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Abstract

The data volume of Partial Differential Equation (PDE) based ultra-large-scale scien-

tific simulations is increasing at a higher rate than that of the system’s processing

power. To process the increased amount of simulation data within a reasonable

amount of time, the evolution of computation is expected to reach the exascale level.

One of several key challenges to overcome in these exascale systems is to handle the

high rate of component failure arising due to having millions of cores working to-

gether with high power consumption and clock frequencies. Studies show that even

the highly tuned widely used checkpointing technique is unable to handle the fail-

ures efficiently in exascale systems. The Sparse Grid Combination Technique (SGCT)

is proved to be a cost-effective method for computing high-dimensional PDE based

simulations with only small loss of accuracy, which can be easily modified to provide

an Algorithm-Based Fault Tolerance (ABFT) for these applications. Additionally, the

recently introduced User Level Failure Mitigation (ULFM) MPI library provides the

ability to detect and identify application process failures, and reconstruct the failed

processes. However, there is a gap of the research how these could be integrated

together to develop fault-tolerant applications, and the range of issues that may arise

in the process are yet to be revealed.

My thesis is that with suitable infrastructural support an integration of ULFM

MPI and a modified form of the SGCT can be used to create high performance robust

PDE based applications.

The key contributions of my thesis are: (1) An evaluation of the effectiveness of

applying the modified version of the SGCT on three existing and complex applica-

tions (including a general advection solver) to make them highly fault-tolerant. (2)

An evaluation of the capabilities of ULFM MPI to recover from a single or multi-

ple real process/node failures for a range of complex applications computed with

the modified form of the SGCT. (3) A detailed experimental evaluation of the fault-

tolerant work including the time and space requirements, and parallelization on the

non-SGCT dimensions. (4) An analysis of the result errors with respect to the num-

ber of failures. (5) An analysis of the ABFT and recovery overheads. (6) An in-depth

comparison of the fault-tolerant SGCT based ABFT with traditional checkpointing on

a non-fault-tolerant SGCT based application. (7) A detailed evaluation of the infras-

tructural support in terms of load balancing, pure- and hybrid-MPI, process layouts,

processor affinity, and so on.
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Chapter 1

Introduction

This thesis addresses the challenges and opportunities of achieving high performance

fault tolerance of applications running on the upcoming exascale systems.

1.1 Problem Statement

Numerical solution of Partial Differential Equations (PDEs) is an important problem

in computational science as PDEs are the basis of simulating all physical theorems1.

The challenges that are encountered in all scientific simulations are thus essentially

the same as solving the PDEs.

Today’s largest High Performance Computing (HPC) systems consist of thousands of

nodes which are capable of concurrently executing up to millions of threads to simu-

late the PDE based complex scientific problems within a feasible amount of time. The

nodes within these systems are connected with high-speed network infrastructures

to minimize communication costs [Ajima et al., 2009]. Significant effort is required to

exploit the full performance of these systems. Extracting this performance is essen-

tial in different research areas such as climate, the environment, physics and energy

which all are characterized by the complex scientific models they utilize.

In the near future, besides exploiting the full performance of such large systems,

dealing with component failures will become a critical issue. Since the failure rate of

a system is roughly proportional to the number of nodes of the system [Schroeder

and Gibson, 2006], current HPC systems consisting of thousands of nodes experience

significant number of component failures. For instance, a 382-days study on the 557

Teraflops Blue Gene/P system with 163, 840 computing cores at Argonne National

Laboratory showed that it experienced a failure (hardware) every 7.5 days [Snir et al.,

2014]. Since the typical size of HPC systems is becoming larger as we approach exas-

cale computing, the rate at which they experience failures is also increasing [Gibson

1 “. . . partial differential equations are the basis of all physical theorems. In the theory of sound
in gases, liquid and solids, in the investigations of elasticity, in optics, everywhere partial differential
equations formulate basic laws of nature which can be checked against experiments.”

– Bernhard Riemann (1826-1866)

1



2 Introduction

et al., 2007]. A study in [Snir et al., 2014] assumed the Mean Time To Failure (MTTF)

of an exascale system as 30 minutes.

Besides exascale computing, fault tolerance is also important in other areas, such

as cloud computing, and scenarios, such as low power or adverse operating con-

dition of the system. (a) In the large-scale and complex dynamic environments of

cloud computing, there are several reasons such as expansion and shrinkage of the

system size, update and upgrade of the system, online repairs, intensive workload on

servers, and so on, that can induce failures and faults. The shrinkage of system com-

ponents is required to exclude the faulty or high costly components of the system;

whereas the expansion of system components is required to balance the server loads

of the system. (b) In order to reduce the overall cost, sometimes system components

(i.e., processors) are designed as very cheap to operate with low power consumption,

which causes failures even with the moderate number of system components. More-

over, adverse operating condition scenarios also cause failures. The common type

of failures due to these scenarios is ‘bit-flips’ in memory or logic circuitry, which is

termed as soft faults.

The most commonly used Checkpoint/Restart [Hursey et al., 2007] technique, which

restarts the application from the recently checkpointed state in the event of failures,

has several limitations to achieve fault tolerance in exascale systems. One of the key

limitations is that a large amount of time required to write a checkpoint could be

close to the MTTF. Although a parallelization of the checkpoint write and compu-

tation/communication reduces the overall time, the key limitation is still in effect,

together with a large amount of time required to read the checkpoint at restarts.

Furthermore, the data volume of the future ultra-large-scale scientific simulations is

expected to be increased, which in turn will increase the checkpoint write and read

times.

Thus, there is an urgent need to develop large-scale fault-tolerant applications

using application/user level or other non-Checkpoint/Restart technique based re-

siliency. Traditionally, large-scale applications use the Message Passing Interface (MPI)

[Message Passing Interface Forum, 1993], which is a widely used standard for paral-

lel and distributed programming of HPC systems. However, the standard does not

include methods to deal with one or more component failures at run-time. In order

to address this problem FT-MPI [Fagg and Dongarra, 2000] was introduced to enable

MPI based software to recover from process failure (see [Ali and Strazdins, 2013]

for details). However, development of FT-MPI was discontinued due to the lack of

standardization [Bland, 2013b]. Recently, the MPI Forum’s Fault Tolerance Working

Group began work on designing and implementing a standard for User Level Failure

Mitigation (ULFM) [Bland, 2013a] which introduces a new set of tools to facilitate the

creation of fault-tolerant applications and libraries. These tools provide MPI users the

ability to detect, identify, and recover from process failures. It is a great opportunity

for application developers to use these tools to make their applications fault-tolerant.

Currently, there is a lack of practical examples which demonstrate the range of

issues encountered during the development of fault-tolerant applications. Moreover,

the amount of literature detailing the implementation and performance of the pro-
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posed standard is very limited. Some of the work that is available assumes a fail-stop

process failure model, i.e., a failed process is permanently stopped without recover-

ing and the application continues working with the remaining processes [Hursey and

Graham, 2011]. However, continuation with only the alive processes is not sufficient

for all applications. As for example, some applications do not tolerate a reduction of

the MPI communicator size due to maintaining a strict load balancing and, thus, re-

quire a recovery of the failed processes in order to finish the remaining computation

successfully with balanced loads. Even the applications which are careless about load

balancing require a major re-factoring effort in implementation if the communicator

size is changed.

There appears to be an even greater lack of research on how to make existing,

complex and widely used parallel applications fault-tolerant. In this thesis, we

demonstrate how a general advection solver, and three existing real-world appli-

cations (the GENE gyrokinetic plasma simulation, Taxila Lattice Boltzmann Method

application, and Solid Fuel Ignition application codes) can be made fault-tolerant

using ULFM MPI and a form of algorithm-based (application/user level) fault toler-

ance obtained via modification of the Sparse Grid Combination Technique (SGCT).

Our implementation and analysis include the restoration of failed processes and MPI

communicators on either the existing or new (spare) nodes.

1.2 Scope and Contributions

There are different kinds of faults that may occur in a system. Based on the symp-

toms and consequences of each category, different types of strategies to follow to

handle them. The level of effort needed to identify and handle them may vary from

one category to the other. Out of many categories, some common types of faults are

transient (faults that occur once and then disappear), intermittent (faults that occur,

then vanish again, then re-occur, then vanish), permanent (faults that continue to ex-

ist until the faulty component is repaired or replaced), fail-stop (faults that define a

situation where the faulty component either produces no output or produces output

that clearly indicates that the component has failed), and Byzantine (faults that define

a situation where the faulty component continues to run but produces incorrect re-

sults). Although it is desirable that a fault-tolerant technique will be able to handle

all types of faults, but in practice, it is too hard to design and implement such a

technique.

In this thesis, we are not handling all the above mentioned types of faults. The

scope is narrowed down to handle only the permanent or fail-stop type of faults.

More specifically, we are looking at the problem of recovering from the application

process failures, caused by the hardware or software faults, from within the applica-

tion.

The aim of this thesis under the stated scope is to:

• Demonstrate how ULFM as an MPI standard may be used to create a fault-

tolerant application, and evaluate its current effectiveness. Our approach fea-
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tures the preservation of communicator size and rank distribution after faults,

the preservation of load balance, and either an exact or approximate data re-

covery for the failed processes using the SGCT based general advection solver.

• Detail how a scalable SGCT algorithm can be integrated not only into a general

advection solver, but also into three existing and complex applications to make

them highly fault-tolerant, and evaluate their effectiveness.

• Evaluate the capabilities of ULFM MPI to recover from a single or multiple real

process/node failures for a range of complex applications.

• Perform a detailed experimental evaluation of the integrated applications in-

cluding time and memory requirements, and parallelization on the non-SGCT

dimensions.

• Perform an analysis of the result errors with respect to the number of failures,

overhead due to computing some extra unknowns to achieve the fault tolerance,

and an analysis of the recovery overheads. The latter includes a comparison

with traditional checkpointing on a non-fault-tolerant SGCT based application.

• Perform a detailed analysis of the SGCT algorithm and the applications in

terms of load balancing, pure- and hybrid-MPI, process layouts, processor affin-

ity, and so on.

1.3 Thesis Outline

The body of this thesis is structured around the key contributions outlined above.

Chapter 2 provides an overview of fault tolerance and surveys relevant fault-tolerant

literature. It provides more detailed background on previous fault tolerance tech-

niques. Chapter 3 gives an overview of our implementation, and experimental plat-

form.

Chapters 4, 5, and 6 comprise the main body of the thesis, covering the key contri-

butions. Chapter 4 evaluates the effectiveness of ULFM MPI for the implementation

of application level resiliency in the application. This includes a detailed implemen-

tation guidelines for the detection, identification, and recovery of process and node

failures with the ULFM MPI semantics. Chapter 5 evaluates the effectiveness of ap-

plying the fault-tolerant SGCT on three different types of existing complex parallel

applications. At the same time, this chapter also evaluates the application level re-

covery overheads implemented by ULFM MPI on these applications, and compares

these with the built-in checkpointing technique. Chapter 6 provides a detailed anal-

ysis of the infrastructural support and the evaluation of applications on this infras-

tructure with respect to combination algorithm’s scalability, load balancing, pure-

and hybrid-MPI, process layouts, processor affinity, and so on.

Finally, Chapter 7 concludes the thesis, describing how the contributions have

identified, quantified, and addressed the challenges of achieving high performance

fault tolerance of varieties of PDE based complex applications on the targeted exas-

cale systems. It further identifies the key future directions for research.



Chapter 2

Background and Related Work

This chapter provides background information on fault tolerance basics, failure re-

covery techniques, MPI-level fault tolerance, the classical and fault-tolerant versions

of the SGCT (computational model for the high-dimensional data processing), and

related work to place the research contributions in context.

This chapter starts with a brief introduction to the field of fault tolerance in Sec-

tion 2.1. Section 2.2 describes failure recovery techniques and Section 2.3 describes

some MPI library based fault tolerance. A computational model (the SGCT) used

for the high-dimensional data processing and its robust version are described in Sec-

tion 2.4. An overview of the SGCT algorithm is presented in Section 3.1. Section 2.5

describes the research closely related to this thesis.

Sections 2.4 and 2.5 of this chapter are from the work published jointly with

others as a part of the paper titled “Complex Scientific Applications Made Fault-

Tolerant with the Sparse Grid Combination Technique” [Ali et al., 2016]. Section 2.4,

of this chapter is also published jointly with others as a part of the paper titled “A

Fault-Tolerant Gyrokinetic Plasma Application using the Sparse Grid Combination

Technique” [Ali et al., 2015].

2.1 Overview of Fault Tolerance

The European Exascale Software Initiative (EESI) began their journey in the middle of

2010 with the hope of creating a common platform to tackle the issues that may arise

in today’s and upcoming HPC systems. This initiative seems as a driving force of

participating in a competition among different nations for building the next genera-

tion supercomputers. For instance, in June 2011, Japanese K computer achieved the

number one placing on the TOP5001 list of the world’s fastest supercomputers, with

a performance in excess of 10 petaflops (1016 floating point operations per second).

But today, China’s Tianhe-2 replacing that positing, with a sustained performance of

33.86 petaflops, which is more than three times as powerful than K. This rate of in-

crease puts HPC well on track to reach the next major milestone - exascale computing

(1018 flops) - by the end of the decade.

1http://www.top500.org/

5
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Achieving this milestone will certainly require major changes to hardware and

software technologies as shown in Figure 2.1. As it will be so hard to increase the

clock frequency in the future, an exascale system is likely to have approximately

one billion processing elements (cores) [Ashby et al., 2010]. Delivering these large

number of elements will require more power. To keep it in an acceptable window,

i.e., around 20 megawatts (MW) compared to 12.66 MW and 17.81 MW for K and

Tianhe-2, respectively, it will require the development of novel architectures, most

likely with increased heterogeneity. Similar to clock frequency, it is hard to increase

the performance of Input/Output (I/O) and memory systems compared to that of the

processing elements. This will cause data movements on and off chip to dominate

other operations, and create I/O bottlenecks on disk operations. This will require

some software side solutions for maximizing local chip workload and placing part of

the file system on the heterogeneous node.

Since the rate of component failures of a system is roughly proportional to the

number of cores of the system [Schroeder and Gibson, 2006], an exascale system

consisting of 1,000 times more cores than either the K computer (705,024 cores) or

Tianhe-2 (3,120,000) will certainly suffer more frequent component failures. The Mean

Time To Interrupt (MTTI), which is generally measured in days for today’s leading su-

percomputers, will fall within the range of an hour in the exascale system due to

this higher failure rate. A failure event analysis research at Los Alamos National

Laboratory (LANL) with 140,000 interrupt events on 21 platforms shows remarkably

similar trends of decreasing MTTI with the increase of number of cores in the system.

2DOE Exascale Initiative Roadmap, Architecture and Technology Workshop, San Diego, December,
2009.

Figure 2.1: Changes required in exascale systems2.
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Figure 2.2: Variation of MTTI with the number of CPUs3.

