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Abstract

Today’s object-relational DBMSs (ORDBMSs)
are designed to support novel application domains
by providing an extensible architecture, supple-
mented by domain-specific database extensions
supplied by external vendors. An important aspect
of ORDBMSs is support for extensible indexing,
which allows the core database server to be ex-
tended with external access methods (AMs). This
paper describes a new approach to extensible in-
dexing implemented in Informix Dynamic Server
with Universal Data Option (IDS/UDO). The ap-
proach is is based on the generalized search tree,
or GiST, which is a template index structure for ab-
stract data types that supports an extensible set of
queries. GiST encapsulates core database index-
ing functionality includingsearch, update, concur-
rency control and recovery, and thereby relieves
the external access method (AM) of the burden of
dealing with these issues. The IDS/UDO imple-
mentation employs a newly designed GiST API
that reduces the number of user defined function
calls, which are typically expensive to execute,
and at the same time makes GiST a more flexible
data structure. Experiments show that GiST-based
AM extensibilitycan offer substantially better per-
formance than built-in AMs when indexing user-
defined data types.

1 Introduction

Efficient search tree access methods are crucial for any
database system. In traditional relational database manage-
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ment systems, B+-trees [Com79] suffice for queries posed
on the standard SQL data types. Today’s extensible object-
relational database management systems (ORDBMSs) are
being deployed to support new applications such as dynamic
web servers, geographic information systems, CAD tools,
multimedia and document libraries, sequence databases,
fingerprint identification systems, biochemical databases,
etc. For these applications, new kinds of access methods
are required.

Broadly speaking, the research community has re-
sponded by developing novel search trees to support each
new application. For example, a recent survey article
[GG98] describes over 50 alternative index structures for
spatial indexing alone. Some of this specialized work has
had fundamental impact in particular domains. However,
only two or three structures developed since the B+-tree
have enjoyed any significant industrial acceptance.

The reason for this is the fundamental complexity and
cost involved in developing access methods (AMs) and in-
tegrating them into database servers. Designing an AM for
use in a commercial ORDBMS requires a very good under-
standing of concurrency and recovery protocols; integrating
an AM into a database server requires a great deal of fa-
miliarity with such central components as the lock and log
managers. The commercial state of the art in access method
extensibility, exemplified by IDS/UDO’s Virtual Index In-
terface [Inf98b] and Oracle’s Extensible Indexing Interface
[Ora98] and illustrated in principle in Figure 1 (a), does
not reduce this complexity. Essentially, these interfaces
represent the access method as an iterator data structure;
the query executor calls this interface directly to retrieve
tuples from the index. An interface like that allows exten-
sibility, but does not reduce the implementation effort of
an external AM when compared to a built-in one, if iden-
tical levels of concurrency, robustness and integration are
desired.1 As a result, few if any database extension ven-
dors have undertaken the daunting task of implementing a
custom-designed, high-qualityaccess method for any of the
popular ORDBMSs.

This paper describes the implementation in IDS/UDO of
an alternative approach to access method extensibility. This
approach is based on the generalized search tree (GiST,
originally proposed in [HNP95]), a template search tree

1The advantage of such an iterator interface is that existing external
retrieval engines can easily be interfaced to the database system.
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Figure 1: Access method interfaces – the database extender’s perspective.

structure that is easily extensible in both the data types it
can index and the query types it can support. GiST encapsu-
lates core indexing functionality such as search and update
operations, concurrency and recovery. The GiST interface,
like the existing extensibility interfaces, defines a set of
functions for implementing an external AM. However, the
GiST interface raises the level of abstraction, only requiring
the AM developer to implement the semantics of the data
type that is being indexed and those operational properties
that distinguish a particular AM from other tree-structured
AMs. An AM extension based on this interface typically
needs only a small percentage of the (tens of) thousands
of lines of code required for a full access method imple-
mentation. The level of abstraction offered by the interface
relieves the AM developer of the burden of understanding
concurrency and recovery protocols and the correspond-
ing components of the database servers. Instead, it is the
ORDBMS vendor who implements the concurrency and re-
covery protocols within GiST, using the existing, low-level
extensibility interface to add GiST to the database server
(illustrated in Figure 1 (b)). Given that database extension
vendors tend to be domain knowledge experts rather than
database server experts, this approach to access method
extensibility should result in much higher-quality access
methods at substantially reduced development cost for the
extension vendor. For the ORDBMS vendor, implement-
ing GiST is no more complex than implementing any other
fully integrated AM.

