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Abstract—We present novel algorithms for computing discrete
Fourier transforms with high performance on GPUs. We present
hierarchical, mixed radix FFT algorithms for both power-of-two
and non-power-of-two sizes. Our hierarchical FFT algorithms
efficiently exploit shared memory on GPUs using a Stockham
formulation. We reduce the memory transpose overheads in
hierarchical algorithms by combining the transposes into a block-
based multi-FFT algorithm. For non-power-of-two sizes, we use a
combination of mixed radix FFTs of small primes and Bluestein’s
algorithm. We use modular arithmetic in Bluestein’s algorithm
to improve the accuracy. We implemented our algorithms using
the NVIDIA CUDA API and compared their performance with
NVIDIA’s CUFFT library and an optimized CPU-implementation
(Intel’s MKL) on a high-end quad-core CPU. On an NVIDIA
GPU, we obtained performance of up to 300 GFlops, with typical
performance improvements of 2–4× over CUFFT and 8–40×
improvement over MKL for large sizes.

I. INTRODUCTION

The Fast Fourier Transform (FFT) refers to a class of

algorithms for efficiently computing the Discrete Fourier

Transform (DFT). The FFT is used in many different fields

such as physics, astronomy, engineering, applied mathematics,

cryptography, and computational finance. Some of its many

and varied applications include solving PDEs in computational

fluid dynamics, digital signal processing, and multiplying large

polynomials. Because of its importance, the FFT is used

in several benchmarks for parallel computers such as the

HPC challenge [1] and NAS parallel benchmarks [2]. In this

paper we present algorithms for computing FFTs with high

performance on graphics processing units (GPUs).
The GPU is an attractive target for computation because of

its high performance and low cost. For example, a $300 GPU

can deliver peak theoretical performance of over 1 TFlop/s

and peak theoretical bandwidth of over 100 GiB/s. Owens et

al. [3] provides a survey of algorithms using GPUs for general

purpose computing. Typically, general purpose algorithms for

the GPU had to be mapped to the programming model pro-

vided by graphics APIs. Recently, however, alternative APIs

have been provided that expose low-level hardware features

that can be exploited to provide significant performance gains

[4], [5], [6], [7]. In this paper we target NVIDIA’s CUDA API,

though many of the concepts have broader application.
Main Results: We present algorithms used in our library

for computing FFTs over a wide range of sizes. For smaller

sizes we compute the FFT entirely in fast, shared memory.

For larger sizes, we use either a global memory algorithm or

a hierarchical algorithm, depending on the size of the FFTs

and the performance characteristics of the GPU. We support

non-power-of-two sizes using a mixed radix FFT for small

primes and Bluestein’s algorithm for large primes. We address

important performance issues such as memory bank conflicts

and memory access coalescing. We also address an accuracy

issue in Bluestein’s algorithm that arises when using single-

precision arithmetic. We perform comparisons with NVIDIA’s

CUFFT library and Intel’s Math Kernel Library (MKL) on a

high end PC. On data residing in GPU memory, our library

achieves up to 300 GFlops at factory core clock settings,

and overclocking we achieve 340 GFlops. We obtain typical

performance improvements of 2–4× over CUFFT and 8–

40× over MKL for large sizes. We also obtain significant

improvements in numerical accuracy over CUFFT.

The rest of the paper is organized as follows. After dis-

cussing related work in Section II we present an overview

of mapping FFT computation to the GPU in Section III. We

then present our algorithms in Section IV and implementation

details in Section V. We compare results with other FFT

implementation in Section VI and then conclude with some

ideas for future work.

II. RELATED WORK

A large body of research exists on FFT algorithms and

their implementations on various architectures. Sorensen and

Burrus compiled a database of over 3400 entries on efficient

algorithms for the FFT [8]. We refer the reader to the book

by Van Loan [9] which provides a matrix framework for

understanding many of the algorithmic variations of the FFT.

The book also touches on many important implementation

issues.

The research most related to our work involves accelerating

FFT computation by using commodity hardware such as GPUs

or Cell processors. Most implementations of the FFTs on the

GPU use graphics APIs such as current versions of OpenGL

or DirectX [10], [11], [12], [13], [14], [15]. However, these

APIs do not directly support scatters, access to shared memory,

or fine-grained synchronization available on modern GPUs.

Access to these features is currently provided only by vendor-

specific APIs. NVIDIA’s FFT library, CUFFT [16], uses the

CUDA API [5] to achieve higher performance than is possible

with graphics APIs. Concurrent work by Volkov and Kazian

[17] discusses the implementation of FFT with CUDA. We

also use CUDA for FFTs, but we handle a much wider range

of input sizes and dimensions.
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Fig. 1. Architecture and programming model on the NVIDIA GeForce 8800 GPU. On the left, we illustrate a high-level diagram of the GPU scalar processors
and memory hierarchy. This GPU has 128 scalar processors and 80 GiB/s peak memory bandwidth. On the right, we illustrate the programming model for
scheduling computation on GPUs. The data in the GPU memory is decomposed into independent thread blocks and scheduled on the multiprocessors.

Several researchers have examined the implementation of

the FFT on the Cell processor [18], [19], [20], [21], [22].

Our results for large sizes on commodity GPUs are generally

higher than published results for the Cell for large sizes.