The results of this work presented in HPC-4 SDI/LCS seminar (October 10, 2007) are

shown in Figure 2.2. Moreover, a study at the Oak Ridge National Laboratory showed

that a 100,000-processor supercomputer with all its associated support systems could

experience a failure every few minutes [Geist and Engelmann, 2002]. Current meth-

ods for dealing with failures – often just re-run the application as failures are very

unlikely to occur in two successive runs – will be unable to cope with this increase in

the frequency of failures. An appropriate and efficient approach capable of handling

such frequent failures on the large systems will be needed to successfully run the

software on these systems.

The sources of such frequent failures include memory soft and hard errors; disks,

file system or I/O node errors (disk reconstruction time); network connection faults

(fibers, connectors, laser, etc.); resource exhaustion (memory, disc quota, etc.); Op-

erating System/run-time/library bugs; hardware errors (power supply, fans, water

valves, water connectors, water pipes, etc.); operators, system administrators, user er-

rors; inconsistent maintenance, i.e., libraries update errors; and so on. An experiment

was carried out in LANL HPC systems over a period of a few years in [Schroeder

and Gibson, 2010] to find out the root causes for system failures (both soft and hard).

It is observed for these systems that hardware is the single largest source of faults,

with 64% of all failures assigned to this category. Software is the second largest con-

tributor, with 18% of all failures. It is also important to consider that the number of

3HPC-4 SDI/LCS seminar, October 10, 2007.
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failures obtained from the undetermined cause is significant. Total failures assigned

to this category is 14%. A detailed root cause information reveals that CPU (42.8%)

and memory DIMMS (21.4%) are the largest fraction of all hardware-related failures.

For the software category, they are “other software” (30.0%), OS (26.0%), and parallel

file system (11.8%). The largest fraction of all environment-related failures are power

outage (48.4%), UPS (21.2%), power spike (15.1%), and chillers (9.8%).

The set of possible solutions to deal with these failures, as reported in [Snir et al.,

2014], is divided into three categories: the hardware approach, the system approach,

and the application approach.

The hardware approach will add additional hardware in an exascale system to

deal with failures on the hardware level. Although this will require the least effort

in porting current applications, it will incur additional power consumption in the

system. Moreover, as the hardware in exascale system becomes more complex, the

software will become more complex and hence error-prone. In this scenario, new

complexities arise in the system due to the introduction of additional hardware.

In the system approach, fault tolerance is achieved by applying both the hardware

and system software in such a way that the application code remain unchanged.

Although it may be convincing that changing the system software is less costly than

that of the hardware, this approach may add additional complexities in the system

and, hence, may increase its energy consumption.

In the application approach, application code is extended to handle resiliency. No

changes in hardware and system software are required. Since there are no additional

costs and complexities due to extra hardware and system software, this approach

may be suitable for exascale platforms. Moreover, application developers have more

options to select the most appropriate resiliency strategy for their applications.

2.2 Failure Recovery Techniques

Some failure recovery techniques are as follows.

Checkpoint/Restart

The classic system-level/automatic fault tolerance technique is the Checkpoint/Restart

[Hursey et al., 2007]. It generally means the process of periodically storing the whole

state of a computation in disk space such that its execution could be restarted from its

recent saved state in the event of a failure. This storing is done in local disk storage or

in remote disk storage or in both. In case of storing the state of large scale application,

each of the tens of thousands of processes writes several gigabytes of data. This

increases the overall checkpoint volume in the order of several tens of terabytes. This

type of checkpointing causes an I/O bottleneck as the I/O bandwidth could not win

the race of speed increment against the computational capabilities. This behaviour

causes up to 25% of overhead in current petascale systems for a particular case as

shown in [Schroeder and Gibson, 2007]. Furthermore, an application will no longer

progressing if the MTTI is shorter than or equal to the application restart time. In

such a scenario, without performing any actual computation, application starts next
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checkpointing just after restarting from the recent checkpoint.

Diskless checkpointing

The diskless checkpointing approach [Plank et al., 1998] is proposed to reduce the over-

head of the Checkpoint/Restart approach. It stores a reduced volume of checkpoint

state data onto compute nodes’ own memory without going to disk. It also needs

some extra nodes to save a checksum of the memory checkpoint states so that it could

be used to recover the memory checkpoints of the failed nodes. Although the per-

formance of this technique is better than that of the disk-based Checkpoint/Restart

method, there is a potentially significant memory I/O overhead to this method, espe-

cially in memory intensive applications. Moreover, the number of additional nodes

to store the checksum will grow in proportion to the number of nodes running the

application.

Replication

The replication technique [Ferreira et al., 2011] is proposed to solve the problem of

large overheads of the Checkpoint/Restart technique and to exempt the require-

ments of storing checkpoints on memory of the diskless checkpointing approach.

The idea of replication is that most applications leave some “wasted” spaces on the

cluster machines on which they are executed. In order to efficiently use those spaces,

multiple copies of the application are executed simultaneously. If there is any failure

occurs, one of the replicated processes taking the charge of the original version of the

application and the computation can continue onwards. This technique is applica-

ble for some types of machines, especially those where the system utilization is not

greater than 50%.

Message logging

The message logging technique [Bouteiller et al., 2003] is proposed to reduce the roll-

back overhead of the Checkpoint/Restart technique. It involves all processes to

checkpoint their states without coordination and logging all communication oper-

ations in a stable media. Thus, in case of any failures, this log is analyzed to restart

the execution of only the crashed processes, rather than every processes, from the

recent local snapshot, and establishing the same communication with the help of the

saved communication log. However, the overhead of this technique is proportional

to the communication volume of the application. A significant amount of penalty is

added by this technique for all messages transferred even if there is no fault through-

out the whole computation.

Task pools with reassignment

The drawbacks of the replication technique can be solved by the task pools with reas-

signment technique. Instead of running multiple copies of the application simulta-

neously, it splits the work into some discrete tasks by a manager at run-time. These

tasks then can be executed by any worker node. In the event of a failure, there is a

provision of reassigning the affected tasks to other nodes. It represents a very effec-

tive method for implementing fault tolerance and is already used in, e.g., standard
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MapReduce algorithms [Dean and Ghemawat, 2008]. However, this method can be

vulnerable to the failure of the manager node responsible for scheduling.

Proactive migration

The proactive migration technique [Chakravorty et al., 2006] is proposed to solve the

problem of recomputing the affected tasks from the beginning of the task pools with

reassignment technique. In order to avoid the recomputation, it predicts the failures

in nodes before they really happen and moves the running applications away from

them before the fault occurs. Theoretically, this would allow applications to run

on fault-prone systems without any modifications. But practically, the performance

monitoring of the nodes must occur sufficiently quickly that the application can be

migrated before the failure does occur. Otherwise, it will not be applicable.

The success of the proactive fault tolerance solutions depends solely on the accu-

rate prediction of the failures and the ranges of failures that it could cover. Prediction

techniques used to achieve fault tolerance should incur less overhead, as well as, the

work lost due to wrong prediction should be small. The state-of-the-art researches

of this category is based on the data mining approaches [Gainaru et al., 2013].

Algorithm-Based or User Level Fault Tolerance

In the Algorithm-Based Fault Tolerance (ABFT) technique [Huang and Abraham, 1984],

numerical algorithms are modified to include methods for detecting and correcting

errors. An extension of this is to develop new algorithms that are naturally resilient

to faults. The major advantage of dealing with faults at the algorithm level is that

the time-to-solution is roughly unchanged in the presence of faults. There may be an

impact in terms of some loss of accuracy, but in many cases these are an acceptable

compromise in order to guarantee a solution within a given time window.

Transactional Fault Tolerance

Transactional fault tolerance concept is closely related to the distributed database sys-

tems. This is used as a way of ensuring data consistency within distributed databases

[Bernstein and Goodman, 1981]. Consistency will be achieved either by completing

the submitted operation to the database successfully, or rolled back the database

operation to a state prior to the operation was attempted. By performing updates

in this atomic fashion, the database is protected from corruption in the case where

the operation failed. With the popularity of concurrency in computing, transactional

memory is introduced in [Herlihy et al., 1993] to assure the programmer that multi-

ple concurrently running processes are not permitted writing on the same chunk of

memory simultaneously. In order to achieve this goal, the ideas of transactions are

currently considered into HPC, including a preliminary discussion of transactional

fault tolerance in the MPI Standard.

2.3 MPI-Level Fault Tolerance

There are several MPI-level fault tolerance techniques available. These are as follows.
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CoCheck

The CoCheck MPI [Stellner, 1996] is a combination of the Checkpoint/Restart and

migration techniques. It uses a single process checkpointer which plays an important

role of migrating the processes by saving the in-flight messages in a safe buffer and

clearing the channel. This is achieved by exchanging a special message between the

processes to indicate the clearance of the channel. If a process receives the special

message, it assumes that there is no in-flight message left in the channel. Otherwise,

it stores the special message in a special buffer as this is the in-flight message. When

finally a process collects either the special or in-flight messages from all the processes

destined to this process, it assumes that there is no ongoing message left in the

channel. Hence, processes can now safely migrate with the checkpointer.

Starfish

The Starfish MPI [Agbaria and Friedman, 1999] combines group communication tech-

nology and the Checkpoint/Restart technique. This group communication technol-

ogy allows the application to run without any disruption in the event that some of

the nodes fail. Failure recovery is achieved by recomputing the part of the appli-

cation which are disrupted due to failures. Recomputation is done either from the

beginning, or from the recent checkpointed state by the Checkpoint/Restart tech-

nique. This is usually performed on the extra nodes added to the application by

the Starfish on-the-fly. This run-time node adding feature allows Starfish to migrate

the application processes from one node to another node with the assistance of the

Checkpoint/Restart technique. Moreover, Starfish has the capability of performing

both the application independent and application dependent fault tolerance.

MPI-FT

MPI-FT [Louca et al., 2000] is a fault-tolerant version of MPI. It performs failure

recovery by means of reassigning tasks to the replacements for the dead processes.

A detection technique is used for the detection of process failures. A centralized

monitoring process (called the Observer), responsible for notifying the failure event

to the rest of the alive processes, performs the recovery action. There are two modes

of the recovery action. The first one performs distributed buffering of message traffics

on each process. When the Observer detects process failures, it performs recovery

by resending buffered messages from all the processes to the replacement processes,

those are originally destined for the dead ones. The second one is based on the idea

of centrally storing every message traffics by the Observer, and resend these to the

replacements for the dead processes.

One of the problems encountered with MPI-FT for performing recovery action is

the recovery of the dead communicator(s). This problem is solved by either prepar-

ing the spawning communicators in advance, covering every cases of the failure

event by creating and using a communicator matrix, or spawning the replacement

processes when the program starts executing. The disadvantages of this technique

are that it pauses the synchronization due to the collective operations responsible

for spawning the communicators, and the alive processes on the new communicator

may have some pending messages destined for the old communicator which need to
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be synchronized.

MPICH-V

MPICH-V [Bosilca et al., 2002] is a fault-tolerant version of MPI combining features

from the uncoordinated Checkpoint/Restart and message logging techniques. With

the MPICH-V run-time support, any application written in standard MPI could be

made fault-tolerant. The key idea is that a Dispatcher coordinates the whole appli-

cation execution by periodically collecting ‘’alive” messages from all the nodes, and

at the same time keeps records of all the communications in stable Channel Memories

(CM). In addition to this, every node checkpoints their task images to a Checkpoint

Server (CS). If any ‘’alive” message is not received for a certain period of time, the

Dispatcher assumes that the particular node is dead, and restarts the execution from

the point of failure with the support of the CS. By this time, if that faulty node re-

joins the system, the duplicate instance removal is managed by the CM. Moreover,

network connection management for the alive and dead nodes is achieved by the

CM.

The service provided by MPICH-V seems to be automatic and transparent to an

application developer. However, periodic monitoring of all the nodes and periodic

checkpointing of all the nodes task images to stable storages incur a large overheads

to the application.

FT-MPI

FT-MPI [Fagg and Dongarra, 2000] offers a number of options for automatic process-

level fault tolerance within the MPI library itself. This is achieved by simply calling

a new communicator creation function, such as MPI_COMM_DUP or MPI_COMM_CREATE,

in the application, with almost no impact on the user code.

FT-MPI provides the following three types of recovery modes to chose from by

an application developer.

• The first recovery mode is SHRINK, which builds a new communicator exclud-

ing the failed processes and shrink the communicator size. Although the alive

processes are ordered in the communicator, but for some applications where

computation depends on the consistent values of the local ranks, this shrinkage

could cause problems.

• The second recovery mode is BLANK. This is similar to SHRINK in the sense

that all the failed processes are removed from the reconstructed communica-

tors. However, without shrinking the communicator size, it replaces them with

invalid process ranks. Although communication with the invalid ranks causes

error, but those are left for future development to replace with new processes

so that there is no disruption in inter-process communication.

• The third and most well-supported recovery mode is REBUILD. It automat-

ically replaces failed processes by the newly created processes. The original

communicator size and the process rank orders are left unchanged. With

default communicator (MPI_COMM_WORLD), newly created processes are auto-

matically restarted with the same command-line parameters as the original
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processes. However, for the other communicators they must be reconstructed

manually.

Initially, FT-MPI was built on the top of Parallel Virtual Machine (PVM) due to the

unavailability of proper MPI run-time. Later, the HARNESS run-time [Fagg et al.,

2001], originally implemented in Java, was rewritten in C to be used for FT-MPI. This

run-time provides important features such as the ability to create new processes,

examining their health, and monitor the status of all processes executing the appli-

cation.

Although FT-MPI had lots of functionalities to provide the fault tolerance sup-

port, it was never adopted into the MPI standard due to the lack of standardization,

and its development was discontinued.

ULFM MPI

User Level Failure Mitigation (ULFM) [Bland, 2013a] MPI can be considered as an at-

tempt of resolving the non-standardization issue of FT-MPI. The MPI Forum’s Fault

Tolerance Working Group began the implementation of standard fault-tolerant MPI

by introducing a new set of semantics on the top of the existing standard MPI li-

brary [Bland, 2013b]. Semantics of the draft standard include the detection and

identification of process failures, propagating the failure information within the alive

processes in the faulty communicator, and so on. Usually process failures are de-

tected by checking the return code of the collective communication routines. With

the run-through stabilization mode [Fault Tolerance Working Group] of ULFM MPI,

surviving processes can continue their operations while others fail. The alive pro-

cesses can form a fully operational new communicator without getting any disrup-

tion from the dead processes. It is also possible to create the replacement processes

for the failed ones to recover the original communicator. Based on the requirements

of the application, either the local or global recovery is also possible.

ULFM MPI supports the coordinated Checkpoint/Restart without modification.

It is also possible to create the uncoordinated Checkpoint/Restart without requiring

the application to restart entirely. The implementation of message-logging techniques

and transactional fault tolerance on the top of ULFM MPI also achieves some bene-

fits. Furthermore, ABFT techniques could be easily integrated with ULFM MPI. For

details, see Chapter 4.