A key ingredient of ORDBMSs is the ability to call user-
defined functions (UDFs) that are external to the database
server. Since the reliability of the server must not be com-
promised, it must take precautionary steps to insulate itself
from malfunctioning UDFs. In IDS/UDO, a UDF is exe-
cuted in the same address space as the server, but calling
a UDF still involves some overhead: installation of a sig-

nal handler to catch segmentation violations and bus errors,2

allocation of additional stack space, if necessary, and check-
ing of parameters for NULL values. This makes a UDF call
considerably more expensive than a regular function call.
In Oracle and DB2, UDFs can be executed in a separate
address space, which even adds to the cost. When dividing
the full functionality of an AM between the database server
and an external extension module, as GiST does, UDF calls
become inevitable, which can become a performance prob-
lem. To address this issue, the original GiST interface was
redesigned to reduce as much as possible the number of
UDF calls. The new interface is also more flexible, giving
external AMs the option of customizing how data is stored
on index pages.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of the GiST data structures; Sec-
tion 3 describes how the GiST concept was implemented
in IDS/UDO and gives examples that highlight some of the
features; Section 4 describes some of the concurrency and
recovery implementation issues that would arise in a typi-
cally ORDBMS and Section 5 compares the performance
of GiST-based R-trees with their built-in counterparts in
IDS/UDO.

2 Generalized Search Tree Overview

A GiST is a balanced tree which provides “template” algo-
rithms for navigating the tree structure and modifying the
tree structure through page splits and deletes. Like all other
(secondary) index trees, the GiST stores (key, RID) pairs in
the leaves; the RIDs (record identifiers) point to the corre-
sponding records on the data pages. Internal pages contain
(predicate, child page pointer) pairs; the predicate evaluates

2These mechanisms are specific to Unix. On Windows NT, similar
mechanisms are used.
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Figure 2: Sketch of a database search tree.

to true for any of the keys contained in or reachable from
the associated child page. Figure 2 illustrates this orga-
nization, which captures the essence of a tree-based index
structure: a hierarchy of predicates, in which each predi-
cate holds true for all keys stored under it in the hierarchy.
A B+-tree [Com79] is a well known example with those
properties: the entries in internal pages represent ranges
which bound values of keys in the leaves of the respective
subtrees. Another example is the R-tree [Gut84], which
contains bounding rectangles as predicates in the internal
pages. The predicates in the internal pages of a search tree
will subsequently be referred to as subtree predicates (SPs).

Apart from these structural requirements, a GiST does
not impose any restrictions on the key data stored within
the tree or their organization within and across pages. In
particular, the key space need not be ordered, thereby al-
lowing multidimensional data. Moreover, the pages of a
single level need not partition or even cover the entire key
space, meaning that (a) overlapping SPs of entries at the
same tree level are allowed and (b) the union of all SPs can
have “holes” when compared to the entire key space. The
leaves, however, partition the set of stored RIDs, so that
exactly one leaf entry points to a given data record.

A GiST supports the standard index operations: SEARCH,
which takes a predicate and returns all leaf entries satisfy-
ing that predicate; INSERT, which adds a (key, RID) pair to
the tree; and DELETE, which removes such a pair from the
tree. It implements these operations with the help of a set
of external functions supplied by the access method devel-
oper. This set of external functions, which forms the GiST
interface, encapsulates the semantics of the data domain to
be indexed and the organization of predicates within the
tree; a specific implementation of this interface is an AM
extension. The combination of generic Gist algorithms for
search, insert and delete operations and the AM extension
constitutes a fully functional AM.

The following overview outlines the generic algorithms
and the role of the AM extension within those algorithms.
To show the extent to which the GiST interface was re-
designed, the GiST interface functions mentioned here are
those of the original GiST design. The redesigned interface
and a descriptions of the its functions in the context of the
generic algorithms are the topic of the next section.

SEARCH

In order to find all leaf entries satisfying the search quali-
fication, we recursively descend all subtrees for which the
parent entry’s predicate is consistent with the search qual-
ification. Interpretation of the search qualification and its
evaluation against data stored in the tree is handled by the
interface function consistent(), which takes a query predi-
cate and a page entry as arguments and returns true if the
entry matches the predicate.

