Value: exclusive
Units: (s)

19.148
9.197
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6.081
5.815
5.199
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3.897
3.87
3.332
3.332
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1.98

sync assign �eld

.TAU application =
df dx

d2f dx2
.TAU application =

di�erence [{/home
.TAU application =
assign �eld
.TAU application =
.TAU application =
multiple [{/home/h
.TAU application =
.TAU application =
.TAU application =
.TAU application =
add �eld

(b) CAF execution pro
le

Figure 6: Execution pro
les of MPI and CAF versions of Burgers solver.

Table 2: Code complexity of CAF versus MPI.

Metric CAF MPI

LOC 238 326

Use statements 3 13

Variables declared 58 97

External calls 0 24

Function arguments 11 79

which are used in theMPI implementation, suggests a higher
learning curve for novice parallel programmers compared to
CAF.

7. Conclusion

Motivated by the constant changing requirements on HPC
so�ware, we have presented coordinate-free programming [1]
as an approach that naturally deals with the relevant variation
points, resulting in 
exibility and easy evolution of code. We
then looked at the modern Fortran language features, such
as pure functions and coarrays, and related programming
patterns, speci
cally compute globally, return locally (CGRL),
which make such programming possible. We also looked at
implementing coordinate-free programming using MPI and
the advantages and disadvantages of theMPI implementation
vis-a-vis using only modern Fortran language features.

As a feasibility study for the approach, we used these
techniques in a code that solves the one-dimensional Burgers
equation:

�� = ]��� − ���. (4)

(Subscripts indicate partial di�erentiation for � and �, time
and space coordinates, resp.) 	e functional expression style
enhances readability of the code by its close resemblance to
the mathematical notation. 	e CGRL behavioural pattern
enables e�cient use of Fortran coarrays with functional
expression evaluation.

A pro
led analysis of our application shows good load
balancing, using the coarray enabled Fortran compilers from
Intel and Cray. Performance analysis with the Cray compiler
exhibited goodweak scalability from64 to above 16 000 cores.
Strong scaling studies using MPI and coarray versions of
our application show that while the runtimes of the coarray
version lag behind the MPI version, the coarray version’s
scaling e�ciency is on par with the MPI version.

Future work includes going from this feasibility study
to a full coordinate-free implementation in Fortran of the
general Burgers equation. 	is will allow us to study the
behaviour of Fortran on such abstractions. We also want to
increase the parallel e�ciency by introducing ghost cells in
the code, seeing how well modern Fortran can deal with the
complexities of contemporary hardware architecture.
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