III. OVERVIEW OF GPUS AND FFTS

A. Overview of GPUs

In this paper we focus primarily on NVIDIA GPUs, al-

though many of the principles and techniques extend to other

architectures as well. Fig. 1 highlights the hardware model

of a NVIDIA GeForce 8800 GPU. The GPU consists of a

large number of scalar, in-order processors that can execute the

same program in parallel using threads. Scalar processors are

grouped together into multiprocessors. Each multiprocessor

has several fine-grain hardware thread contexts, and at any

given moment, a group of threads called a warp, executes

on the multiprocessor in lock-step. When several warps are

scheduled on a multiprocessor, memory latencies and pipeline

stalls are hidden primarily by switching to another warp. Each

multiprocessor has a large register file. During execution,

the program registers are allocated to the threads scheduled

on a multiprocessor. Each multiprocessor also has a small

amount of shared memory that can be used for communication

between threads executing on the scalar processors. The GPU

memory hierarchy is designed for high bandwidth to the global

memory that is visible to all multiprocessors. The shared

memory has low latency and is organized into several banks

to provide higher bandwidth.

At a high-level, computation on the GPU proceeds as

follows. The user allocates memory on the GPU, copies the

data to the GPU, specifies a program that executes on the

multiprocessors and after execution, copies the data back to

the host. In order to execute the program on a domain, the

user decomposes the domain into blocks. The thread execution

manager then assigns threads to operate on the blocks and

write the output to global memory.

B. Overview of FFTs

The forward Discrete Fourier Transforms (DFT) of a

complex sequence x = x0, . . . , xN−1 is an N -point

complex sequence, X = X0, . . . , XN−1, where Xk =
∑N−1

j=0 xje
−2πijk/N . The inverse DFT is similarly defined

as xk = 1
N

∑N−1
j=0 Xje

2πijk/N . A naı̈ve implementation of

DFTs requires O(N2) operations and can be expensive. FFT

algorithms compute the DFT in O(N log N ) operations. Due to

the lower number of floating point computations per element,

the FFT can also have higher accuracy than a naı̈ve DFT. A

detailed overview of FFT algorithms can found in Van Loan

[9]. In this paper, we focus on FFT algorithms for complex

data of arbitrary size in GPU memory.

C. Mapping FFTs to GPUs

Performance of FFT algorithms can depend heavily on the

design of the memory subsystem and how well it is exploited.

Although GPUs provide a high degree of memory parallelism,

the index-shuffling stage (also referred to as bit-reversal for

radix-2) of FFT algorithms such as Cooley-Tukey can be

quite expensive due to incoherent memory accesses. In this

paper, we avoid the index-shuffling stage using Stockham

formulations of the FFT. This, however, requires that we

perform the FFT out-of-place. Fig. 2 shows pseudo-code for

a Stockham radix-R FFT with specialization for radix-2. In

each iteration, the algorithm can be thought of combining the

R FFTs on subsequences of length Ns into the FFT of a new

sequences of length RNs by performing an FFT of length R
on the corresponding elements of the subsequences.

The performance of traditional GPGPU implementations of

FFT using graphics APIs is limited by the lack of scatter

operations, that is, a thread cannot write to an arbitrary location

in memory. The pseudo-code shown in Fig. 2 writes to R
different locations each iteration (line 29). Without scatter,

R values must be read for each output generated rather than



reading R values for every R outputs [14]. GPUs and APIs

that support writing multiple values to the same location in

multiple buffers can save the redundant reads, but must either

use more complex indexing when accessing the values written

in a preceding iteration, or after each iteration, they must

copy the values to their proper location in a separate pass

[15], which consumes bandwidth. Thus scatter is important

for conserving memory bandwidth.

Fig. 2 also shows pseudo-code for an implementation of the

FFT on a GPU which supports scatter. The main difference

between GPU_FFT() and CPU_FFT() is that the index j
into the data is generated as a function of the thread number

t, the block index b, and the number of threads per block T
(line 13). Also, the iteration over values of Ns are generated

by multiple invocations of GPU_FFT() rather than in a loop

(line 3) because a global synchronization between threads is

needed between the iterations, and for many GPUs the only

global synchronization is kernel termination.

For each invocation of GPU_FFT(), T is set to N/R and

the number of thread blocks B is set to M , where M is the

number of FFTs to process simultaneously. Processing multi-

ple FFTs at the same time is important because the number

of warps used for small-sized FFTs may not be sufficient to

achieve full utilization of the multiprocessor or to hide memory

latency while accessing global memory. Processing more than

one FFT results in more warps and alleviates these problems.

Despite the fact that GPU_FFT() uses scatter, it still

has a number of performance issues. First, the writes to

memory have coalescing issues. The memory subsystem tries

to coalesce memory accesses from multiple threads into a

smaller number of accesses to larger blocks of memory. But

the space between consecutive accesses generated during first

few iterations (small Ns) is too large for coalescing to be

effective (line 29). Second, the algorithm does not exploit low-

latency shared memory to improve data reuse. This is also

a problem for traditional GPGPU implementations as well,

because the graphics APIs do not provide access to shared

memory. Finally, to handle arbitrary lengths, we would need

to write a separate specialization for all possible radices R.

This is impractical, especially for large R. In the next section

we will discuss how we address each of these issues.

Because GPUs vary in shared memory sizes, memory, and

processor configurations, the FFT algorithms should ideally

be parameterized and auto-tuned across different algorithm

variants and architectures.