INSERT

Given a new (key, RID) pair, we must find a single leaf to
insert it on. Note that, unlike B-trees, GiSTs allow over-
lapping SPs, so there may be more than one leaf where
the key could be inserted. We traverse a single path from
root to leaf, using as the guiding principle for selecting the
next child pointer to follow an insertion penalty. This is
supplied by the penalty() interface function, which takes
the new key and a page entry as arguments and returns the
corresponding penalty (a numerical value). Conceptually,
the AM extension is presented with the new key and an SP
and computes a penalty value that typically reflects how
much the SP needs to be expanded to accomodate the new
key. At each traversed index page, the entry with the small-
est insertion penalty is chosen for further traversal. The
insertion penalty expresses the AM extension’s insertion
strategy, i.e., which path is taken when locating the target
leaf.

If the target leaf overflows as a result of the insertion, it is
split; if the parent also overflows, the splitting is carried out
recursively. The pick split() interface function determines
the split strategy by specifying which of the entries on a
page move to the new right sibling page during a split.

If the leaf’s ancestors’ predicates do not include the new
key, they must be expanded, so that the path from the root to
the leaf reflects the new key. The union() interface function
computes the expanded predicate as the union of the old
SP and the new key. Like page splitting, expansion of
predicates in parent entries is carried out recursively until
we find an ancestor page whose predicate does not require
expansion.

DELETE

In order to find the leaf containing the key we want to delete,
we again traverse multiple subtrees as in SEARCH. Once the
leaf is located and the key is found on it, we remove the
(key, RID) pair and, if possible, shrink the ancestors’ SPs.
The union() interface function computes the contracted SP
as the union of all the entries on the corresponding page.

Although the GiST abstraction prescribes algorithm for
search and update operations, the AM designer still has
full control over clustering, page utilization and the subtree
predicates, which are the performance-relevant structural
characteristics of an index. The insertion and split strategies

701



of an AM extension, expressed by the interface functions
penalty() and pick split(), determine where predicates are
placed and how they are moved around; they control page
utilization and clustering. The subtree predicates, which
greatly influence the performance of search operations, are
not interpreted by the GiST algorithms directly; to GiST,
they are only sequences of bytes. The AM extension deter-
mines the semantics of those predicates and communicates
this through the GiST interface functions consistent() and
union().

3 GiST-Based Index Extension Architecture
When implementing a GiST-based AM extension archi-
tecture in a commercial-strength ORDBMS, several issues
need to be addressed:

� The existing form of datatype extensibility needs to
be retained: In some ORDBMSs, the built-in AMs
are extensible in the type of data they can index. For
example, a B-tree can be made to work with character
strings and user-defined data. It is only required that
the data type to be indexed has some particular char-
acteristics (such as a defined total order in the case of
a B-tree). In order for an AM to index this new data
type, the data type implementor need only provide
a set of functions that express the particular charac-
teristics required by the AM (in the B-tree example,
this would be a comparison function). This kind of
datatype-extensible indexing is already a standard fea-
ture in currently at least two ORDBMSs (Informix and
Oracle), and it is desirable that a GiST-based extension
architecture retain this feature.

� UDF calls are expensive and need to be used judi-
ciously: A high number of calls to AM extension
UDFs can have a negative impact on the performance
of index operations and make the case for extensible
indexing less compelling. The original GiST interface
as specified in [HNP95] interacts with the AM exten-
sion on a per-page entry basis, which results in a large
number of UDF calls. A commercial-strength GiST
implementation should reduce this overhead.

� Customizable intra-page storage format: The original
GiST design assumed that index pages are organized
like an unordered collection of data items (page entries
are independent of one another and can be inserted and
removed without maintaining any particular order on
the page). While this is very general, it precludes op-
timization of the intra-page data layout, which can be
used to compress the data or simplify its access. The
B-tree is the most well-known AM that takes advan-
tage of customized intra-page data layout: the page
entries are ordered within a page to avoid full scans
for lookups. Additionally, internal pages compress
interval predicates by storing only the right interval
boundary (and using the left neighbor’s predicate as
the left interval boundary). A GiST-based approach to
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Figure 3: Example of an R-tree in the GiST AM extension
architecture

AM extensibility should not preclude customized page
layouts.

3.1 Architecture Overview

In the IDS/UDO GiST-based AM extension architecture,
the full functionality of an AM is divided up into three
components: the GiST core inside the database server and
the AM extension and a data type adapter in the external
database extension module. Figure 3 shows the example of
an R-tree extension in this architecture.