2.4 The Sparse Grid Combination Technique

PDEs are typically solved numerically by first discretizing the domain as points on

a full regular grid. This suffers from the curse of dimensionality, that is, with uniform

discretization across all dimensions there is an exponential increase of the number

of grid points as the dimensionality increases. In order to solve this problem, high-

dimensional PDEs may be solved on a sparse grid [Bungartz and Griebel, 2004] con-

sisting of relatively fewer grid points than the regular isotropic grid.
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Figure 2.3: The Sparse Grid Combination Technique. Gi,j, Gc
I , and G f represent the sub-grid,

sparse or combined grid, and full grid equivalent to the sparse grid, respectively, for the 2D

case. A distinct set of processes computes each Gi,j in parallel via domain decomposition.

Solutions on Gi,j are linearly combined to approximate the solution of G f on Gc
I . Multiple

processes are also running on Gc
I .

2.4.1 Classical Sparse Grid Combination Technique

The Sparse Grid Combination Technique (SGCT) [Griebel, 1992; Griebel et al., 1992b] is

a method of approximating the sparse grid solution which in turn approximates the

full grid solution. Instead of solving the PDE on a full isotropic grid, it is solved on a

set of small anisotropic regular grids referred to as sub-grids or component grids. Finally,

solutions on these sub-grids are linearly combined to approximate the solution on

the sparse grid (or, in this context, called combined grid). For the 2D problem, this

technique is illustrated in Figure 2.3. This technique can be applied in principle to

any PDE, but sufficient smoothness of the solution is required for high accuracy.

Suppose that each sub-grid Gi,j in 2D has (2i+1 + 1)× (2j+1 + 1) grid points with

a grid spacing of hx = 2−i−1 and hy = 2−j−1 in the x and y directions, respec-

tively, where i, j ≥ 0. With a 2D domain, the grid points of Gi,j are {( x
2i+1 ,

y

2j+1 )|x =

0, 1, · · · , 2i+1, y = 0, 1, · · · , 2j+1}. In the more general case, the index space for the

grids will be some finite I ⊂ Nd, where d is the grid dimension, and the set of grids

of interest can be denoted by {Gi, i ∈ I}. If ui denotes the approximate solution of a

PDE on Gi, the combination solution uc
I on grid Gc

I generally takes the form

uc
I = ∑

i∈I

ciui, (2.1)

where the ci ∈ R are the combination coefficients. Clearly, the accuracy of the com-

bination technique approximation depends on the choice of the index space I of the

sub-grids and their respective coefficients. In 2D, good choices of the coefficients are

±1 [Larson et al., 2013a]. For instance, in the classical case, we have for level l the set

I = {(i, j)|i, j ≥ 0, l − 2 ≤ i + j ≤ l − 1} and the combination coefficients are ci,j = 1
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if i + j = l − 1 and ci,j = −1 if i + j = l − 2. This provides the combination formula

uc
I = ∑

i+j=l−1

ui,j − ∑
i+j=l−2

ui,j. (2.2)

Note that level l = 3 for the classical SGCT shown in Figure 2.3.

The computation on sub-grids Gi and their combinations are performed in the

following way. At a time-step ti, PDE instances are computed (solved) concurrently

on each Gi with the corresponding grid points and spacing. This is continued for

T successive time-steps with step-size ∆t. After that, all the solutions ui on Gi are

assembled to get the combined solution uc
I on grid Gc

I for time-step ti+T. Then, uc
I is

projected for all the sub-grids Gi with the properly adjusted weights, and the whole

process is repeated with ti = ti+T.

In this thesis, we use the notion of single and multiple combinations. If the above

mentioned process is not repeated, we call it a single combination. In this case, T

becomes the same as the total number of time-steps applied to compute the solution

on the equivalent full grid G f , say T′. On the other hand, with multiple combinations,

the process is repeated for multiple times, but with T < T′. If we want to perform n

repeated combinations, then T becomes T′/n.

In this thesis, we also use so-called ‘truncated’ combinations [Benk and Pfluger,

2012], where, for the 2D case, each sub-grid has (2i+1 + 1) × (2j+1 + 1) points, for

some (i, j) ≥ (i′ + 1− l, j′ + 1− l). This avoids the problem of minimum dimension

size imposed by some applications. Furthermore, it allows us to avoid the use of

highly anisotropic grids (e.g. G0,l−1), which have been known to contribute least to-

wards the accuracy of the sparse grid solution or cause convergence problems [Benk

and Pfluger, 2012], and enabling us to concentrate process resources on more accu-

rate sub-grids. In this context, we use a different notion of level to that described

previously, which describes how much smaller the sub-grids are relative to some

full grid Gi′,j′ . In particular, a level l ≤ min{i′ + 1, j′ + 1} in this context consists of

sub-grids from the index set

I =

{

(i, j) :
(i′ + 1− l, j′ + 1− l) ≤ (i, j)

i′ + j′ − l ≤ i + j ≤ i′ + j′ + 1− l

}

. (2.3)

Similarly, for the 3D SGCT with a reference full grid Gi′,j′,k′ , a level l ≤ min{i′+ 1, j′+
1, k′ + 1} consists of sub-grids from the index set

I =















(i, j, k) :

(i′ + 1− l, j′ + 1− l, k′ + 1− l) ≤ (i, j, k)

i + j + k ≤ i′ + j′ + k′ + 2− 2l

i + j + k ≥ i′ + j′ + k′ − 2l















. (2.4)

Two levels of parallelism are achieved in the SGCT computation. Firstly, different

sub-grids are computed in parallel. Secondly, each sub-grid, Gi, is assigned to a

different process group and is computed in parallel via domain decomposition.
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(a) (b) (c)

Figure 2.4: A depiction of the 2D SGCT. ‘+’, ‘–’, and ‘o’ on a sub-grid denotes the computed

solution on that sub-grid is added, subtracted, and ignored, respectively, on the combined

solution. ‘x’ on a sub-grid denotes the solution on that sub-grid is lost and ignored in the

combination. (a) Classical SGCT, (b) fault-tolerant SGCT with extra smaller sub-grids on two

lower layers (marked with ‘o’) and without any loss of sub-grid solution, and (c) fault-tolerant

SGCT in the event of a lost solution on sub-grid G2,4.

In contrast to the full grid approach which consists of O(h−d
l ) grid points, the

SGCT consists of only O(h−1
l (log2 h−1

l )d−1) grid points, where hl = 2−l denotes

the employed grid spacing with level l, and d is the dimension. The accuracy

of the solution obtained from the SGCT deteriorates only slightly from O(hr
l ) to

O(hr
l (log2 h−1

l )d−1) for a sufficiently smooth solution of order r methods [Garcke and

Griebel, 2000].

2.4.2 Fault-Tolerant Sparse Grid Combination Technique

A fault-tolerant adaptation of the SGCT has been studied in [B. Harding and M.

Hegland, 2013]. In this thesis, we refer to this adaptation as Fault-Tolerant SGCT (FT-

SGCT). It is observed that the solution on even smaller sub-grids can be computed at

little extra cost and that this added redundancy allows combinations with alternative

coefficients to be computed. When a process failure affects one or more processes

involved in the computation of one of the larger sub-grids, the entire sub-grid is

discarded. In the event that some sub-grids have been discarded one must modify

the combination coefficients such that a reasonable approximation is obtained using

solutions computed on the remaining sub-grids. In 2D, this involves finding ci,j for

formula (2.1) for which ci,j = 0 for each ui,j which was not successfully computed.

For a small number of failures this is typically done by starting with formula (2.2) and

subtracting hierarchical surplus approximators of the form ui′,j′ − ui′−1,j′ − ui′,j′−1 +
ui′−1,j′−1 such that the undesired ui,j drop out of the formula whilst introducing

some of the smaller sub-grids which were also computed. After a combination,

all sub-grids may be restarted from the combined solution, including those which

had previously failed. An approach for the general computation of combination
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coefficients is described in [Harding et al., 2015].

For the 2D fault-tolerant SGCT computations in this thesis, two extra layers

(or diagonals) of sub-grid solutions ui,j are computed satisfying i + j = l − 3 and

i + j = l − 4. These two extra layers of sub-grids have levels l − 3 and l − 4, respec-

tively. During fault-free operation these extra sub-grid solutions are not used in the

combination formula (2.2). Rather, all sub-grid solutions ui,j with i + j = l − 1 and

i + j = l− 2 are used. However, if any of the sub-grid solutions ui,j with i + j = l− 1

or i + j = l− 2 do not complete due to a fault, some of the extra and remaining unaf-

fected sub-grid solutions ui,j are used in an alternate combination of the form (2.1) so

that the combination gives the best result. An example of the default combination, an

alternative leaving extra sub-grids unused, and an alternative using one of the extra

sub-grids is depicted in Figure 2.4. For the 3D fault-tolerant SGCT computations in

this thesis, one additional layer (or diagonal) of sub-grids with level l − 4 was com-

puted (with the 3 layers l − 1, l − 2, and l − 3 necessarily computed for the default

combination).

In this thesis, we also use ‘truncated’ combinations [Benk and Pfluger, 2012] for

the FT-SGCT. The lower limit of formula (2.3) is changed to achieve this when extra

layers are added, e.g. i′ + j′ − l − 2 ≤ i + j for two extra layers. Similarly, lower limit

of formula (2.4) could be updated to achieve the 3D FT-SGCT.

2.5 Related Work

This thesis work lies at the intersection of four active research and development ar-

eas – parallelization of the SGCT, recovery of process and node failures with ULFM

MPI, Algorithm-Based Fault Tolerance (ABFT) technique, and evaluation of the effec-

tiveness of applying the SGCT to the GENE plasma micro-turbulence, Taxila Lattice

Boltzmann Method (Taxila LBM), and Solid Fuel Ignition (SFI) application codes. Below

we summarize and contrast work most closely related to ours.

A technique for replacing only a single failed process in the communicator and

matrix data repair for a QR-Factorization problem was proposed in [Bland, 2013b].

Process failure was handled by ULFM MPI, and data repair was accomplished by

using a reduction operation on a checksum and remaining data values. The author

analyzed the execution time and overhead on a fixed number of processes in the

presence of a single process failure. A detailed performance analysis of the recovery

mechanism for multiple process failures, however, was not presented. Nor was the

technique applied to a varying number of processes in other realistic parallel appli-

cations. A detailed performance evaluation of different ULFM MPI routines used to

tolerate process failures was found in [Bland et al., 2012].

A fault-tolerant implementation of a multi-level Monte Carlo simulation that

avoids checkpointing or recomputation of samples was proposed in [Pauli et al.,

2013]. It used ULFM MPI to recover the communicator after failures by sacrificing

its original size. A periodic reduction strategy was incorporated to all the samples

unaffected by failures in the computation of the final result, and simply excluded the
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samples affected by failures. The periodic communication/reduction is likely to be

costly across multiple nodes, and the experimental results relating to multiple nodes

were not provided. Reconstruction of the faulty communicator was not considered,

nor was data recovery implemented.

Local Failure Local Recovery (LFLR) was proposed in [Teranishi and Heroux, 2014].

It inherited the idea from diskless checkpointing [Plank et al., 1998] in which some

spare processes accommodated a space for data redundancy and local checkpointing.

This allows an application developer to perform a local recovery without disrupting

the execution of whole application when a process fails. The idea is to split the orig-

inal communicator into several group communicators and dedicate a spare process

for each group to store the parity checksum of the corresponding group. In the event

of a single process failure, the corresponding spare process replaces the failed one

with ULFM MPI, and recover the lost data locally from the local memory check-

sum. It requires local checksum to be updated periodically, which seems to be costly.

Spare processes are used in the LFLR approach to handle only a single process fail-

ure. In this thesis, extra processes are also used for a small amount of redundant

computations, but we are able to tolerate multiple process/node failures.

A customized run-time based simplified programming model called Fault-Tolerant

Messaging Interface (FMI) was designed and implemented in [Sato et al., 2014] to im-

prove the resilience overheads of the existing multi-level checkpointing method and

MPI implementations. The semantics needed to write applications were similar to

MPI, but the resiliency of applications was ensured by the FMI interface. Scalable

failure detection with the help of a log-ring overlay network, fast in-memory check-

pointing on spare nodes, and dynamically allocating spare compute resources in the

event of failures were proposed. Although the main objective of providing resiliency

to applications is the same, we are applying an ABFT for the approximate recovery

of multiple failures, rather than the exact recovery through diskless checkpointing.

Our failure detection and process recovery techniques are also different.

Early work in the parallelization of the SGCT for Laplace’s equation and the

3D Navier-Stokes system were reported in [Griebel, 1992] and [Griebel et al., 1996],

respectively. However, fault-tolerant issues were not considered.

ABFT techniques for creating robust PDE solvers based on the FT-SGCT were

proposed in [Larson et al., 2013a; B. Harding and M. Hegland, 2013]. The proposed

solver can accommodate the loss of a single or multiple sub-grids. Grid losses were

tolerated by either deriving new combination coefficients to excise a faulty sub-grid

solution or approximating a faulty sub-grid solution by projecting the solution from

a finer sub-grid. This work, however, was implemented using simulated, rather

than genuine, process failures. Furthermore, this work assumed that an application

process failure is followed by a recovery action such as communicator repair, but

did not actually implement such a mechanism. Finally, the results used a simple

advection solver, whereas the work in this thesis uses real-world and pre-existing

applications.

The first application of the SGCT to GENE was reported in [Kowitz et al., 2012].

Under this scheme, sub-grid instances of GENE were run, with their respective out-
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puts written to data files that were subsequently combined to compute the SGCT

solution. Complimentary work to ours on load balancing of GENE sub-grid in-

stances and an alternative hierarchization based implementation of the SGCT has

been reported in [Heene et al., 2013] and [Hupp et al., 2013], respectively. None of

these aforementioned efforts has investigated the fault-tolerant possibilities of the

SGCT for this application, nor have they implemented any alternative fault-tolerant

techniques.

The effectiveness of ABFT by applying the FT-SGCT to GENE was analyzed

in [Parra Hinojosa et al., 2015; Pflüger et al., 2014]. An analysis of solution accura-

cies in the event of several sub-grids lost, and the overhead of computing redundant

smaller sub-grids were presented there. The load balancing implemented there was

from the developed load model from a master-slave parallelism model. In this thesis,

we contribute the tolerance of real process and node failures with ULFM MPI, which

was absent there. Moreover, we provide a load balancing scheme on a global Single

Program Multiple Data (SPMD) parallelism model and show how several SGCTs could

be applied to the non-SGCT dimensions concurrently4.

2.6 Summary

This chapter introduces key background material. We discuss the importance of fault

tolerance, the reasons behind the failure of supercomputer nodes, an overview of

some failure recovery techniques, including fault tolerance techniques implemented

on the top of the MPI library. We discuss the SGCT and a fault-tolerant version of the

SGCT, which provide necessary background for the key contributing thesis chapters.