IV. FFT ALGORITHMS

In this section, we present several FFT algorithms — a

global memory algorithm that works well for larger FFTs with

higher radices on architectures with high memory bandwidth, a

shared memory algorithm for smaller FFTs, a hierarchical FFT

that exploits shared memory by decomposing large FFTs into a

sequence of smaller ones, mixed-radix FFTs that handle sizes

that are multiples of small prime factors, and an implementa-

tion of Bluestein’s algorithm for handling larger prime factors.

float2* CPU_FFT(int N, int R, 1 

                float2* data0, float2* data1) { 2 

  for( int Ns=1; Ns<N; Ns*=R ) { 3 

    for( int j=0; j<N/R; j++ )  4 

      FftIteration( j, N, R, Ns, data0, data1 ); 5 

    swap( data0, data1 ); 6 

  } 7 

  return data0; 8 

} 9 

 10 

void GPU_FFT(int N, int R, int Ns, 11 

             float2* dataI, float2* dataO) { 12 

  int j = b*N + t; 13 

  FftIteration( j, N, R, Ns, dataI, dataO ); 14 

} 15 

 16 

void FftIteration(int j, int N, int R, int Ns,  17 

                  float2* data0, float2*data1){ 18 

  float2 v[R]; 19 

  int idxS = j;       20 

  float angle = -2*M_PI*(j%Ns)/(Ns*R);      21 

  for( int r=0; r<R; r++ ) { 22 

    v[r] = data0[idxS+r*N/R]; 23 

    v[r] *= (cos(r*angle), sin(r*angle)); 24 

  } 25 

  FFT<R>( v ); 26 

  int idxD = expand(j,Ns,R); 27 

  for( int r=0; r<R; r++ )  28 

    data1[idxD+r*Ns] = v[r]; 29 

} 30 

 31 

void FFT<2>( float2* v ) { 32 

  float2 v0 = v[0]; 33 

  v[0] = v0 + v[1]; 34 

  v[1] = v0 - v[1]; 35 

}  36 

 37 

int expand(int idxL, int N1, int N2 ){ 38 

  return (idxL/N1)*N1*N2 + (idxL%N1); 39 

} 40 

Fig. 2. Reference implementation of the radix-R Stockham algorithm. Each
iteration over the data combines R subarray of length Ns into arrays of length
RNs. The iterations stop when the entire array of length N is obtained.
The data is read from memory and scaled by so-called twiddle factors (lines
20–25), combined using an R-point FFT (line 26), and written back out to
memory (lines 27–29). The number of threads used for GPU_FFT(), T , is
N/R. The expand() function can be thought of as inserting a dimension
of length N2 after the first dimension of length N1 in a linearized index.

We also discuss extensions to handle multi-dimensional FFTs,

real FFTs, and discrete cosine transforms (DCTs).

A. Global Memory FFT

As mentioned in Section III.B, the pseudo-code for

GPU_FFT() in Fig. 2 can lead to poor memory access coa-

lescing, which reduces performance. On some GPUs the rules

for memory access coalescing are quite stringent. Memory

accesses to global memory are coalesced for groups of CW
threads at a time, where CW is the coalescing width. CW is

16 for recent NVIDIA GPUs. Coalescing is performed when

each thread in the group access either a 32-bit, 64-bit, or 128

bit word in sequential order and the address of the first thread

is aligned to (CW× word size). Bandwidth for non-coalesced

accesses is about an order of magnitude slower. Later GPUs

have more relaxed coalescing requirements. Coalescing is

performed for any access pattern, so long as all the threads

access the same word size. The hardware issues memory

transactions in blocks of 32, 64, or 128 bytes while seeking to



void exchange( float2* v, int R, int stride,  1 

               int idxD, int incD, 2 

               int idxS, int incS ){ 3 

  float* sr = shared, *si = shared+T*R; 4 

  __syncthreads(); 5 

  for( int r=0, ; r<R; r++ ) { 6 

    int i = (idxD + r*incD)*stride; 7 

    (sr[i], si[i]) = v[r];  8 

  }  9 

  __syncthreads(); 10 

  for( r=0; r<R; r++ ) { 11 

    int i = (incS + r*incS)*stride; 12 

    v[r] = (sr[i], si[i]);  13 

  } 14 

} 15 

Fig. 3. Function for exchanging the R values in v between T threads.
The real and imaginary components of v are stored in separate arrays to
avoid bank-conflicts. The second synchronization avoids read-after-write data
hazards. The first synchronization is necessary to avoid data hazards only
when exchange() is invoked multiple times.

minimize the number and size of the transactions to satisfy the

requests. For both sets of coalescing requirements, the greatest

bandwidth is achieved when the accesses are contiguous and

properly aligned.

Assuming that the number of threads per block T = N/R
is no less than CW , our mapping of threads to elements in

the Stockham formulation ensures that the reads from global

memory are in contiguous segments of at least CW in length

(line 23 in Fig. 2). If the radix R is a power of two, the

reads are also properly aligned. Writes are not contiguous

for the first ⌈logR CW ⌉ iterations where Ns < CW (line

29), although under the assumption that T ≥ CW , when

all the writes have completed, the memory areas touched do

contain contiguous segments of sufficient length. Therefore,

we handle this problem by first exchanging data between

threads using shared memory so that it can then be written

out in larger contiguous segments to global memory. We do

this by replacing lines 28–29 with the following:

  int idxD = (t/Ns)*R + (t%Ns); 

  exchange( v, R, 1, idxD,Ns,  t,T ); 

  idxD = b*T*R + t; 

  for( int r=0; r<R; r++ )  

    data1[idxD+r*T] = v[r]; 

The pseudo-code for exchange() can be found in Fig. 3.

To maximize the reuse of data read from global memory

and to reduce the total number of iterations, it is best to use

a radix R that is as large as possible. However, the size of

R is limited by the number of registers and the size of the

shared memory on the multiprocessors. Reducing the number

of threads reduces the total number of registers and the amount

of shared memory used, but with too few threads there are not

enough warps to hide memory latency. We have found that

using T = max(⌈64⌉Ri , N/R) produces good results, where

⌈x⌉Ri represents the smallest power of R not less than x.