GiST Core

The generic GiST algorithms, including the concurrency
and recovery protocols, are implemented in the GiST core.
It is part of the database server and interacts with the AM
extension via the redesigned GiST interface, which consists
of 11 functions that each AM extension needs to implement.
Compared to the original GiST interface, which encapsu-
lates data semantics and the split and insertion strategies,
this interface also encapsulates the layout of index pages:
the generic GiST algorithms update pages and extract infor-
mation from them solely through GiST interface functions
calls. All of these function calls into the AM extension are
executed as UDFs, so that the database server is insulated
against failures in the AM extension. In order to reduce
the number of UDF calls, the consistent() and penalty()
functions of the original interface have been converted into
functions that operate on one entire page instead of individ-
ual page entries.

To allow AM extensions to implement customized page
layouts, the GiST core exports a GiST-specific page man-
agement interface as part of the standard server API (SAPI,
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see [Inf98a]). This interface is a very thin layer on top of the
server-internal page management interface. The latter im-
plements a standard slotted page organization and includes
functions to add, update, remove and read page entries,
along with various locking and logging options, as well
as functions to create and free pages. In contrast, the ex-
ported, GiST-specific interface is greatly simplified, being
stripped off all logging and locking-related functions and
parameters. Furthermore, no page creation and deletion are
possible and the target page of each function is implicit (it
is the currently “active” page in the tree, i.e., the page that
is being traversed, inserted into, etc.). These restrictions do
not limit the AM developer’s page layout design, but they
reduce the potential for doing unwanted damage (since log-
ging, locking and page creation and deletion are handled by
the core GiST algorithms, not the AM extension, exposing
this functionality to the AM would have no benefit). Also,
calls to SAPI functions from the AM extension execute as
regular C function calls within the server address space, so
there is no need to “ship” the currently active page to the AM
extension; copy overhead is therefore avoided. ORDBMSs
that execute UDFs outside the server address space could
employ careful mapping of address space regions to obtain
the same effect.

AM Extension

The AM extension implements the GiST interface and re-
sides in an extension module outside the database server.
The AM extension itself specifies an interface, the extension
interface, that encapsulates the behavior of the data it can
index. This interface contains all the functions needed for
the supported query operators and to implement the split and
insertion strategies. For example, the B-tree extension’s in-
terface specifies a comparison function, which is needed to
support range queries and perform insertions. The R-tree
extension’s interface specifies a minimum of seven func-
tions: four of those (namely overlap(), contains(), equal()
and within()) implement the corresponding search opera-
tors, while the other three ((union(), size() and intersect())
are used in the implementations of the split and insertion
strategies.

An extension’s interface is implemented for every
datatype to be indexed by a datatype adapter module. For
performance reasons, calls by the AM extension to the
adapter module are executed as regular C function calls.
Since the AM extension functions themselves are called as
UDFs, the database server is still insulated from failures in
any of the external functions.

The AM extension implements its desired page layout
using the GiST-specific page management interface ex-
ported by the server. Due to the modular nature of the
architecture, user-defined page layouts can be implemented
as libraries and reused within other AM extensions (indi-
cated in Figure 3 for the R-tree extension). A standard page
layout, which implements the original GiST unordered page
layout, is available for AM extensions that do not require
customization.

In the current implementation, the B-tree extension oc-
cupies about 500 lines of code, excluding comments. The
R-tree extension occupies around 800 lines of C code, 150
of which are calls to the unordered page layout and could
have been generated automatically. The unordered page
layout library is fairly small itself, taking up only about 600
lines of code.

Datatype-specific AM adapter

This user-defined component implements an AM exten-
sion’s interface for a particular datatype. Typically, datatype
adapters are fairly small: our B-tree/integer adapter con-
sists of a 10-line comparison function. An R-tree adapter
for simple geospatial objects occupies less than 300 lines
of code.

3.2 GiST Interface

The functions of the GiST interface are summarized in Ta-
ble 1. To provide context, I will go through each index
operation chronologically, explaining each interface func-
tion as it is called by the generic algorithm.

Each of the GiST interface functions requires as a pa-
rameter a pointer to the datatype adapter module, through
which the AM extension calls the datatype-specific func-
tions. The GiST core obtains this pointer by calling a UDF
that is registered with the database for the specific AM ex-
tension/datatype combination. The adapter itself is an array
of pointers to functions that implement the AM extension’s
interface.