We further discuss some research work closely related to the contributions of this

thesis. Before we move to the primary contributions of the thesis, we next give an

overview of our implementation, and experimental platform.

4The concept of non-SGCT dimensions arises from the scenario where the total number of dimen-
sions of the SGCT is smaller than that of the application solution field. Non-SGCT dimensions could
be any of the dimensions among the lower dimensions which are usually forming blocks to fit into the
SGCT dimensions. As for example, if we have two SGCT dimensions (say, x and y), and three field
dimensions (say, x, y, and z; where z is the lower dimension), then z is the non-SGCT dimension. In
this scenario, each element in the SGCT dimensions will be a block of elements with block size equals
to the size of dimension z. For details, see Section 5.2.2.
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Chapter 3

Implementation Overview and

Experimental Platform

This chapter presents an overview of our implementation, hardware and software

platform, fault injection technique, and measurement methodologies that we use

throughout the evaluations presented in this thesis.

3.1 Parallel SGCT Algorithm Implementation

An implementation of the direct SGCT algorithm is used in this thesis. The key idea

of this algorithm is to perform a scaled addition of part of each sub-grid’s solution

ui in Pi to Pc to get the combined (or sparse) grid solution uc
I .

With the direct SGCT algorithm, each PDE instance whose solution is ui is run on

a distinct set of processes denoted by Pi and is arranged in a logical d-dimensional

grid. The algorithm consists of first a gather stage, where each process in Pi sends

its portion of ui to each of the corresponding (in terms of physical space) processes

in a logical d-dimensional grid Pc to be scaled added into uc
I . This is illustrated

in Figure 3.1. The portion of ui is selected based on the local to global mapping

of processes in each d dimension from Pi to Pc. Suppose, a 2D process grid Pi is

represented by {Px
i , P

y
i }, and Pc by {Pc

x, Pc
y}. If Px

i = Pc
x and P

y
i = Pc

y , then the whole

solution ui is scaled added into uc
I (initially uc

I is empty) with an exact mapping of

processes. Otherwise, solution ui is split into Pc
x

Px
i

and
Pc

y

P
y
i

parts in x and y dimensions,

respectively, and then scaled added each chunk of ui into uc
I . In this case, each

process in Px
i and P

y
i is mapped into Pc

x
Px

i
and

Pc
y

P
y
i

processes of Pc
x and Pc

y , respectively.

Finally, each process in Pc then gathers the |I| versions of each point of the full grid

(using interpolation where necessary), and performs the summation according to

formula (2.1) to get the combined (or sparse) grid solution uc
I , which can be used as

an approximation to the full grid solution. The use of interpolation in turn requires

that a ‘halo’ of neighbouring points (in the positive direction, for our implementation)

have been filled by a halo exchange operation by each process in each Pi and is also

sent in the gather stage. For reasons of efficient resource utilization, Pc is made up

of a (normally near-maximal) subset of all processes in ∪i∈I Pi.

21
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Figure 3.1: Figure 4 from [Larson et al., 2013b]. Message paths for the gather stage for the

2D direct combination method (not truncated) on a level l = 5 combined grid. The combined

grid and component grid (3,3) have 2× 2 process grids, all others have 2× 1 or 1× 2 process

grids.

Similarly, in the scatter stage, a reverse mapping of processes from Pc to Pi is

done to scatter a down sample of uc
I to Pi, iteratively, for each i ∈ I.

Further details on the algorithm using a full grid representation of the combined

grid Gc
I are available in [Strazdins et al., 2015]. An improved version of this algorithm,

where a partial sparse grid, rather than a full grid, representation of Gc
I is used to

perform an efficient interpolation on Gc
I , is available in [Strazdins et al., 2016b]. We

used this improved version of the algorithm in this thesis, except where otherwise

indicated.

In terms of load balancing, we used a simple strategy to balance the loads among

the processes. The same number (p′ ∈ N) of processes is allocated on each of the

distinct set of processes Pi for each sub-grid on the uppermost diagonal (i.e., for the

2D case, each Gi,j with i+ j = l− 1) in the grid index space. Each sub-grid on the next

lower diagonals (i.e., for the 2D case, each Gi,j with i + j = l − 2, i + j = l − 3, and

i + j = l − 4) is allocated ⌈p′/2⌉, ⌈p′/4⌉, and ⌈p′/8⌉ processes, respectively. Details

are discussed and analyzed in Section 6.3 of Chapter 6.

A failure of computing nodes or application processes causes the loss of some

processes on some grids Gi. This is handled as follows. Before the SGCT algorithm

is applied, the loss of any processes in Pi is detected using ULFM MPI (see Chapter 4

for details). Replacement processes are then created (with the same process grid

size as Pi) on the same node when that node is still available (i.e., the failure is not
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permanent). Otherwise, replacements are created on a spare node. Following the

reconstruction of communicators, an alternate combination formula (see Section 2.4)

is derived which sets a combination coefficient of ci = 0 for the lost sub-grid solutions

ui. Note that this formula can be computed on all current processes. In this case,

the gather of ui on the replaced Pi and Pc is not performed. Note that the replaced

Pi and Pc do participate in the scatter operation so that they are populated with the

combined data to replace the lost data.

3.2 Hardware and Software Platform

All experiments were conducted on the Raijin cluster managed by the National Com-

putational Infrastructure (NCI) with the support of the Australian Government. Raijin

has a total of 57,472 cores distributed across 3,592 compute nodes each consisting

of dual 8-core Intel Xeon (Sandy Bridge 2.6 GHz) processors (i.e., 16 cores) with In-

finiBand FDR interconnect, a total of 160 terabytes (approximately) of main memory,

and 10 petabytes (approximately) of usable fast filesystem operated by the x86_64

GNU/Linux OS [Cit].

We used git revision icldistcomp-ulfm-46b781a8f170 of ULFM MPI (as of 13

December 2014) under the development branch 1.7ft of Open MPI for our experi-

ments. The parameters for the collective communications for mpirun were set to coll

tuned,ftbasic,basic,self. The value of the MCA parameter coll_ftbasic_met-

hod was set to 1 to choose the ‘Two-Phase Commit’ as an agreement algorithm for

the failure recovery. The ‘Log Two-Phase Commit’ option was more scalable than

the used one, but could not be used in our experiments due to its instability. All the

source code (including ULFM MPI) were compiled with GNU-4.6.4 compilers using

the optimization flag -O3. The versions of PETSc [Balay et al., 2014] and MPI were

petsc-3.5.2 and openmpi-1.4.3 (used for the simulations with non-real process

failures), respectively.

Although InfiniBand interconnect was used in the Raijin cluster, the BTL compo-

nent TCP was used while executing applications. Due to an issue in icldistcomp-

ulfm-46b781a8f170 distribution of ULFM MPI, the execution of applications re-

ported an warning that there was an error initializing the OpenFabrics device. This

issue has been fixed in the recently released ULFM MPI version 1.0 and subsequent

commits, but considering the wastage of lots of CPU hours, we did not repeat the

experiments.

3.3 Fault Injection

Faults were injected into the application by aborting a single or multiple MPI appli-

cation processes at a time (with the exception of process 0 as it held critical data) by

the run-time system call kill(getpid(), SIGKILL) at some point before perform-

ing the combination of the sub-grid solutions. The same effect was observed when

the processes were killed by the kill -9 <PID> command from the command-line,
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where <PID> was the application process identification number (either a single or

multiple) extracted by the ps -A | grep <executable_application_name> com-

mand from the command-line when the application was in execution. The processes

were also killed repeatedly (not at a single time) to analyze the repeated failure re-

covery performance of the application.

3.4 Performance Measurement

The IPM profiling tool [Wright et al., 2009; IPM] was used to report the total mem-

ory usage of the applications. The deallocation of memories in the application code

was disabled to generate the memory usage reports. The reason behind this ap-

proach was that a mixture of different programming languages were used to create

the SGCT based applications. As for example, the SGCT was implemented in C++,

but the applications integrated with it was implemented either in FORTRAN or in

PETSc [Balay et al., 2014] (details in Chapter 5). With these interoperable program-

ming languages, the best way of generating memory reports by the IPM tool was

unclear. Thus, the MPI_Pcontrol() function was called in the main C++ program to

create a code region consisting of computing the sub-grids and combining the sub-

grids’ solutions to generate the memory usage reports. Moreover, to save CPU hours,

the number of time-steps was set to 1 or as minimum as possible in this context.

Both the TAU [Shende and Malony, 2006] and IPM [Wright et al., 2009; IPM]

profiling tools were used to analyze the load balancing and communication profiles.

The ways of generating profiles for computing the sub-grids and performing the

combination as a whole, and in isolation were a little bit different. For the former

case, the sequence of instructions were: (1) setting a barrier (by the MPI_Barrier()

function call) before the computation of sub-grids, (2) start a code region by the

MPI_Pcontrol() function call function, (3) compute the sub-grids, (4) perform the

combination, and (5) end the code region by the MPI_Pcontrol() function call. For

the latter case, the sequence of instructions were: (1) setting a barrier before the com-

putation of sub-grids, (2) start a code region by the MPI_Pcontrol() function call,

(3) compute the sub-grids, (4) end the code region by the MPI_Pcontrol() function

call, (5) setting a barrier before performing the combination, (6) start a code region

by the MPI_Pcontrol() function call, (7) perform the combination, and (8) end the

code region by the MPI_Pcontrol() function call.

MPI_Wtime() function was used to measure the execution performance of the

applications. In order to measure the whole application running time in isolation,

barriers were placed in the same way as they were used for the analysis of the load

balancing and communication profiles. Throughout this thesis, ‘sec’ and ‘msec’ rep-

resent seconds and milliseconds, respectively.

Approximation error was represented by the relative l1 error of the combined

field. It was computed by ‖u
′−u‖1

‖u‖1
, where u was the field of the full grid solution and

u′ was that of the combined grid produced by the SGCT or its variants. This time,

a full grid, rather than a partial sparse grid, representation of the combined grid Gc
I
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was used.
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Chapter 4

Application Level Fault Recovery

by ULFM MPI

Studies show that the resiliency from the hardware and OS levels will incur more

complexities and more power consumption. The design consideration of the next

generation peta and exascale systems should keep the power consumption of each

component at a minimum level to operate a large number of components together.

Considering this constraint, the hardware design of large systems is targeted to re-

main as simple as possible, resulting no fault tolerance consideration from the sys-

tem level. Achieving resiliency from the OS level requires a combination of major-

changed system software and hardware to work together. This adds additional com-

plexities in the system and increases the power consumption. As a result, a technique

which does not increase the complexities and power consumption of the systems may

be the suitable approach.

Handling resiliency from the application level does not add extra complexities to

the system, and hence no additional power consumption. Although developers need

to handle resiliency as a part of their application code, it provides more flexibility to

the developers.

This chapter describes detailed implementation studies using the recent draft of

the ULFM MPI semantics for the detection, identification, and recovery of process

and node failures.

The organization of this chapter is as follows. Section 4.2 describes how the ULFM

MPI semantics are used to detect and identify which application processes and nodes

fail. Section 4.3 describes the techniques of fixing the broken communicator without

and with losing its original size by ULFM MPI, and recovering the data of the failed

processes/nodes. Experimental evaluation of the application level failure recovery is

presented in Section 4.4.

This chapter describes work published jointly with others as “Application Fault

Tolerance for Shrinking Resources via the Sparse Grid Combination Technique” [Strazdins

et al., 2016a], and “Application Level Fault Recovery: Using Fault-Tolerant Open MPI

in a PDE Solver” [Ali et al., 2014].

27
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4.1 Introduction

User Level Failure Mitigation (ULFM) [Bland, 2013a] is a draft standard for the fault-

tolerant model of MPI. Implementation of this standard is initiated by the MPI Fo-

rum’s Fault Tolerance Working Group by introducing a new set of tools into the

existing MPI to create fault-tolerant applications and libraries. This draft standard

allows application programmers to design their recovery methods and control them

from the user level, rather than specifying an automatic form of fault tolerance man-

aged by the OS or communication library [Bland et al., 2012; Bland, 2013b].

ULFM works on the run-through stabilization mode [Fault Tolerance Working Group],

where surviving processes can continue their operations while others fail. Any MPI

operation that involves a failed process will raise an MPI exception rather than wait-

ing for an indefinite period of time to succeed the operation. If a point-to-point

communication operation is unsuccessful due to a process failure, surviving pro-

cess reports the failure of the partner process. With collective communication where

some of the participating processes fail, some processes perform successful opera-

tions while others report process failures, which leaves the state as non-uniform. In

such a scenario, the knowledge about failures is explicitly propagated and prohibit

any further communication on the given communicator by setting the communicator

in the revoked state.

Currently, automatic replacement of a failed process like FT-MPI [Fagg and Don-

garra, 2000] is not possible in ULFM MPI. An application developer needs to use the

ULFM MPI semantics to recover from process/node failures. Process failures can

be detected using the return code of the ULFM MPI communication routines. By

examining the return codes, one may identify which processes failed (if any) in a

communicator. In the event of a failure, the communicator is revoked. A new com-

municator containing all the surviving processes can then be created by shrinking the

revoked communicator. The size of this new communicator will obviously be smaller

than that of the original communicator, however, the original size can be preserved

by spawning replacement processes to merge with the new communicator.

4.2 Fault Detection and Identification

The first and most important step of fault-tolerant implementation of any application

is to detect if any component failure occurs, and to list them if they occur. By compo-

nent failure, we want to stick with process failure caused by any type of faults. Since

node failure causes all the processes on the node to die immediately, it can also be

detected in terms of detecting chunk of process failures.

4.2.1 Process Failure Detection and Identification

Process failure detection requires to create and attach a customized error handler

to each MPI communicator. Since MPI_ERRORS_ARE_FATAL and MPI_ERRORS_RETURN

do not provide any guarantee that any further communication can occur after the
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failure, ULFM MPI provides its own semantics to create a customized error han-

dler to be attached to each communicator. The customized error handler includes

the OMPI_Comm_failure_ack() and OMPI_Comm_failure_get_acked() functions to

acknowledge and manage the local failures.

An application checks the return code of the collective function MPI_Barrier()

to test if any process failure occurs in the communicator. With failure it returns code

other than MPI_SUCCESS, and propagates the knowledge about the failure through

the customized error handler. At the same time, it revokes the communicator by

the MPI_Comm_revoke() function call so that no communication can occur in the

communicator until it is fixed. Then it shrinks the communicator containing only

the surviving processes by the MPI_Comm_shrink() function call. Then an old and

new groups are created from the broken and shrunken communicators, respectively,

by the MPI_Comm_group() function call. Finally, these two groups are compared by

the MPI_Group_compare() and MPI_Group_difference() function calls to create a

group containing only the lost processes, and then this group is translated to create

a globally consistent list of failed processes by the MPI_Group_translate_ranks()

function call.