Bank conflicts: Shared memory on current GPUs is orga-

nized into 16 banks with 32-bit words distributed round-

robin between them. Accesses to shared memory are serviced

for groups of 16 threads at a time (half-warps). If any of

the threads in a half-warp access the same memory bank

template<int R> void 1 

FftShMem(int sign, int N, float2* data){ 2 

  float2 v[R]; 3 

  int idxG = b*N + t; 4 

  for( int r=0; r<R; r++ )  5 

    v[r] = data[idxG + r*T]; 6 

  if( T == N/R )  7 

    DoFft( v, R, N, t );  8 

  else { 9 

    int idx = expand(t.v,N/R,R); 10 

    exchange(v,R,1, idx,N/R, t,T ); 11 

    DoFft( v, R, N, t );  12 

    exchange(v,R,1, t,T, idx,N/R ); 13 

  } 14 

  float s = (sign < 1) ? 1 : 1/N; 15 

  for( int r=0; r<R; r++ )  16 

    data[idxG + r*T] = s*v[r]; 17 

} 18 

 19 

void DoFft(float2* v, int R, int N,  20 

           int j, int stride=1) { 21 

  for( int Ns=1; Ns<N; Ns*=R ){ 22 

    float angle = sign*2*M_PI*(j%Ns)/(Ns*R); 23 

    for( int r=0; r<R; r++ ) 24 

      v[r] *= (cos(r*angle), sin(r*angle));      25 

    FFT<R>( v ); 26 

    int idxD = expand(j,Ns,R); 27 

    int idxS = expand(j,N/R,R); 28 

    exchange( v,R,stride, idxD,Ns, idxS,N/R ); 29 

  } 30 

} 31 

Fig. 4. Pseudo-code for shared memory radix-R FFT. This kernel is used
when N is small enough that the entire FFT can be performed using just
shared memory and registers.

at the same time, a conflict occurs, and the simultaneous

accesses must be serialized, which degrades performance. In

order to avoid bank conflicts, exchange() writes the real

and imaginary components to separate arrays with stride 1

instead of a single array of float2. When a float2 is

written to shared memory, the two components are written

separately with stride 2, resulting in bank conflicts. The call

to exchange() still results in bank conflicts when R is a

power of two and Ns < 16. The solution is to pad with Ns

empty values between every 16 values. For R = 2 the extra

cost of computing the padded indexes actually outweighs the

benefit of avoiding bank conflicts, but for radix-4 and radix-

8, the net gain is significant. Padding requires extra shared

memory. To reduce the amount of shared memory by a factor

of 2, it is possible to exchange only one component at a time.

This requires 3 synchronizations instead of 1, but can result

in a net gain in performance because it allows more in-flight

threads. When R is odd, padding is not necessary because R
is relatively prime w.r.t. the number of banks.

B. Shared Memory FFT

For small N , we can perform the entire FFT using only

shared memory and registers without writing intermediate

results back to global memory. This can result in substan-

tial performance improvements. The pseudo-code for our

shared memory kernel is shown in Fig. 4. As with the

global memory FFT, we set the number of threads T to

T = max(⌈64⌉Ri , N/R). These lower bounds on the thread

count also ensure that when the data is read from global

memory (lines 4–6), it will be read in contiguous segments



template<int R> void 1 

FftShMemCol(int sign, int N, int strideO,  2 

            float2* dataI, float2* dataO ){ 3 

  float2 v[R]; 4 

  int strideI = B.x*T.x; 5 

  int idxI = (((b.y*N+t.y)*B.x+b.x)*T.x)+t.x; 6 

  int incI = T.y*strideI; 7 

  for( int r=0; r<R; r++ )  8 

    v[r] = data[idxI + r*incI]; 9 

  DoFft( x, R, N, t.y, T.x );  10 

  if( strideO < strideI ) { 11 

    int i = t.y,  j = (idxI%strideI)/strideO; 12 

    angle = sign*2*M_PI*j/(N*strideI/strideO); 13 

    for( int r=0; r<R; r++ ) { 14 

      v[r] *= (cos(i*angle),sin(i*angle)); 15 

      i += T.y; 16 

    } 17 

  } 18 

  int incO = T.y*strideO; 19 

  int idxO = b.y*R*incI+expand(idxI%incI,incO,R); 20 

  if( strideO == 1 ) { 21 

    int idxD = t.x*N + t.y; 22 

    int idxS = t.y*T.x + t.x; 23 

    incO = T.y*T.x; 24 

    idxO = (b.y*B.x+b.x)*N + idxS; 25 

    exchange( v,R,1, idxD,T.y, idxS,incO );   26 

  } 27 

  float s = (sign < 1) ? 1 : 1/N; 28 

  for( int r=0; r<R; r++ )  29 

    data[idxO + r*incO] = s*v[r]; 30 

} 31 

Fig. 5. Pseudo-code for shared memory radix-R FFT along columns
used with the hierarchical FFT. strideI and strideO are the strides
of sequence elements on input and output. The kernel is invoked with
Tx set to a multiple of R not smaller than CW , Ty = N/R, and
B = (strideI/Tx, M/strideI). The twiddle stage (lines 11–18) and
the transposes (lines 19–27) of the hierarchical algorithm are also included in
the kernel.

greater than CW in length. However, when T > N/R, the

data must first be exchanged between threads. In this case,

the kernel computes more than one FFT at a time and the

number of thread blocks used are reduced accordingly. The

data is then restored to its original order to produce large

contiguous segments when written back to global memory.