SEARCH

To guide tree traversal, the generic search algorithm calls
the search() function, which, given the currently traversed
page, returns the slot indices of those entries that match
the query descriptor. For leaf pages, the matching items’
heap pointers and predicates—extracted with the get key()
function—are returned to the query executor. For internal
pages, the child pointers are extracted from the matching
items and stored on a stack for future traversal. The query
descriptor is assembled by the parser and passed as a param-
eter into the search() function, which then uses SAPI func-
tions to extract the operator and the qualification constants.
These server interface calls can involve catalog lookup over-
head, which the AM extension may want to avoid incurring
for each traversed page. The begin scan() function, called
before traversal begins, gives the AM extension an oppor-
tunity to extract and store the necessary information from
the query descriptor, which is then passed into the search()
function (as the state ptr parameter). When the search op-
eration is finished, end scan() is called to free up the data
allocated in begin scan().

INSERT

The insertion operation begins by traversing the tree from
the root to the insertion target leaf, at each page on the path
picking as the next subtree to traverse the child pointer of
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Function Input Parameters Output Parameters Purpose

insert() predicate, heap ptr, adapter insert (predicate, heap ptr) entry on
page

remove() slots[], num slots, adapter remove items corresponding to
slots[] from page

update pred() slot num, key, adapter update predicate part of entry on in-
ternal page

begin scan() query descr, adapter state ptr transform query descriptor into AM-
specific format

search() query descr, state ptr, adapter matches[], num matches return slot indices of matching items
on page

end scan() state ptr, adapter deallocate data allocated in
begin scan()

get key() slot num, adapter key extract single entry’s predicate from
page

pick split() adapter, orig SP right entries[], num right,
left SP, right SP

determine which entries of a page are
to be moved to the new right sibling
page and compute the SPs for the
resulting left and right page

find min pen() new key, adapter slot num find page entry with smallest inser-
tion penalty on internal page

union() SP, is valid SP, new key,
adapter

SP, SP changed compute a page’s SP

eq op() adapter returns AM-specific equality opera-
tor number

Table 1: GiST interface summary

the minimum-penalty entry returned by the find min pen()
interface function. At the leaf, the insert() interface function
physically adds the new item to the leaf page, or signals an
overflow, at which point a split is performed. To perform
the split, the pick split() function returns the slot numbers
of the entries to move to the new right sibling, along with
the new SPs for the left and right page produced by the
split. The split is then installed in the parent: the old SP
for the left page is updated via update pred() and a new
entry for the new right page is inserted into the parent with
the insert() function. Recursive splitting due to parent page
overflows are handled in the same way. The actual splitting
of the original target page is performed by creating the new
right sibling as an exact copy of the page and then removing
the unnecessary entries from both pages with the remove()
interface function. After the split has been completed, the
insertion of the new data item can be re-attempted.

If the target page does not overflow, the insertion pro-
ceeds without a page split, but must check after calling
insert() whether the target leaf’s SP needs to be updated.
This is achieved with a call to the union() interface function,
which computes the new SP, given the old one and the new
item, and also indicates whether the SP has changed. If it
has changed, it is installed in the corresponding entry in the
parent page with the update pred() interface function. If
this causes the parent’s SP to change, the SP updates are

performed recursively.

DELETE

There are two scenarios for a delete operation. If it is
preceded by a search operation in the same index, the leaf
that holds the item to be deleted has already been located,
and the deletion of the item can be performed immediately
via the remove() interface function. If an initial lookup of
the target item is necessary, it is performed like a search
operation for an equality operator. The query descriptor
is assembled using the operator number returned by the
eq op() interface function.

The next two sections sketch the implementations of two
particular AMs to illustrate the flexibility of the GiST inter-
face.

3.3 Example: GiST-Based B-Trees

The B-tree extension implements a sorted page layout,
which it maintains during insert() calls with the help of
the datatype-specific comparison function. The remove()
function compacts the slots after deleting the requested en-
try from a page. The search() and find min pen() functions
perform a binary search, again using the datatype-specific
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Figure 4: K-d-tree example

comparison function, to locate the range of entries that
match the query descriptor or to find the entry for the sub-
tree that is appropriate for the new key.