For details, refer to Algorithm 5 of Appendix A.

4.2.2 Node Failure Detection and Identification

The failed process list could be analyzed to determine whether they are resulted

in due to process failures or node failures. This requires a rankmap file (called

hostfile) containing a list of compute nodes which are used by an application using

the --hostfile option of mpirun. Each line entry of the hostfile contains distinct

node name followed by SLOTS number. SLOTS is set to the total core count of a node,

and each MPI process is mapped onto a distinct core. This configuration is used to

identify node failures in terms of process failures as follows.

We used a simple idea to detect node failures. If the total failed process count is a

multiple of SLOTS (say, n× SLOTS, where n ∈ N and n > 0) for homogeneous nodes

like Raijin, we could consider it as node failure. However, this may also happen due

to non-node failures, where some nodes experience process failures, rather than node

failures, and the sum of them is n× SLOTS. As a result, checking only this condition

is not enough for detecting node failures. An algorithm able to detect node failures

first sorts all the failed process ranks into an ascending order, and then creates groups

of failed processes with successive ranks, each with size SLOTS. If each group’s total

rank count is SLOTS, and starting rank is SRANK = s× SLOTS, where s ∈ N, then it

may be node failures. If some failed processes are still left after this grouping, these

out-of-group failed processes are due to process (i.e., not node) failures.

The identification of nodes which are believed to be failed is achieved by getting

the hostfile line indices of the failed nodes (started from 0), simply calculated by

⌊SRANK/SLOTS⌋, and extract the node names from these indices.
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4.3 Fault Recovery

The second step of fault-tolerant implementation after detecting and identifying com-

ponent failures is to reconstruct the faulty communicator. There are two ways of

accomplishing this. One is to reconstruct the faulty communicator by preserving

the original communicator size and rank distribution by creating and restoring the

replacement processes for the dead ones, and the other one is with sacrificing the

original communicator size by excluding the dead processes.

4.3.1 Faulty Communicator Reconstruction

In this section, we discuss both the spawning and shrinking based techniques.

4.3.1.1 Spawning Based Recovery

In this technique, faulty communicator reconstruction is done by spawning the re-

placement MPI processes by the MPI_Comm_spawn_multiple() function call. With

process failures, spawning is done on the nodes which experience process failures.

The node identity of a failed process with rank r is determined by extracting the

node name from the hostfile with line index ⌊r/SLOTS⌋. In case of node failures,

replacement processes are created on the spare nodes listed in the hostfile. With

repeated node failures, application tracks which spare nodes are currently available

and which are already used. This is done by maintaining hostfile’s spare line indices

as unused or used, and extract the node name of an unused line index.

The extracted node names where to launch the replacement processes are used to

set the MPI_Info object by the MPI_Info_set() function call, and pass the object to

the MPI_Comm_spawn_multiple() function, along with other parameters, to spawn

the processes on these nodes. The spawned processes are referred to as child pro-

cesses and the rest are referred to as parents. The child and parent processes have

their own intercommunicators through which they communicate with their own pro-

cesses. Attaching the child to the parent is accomplished by merging their intercom-

municators by the MPI_Intercomm_merge() function call. The ranks of the child

processes on the merged (reconstructed) communicator should be the same as they

were in the original communicator (before failure) so that there is no disruption in

the application’s original communication pattern. This is achieved by ordering the

ranks by the MPI_Comm_split() function call with properly selected keys as input to

it. Finally, the identity of the child communicator is converted into parent communi-

cator by assigning MPI_COMM_NULL to it. In this way the reconstructed communicator

becomes ready to use within the application.

Figure 4.1 shows the overall technique of reconstructing a faulty communicator

including the ordering of child processes in the communicator. Some high-level/mid-

level algorithms, and an implementation of these algorithms to be used as a toolkit

of fault-tolerant application implementation are presented in Appendix A.

In order to advance the fault-tolerant application with the reconstructed com-

municator, some non-trivial modifications are needed to handle the initialization of
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0 1 2 3 4 5 6 7

A communicator with global size 8

0 1 2 3 4 5 6 7

Processes 4 and 5 on the parent fail

Shrink the communicator and spawn the failed 
processes as the child with ranks 0 and 1

Use intercommunicator merge to assign the 
two highest ranks to the child processes

Shrunken communicator ChildChild

0 1 2 3 4 5 0 1

Shrunken communicator ChildChild

0 1 2 3 4 5 6 7

Split the communicator in such a way that 
the two highest ranks are replaced by the 

two failed ranks

Shrunken communicator ChildChild

0 1 2 3 6 7 4 5

0 1 2 3 6 7 4 5

Changing the child to the parent

Figure 4.1: Techniques of recovering failed processes and assigning the same ranks as they

were before the failure in the original communicator.

the spawned processes. The customized error handler is set up for the spawned

processes. Run-time variables those are passed in the application as a command-

line arguments are also set for the newly created processes. Consistency of data of

some variables between the existing old and newly created processes is required.

Some of these variables include the number of failed processes, list of failed pro-

cesses, simulation step counter, and the others. This could be achieved by copying

the data of process 0. If different groups of communicators split from the original

global communicator are used in the application, these groups are created from the

reconstructed global communicator for the spawned processes. Furthermore, the

declaration, memory allocation, and initialization of some application variables are

required.
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Figure 4.2: Process grid configurations of different sub-grids of the 2D FT-SGCT based ap-

plications with level l = 4 when the faulty communicator is shrunk as a recovery action.

Numbers with white and gray background cell represents the MPI processes before and after

shrinking the communicator, respectively. Mark ‘X’ represents the failure of an MPI process.

4.3.1.2 Shrinking Based Recovery

In this technique, fault tolerance is achieved without spawning the replacement pro-

cesses. After detecting the process or node failures, the faulty communicator is

shrunk, containing only the alive processes to complete the rest of the computa-

tion. With an SGCT-based application, this is achieved by shrinking the process

grid and updating the data structures of the sub-grids that are experiencing failures.

The sub-grids whose processes are not lost continue their operations without having

disruption. However, after shrinking the communicator, a mapping of processes is

required to access the appropriate data owned by each sub-grid.

An example of the overall approach is shown in Figure 4.2. The process grid for

each sub-grid without any failures is shown in Figure 4.2a. Suppose, processes 8 and

38 fail. After this failure, the communicator is shrunk excluding processes 8 and 38.

The process grids of sub-grids containing processes 8 and 38 are shrunk as shown in

Figure 4.2b. The data structures of each process of these process grids are updated to

adjust the whole range of grid points of the corresponding sub-grids. The remaining

processes of the other sub-grids do not need to update their data structures. But a

mapping of processes is required to point to the appropriate sub-grid data. As for



§4.3 Fault Recovery 33

example in Figure 4.2b, processes 38 to 41 of the shrunken communicator play the

role of processes 40 to 43 of the un-shrunken communicator. Otherwise, a disruption

in communication and/or unexpected data transfer will happen. The process grid

for each sub-grid after shrinking the faulty communicator is shown in Figure 4.2c.

Comparing Figures 4.2a and 2.4 indicates the ordering we use to delineate the

process grid index space I.

4.3.2 Lost Data Recovery

The third and final step of fault-tolerant implementation after the reconstruction of

faulty communicator is to recover the data of the failed processes. For the SGCT

based 2D general advection solver (details in Section 4.4.1), this involves recovering

the data of all the processes executing in parallel on a sub-grid, although only some

of the processes of the corresponding sub-grid experience failures. Since any commu-

nication attempt with the failed processes raises an exception while trying to update

the grid data, some of the surviving processes on an affected sub-grid contain invalid

data. So, data recovery only for the failed processes on a sub-grid is insufficient for

this application.

We have implemented and analyzed three techniques for recovering the lost data

of the grids experiencing failures. These techniques are called the Checkpoint/Restart

based SGCT (CR-SGCT), Resampling and Copying based SGCT (RC-SGCT), and alter-

nate combination formula based Fault-Tolerant SGCT (FT-SGCT).

• The CR-SGCT supports exact data recovery. It periodically takes checkpoints

onto disks while the computation of each sub-grid is in progress. In the event

of process or node failures, it restarts with the recent checkpointed data and

performs a recomputation for a number of time-steps the application advances

from the last checkpoint event to the failure detection event. Figure 4.3a shows

the grid arrangements of this. Total number of checkpoints, C, of the applica-

tion is calculated by

C = ⌊TCR/TOC⌋, (4.1)

where

– TCR := TCR(N) is the total run time of the CR-SGCT based application on

N nodes.

– TOC =
√

2TWR · Tf n/N is the optimal time between checkpoints proposed

by Young [Young, 1974], where

* TWR := TWR(N) is the time required to write a checkpoint on N nodes.

* Tf n is the Mean Time Between Failures (MTBF) on each node.

* Tf n/N is the MTBF across N nodes.

• The RC-SGCT supports a combination of exact and approximate data recovery

techniques. It creates a redundancy of the upper diagonal sub-grids so that the

lost data of the upper diagonal sub-grids can be exactly recovered by copying
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Figure 4.3: Grid arrangements of the 2D SGCT with level l = 4 solving the general advec-

tion problem to demonstrate different data recovery techniques. A distinct set of processes

computes each sub-grid in parallel via domain decomposition. (a) Each sub-grid data is pe-

riodically checkpointed to the disk. Data recovery is achieved by reading the corresponding

recent checkpoint file. (b) Grids with IDs 7, 8, 9, and 10 are the duplicate sub-grids of the

upper diagonal sub-grids with IDs 0, 1, 2, and 3, respectively, and vice versa. The lost data of

a sub-grid on either the duplicate or upper diagonal layer is recovered by copying the data

from the corresponding duplicate sub-grid. The lost data of lower diagonal sub-grids with

IDs 4, 5, and 6 are recovered by resampling the corresponding upper diagonal sub-grid’s

data. (c) Grids with IDs 7, 8, and 9 are the sub-grids on the extra two layers. Some of these

are used to form FT-SGCT when some of the remaining regular sub-grids are lost. In this

way it generates almost the same solution of classical SGCT without faults.

from its redundancy (and vice versa). As each lower diagonal sub-grid is a

sub-set of the upper diagonal sub-grid (finer) above it, a resampling of the

upper diagonal grid is used to recover the lost data of the lower diagonal sub-

grid below it. According to the grid arrangements of Figure 4.3b, exact data
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recovery of sub-grid 0 is done from sub-grid 7, 7 from 0, 1 from 8, 8 from 1,

2 from 9, 9 from 2, 3 from 10, and 10 from 3. Alternatively, approximate data

recovery of sub-grid 4 is done by resampling data from sub-grid 1, 5 from 2,

and 6 from 3.

• The FT-SGCT performs an approximate data recovery of the lost sub-grids.

It employs some extra layers of sub-grids below the lower diagonal sub-grids.

Figure 4.3c shows the grid arrangements of this, where the number of extra lay-

ers used in the implementation is two. In the event of failures, all the surviving

sub-grids, including those on the extra layers, are assigned new coefficients for

the combination, and then a sample of the combined solution is used as recov-

ered data of the sub-grid whose data was lost [B. Harding and M. Hegland,

2013; Harding and Hegland, 2013; Harding et al., 2015]. Note that, unlike the

CR-SGCT and RC-SGCT techniques, data recovery with this technique is only

possible when the combination of sub-grid solutions is complete.

4.4 Experimental Results

In this section, the experimental setup, an analysis of the failure identification and

communicator reconstruction performance, failed grid data recovery overheads, the

approximation error of the solutions computed with the FT-SGCT, and the scalability

achieved for the 2D general advection solver are presented.

4.4.1 Experimental Setup

A scalable PDE solver was chosen to make it fault-tolerant, and all the experiments

of this chapter were conducted with this solver. It solved the scalar advection equa-

tion in two and three spatial dimensions using a MacCormack [MacCormack, 2003]

and Lax–Wendroff [Lax and Wendroff, 1960] schemes, respectively. Throughout this

thesis, we refer to this solver as the general advection solver.

In our experiments, 2D SGCT applied to the general advection solver was run

for 213 time-steps. Full grid size was (213 + 1) × (213 + 1), level was l = 4, and

the number of combinations was one. At some stage failure detection was tested,

and if needed, the recovery process was initiated for the RC-SGCT, and FT-SGCT

techniques. However, for the CR-SGCT technique, failure detection was tested prior

to initiating the checkpoint write onto disk, and if required, it restarted from the

recent checkpoint data rather than writing onto disk. When the solver completed its

execution for all time-steps, the sub-grids were combined and the overall solution

was tested for accuracy.

There are some constraints on the ranks of processes which can fail, and the

indices of sub-grids whose data can be lost. Failures in the RC-SGCT technique

should not occur at the same time on any of the sets of two sub-grids which are

in communication for recovering the data. For example, failures should not occur

simultaneously on sub-grids 3 and 6, or 2 and 5, or 1 and 4, or 0 and 7, or 1 and 8,
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Figure 4.4: Times for generating the failure information and repairing the faulty communi-

cator for the 2D SGCT solving the general advection problem when multiple failures occur.

‘identify failure’ represents the detection and identification of multiple processes failure.

Each of the process, node, and communicator recoveries includes the time of ‘identify fail-

ure’ plus the time of the corresponding recovery via spawning the replacement processes or

shrinking the communicator. The results shown are an average of five experiments.

or 2 and 9, or 3 and 10, according to the grid arrangements shown in Figure 4.3b.

However, there are no such constraints in the CR-SGCT and FT-SGCT techniques.

But for all of these techniques, there is a common constraint that process 0 must be

alive in the application as it holds critical data.

Experimental results of Figures 4.4 and 4.7 consist of real (process or node) fail-

ures, but for Figures 4.5 and 4.6, they are non-real (simulated), i.e., only assuming

that failures are occurring. MTBF on each node Tf n is set to 22.66 hours and disk

write latency TWR is measured as 0.03 sec.

4.4.2 Failure Identification and Communicator Reconstruction Overheads

Figure 4.4 shows the ULFM MPI performance for detecting and identifying (process

or node) failures, recovering the failed processes or nodes via spawning the replace-

ment processes, and recovering the faulty communicator via shrinking. It is observed

from the experimental results that the wall times for generating the failure informa-

tion and reconstructing the faulty communicator increase with core count. It is also

observed that the maximum times required to reconstruct the faulty communicator

due to multiple process and node failures are around 10 sec and 12 sec, respectively,
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on 3,136 cores. This data seems reasonable as we conducted experiments with the

beta version of ULFM MPI. However, which MPI functions are contributing most to

this reconstruction process is worth investigating. It is observed from Table 4.1 that

the major reconstruction times are contributed by MPI_Comm_spawn_multiple() and

MPI_Intercomm_merge() functions.

It is also observed from Figure 4.4 that the shrinking based communicator re-

covery is less expensive than the spawning based recovery; with 3,136 cores, a 30×
improvement is observed.