When T = N/R, no data exchange is required after reading

from global memory. Because the data is always written back

to the same location from which it was read, the FFT can be

performed in-place. As mentioned previously, bank conflicts

that occur when R is a power of two can be handled with

appropriate padding.

The large number of registers available on NVIDIA GPUs

relative to the size of shared memory can be exploited to

increase performance. Because the data held by each thread

can be stored entirely in registers (in the array v), the FFT

in each iteration (line 26) can be computed without reading

or writing data to memory, and is therefore faster. Shared

memory is used only to exchange data between registers of

different threads. If the number of registers were smaller, then

the data would have to reside primarily in shared memory.

Additional memory might be required for intermediate results.

In particular, the Stockham formulation would require at least

twice the amount of shared memory due to the fact that it is

performed out-of-place. Larger memory requirements reduce

the maximum N that can be handled.

C. Hierarchical FFT

The shared memory FFT is fast but limited in the sizes it

can handle. The hierarchical FFT computes the FFT of a large

sequence by combining FFTs of subsequences that are small

enough to be handled in shared memory. This is analogous to

how the shared memory algorithm computes an FFT of length

N by utilizing multiple FFTs of length R that are performed

entirely in registers. Suppose we have an array A of length

N = NαNβ . We first consider a variation of the standard

“four-step” hierarchical FFT algorithm [23]:

1) Treating A as Nα ×Nβ array (row-major), perform Nα

FFTs of size Nβ along the columns.

2) Multiply each element Aij in the array with twiddle

factors ω = e±2πij/N (− for a forward transform, + for

the inverse).

3) Perform N2 FFTs of size Nα along the rows.

4) Transpose A from Nα × Nβ to Nβ × Nα

Nβ is chosen to be small enough that the FFT can be

performed in shared memory. If Nα is too large to fit into

shared memory, then the algorithm recurses, treating each

row of length Nα as an Nαα × Nαβ array, etc. One way to

think about this algorithm is that it wraps the original one

dimensional array of length N into multiple dimensions, each

small enough that the FFT can be performed in shared memory

along that dimension. The dimensions are then transformed

from highest to lowest. The effect of the multiple transposes

that occur when coming out of the recursion is to reverse the

order of the dimensions, which is analogous to bit-reversal.

The original “four-step” algorithm swaps steps 3 and 4. The

end result is the same, except that FFTs are always performed

along columns. For example, suppose A is partitioned wrapped

into a 3D array with dimensions (N1, N2, N3). The execution

of the original and the modified algorithms can be depicted as

follows:

(N1, N2, N
′

3) (N1, N2, N
′

3)

(N1, N
′

2, N3) (N3, N1, N
′

2)

(N ′

1, N2, N3) (N3, N2, N
′

1)

(N3, N2, N1)

where ′ indicates an FFT transformation along the specified

dimension. The i index in step 2 corresponds an element’s

index in the transformed dimension (Nα) and the j index cor-

responds to the concatenation of the indices in the underlined

dimensions (Nβ). The original algorithm (left) performs all of

the FFTs in-place and uses a series of transposes at the end to

reverse the order of the dimensions. The entire algorithm can

be performed in-place if the transposes are performed in-place.

In-place algorithms can be important for large data sizes. In

the modified algorithm, the FFT computation always takes

place in the current highest dimension and the transposes are

interleaved with the computation. This is analogous to the data

shuffling in a Stockham formulation of a radix-2 FFT used to

avoid bit-reversals.
To reduce the number of passes over the data, we use the

modified algorithm and perform the FFT, the twiddle, and



the transpose all in the same kernel. Pseudo-code is shown

in Fig. 5. This version of the FFT assumes that strideI,

the stride between elements in a sequence (the product of the

dimensions preceding the one transformed), is greater than

1 and that product of all the dimensions is a power of R.

The data accesses to global memory for a single FFT along

a dimension greater than 1 are not contiguous. To obtain

contiguous accesses, we transform a block of Mb sequences

at the same time, where Mb is a power of R no smaller than

CW . One side benefit of this is that when R is a power of

two, padding is no longer required to avoid bank conflicts in

exchange() because Mb = CW = 16 is the same as the

number of banks. However, performing such a large number

of FFTs simultaneously means that the N must be partitioned

in dimensions of shorter length due to limits on the number

of registers and the size of shared memory.

Cases where the strides of sequence elements on input and

output, strideI or strideO, are less than Mb require

special handling. When strideI ≥ Mb and strideO

= 1, we rearrange the data in shared memory so that it

can be written out in large contiguous segments (lines 22–

26). strideI can be 1 only if the preceding dimensions

have the trivial length of 1, in which case the FFT can be

computed with FftShMem() from Fig. 4. For all other cases,

specialized code is required to handle the reading and writing

of partial blocks. An alternative is to first transpose the high

dimension to dimension 1, perform the FFT with a variant of

FftShMem() that includes the twiddle from step 2, and then

transpose from dimension 1 to the final destination. However,

these transposes require separate passes over the data and may

sacrifice some performance.

Because global memory FFT algorithm does not involve

global transposes of the data, it can actually be faster than

the hierarchical FFT for large N on GPUs with high memory

bandwidth. We use auto-tuning to determine at which point

to transition from the hierarchical FFT to the global memory

FFT.