B-trees partition the data space at each level of an index
and therefore an insertion never causes an SP to expand.
As a result, the union() function only indicates that the SP
has not changed. In a simple B-tree extension, the get key()
function would only return a pointer to the predicate stored
on the page. For B-trees that support prefix compression for
string keys, the get key() function would need to assemble
in a private buffer the full string predicate of the entry
from the entries on the page and return a pointer to that
buffer. The update pred() function simply overwrites an
entry’s predicate with the new data; in the case of prefix
compression, the new predicate is compared to neighboring
page entries to determine the compressed predicate.

Predicates in internal pages store only the right boundary
of the interval they represent. The rightmost entry of a page
carries a 0-length predicate to signal1, which requires the
extension’s binary search routine to filter out such predicates
before calling the datatype’s comparison function.

3.4 Example: K-d-tree Page Layout

The k-d-tree [Ben75] is a multidimensional binary search
tree that is very efficient for storing iso-oriented rectan-
gles that partition a given space. They are used in hB-
trees [LS90], a multidimensional point access method that
partitions the data space, as the page layout on non-leaf
pages. Figure 4 shows an example of six rectangles in
2-dimensional space and their k-d-tree representation. By
organizing rectangles into a tree structure, sides that are
common to multiple rectangles need only be stored once,
resulting in space savings. On the other hand, each rect-
angle in a k-d-tree needs to refer to the nodes on its path
to reconstruct its coordinates. A simple, unstructured page
layout cannot map this hierarchical structure efficiently into

a sequence of page entries (it could extract every rectangle
from the tree and store each one as a separate page entry
with its full set of coordinates, but the advantages of the k-
d-tree data structure in terms of compression and searching
would be lost).

A k-d-tree page layout can be implemented by mapping
each node of the k-d-tree onto a page entry. Internal node
entries have four components: the coordinate value, two
pointers to child nodes (with pointers being stored as slot
indices) and one pointer back to the parent node. The root
node entry is assigned slot 0 on every page, and is stored
similarly to internal nodes, but without the parent pointer.
Leaf node entries represent data rectangles, which are stored
as a parent pointer and a heap pointer—the predicate data
can be recovered from the ancestor nodes. Figure 5 illus-
trates this for the left branch (representing data rectangles
a, b and c) of the k-d-tree shown in Figure 4.

The search() function traverses the k-d-tree and returns
the slot indices of the matching k-d-tree leaf node page
entries. The get key() function, given a slot index of a k-d-
tree leaf entry, can reconstruct the corresponding rectangle
by traversing the tree from the leaf to the root. The insert()
function adds a new rectangle to the tree by creating a
new k-d-tree leaf entry and an entry for the required new
internal k-d-tree node. The remove() function reverses this
process, removing both the k-d-tree leaf and internal node
page entries. Both update functions must be careful not
to alter the existing slot assignment, otherwise they will
invalidate the k-d-tree child node pointers stored in the other
page entries.

Since a k-d-tree partitions the data space, SPs do not
expand and the union() function signals that to the caller.
For the same reason, a new key can only go into one spe-
cific subtree, which the find min pen() function finds by
traversing the k-d-tree. If the split strategy is to bisect the
k-d-tree at the root, the pick split() function traverses the
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right subtree of the root and returns the slot indices of its
leaf nodes, together with SPs for the left and right page of
the split, which can be constructed from the root.

3.5 Summary

The redesigned GiST AM extension architecture addresses
all three issues mentioned at the beginning of this section:

� Datatype extensibility: By separating the external por-
tion of an AM into an AM extension and a datatype
adapter, full datatype extensibility of GiST-based,
user-defined AMs can be achieved.

� UDF call overhead: By changing the level of abstrac-
tion of the GiST interface from a call-per-entry inter-
face as in the original GiST specification to a call-per-
page interface, the number of UDF calls required by
index operations is reduced significantly.

� Page layout customization: A further advantage of the
call-per-page interface is that it hides the details of
the page layout from the GiST core, allowing the AM
extension to customize page layout via the SAPI page
management interface. This additional flexibility does
not necessarily come at the price of an increased imple-
mentation effort for the AM developer, because page
layout functionality can be separated into libraries and
re-used across AM extensions.