4.4.3 Failed Grid Data Recovery Overheads

Figure 4.5 shows the data recovery overheads of the failed grids for the CR-SGCT,

FT-SGCT, and RC-SGCT techniques, when multiple or a single grids’ data are lost.

Recovery overheads of the CR-SGCT technique include times for creating all the

checkpoints onto disk, reading the recent checkpoint, and the recomputations that

are needed. With the FT-SGCT technique, only the time needed for creating the

combination coefficients, rather than recovering the grid data which is happened as

a compulsory stage later, is used as recovery overhead. Recovery overheads of the

RC-SGCT technique include times for copying and/or resampling data from the finer

sub-grids.

For these experiments, we have simulated failures on up to 5 sub-grids in order to

determine the effect of the number of lost sub-grids on the data recovery time. Thus,

the results do not include faulty communicator reconstruction time. We observe

that in all cases data recovery times are almost independent of the number of lost

sub-grids.

It is observed from Figure 4.5a that the CR-SGCT technique shows the highest

overhead, FT-SGCT shows the lowest overhead, and RC-SGCT is in between these

two.

A comparison of the data recovery overheads presented in Figure 4.5a may not

be fair due to executing different number of application instances for the three tech-

niques. To make a fair comparison, we can consider process-time data recovery

# cores

average wall time (sec)

OMPI_Comm
_shrink()

OMPI_Comm
_agree()

MPI_Comm_spawn
_multiple()

MPI_Intercomm
_merge()

49 0.002 0.01 0.23 0.03

196 0.008 0.01 0.28 1.02

784 0.043 0.01 0.81 1.04

3136 0.173 0.01 7.91 1.21

Table 4.1: ULFM MPI performance to recover multiple process failures.
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Figure 4.5: Failed grid data recovery overheads of the 2D SGCT solving the general advection

problem. The number of processes on each diagonal (including duplicate), lower diagonal,

upper extra layer, and lower extra layer sub-grid is 8, 4, 2, and 1, respectively. Results shown

are an average of five experiments.

overheads. These process-time data recovery overheads are calculated by

T′REC,CR = C · TWR + TREC,CR ,

T′REC,RC = (TREC,RC · PRC + TAPP,RC(PRC − PCR))/PCR , and

T′REC,FT = (TREC,FT · PFT + TAPP,FT(PFT − PCR))/PCR ,

where

• T′REC,CR, T′REC,RC, and T′REC,FT are the normalized total process-time overheads

of the CR-SGCT, RC-SGCT, and FT-SGCT techniques, respectively (these are

normalized with respect to the number of processes used in the CR-SGCT).

• C is the optimal number of checkpoints of the application (see 4.1).

• TWR is the single checkpoint write time onto disk by a process.

• TREC,CR is the recovery time of the CR-SGCT technique (time for reading check-

point file and performing recomputation).

• TREC,RC is the recovery time of the RC-SGCT technique (time for copying and/or

resampling sub-grid data).

• TREC,FT is the recovery time of the FT-SGCT technique (time for calculating

combination coefficients).

• TAPP,RC and TAPP,FT are the total application times (excluding communicator

reconstruction time) of the RC-SGCT, and FT-SGCT techniques, respectively.

• PCR, PRC, and PFT are the total number of processes used for the CR-SGCT,

RC-SGCT, and FT-SGCT techniques, respectively.
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Figure 4.6: Approximation errors of the 2D FT-SGCT for the general advection solver. The

number of processes on each diagonal (including duplicate), lower diagonal, upper extra

layer, and lower extra layer sub-grid is 8, 4, 2, and 1, respectively. The results shown are an

average of 20 experiments.

It is observed from the measured process-time data recovery overheads presented

in Figure 4.5b that the RC-SGCT shows more process-time overheads, the FT-SGCT

shows less process-time overheads, and the CR-SGCT is in between these two.

4.4.4 Approximation Errors

The accuracy of the combined solution with or without failures is shown in Fig-

ure 4.6. The error here is the average of the l1-norm of the difference between the

combined grid solution and exact analytical solution (which can be calculated for

advection from the initial conditions).

It is observed that the CR-SGCT shows an error independent of the number of

sub-grids lost, as it has exact data recovery; the error simply reflects that of an ad-

vection solver using the SGCT at the given grid resolutions. However, the average

approximation errors of the other two techniques grow as the number of lost sub-

grids increases; error of the RC-SGCT is more than the FT-SGCT. This observation

indicates that resampling a lower resolution lost sub-grid from a high resolution sub-

grid is less accurate than the FT-SGCT, which utilizes data from a lower resolution

sub-grid for each sub-grid that is lost.

4.4.5 Scalability

The overall parallel performance of the application, when it experiences the failure

of multiple real MPI processes, is shown in Figure 4.7. There are two trends observed

from the figure. The first one is that execution of both the RC-SGCT and CR-SGCT

takes longer time compared to the FT-SGCT. The second one is that there is a less
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Figure 4.7: Overall parallel performance of the 2D SGCT solving the general advection prob-

lem with a single combination. Execution time in (a) includes faulty communicator recon-

struction time by spawning the replacement MPI processes, data recovery time, and appli-

cation running time. Execution time in (b) includes the same timing components as (a), but

the faulty communicator reconstruction is done by shrinking the communicator. The results

shown are an average of five experiments.

degradation of scalability for the shrinking based recovery than the spawning based

recovery after 1,000 cores.

The first trend is explained by noting that the FT-SGCT involves only a relatively

small amount of extra computations, whereas the RC-SGCT has a significant degree

of replication of computations and the CR-SGCT performs many disk I/O operations

(including some recomputations). The second trend is justified by stating that, unlike

the spawning based recovery, the shrinking based recovery does not need to spawn

the replacement processes and merge the intercommunicators. It is observed from

Table 4.1 that the spawning and merging beyond 1,000 cores are expensive.

The C/C++ source codes for our implementation are available to conduct further

research on these at https://github.com/mdmohsinali/SGCT-Based-Fault-Tolerant-

Advection-Solver.

4.5 Summary

This chapter evaluates the effectiveness of ULFM MPI for the implementation of ap-

plication level resiliency applied to the SGCT based 2D general advection solver. This

includes detailed implementation guidelines for the detection and identification of

process and node failures, and recovery of the faulty communicator by means of

preserving and sacrificing its original size with the ULFM MPI semantics. Analysis

reveals that the shrinking based recovery is less expensive than the spawning based

h
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recovery, which sets a hope for making an application fault-tolerant from the applica-

tion level. Comparing three data recovery techniques it is observed that the FT-SGCT

performs cost-effective data recovery with only a small loss of accuracy.

The analysis of this chapter was limited to a simple benchmark written for the

SGCT based 2D general advection solver. The next chapter will focus on how well

ULFM MPI performs on some existing complex real-world applications. At the same

time, it will focus on the evaluation of the effectiveness of applying the FT-SGCT on

these applications.
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Chapter 5

Fault-Tolerant SGCT with

Applications

The previous chapter describes how the ULFM MPI semantics can be used to detect

and identify process and node failures, and fix the faulty communicator as a support

of creating the SGCT based robust 2D general advection solver. It also compares

three data recovery techniques and observes that the alternate combination formula

based application level data recovery is the most efficient technique compared to

the other two for this application. However, there is a lack of practical examples

demonstrating the range of issues encountered during the implementation of the

application level resiliency on different types of complex and widely-used existing

parallel applications. At the same time, the evaluation of how effective the SGCT is

on these parallel applications is not adequate.

In order to fill some of these gaps, this chapter describes the integration of three

existing complex parallel applications into the SGCT (or FT-SGCT), and evaluates

their effectiveness. It also describes the process and node failure recovery overheads

through ULFM MPI on these applications, and makes a comparison with traditional

checkpointing technique.

The organization of this chapter is as follows. Section 5.1 describes a general

methodology for the SGCT integration. Sections 5.2, 5.3, and 5.4 describe the existing

GENE gyrokinetic plasma application, the Taxila Lattice Boltzmann Method (Taxila

LBM) application, and the Solid Fuel Ignition (SFI) application, including how they

are adapted to become fault-tolerant using a highly scalable SGCT algorithm, and

their experimental evaluations, respectively. Failure recovery overheads for shorter

and longer computations, overheads due to achieve robustness in the SGCT, and

repeated failure recovery overheads are described in detail in Section 5.5.

This chapter describes work published jointly with others as “Complex Scientific

Applications Made Fault-Tolerant with the Sparse Grid Combination Technique” [Ali

et al., 2016]. Contents of Section 5.2 of this chapter are also published jointly with

others as “A Fault-Tolerant Gyrokinetic Plasma Application using the Sparse Grid

Combination Technique” [Ali et al., 2015].

43
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1 W: global communicator;
2 G = {Gi}: set of sub-grids;
3 C = {Ci}: set of sub-grid communicators created from W;
4 T′: number of time-steps;
5 n: number of combinations;
6 g = {gi}: set of fields returned from the application computed on G;
7 u = {ui}: corresponding set of sub-grid solutions used in equation (2.1);
8 uc

I : combined solution of the SGCT;

9 for each Ci ∈ C do in parallel
10 ui ← null; //makes runApplication() initialize gi

11 for each of the n combinations do
12 for each Ci ∈ C do in parallel
13 gi ← runApplication(ui, Gi, Ci, T′/n);
14 ui ← gi; //on their common points

15 updateBoundary(ui, Ci);

16 reconstructFaultyCommunicator(W); //using ULFM MPI (details in
Chapters 4 and A)

17 uc
I ← gather(u, W); //reconstructed grids do not participate

18 u← scatter(uc
I , W);

Algorithm 1: Main function of the modified application. Operations are assumed to be
applied in parallel over all processes in the relevant communicator.

5.1 General Methodology for the SGCT Integration

Our underlying SGCT algorithm is implemented in C++ [Strazdins et al., 2015]. Ap-

plications implemented either in C++ or other languages require an integration with

the SGCT to exchange the {ui} of equation (2.1) between them. The implementation

of this integration will depend on the language of the application and its complexity.

It typically requires a minor modification of the application.

Algorithm 1 describes the main program, written in C++, calling into the appli-

cation. A global communicator W is used to create a set of sub-grid communicators

{Ci} to simultaneously run several (one for each i ∈ I) application instances (line

12), with the application itself being called for the specified number of time-steps

(i.e. T′/n) on sub-grid Gi on line 13. The first time this is called, ui is null, and

runApplication() uses the initial condition data to initialize gi; afterwards, it uses

ui instead. This computes a set of application fields {gi}. In the current implementa-

tion, the number of unknowns in dimensions over which the SGCT is applied must

be a power of 2. This restriction could be removed in future implementation.

The set of sub-grid solutions {ui}, used in formula (2.1), will have an extra el-

ement padded out in the SGCT dimensions. On each process, the storage for {ui}
will also have room for halo elements. Common elements are copied over from gi

to ui (line 14). Boundary updates and halo exchanges are also performed (line 15).

The former are needed to ‘pad out’ gi, whose sizes are normally a power of 2, to ui,

whose sizes must be a power of two plus one for the SGCT. The latter are needed

because our SGCT algorithm uses interpolation [Strazdins et al., 2015].
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Process or node failures may happen after line 9 in Algorithm 1 once the pro-

gram starts executing. In order to tolerate these failures, the faulty communicator is

reconstructed (line 16, details are in Chapter 4). Then the FT-SGCT is applied using

the communicator W, with the combined solution uc
I being used to re-initialize the

sub-grid solutions {ui} to facilitate further computations (lines 17–18).

Multiple combinations over the simulation may also improve the accuracy of the

combined solution. Additionally, it may cause less data loss in the presence of fail-

ures. Since it combines component solutions several times, the effect of failures may

be restricted to the subsequent combination.

It is necessary to exchange {ui} between the application and the SGCT imple-

mentation through an interface in lines 13 and 18.

The main program uses the SGCT implementation to determine the parallel do-

main decomposition to be used by the application. Ci in line 13 is used to create Pi,

arranged on a logical d-dimensional process grid, to achieve this.

The main program creates a different directory for each application instance with

a customized input parameter file containing the necessary values required for this

instance.

MPI error handlers are attached to all MPI communicators and sub-communicators

in the code. With a communicator or sub-communicator comm, the error handler func-

tion utilizes the OMPI_Comm_failure_ack(comm, . . .) and OMPI_Comm_failure_get-
_acked(comm, . . .) functions provided by ULFM MPI for sending and receiving ac-

knowledgments upon detecting process failures. These acknowledgments continue

to be used throughout the process of respawning lost processes and reconstructing

communicators.

5.2 Fault-Tolerant SGCT with the Gyrokinetic Plasma Appli-

cation

In this section, we discuss in detail the technique of applying the FT-SGCT to the

gyrokinetic plasma application (GENE), including experimental evaluations. An

overview of the application is presented in Section 5.2.1. Section 5.2.2 describes how

the SGCT algorithm is integrated into the higher-dimensional grids, and includes

a detailed discussion of parallelization over non-SGCT dimensions. The modifica-

tions required for the application of GENE are discussed in Section 5.2.3. Finally, an

experimental evaluation of the FT-SGCT for GENE is presented in Section 5.2.4.

5.2.1 Application Overview

The Gyrokinetic Electromagnetic Numerical Experiment (GENE) [Jenko and the GENE de-

velopment team, 2014; Görler et al., 2011] is a plasma micro-turbulence application

code. It contains a multi-dimensional solver of gyrokinetic equations for a field com-

prised of ion and electron densities defined on a fixed grid in a five-dimensional

phase space (x, y, z, v, u). The physical space is toroidal (e.g. a tokamak) with a mag-
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netic field whose lines move around the torus. x, y, and z represent the spatial

coordinates in the direction radial, perpendicular, and parallel to the magnetic field.

v and u are the velocities in the z and y dimensions, respectively. GENE imposes a

minimal resolution of 16 grid points in the velocity dimensions.

This field is one of the main outputs of GENE; from it, GENE computes gyroradius-

scale fluctuations and transport coefficients.

The code base [Jenko and the GENE development team, 2014] is written in FOR-

TRAN 90 and utilizes hybrid MPI/OpenMP parallelization. High scalability to

10,000 cores has been reported [Görler et al., 2011]. Due to the relative smoothness

of the solution, the SGCT has yielded good results in producing a relatively accurate

solution on important problem sets [Kowitz et al., 2012].

Internally, GENE uses a complex precision array (g_1) representing the density of

each particle (species) of interest in phase space. The number of species s is typically

in the range 1 ≤ s ≤ 4. As well as the dimensions above, s adds a sixth dimension

to the array. GENE is capable of generating this field from initial conditions data or

from reading g_1 from a previously stored checkpoint (made by an MPI parallel I/O

call).

All processes in a running GENE instance read the same parameter file parameters,

which include things such as the sizes of each grid dimension, number of time-steps,

maximum ∆t for each time-step etc.