D. Mixed-radix FFT

So far we have considered algorithms for radix-R algo-

rithms for which N = Ri. To handle mixed-radix lengths

N = Ra
0Rb

1, the value used for R can be varied in the iterations

of a radix-R algorithm. For example, for N = 2a3b, we can

run a iterations with R = 2 and b iterations with R = 3
using either the global or shared memory FFTs. If 2a and 3b

are small enough to fit in shared memory, but N is too large,

then we can perform the computation hierarchically by setting

Nα = 2a and Nβ = 3b. Specializations of FFT<R>() can be

manually optimized for small primes. When N is a composite

of large primes, we use Bluestein’s FFT.

E. Bluestein’s FFT

The Bluestein’s FFT algorithm computes the DFT of ar-

bitrary length N by expressing it as a convolution of two
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subsequences a and b:

Xk = b∗k

N−1
∑

j=0

ajbk−j

where bj = e
πij2

N , aj = xj · b
∗
j , and the ∗ operator represents

conjugation. The convolution can be computed efficiently as

the inverse FFT of A · B, where A and B are FFTs of a and

b, respectively. The FFTs can be of any length not smaller

than 2N − 1. For example, an optimized radix-R FFT can be

used. In order to improve the performance for small sequences,

we perform the entire convolution in shared memory using an

algorithm similar to FftShMem().
When N is large, care must be taken to avoid problems

with numerical accuracy. In particular, a problem arises in the

computation of bj . Because e2πix is periodic, we can rewrite

bj as e2πi j2

2N = e2πif = e2πifrac(f), where f = j2/(2N) and

frac(f) = f − ⌊f⌋. From this we can see that bj will be

inaccurate when f is so large that few, if any, bits are used

for its fractional component. To overcome this issue we refine

f by discarding large integer components. We compute an

f ′ = rm/(2N), where rm = j2 mod 2N . We assume that

N ∈ [0, 230), which would require over 235B, or 32GiB, to

compute the DFT with a power-of-two FFT (2 buffers with 231

elements for A and B with 8 bytes per element), well above

the memory capacities of current GPUs (typically 0.5-1GiB).

We start with an estimation of rm as follows:

rm ≈ j2 − 2N⌊f⌋,

where f is calculated using 32-bit floating point arithmetic.

Let j2 = ah232 + al and 2N⌊f⌋ = bh232 + bl, where ah, al,

bh, and bl are all unsigned 32-bit integers. We compute the

lower 32 bits of the multiplications, al and bl, using standard

unsigned multiplication. To obtain the upper 32 bits, ah and

bh, we use an intrinsic umulhi(). We then compute f ′ using

modular arithmetic:

f ′ = frac

(

(ah − bh)
232 mod 2N

2N

)

+
(al − bl) mod 2N

2N
.

This process produces a value of f ′ with much improved

precision that results in higher accuracy (see Fig. 6). This

process can be generalized to support larger N if desired.



 

GPU 
Core 
Clock 
(MHz) 

Shader 
Clock 
(MHz) 

Multi- 
processors 

Peak 
Performance 
(GFlops) 

Memory 
Clock 
(MHz) 

Memory 
(MB) 

Bus Width 
(bits) 

Peak 
Bandwidth 
(GiB/s) 

 
Driver 

8800 GTX 575 1350 16 518 900 768 384 80 175.19 

8800 GTS 675 1625 16 624 970 512 256 59 175.19 

GTX280 650 1300 30 936 1150 1024 512 137 177.41 

Fig. 7. GPUs used in experiments. Each multiprocessor can theoretical perform 24 floating point operations (8 FMAD/MUL) per shader clock. The GPUs
use GDDR3 RAM capable of two memory operations per clock. The warp width for all the GPUs is 32. For our performance results we used the driver
versions listed here, unless otherwise specified.

F. Multi-dimensional FFTs

Multi-dimensional FFTs can be implemented by performing

FFTs independently along each dimension. However, perfor-

mance tends to degrade for higher dimensions where the stride

between sequence elements is large. This can sometimes be

overcome by first transposing the data to move the highest

dimension down to the lowest dimension before performing

the FFT. This process can be repeated to cycle through all

the dimensions. By using a kernel like FftShMemCol that

combines the FFT with a transpose, separate transpose passes

over the data can be avoided.

G. Real FFTs and DCTs

FFTs of real sequences have special symmetry. This symme-

try can be used to transform a real FFT into a complex FFT

of half the size. Similarly, trigonmetric transforms, such as

the discrete cosine transform (DCT) can be implemented with

complex FFTs through simple transformation on the data. We

implement real FFTs and DCTs with wrapper functions around

the FFT algorithms that we have presented in this section. We

refer the reader to Van Loan [9] for more details.

V. IMPLEMENTATION

We implemented our FFT library using NVIDIA’s CUDA

API for single-precision data. We have implemented global

memory and shared memory FFT kernels for radices 2, 4, and

8. We use radix-8 for as many iterations as possible. When

N is not divisible by 8, we use radix-2 or radix-4 for the last

iteration. We have also implemented radix-3 and radix-5 for

shared memory.

We use a number of standard optimization techniques that

are not presented in the pseudo-code for the sake of clarity.

The most important optimization is constant propagation. We

use templates to implement specialized kernels for a number

of different sizes and thread counts. Where possible we also

use bit-wise operations to implement integer multiply, divide,

and modulus for power-of-two radices. We also compute some

values common to all threads in a block using a single thread

and store them in shared memory in order to reduce some

computation.

Current GPUs limit the maximum number of threads per

thread block and thread blocks per computation grid. On the

current GPUs, these limits are 512 and 65535 respectively.

These limits restrict the input sizes that can handled. We

overcome these limits by virtualizing. Thread indices are

virtualized by adding loops in the kernels so that a single

thread does the work of multiple virtual threads. Thread blocks

are virtualized by invoking the kernel multiple times and

adding an appropriate offset to the thread block index for

each invocation. Virtualization adds some overhead and code

complexity. Supporting it directly in the runtime would enable

easier programming on GPUs.