Furthermore, it has a number of additional advantages
over the current state-of-the-art iterator-style AM extension
interfaces:

� AM development is greatly simplified. The above-
mentioned B-tree and R-tree extensions were written
and debugged in a matter of hours rather than weeks or
months. Also, page layout code can be reused across
AMs very easily, because it is separated from concur-
rency and logging considerations. With custom lock-
ing and logging protocols intermixed with page layout
functionality, such reuse is normally not possible.

� AM stability is improved, because an AM extension
is implemented in terms of a (relatively) stable GiST
interface and need not rely on interfaces to server-
internal services, such as the lock and log manager.

� Intricate concurrency and recovery protocols need only
be implemented and tested once, which greatly im-
proves reliability (and oftentimes performance, be-
cause externally-developed AMs tend to have some-
what less efficient protocols).

� Despite part of an AM being outside the server, the
indices generated by that AM are still fully integrated
into the DBMS, with all the advantages: integrated
storage management, backup and recovery, support
for SQL isolation semantics, built-in concurrency.

4 Implementation Issues
The implementation of the GiST AM extension architecture
in IDS/UDO includes concurrency control and recovery.
Despite the changes to the GiST interface in the IDS/UDO
implementation, the implemented protocols follow mostly
what is described in [KMH97]; only in some cases did they
need to be adapted. This section describes the implementa-
tion details of the protocols.

4.1 Concurrency Control

The locking protocol that allows search and update oper-
ations to execute concurrently in the tree is an adaption
of the B-link tree technique. All the pages at each level
are chained together via links to their right siblings; the
addition of this rightlink allows traversing operations to
compensate for missed splits by following rightlinks. For
this strategy to work, a traversing operation must be able to
(1) detect a page split and (2) determine when to stop fol-
lowing rightlinks (a page can split multiple times, in which
case the traversing operation must followas many rightlinks
as there are missed page splits). To this end, every page
is extended with a sequence number (PSN) in addition to
the rightlink. During a page split, a global counter variable
is incremented and its new value assigned to the original
page’s PSN. The new right sibling page receives the orig-
inal page’s old rightlink and PSN. A traversing operation
can now detect a split by memorizing the global counter
value when reading the parent entry and comparing it with
the PSN of the current page. If the latter is higher, the page
must have been split and the operation follows the current
page’s rightlink until it sees a page with a PSN less than or
equal to the one originally memorized.

A key component is the global counter variable used to
generate page sequence numbers. The counter needs to be
incremented atomically and needs to be recoverable in or-
der for split detection to work after a crash. The original
paper advocates using the log sequence number of the most
recently written log record as a system-global counter vari-
able. This design choice is not possible in IDS/UDO, so in-
stead each index is equipped with an anchor page that holds
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an index-global counter, among other things. Update oper-
ations only consist of simple increment operations, which
results in a short critical section around the update and
therefore keeps contention low. Making the counter vari-
able recoverable involves writing log records; to amortize
the cost of a log write, we only log every 100th increment.
This logging is done in advance of the actual increments,
so that the logged value nevers falls behind any actual PSN
in the index. Putting the counter variable “inside” the in-
dex simplifies the implementation considerably, because no
changes to server-internal data structures and their recovery
are necessary. So far, the degree of concurrency that this
allows seems to be adequate.

4.2 Recovery

The GiST logging protocol supports high-concurrency
transactional update operations on the index trees by sepa-
rating them into their content-changing (item insertion and
deletion at the leaf level) and structure-modifying parts
(page splits, parent entry updates, page deletions). The
content change is logged as part of the initiating transac-
tion, whereas the structure modification is logged as an in-
dividually committed atomic unit of work (also referred to
as atomic actions [LS92] or nested top actions [MHL+92]
in the literature). This protocol is not affected by the API
change in the IDS/UDO implementation, except for a small
detail. When redoing or undoing a leaf insertion or deletion
operation, it is not sufficient to perform a simple insertion
or deletion of a single page entry, because the AM extension
might implement these operations as a sequence of calls to
the page interface. Instead, the recovery process must call
the AM extension’s insert() and remove() functions.

5 Performance Measurements
A comparison of GiST-based R-trees with the built-in R-
trees available in IDS/UDO 9.2 shows that GiST-based AMs
not only enjoy software engineering benefits, but can also
offer higher performance than built-in AMs with datatype
extensibility. As mentioned in Section 3.1, the built-in
R-tree can be used to index any datatype by supplying
datatype-specific functions that implement the query op-
erators and some additional functions needed for splitting
and insertion (namely size() and union()). These datatype-
specific functions are provided by the extension module that
implements the user-defined type and execute as UDFs. The
performance comparison involves individual search and in-
sert operations on a three-level R-tree, which were executed
on a Sun machine with a 167MHz UltraSparc CPU. The
timings were obtained with the quantify profiling tool, and
show the number of cycles needed for full SQL SELECT
and INSERT statements.