For performing the ‘initial value’ computation [Eriksson et al., 1996] of GENE, the

main subroutine rungene() initializes the communicator for the simulation, reads

parameters and checkpoint data (when applicable), sets the maximum time-step and

calls the initial_value() function, which contains the time evolution loop. In each

time-step, the electromagnetic fields are computed from g_1, and the gyrokinetic

equations are applied to produce an update for g_1 for that time-step.

5.2.2 Implementation of the SGCT Algorithm for Higher-Dimensional
Grids

The field of GENE, regarded as a field of real numbers, can be thought of an array

with a dimensionality of

D = (2, Nx, Ny, Nz, Nv, Nu, s) .

The first element in D arises from the field being complex (note that the SGCT uses

only additions and multiplications with real coefficients).

Our implementation performs the SGCT across such a field as follows. The di-

mensions for the SGCT must be a contiguous sub-vector of D. Any remaining lower

dimensions of D can be dealt with by an extension to the algorithm to operate on

blocks of b ≥ 1 real elements. Any remaining higher dimensions can be dealt with by

applying the SGCT iteratively over these dimensions. If the above proves restrictive,

the grid can be transposed to get the desired ordering in D.

For example, to perform a 2D combination on the Nv and Nu dimensions, we
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Figure 5.1: A demonstration of parallelization p = 2 on the non-SGCT dimension Nz of

GENE for the 2D SGCT. The number inside the circle (without ’ and ”) denotes grid id for

a sub-grid where component (or sub-grid) solution is available after the execution of GENE.

For a grid x; x′ and x′′ are the grid ids of sub-grids holding partitioned sub-component

solutions. The number outside the circle represents processes working on a particular sub-

grid. In this case, instead of applying a single SGCT with sub-grids 0, 1, and 2, two SGCTs

are applying in parallel: one with 0′, 1′, and 2′ sub-grids, and the other with 0′′, 1′′, and 2′′

sub-grids.

use a block factor of b = 2Nx NyNz and, if s = 2, iterate the SGCT over each of two

array slices in the s dimension. GENE is generating the density for each species ∈ s

separately. They are stored into a single multi-dimensional array, where the higher

dimension is species s. We need to apply the SGCT to each of the generated density,

extracted as a slice from the multi-dimensional array, separately.

Our SGCT algorithm supports parallelization over arbitrary process grids in the

SGCT dimensions. To support a parallelization to a total factor of p ∈ N in the non-

SGCT dimensions, p independent SGCT computations can be performed in parallel.

Non-SGCT dimensions could be any of the dimensions among the lower dimensions

which are usually forming blocks. As for example for the 2D combination on the

Nv and Nu dimensions, this could be any combination of Nx, Ny, Nz. In this case,

the process grid P̃i used to advance the simulation on sub-grid Gi will be split into p

process sub-grids (Pi), each of which is then passed to the appropriate instance of the

SGCT computation. The combined grid’s process sub-grid (Pc) used in each instance

will be disjoint from the combined grid process sub-grids in other instances.

The implementation of this requires the careful construction of MPI communica-

tors for each process sub-grid; the details of this are as follows.

Parallelization on the non-SGCT dimensions changes the original block defini-

tion and their placements. With a parallelization p > 1, an original block b is divided

into p sub-blocks b0, b1, · · · , bp−1, each of size b/p, which are distributed across con-

secutive p processes P̃′0, P̃′1, · · · , P̃′p−1, respectively, of P̃′(= P̃i). In order to construct

the MPI communicator for each process sub-grid to perform p independent SGCT
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computations in parallel, P̃′ on sub-grid Gi is split into p process sub-grids P′(= Pi)

in such a way that each P′k|k = 0, 1, · · · , p − 1 contains P̃′j·p+k|j = 0, 1, · · · , P̃′
p − 1

processes. An example of this technique is shown in Figure 5.1.

5.2.3 Modifications to GENE for the SGCT

Some modifications to the GENE source were required to exchange {ui} of equa-

tion (2.1) between the SGCT and GENE. On each process, {ui} corresponds to the

g_1 array (a 5D complex density field of GENE).

Referring to the main program of Algorithm 1, after copying common elements

from gi to ui at line 14, the padded elements in ui are initialized to 0 for the velocity

dimensions. For the spatial dimensions, boundary conditions are applied, including

a halo exchange (line 13). For 3D configurations using the Nz dimension, shifts

need also to be applied [Görler, 2009], as flux lines traverse the tokamak in a helical

fashion. In this case we copy gi into an existing GENE array f_ (dimensioned to

include all GENE boundaries) and call into the GENE code itself as follows:

call exchange_5df(f_)

call exchange_v(f_)

call exchange_mu(f_)

and then copy into ui the corresponding elements in f_.

The main program uses the SGCT implementation to determine the parallel do-

main decomposition to be used by GENE. Furthermore, each GENE instance will

have different global sizes for the dimensions used in the combination (e.g. for the

3D SGCT, these might be Nz, Nv and Nu). The main program also creates a different

directory for each GENE instance with a customized parameters file containing the

above values for this instance.

A standard tool is utilized for the interoperability between C and FORTRAN as

an interface. We used the intrinsic module ISO_C_BINDING and the language-binding-

spec attribute BIND for this interoperability. A C wrapper of the C++ code is used to

hide the C++ code from the interoperation. A list of modifications that were made

on GENE are as follows.

• The runApplication() function at line 13 of Algorithm 1 replaces the main

subroutine of GENE. It calls into the top-level GENE (FORTRAN) subroutines

as follows:

call check_for_scan(. . .)

call initialize_comm_scan(. . .)

call check_for_diagdir(. . .)

call rungene(. . .)

call erase_stop_file

call create_finished_file

call finalize_comm_scan(. . .).
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One extra parameter is added to the rungene() subroutine to store the sub-

grid communicator Ci to determine the process rank and communicator size

with that parameter. The other subroutines are not modified.

• In the initial_value() subroutine, called by the rungene() subroutine, a

C++ function call c_get_g1() is made with FORTRAN’s INTERFACE block at

the end of the time evolution loop. This passes g_1 (and other associated data)

from GENE to the SGCT to initialize each sub-grid solution ui.

• ui, passed to the initial_value() subroutine via calling the rungene() sub-

routine, is used to initialize g_1 field before entering the time-loop. This is

required for repeated combinations over time. For a single combination, this is

not used (passed as null). GENE initializes g_1 by itself.

5.2.4 Experimental Results

In this section, the experimental setup, an analysis of the execution performance, and

the memory consumption of both the FT-SGCT and equivalent full grid computations

for GENE are presented. Following this, we discuss the approximation errors of the

solutions computed with FT-SGCT for GENE.
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Figure 5.2: Overall execution time and memory usage of the 2D FT-SGCT, 3D FT-SGCT,

and the equivalent full grid computation with a single combination when there is no fault

throughout the computation for the GENE application. 2d_big_6 and 3d_big_6 inputs are

used for the 2D and 3D FT-SGCT computations, respectively, which are different. The results

shown are an average of five experiments. p represents parallelization on the non-SGCT

dimension (Nz for 2D, Ny for 3D).
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# cores
GENE

simulation
(sec)

combination
algorithm (sec)

64 441.01 0.373

128 236.98 0.252

256 126.46 0.151

512 66.30 0.115

1024 43.10 0.092

2048 33.93 0.076

Table 5.1: Execution time breakdown of the 2D FT-SGCT with parallelization p = 1 and level

l = 5 for the GENE application presented in Figure 5.2a.

5.2.4.1 Experimental Setup

Experiments were conducted based on a problem from the GENE testsuite as shown

in Table B.1. One is called 2d_big_6, with a full grid size (Nv, Nu) = (28, 28) for the

2D FT-SGCT, Nx = 64, Ny = 4, Nz = 16, and the level of the SGCT is l = 5. For a

2D FT-SGCT for l = 5 with power of two sizes for the component’s process grids,

it turns out that the total number of processes is also a power of two, permitting

a head-to-head comparison with the full grid results. The other is called 3d_big_6,

with a full grid size (Nz, Nv, Nu) = (26, 28, 28) for the 3D FT-SGCT, Nx = 32, Ny = 4

and the level of the FT-SGCT is l = 4. For both cases we set the number of species

s to be 1, the time-steps to 100, the maximum ∆t = 10−3, and the grid type for the

Nu dimension to be ‘equidist’ (by setting “mu_grid_type = ’equidist”’ as shown in

Table B.1). Number of processes in various directions were appropriately set from

the main program of Algorithm 1.

The selection of levels l = 5 and l = 4 (for the 2D and 3D versions respectively) is

one of the many possible examples. The execution time, concurrency, and accuracy

of the combined solution will be varied with the change of level.

5.2.4.2 Execution Time and Memory Usage

Figure 5.2a gives execution performance of the 2D FT-SGCT, 3D FT-SGCT, and the

equivalent full grid computations for GENE. It is observed that the 2D FT-SGCT is

approximately 2× faster than the equivalent full grid computation. The difference in

this speed reflects the reduced amount of work enabled by the FT-SGCT compared

to the full grid, which for level l = 5 on the 2D case is approximately one half.

Execution time of the 3D FT-SGCT shows a clear advantage in terms of reduced

amount of work, which for l = 4 in this case is approximately one quarter. This

causes the 3D FT-SGCT to be approximately 4× faster than the equivalent full grid

computation.

Figure 5.2a also provides evidence that our FT-SGCT implementation supports
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parallelization over non-SGCT dimensions for GENE. For the 2D case, we choose a

parallelization p = 2 on the non-SGCT dimension Nz, where Nv and Nu hold process

sub-grid for the FT-SGCT. Each process sub-grid experiences a reduction of process

count by a factor of p on one of the FT-SGCT dimensions. This occurs on either the

Nv or Nu dimension, or both. For p = 2, the larger dimension is reduced (or, Nu,

when they are the same). It is observed that this process grid adjustment still shows

a similar execution time.

Table 5.1 shows the overall performance of the 2D FT-SGCT for the GENE ap-

plication in isolation. It is observed that performing the combination is not costly.

It should be noted however these times are for when the SGCT algorithm has been

called before the application starts to exclude the Open MPI warm-up time. As ex-

plained in [Strazdins et al., 2016b], the cost of the first call to the SGCT can be much

greater, due to the fact that Open MPI is required to setup new connections between

processes operating on separate sub-grids. For a detailed analysis and evaluation of

the combination algorithm, see [Strazdins et al., 2016b, 2015].

Figure 5.2b gives a comparison of memory usage of the 2D and 3D FT-SGCT

with the equivalent full grid computation for GENE. It is observed that the memory

requirement of the FT-SGCT is roughly the same as that of the equivalent full grid

for the relatively small SGCT level used. A bigger improvement in memory usage
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Figure 5.3: Approximation errors of the FT-SGCT based GENE application. 2d_big_6 and

3d_big_6 inputs are used for the 2D and 3D FT-SGCT computations, respectively, which are

different. The results shown are an average of a number of experiments for the loss of one

sub-grid, two sub-grids, and three sub-grids such that the occurrence of faults maintains

an uniform distribution over all computing nodes. In order to do so, we injected 62% of

failures on the first diagonal sub-grids (on larger sub-grids, except sub-grid 0 or G4,0 on level

l = 5 containing process 0), 25% on the second diagonal sub-grids, 10% on the third diagonal

sub-grids, and 3% on the fourth diagonal sub-grids (on smaller sub-grids) for the 2D FT-

SGCT. For the 3D FT-SGCT, these are 72%, 22%, 5%, and 1%, respectively. However, for the

non-failure case, only one experiment is done.
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(a) initial full grid field with no failure (b) full grid field with no failure

(c) combined grid field with no failure
(relative l1 error is 5.0%)

(d) combined grid field with processes on
grid Gi with i = (1, 3) fail (relative l1
error is 5.07%)

(e) combined grid field with processes on
grid Gi with i = (3, 1) and (1, 2) fail (rel-
ative l1 error is 5.01%)

(f) combined grid field with processes on
grid Gi with i = (2, 2), (0, 4), and (2, 1)
fail (relative l1 error is 6.22%)

Figure 5.4: A comparison of the 2D full grid and level l = 5 combined grid solutions with

(Nv, Nu) = (27, 27), Nx = 16, Ny = 1, Nz = 64, and species s = 1 of standard test 1

(with standard/parameters_1 parameter file), and a single combination for the GENE ap-

plication. y-axis and x-axis of each plot represents ‘velocity parallel to field’ and ‘(radial

dimension) × (parallel to field dimension)’, respectively.
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would be expected for larger levels.

5.2.4.3 Approximation Errors

Figure 5.3 shows the approximation errors of the 2D and 3D FT-SGCT with vary-

ing number of combinations and varying number of lost sub-grids for GENE. It is

observed that the error is acceptably low for both the 2D and 3D cases. Moreover,

multiple combinations clearly show the advantages with respect to accuracy, but

with an exception of the 2D FT-SGCT on the non-failure case. Previous studies on

theoretical error bounds and numerical results for advection show an advantage to

a certain number of combinations [Lastdrager et al., 2001], which one might expect

could also be realized for GENE. However, why the accuracy of the 2D FT-SGCT for

GENE on the non-failure case is not improving for multiple combinations is under

investigation.

Furthermore, Figure 5.4 shows some plots of the combined and equivalent full

grid solution densities in the absence or presence of faults for GENE. It demonstrates

how much a field deteriorates due to approximation error. It is observed that even

with approximately 6% relative l1 error of the combined field there is no significant

difference between the combined and equivalent full grid fields.

The C/C++ and FORTRAN source codes for our implementation are available at

https://github.com/mdmohsinali/SGCT-Based-Fault-Tolerant-GENE.

5.3 Fault-Tolerant SGCT with the Lattice Boltzmann Method

Application

In this section, we discuss the Taxila Lattice Boltzmann Method (Taxila LBM) appli-

cation, the modifications needed on Taxila LBM to apply the SGCT, and the experi-

mental evaluation of the FT-SGCT for Taxila LBM.

5.3.1 Application Overview

The Lattice Boltzmann Method (LBM) is used to solve the discrete Boltzmann equation.

The equation is used to evolve the general form of a distribution function for a lattice

f k(x + ei∆t, ei, t + ∆t)− f k(x, ei, t) = Ωk
coll + Ωk

forces,

where x represents the sites of a discrete lattice on which particles at time t moving

with fixed velocities ei from site to site, i is the index of ni available velocity direc-

tions including the stationary (i = 0), k represents the index of nk components, and

Ωcoll and Ωforces are the momentum changes in the particle distribution caused by

collisions and other forces, respectively.

The popularity of LBM for the pore-scale simulation is increasing due to its capa-

bility of including complex geometries without putting more effort. Other benefits

h
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include multiple relaxation times, increased isotropy, improved accuracy, and phys-

ical fidelity of the method. The explicit type of algorithm and comparatively huge

local task provide a benefit of achieving high computational efficiency [Coon et al.,

2014].