When the size of the FFT is too large for shared memory, we

use either the global memory or the hierarchical algorithm. On

all of the GPUs we tested, the performance of the hierarchical

algorithm degrades for larger N while the performance of

the global memory algorithm is nearly constant. At some

point there is a cross-over where the global memory algorithm

becomes faster. We determine the cross over point at runtime

and use the fastest algorithm for a given size.

VI. RESULTS

A. Experimental methodology

We tested our algorithms on three different NVIDIA GPUs:

8800GTX, 8800GTS, and GTX280. The specifications for

these GPUs are summarized in Fig. 7. One of the key

difference between the GPUs is the memory bandwidth. The

GTX280 has the most bandwidth and the 8800GTS has the

least. The GTX280 also has more multiprocessors, which give

it the highest peak performance. We used recent versions

of the drivers. We found, however, that an older version

of the driver for the GTX280 (177.11) gave significantly

different performance results. Results obtained with this driver

are marked with (∗) in Figs. 11, 12, and 14. We ran our

experiments on a high-end Windows PC equipped with an

Intel QX9650 3.0GHz quad-core processor and 4GB of DDR3

1600 RAM. This processor consists of two dual-core dies in

the same package with each pair of cores sharing a 6 MB L2

cache.

We compared our algorithms to NVIDIA’s CUDA FFT

library (CUFFT) version 1.1 for the GPU and Intel’s Math

Kernel Library (MKL) version 10.2 on the CPU. The MKL

tests utilized four hardware threads and used out-of-place,

single precision transforms. The input and output arrays were

aligned to a multiple of the cache line width. We report

performance in GFlops, which we compute as
∑D

d=1 Md(5Nd log2 Nd)

execution time
,

where D is the total number of dimensions, Md = E/Nd is

the number of FFTs along each dimension, and E is the total

number of data elements. We follow common convention and
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Fig. 8. MKL with varying numbers of threads. (Left) Single 1D FFT per thread (M = thread count). Because we use the minimum time over repeated
runs on the same data, when the data can fit in the cache, the cache may be hot for these runs. Performance increases with the number of iterations in the
FFT algorithm (log2 N for radix-2) because of increased reuse of data in the cache. Performance peaks between N = 210 and N = 217 at 52 GFlops.
Because pairs of cores share a 6MB L2 cache, performance begins to degrade at about N = 218 due to increased conflicts between cores in the cache. From
N = 220 on, the size of the data (220 × 2 (input and output) × 2 (real and imaginary components) × 4 (bytes per float) = 224 bytes) exceeds the 12 MB
aggregate L2 cache size of the processor and the performance becomes I/O limited. (Right) Varying number of FFTs with M = E/N , where E = 224. The
performance with 4 threads is essentially the same as for 2 threads, except for between N = 210 and N = 217 where there is sufficient data reuse without
conflicts between cores in the shared caches.
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Fig. 9. Varying core clock rate on GTX280. The FFTs are performed in shared memory for N ∈ [2, 210]. For N > 210 we show the performance of the
global memory algorithm (left) and the hierarchical algorithm (right). The global memory algorithm shows small oscillations due to use of radix-2 and radix-4
for the last iteration. The performance of the hierarchical algorithm drops off as N increases. For all but the smallest sizes, performance scales linearly with
clock rate.
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Fig. 10. Varying memory clock rate on the GTX280. The FFTs are performed in shared memory for N ∈ [2, 210]. For N > 210 we show the performance
of the global memory algorithm (left) and the hierarchical algorithm (right). The FFT becomes compute bound for higher memory clock rates, especially for
larger sizes in the shared memory kernel.

use the same equation for all the algorithms, regardless of

radix. The execution time is obtained by taking the minimum

time over multiple runs. The time for library configuration

and transfers of data to/from the GPU is not included in the

timings. Unless stated otherwise, performance reported for the

GPU algorithms were obtained on the GTX280. To measure

accuracy, we perform a forward transform followed by an

inverse transform on uniform random data. We then compare

the result to the original input and divide the root mean squared

error (RMSE) and maximum error by 2.

B. Scaling

We first examine the scaling properties of MKL w.r.t. the

number of threads and the scaling of our algorithms with re-

spect to core and memory clock rates on various GPUs. MKL

parallelizes the computation of multiple FFTs by assigning a

thread to each FFT. Fig. 8 shows the performance of MKL for

a varying number of threads. MKL performs very well for a

small number of small FFTs (small M and N ), but for large

FFTs the performance becomes I/O bound. Performance also

degrades for large numbers of FFTs even if N is small.
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Fig. 11. Single 1D power-of-two FFTs. (Left) Performance of our algorithms on multiple GPUs, CUFFT on the GTX280, and MKL. The dashed line is
for performance on an older driver. (Right) Run time relative to our algorithms on GTX280 (zoomed on large values of N ). MKL shows lower performance
because it uses only one thread for single FFTs. The performance of the GPU algorithms is low for small N due to relatively large latencies. For larger N ,
the GPU algorithms perform much better than MKL on the CPU.
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Fig. 12. Batched 1D power-of-two FFTs. (Left) Performance of our algorithms on multiple GPUs, CUFFT on the GTX280, and MKL. The dashed line
is for performance on an older driver. (Right) Run time relative to our algorithms on GTX280 (zoomed on large values of N ). The number of FFTs M is
chosen as E/N , where E = 223, the largest value supported by CUFFT. For large N on the GTX280, our FFTs are up to 4 times faster than CUFFT and
19 times faster than MKL.