Extensibility functionality—both AM and datatype
extensibility—involves additional cost in comparison to
purely hardwired AMs. This cost consists of:

� function descriptor setup: Before calling a UDF, a
handle to it must be obtained, which can involve a

Search
R-tree

GiST

Split
R-tree

GiST

2,000,000 cycles

Insert
R-tree

GiST

500,000 cycles

1,000,000 cycles

Figure 6: Comparison of GiST-based and built-in R-trees
(shaded portion indicates UDF call overhead)

catalog lookup and permissions checking.

� UDF call overhead: The cost of a single UDF call
in IDS/UDO, which is executed in the same address
space as the database server, is around 1350 cycles for
the test scenario described in this section. In other
ORDBMS, a UDF call might involve a context switch
and interprocess communication, which would make
it far more expensive.

The total execution times, excluding time spent in oper-
ating system calls, for three different operations is shown in
Figure 6. The operations are: a select with a rectangle con-
tainment qualification that retrieves only a single rectangle,
but traverses 78 pages in the tree; an insert operation; an
insert operation that causes the leaf page to split.

When the built-in R-tree executes a search, it calls the
rectangle contains() UDF for every entry on the traversed
leaf pages (the rectangle overlaps() UDF for entries on tra-
versed internal pages), resulting in a total of 1359 UDF calls.
In contrast, the GiST-based R-tree only calls the search()
UDF once for every page it traverses, requiring only 80
UDF calls (78 plus 2 for begin scan() and end scan()). Dur-
ing the insertion of a new item, the built-in R-tree makes
182 UDF calls, most of these while checking the traversed
internal pages for the best subtree to insert in. The GiST-
based R-tree subsumes those calls into a single call to the
find min pen() UDF per page, and thereby reduces the total
number of calls to only four (two to find min pen(), one to
insert() and one to union()). When the insertion causes the
leaf page to split, the performance gap widens even more:
the built-in B-tree makes 704 UDF calls, most of those to
find out how to split the page, whereas the GiST-based R-
tree only needs 66 UDF calls, 56 of these during the split
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to extract and insert keys on the new right page.
In all three scenarios, the high number of UDF calls in

the built-in R-tree causes it to perform substantially worse
than the GiST-based R-tree, resulting in performance losses
between 14 and 40 percent. The built-in R-tree has a slight
advantage when it comes to function descriptor setup (it
uses fewer UDFs, which explains why performance of both
AMs is not identical when UDF call overhead is subtracted),
but this cannot make up for the large number of UDF calls.

6 Summary

This paper presents a GiST-based approach to extensible
indexing implemented in IDS/UDO. The GiST abstraction
allows a clean separation of the functionality of an AM into
generic tree search and update algorithms as well as generic
concurrency and recovery protocols; the AM-specific code,
which consists of data domain-specific code and split and
insertion strategies, resides in an extension module outside
the database server. This has two advantages, that have
previouslynot been realized together: (1) the AM developer
need not be concerned with the internals of the database
server in general and with the intricacies of concurrency
and recovery protocols in particular, (2) the AM is tightly
integrated into the database from an operational point of
view, offering the same high degree of concurrency and
reliability as built-in AMs. The savings in implementation
time of new AMs using this architecture are substantial: the
B-tree and R-tree extensions are both below 1000 lines of
C code, and were written and debugged in a matter of hours
rather than weeks or months.

The IDS/UDO implementation of this approach fea-
tures a GiST interface that allows the external AM de-
veloper to take full control of the internal layout of index
pages. Additionally, this interface also reduces UDF calling
overhead, which can degrade the performance of datatype-
extensible AMs. On average, an insert or search operation
will only make one UDF call per visitited page. With
built-in datatype-extensible AMs, this number can be much
higher. A comparison of GiST-based and built-in R-trees
in IDS/UDO demonstrates this effect: although the built-
in R-tree has lower initial setup cost, the large number of
UDF calls reduces performance between approximately 14
and 40 percent for single insertion and search operations in
comparison to the GiST-based R-tree.
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