Fig. 9 and Figure 10 shows the performance of our 1D

FFTs on the GTX280 at varying core and memory clock rates,

respectively, for both the global and hierarchical algorithm.

Both algorithms scale linearly with the core clock, while

the scaling for the memory clock is less than linear for

higher rates, especially for the shared memory kernels for

N ∈ [27, 210]. This indicates that the kernels become compute

bound for these higher memory clock rates.

C. Comparisons

Fig. 11 shows the performance for single 1D power-of-two

FFTs of varying size. The performance on both the GPU and

the CPU is lower for a single FFT than for batched FFTs.

Multiple FFTs are needed to utilize all threads with MKL on

the CPU and to hide memory latencies for small N on the

GPU. For this reason, the rest of our results were obtained

by using batched FFTs where total elements E is large and

the number of FFTs in the batch, M , is E/N . Batched FFTs

are also used for higher dimensional FFTs. Fig. 12 shows

the performance of batched 1D power-of-two FFTs. Here the

performance on the GPU for small N is much better. For

large N , our FFTs are up to 4 times faster than CUFFT and

19 times faster than MKL. Fig. 13 shows a comparison of our

1D shared memory, power-of-two FFT with the cases that are

handled by the implementation of Volkov and Kazian [17].

Fig. 14 shows performance for 2D FFTs. For 2D, the

performance of our library for large N is up to 3 times faster

than CUFFT and 61 times faster than MKL.

We also compared performance for non-power-of-two FFTs.

Fig. 15 shows the performance for prime factor FFTs. We

currently support powers of 2, 3, and 5. Fig. 18 shows the

relative performance of these kernels. The performance for

radix For larger primes we use Bluestein’s algorithm. We can

infer from Fig. 16 that MKL also uses Bluestein’s for larger

primes. CUFFT, however, uses a direct computation of the

DFT which has O(N2) complexity and has poor accuracy. For

large prime sizes, our FFTs achieve up to 11 times speedup

over MKL.

Fig. 17 highlights the accuracy of the FFT algorithms. In

general, MKL has lower error than the GPU algorithms. The

error is the lowest for all algorithms for 1D power-of-two

FFTs. Here the errors for the GPU algorithms are quite similar.

Implementation\ 

Data size 
8 16 64 256 512 1024 

Volkov and Kazian 08 102 124 229 222 298 260 

 Ours 120 160 215 271 297 245 

Fig. 13. Comparison with the cases handled by the FFT implementation

of Volkov and Kazian [17] These performance numbers were obtained using
a GTX280 with driver version 177.11. The numbers are comparable.
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Fig. 14. 2D power-of-two FFTs. (Top) Performance for single 2D FFTs of size N × N . (Middle) Performance for M 2D FFTs of size N × N , where
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Fig. 16. 1D Prime FFTs. (Top) Performance for batched 1D FFTs, where N ∈ [25, 216] is prime. The saw tooth shape of the plot for our FFTs and MKL’s
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Fig. 17. Error. (Top-left) RMSE for 1D power-of-two FFTs. Maximum error, shown with dashed lines, is roughly proportional to RMSE. The constant of
proportionality is approximately the same for other algorithms, so we do not included maximum error on the other graphs. The error for the GPU algorithms is
about a factor of 5.5 larger than the error for MKL on the CPU for large N . The error scales roughly linearly with N . (Top-right) RMSE for 1D mixed-radix
FFTs. The error for our library and MKL is about the same as for powers of two. CUFFT has a slightly higher error range and variance. (Bottom-left) RMSE
for FFTs for small prime sizes N . The error of CUFFT grows very rapidly. (Bottom-right) RMSE for FFTs over a large range of prime sizes.
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radices larger powers of 3 and 5. These performance numbers were obtained
using a GTX280 with driver version 177.11.

For mixed-radix FFTs, the error for our library and MKL is

about the same, but it goes up by over a factor of 2 for CUFFT.

For FFTs of prime sizes, CUFFT’s error rapidly balloons.

However, the error for our FFTs is on the order of 10−6, even

for large sizes.

D. Limitations

Our algorithms are designed for single-precision complex

sequences since the majority of currently available GPUs only

support single-precision arithmetic. Since our techniques are

general, the algorithms can be extended to work efficiently

on double-precision inputs. Our algorithms currently work

only on data that resides in GPU memory. External memory

algorithms based on the hierarchical algorithm can be designed

to handle larger data. Computation can also be performed on

multiple GPUs. However, for both of these scenarios, data

must be transferred between GPU and system memory, which

can dramatically lower the performance. On current GPUs, our

measurements show that the data transfer time is comparable

to FFT computation time.

VII. CONCLUSIONS AND FUTURE WORK

We have presented several algorithms for efficiently per-

forming FFTs of arbitrary length and dimension on GPUs.

We choose the algorithm that provides the best performance

for a given input size and hardware configuration. Our hier-

archical FFT minimizes the number of memory accesses by

combining transpose operations with the FFT computation. We

also address numerical accuracy issues. Our results indicate

a significant performance improvement over optimized GPU-

based and CPU-based FFT algorithms.
There are several avenues for future work. We would like

to extend our library to use double-precision. One important

issue is the computation of the twiddle factors. The cos()
and sin() functions are currently much more expensive in

double precision than single precision. For this reason it

is probably better to use a precomputed table of twiddle

factors. We would also like to add support for GPUs from

other vendors by implementing our library using DirectX 11

Compute Shader API. Another interesting direction is mapping

the FFT algorithms onto multiple GPUs.
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