Taxila LBM [Coon et al., 2014; Porter et al., 2012] is an open-source software

framework of the LBM for simulation of flow in porous and geometrically com-

plex media. It is based upon the Shan-Chen model [Shan and Chen, 1993]. This

framework provides some excellent features: (1) It is shown that the implementa-

tion is scalable to tens of thousands of cores on Jaguar/Titan. (2) Its FORTRAN 90

based PETSc [Balay et al., 2014] modular implementation is easily extendable. (3) It

provides the flexibility of solving D2Q9 (2-dimensional, 9 lattice velocities), D3Q19

(3-dimensional, 19 lattice velocities), and other mesh dependencies, on the 2D or

3D grids. (4) It supports arbitrary, heterogeneous boundary conditions, and multi-

ple mineral/wall materials. (5) It can operate on multi-phase systems with different

phase viscosities and/or molecular masses. (6) It provides the flexibility to include

higher order derivatives or multiple relaxation times to improve the stability at large

viscosity ratios.

In this thesis, we chose an example application available under tests/bubble_3D

of [Tax, 2015]. This example is called a bubble test, in which two partially miscible

fluids are initialized in contact with each other. Due to surface tension, the fluids

equilibrate: one fluid forms a spherical bubble inside the other with a nonzero thick-

ness interface between the two fluids. The pressure difference between the fluids

measures surface tension, while the thickness of the interface measures miscibility.

In typical applications, these tests are a calibration step to ensure model parame-

ters result in physical properties consistent with the fluids to be modeled, such as

supercritical CO2 and water, or air and water.

By default, the bubble test provides a distribution function field as output. It

is also possible to extract either the density, total velocity, total density, or pressure

fields. In our experiment, we choose the density field as output.

5.3.2 Modifications to Taxila LBM for the SGCT

Some modifications to the Taxila LBM source were required to exchange {ui} of

equation (2.1) between the SGCT and Taxila LBM. On each process, {ui} corresponds

to the rho array (either 2D or 3D) of Taxila LBM.

An interface is created to communicate between C++ and PETSc (FORTRAN 90

code). A standard tool is used for the interoperability between C and FORTRAN. A

C wrapper of the C++ code is used to hide the C++ code from the implementation.

An intrinsic module ISO_C_BINDING and the language-binding-spec BIND is used for

the interoperability.

In the original Taxila LBM implementation, the bubble format is fixed. We made

it adaptive based on the number of grid points in each dimension. For each grid, we

define the suspending bubble as a square/rectangle of length a one-half of the num-

ber of grid points in each dimension, and placed it at the center of the corresponding
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grid.

The default global communicators in the LBMCreate() and subsequent subrou-

tines are replaced by the sub-grid communicator Ci passed from the main program of

Algorithm 1. Similarly, process grid configuration, generated from Ci, and sub-grid

Gi configuration are also passed as parameters onto these subroutines to make these

configurations consistent on both the SGCT and Taxila LBM sides.

The original Taxila LBM requires a single parameter file input_data to initialize

the application, but we need |I| versions of the customized input_data files with

one for each sub-grid Gi to initialize the application on each sub-grid Gi. These are

created and placed in separate directories on-the-fly.

Since density is the field of interest to which the SGCT is applied, we extract

the local rho field after finishing the execution of the LBMRun() subroutine. A local

pointer lbm%flow%distribution%rho_a is used to achieve this. Then a C++ function

call c_get_rho() is made with FORTRAN’s INTERFACE block to pass this pointer

(and the other associated data) from Taxila LBM to the SGCT to initialize each sub-

grid solution ui. After the initialization achieved by copying the common elements

from gi to ui (line 12 of Algorithm 1), periodic boundary conditions are applied for all

dimensions (line 13) (including a halo exchange operation). A block factor of b = 1

is used here.

Process or node failures are handled by the similar way as it is handled for the

GENE application.

In order to facilitate multiple combinations, ui is passed into the LBMCreate()
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Figure 5.5: Overall execution time and memory usage of the 2D FT-SGCT, 3D FT-SGCT,

and the equivalent full grid computation with a single combination when there is no fault

throughout the computation for the Taxila LBM application. 2D FT-SGCT computers 213× 213

grid points with level l = 5. 3D FT-SGCT computes 29 × 29 × 29 grid points with level l = 4.

The results shown are an average of five experiments (200 time-steps each).
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and subsequent subroutines to initialize rho, before the execution of the LBMRun()

subroutine. For a single combination, this is not used; Taxila LBM initializes rho by

itself.

5.3.3 Experimental Results

In this section, the experimental setup, an analysis of the execution performance, and

memory consumption of both the FT-SGCT and equivalent full grid computations for

Taxila LBM are presented. Following this, we discuss the approximation errors of the

solutions computed with the FT-SGCT for Taxila LBM.

5.3.3.1 Experimental Setup

Experiments were conducted with parameters in input_data file as shown in Ta-

ble B.2. The time-steps of the experiments were set by -npasses <VALUE>. Full

grid dimensions for the 2D and 3D cases were (-NX, -NY) = (213, 213) with level

l = 5 and (-NX, -NY, -NZ) = (29, 29, 29) with level l = 4, respectively. The number

of processes in the x, y, and z directions (-da_processors_x, -da_processors_y,

-da_processors_z) for the 3D case (and for the 2D case with no z-dimensional

value) were appropriately set from Algorithm 1.

5.3.3.2 Execution Time and Memory Usage

Figure 5.5a shows the execution performance of the 2D FT-SGCT, 3D FT-SGCT, and

the equivalent full grid computations for Taxila LBM. It is observed that the 2D FT-

SGCT is approximately 2× faster than the equivalent full grid computation due to

comparatively reduced amount of work in the FT-SGCT. It is also observed that the

3D FT-SGCT is approximately 4× faster than the equivalent full grid computation

due to computing less work than the 2D case.

# cores
Taxila LBM
simulation

(sec)

combination
algorithm (sec)

64 254.68 6.3E−2

128 128.28 3.8E−2

256 64.90 2.4E−2

512 32.99 1.0E−2

1024 17.66 5.5E−3

2048 9.48 3.1E−3

Table 5.2: Execution time breakdown of the 2D FT-SGCT with level l = 5 for the Taxila LBM

application presented in Figure 5.5a.
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(a) initial full grid with no failure (b) full grid with no failure

(c) combined grid with no failure (relative
l1 error is 5.0%)

(d) combined grid with processes on grid
Gi with i = (1, 3) fail (relative l1 error is
5.07%)

(e) combined grid with processes on grid
Gi with i = (3, 1) and (1, 2) fail (relative
l1 error is 5.01%)

(f) combined grid with processes on grid
Gi with i = (3, 1), (1, 3), and (2, 1) fail
(relative l1 error is 5.13%)

Figure 5.6: A comparison of the 2D full grid and level l = 5 combined grid solutions with

27× 27 grid points and a single combination for the Taxila LBM application. Since simulation

on larger grid for 20000 time-steps is very expensive, we choose this smaller grid setting for

the results of this figure only. The fields shown are for the first component out of two

components.
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Table 5.2 shows the overall performance of the 2D FT-SGCT for the Taxila LBM

application in isolation. It is observed that performing the combination is again of

little relative cost. It should be noted however these times are again for when the

SGCT algorithm has been called before the application starts to exclude the Open

MPI warm-up time.

Figure 5.5b shows the amount of memory usage of the 2D FT-SGCT, 3D FT-SGCT,

and the equivalent full grid computations for Taxila LBM. It is observed that the

memory requirement of the FT-SGCT is roughly the same as that of the equivalent

full grid for the relatively small SGCT level used. A bigger improvement in memory

usage would be expected for larger levels.

5.3.3.3 Approximation Errors

The computed relative l1 approximation errors of the 2D and 3D FT-SGCT in the

absence of faults for Taxila LBM with a single combination are 1.13E−2 and 3.98E−2,

respectively, which seems acceptably low. For multiple combinations, it is observed

that the accuracy of the combined solution is not improved.

Furthermore, Figure 5.6 shows some plots of the combined and equivalent full

grid solution densities in the absence or presence of faults for Taxila LBM. It demon-

strates how much a field deteriorates in the presence of faults. It is observed that

even with approximately 5% approximation error there is no significant difference

between the combined and equivalent full grid fields. It is also observed that there

are some unexpected red spikes on the combined grid fields. This is due to an im-

plementation issue of the FT-SGCT, and should be fixed.

The C/C++ and PETSc (FORTRAN 90) source codes for our implementation are

available at https://github.com/mdmohsinali/SGCT-Based-Fault-Tolerant-Taxila-LBM.

5.4 Fault-Tolerant SGCT with the Solid Fuel Ignition Appli-

cation

In this section, we discuss the Solid Fuel Ignition (SFI) application, the modifications

needed on SFI to apply the SGCT, and the experimental evaluation of the FT-SGCT

for SFI.

5.4.1 Application Overview

The Bratu problem in three-dimensional coordinates is defined by the equation

−∆u(x, y, z)− λ expu(x,y,z) = 0, 0 < x, y, z < 1,

where ∆ is the Laplace operator and λ (Bratu parameter) defines the magnitude of

the nonlinearity. The boundary conditions are u(x, y, z) = 0 for x = 0, x = 1, y = 0,

h
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y = 1, z = 0, z = 1. It is used in Solid Fuel Ignition (SFI) models [Bebernes and Eberly,

1989], heat transfer via radiation, nano-technology, cosmology, and so on.

In this thesis, we chose an application solving the Bratu problem for the modeling

of SFI (or combustion) with λ = 6.0 (0 ≤ λ ≤ 6.81). The application is an example

code of PETSc [Balay et al., 2014] demonstrating the nonlinear SNES solver. It uses

distributed arrays (DMDAs) to partition the parallel grid. A finite difference approxi-

mation with the usual 7-point stencil for 3D (5-point for 2D) is used to discretize the

boundary value problem to obtain a nonlinear system of equations. The 3D and 2D

versions of the code are available in [sfi, 2015b] and [sfi, 2015a], respectively.

This targeted application is not as complex compared to the previous applica-

tions. However, evaluation of this application will provide us a general idea about

the evaluation of large complex applications modeling SFI.

5.4.2 Modifications to SFI for the SGCT

Some modifications to the SFI source were required to exchange {ui} of equation (2.1)

between the SGCT and SFI. On each process, {ui} corresponds to vector x of the

SNESSolve() function (either 2D or 3D) of SFI.

The PETSc code base of the 2D SFI is in FORTRAN 90. A standard tool is used

for the interface between C and FORTRAN. A C wrapper of the C++ code is used to

hide the C++ code from the implementation. An intrinsic module ISO_C_BINDING

and the language-binding-spec BIND is used for the interoperability. For the 3D SFI, the

PETSc code base is in C. Thus, no special interoperability is required.
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Figure 5.7: Overall execution time and memory usage of the 2D FT-SGCT, 3D FT-SGCT,

and the equivalent full grid computation with a single combination when there is no fault

throughout the computation for the SFI application. 2D FT-SGCT computers 211 × 211 grid

points with level l = 5. 3D FT-SGCT computes 28 × 28 × 28 grid points with level l = 4. The

results shown are an average of five experiments.
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The default global communicators in the SNESCreate() and DMDACreate2d()

(or DMDACreate3d() for 3D) functions are replaced by the sub-grid communicator Ci

passed from the main program of Algorithm 1. Similarly, process grid configuration,

generated from Ci, and sub-grid Gi configuration are also passed as parameters onto

the DMDACreate2d() (or DMDACreate3d() for 3D) function to make these configura-

tions consistent on both the SGCT and SFI sides.

The DMDAVecGetArrayF90() and DMDAVecRestoreArrayF90() (or the DMDAVec-

GetArray() and DMDAVecRestoreArray(), respectively, for the C version) functions

are used to access the solution vector x after the execution of the SNESSolve() func-

tion. Then the c_get_sfi_field() function is called to pass the solution vector x to

the SGCT to initialize each sub-grid solution ui. After the initialization achieved by

copying the common elements from gi to ui (line 12 of Algorithm 1), periodic bound-

ary conditions are applied for all dimensions (line 13) (including a halo exchange

operation). Similar to Taxila LBM, a block factor of b = 1 is used here.

Process or node failures are handled by the similar way as it is handled for the

GENE application.

Multiple combinations are achieved by passing ui into SFI to initialize x vector

before the execution of the SNESSolve() function. For a single combination, this is

not used; SFI initializes x by itself.

5.4.3 Experimental Results

In this section, the experimental setup, an analysis of the execution performance, and

memory consumption of both the FT-SGCT and equivalent full grid computations

for SFI are presented. Following this, we discuss the approximation errors of the

solutions computed with the FT-SGCT for SFI.

# cores
SFI simulation

(sec)
combination

algorithm (sec)

64 113.40 5.73E−3

128 62.11 4.67E−3

256 33.28 3.58E−3

512 20.66 2.69E−3

1024 14.79 1.84E−3

2048 18.87 1.24E−3

Table 5.3: Execution time breakdown of the 2D FT-SGCT with level l = 5 for the SFI applica-

tion presented in Figure 5.7a.
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(a) initial full grid field with no failure (b) full grid field with no failure

(c) combined grid field with no failure
(relative l1 error is 0.127%)

(d) combined grid field with processes on
grid Gi with i = (1, 3) fail (relative l1 er-
ror is 0.127%)

(e) combined grid field with processes on
grid Gi with i = (3, 1) and (1, 2) fail (rel-
ative l1 error is 0.111%)

(f) combined grid field with processes on
grid Gi with i = (2, 2), (0, 4), and (2, 1)
fail (relative l1 error is 0.123%)

Figure 5.8: A comparison of the 2D full grid and level l = 5 combined grid solutions with

211 × 211 grid points and a single combination for the SFI application.
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5.4.3.1 Experimental Setup

Experiments were conducted with Bratu parameter λ = 6.0 (-par 6.0) and Jacobian

finite difference approximation (-snes_fd). Full grid dimensions for the 2D and

3D cases were 211 × 211 with level l = 5 and 28 × 28 × 28 with level l = 4, respec-

tively. The number of processes in the x, y, and z directions (Nx, Ny, Nz) for the 3D

case (and for the 2D case with no z-dimensional value) were appropriately set from

Algorithm 1.

5.4.3.2 Execution Time and Memory Usage

Figure 5.7a shows the execution performance of the 2D FT-SGCT, 3D FT-SGCT, and

the equivalent full grid computations for SFI. It is observed that the 2D FT-SGCT is

approximately 3× faster than the equivalent full grid computation due to a reduced

amount of work required for the FT-SGCT. It is also observed that the 3D FT-SGCT

is approximately 9× faster than the equivalent full grid computation due to reduced

computational work compared to the 2D case.

Table 5.3 shows the overall performance of the 2D FT-SGCT for the SFI application

in isolation. It is observed that the overhead of performing the combination is very

low. It should be noted however these times are for when the SGCT algorithm has

been called before the application starts to exclude the Open MPI warm-up time.

Figure 5.7b shows the amount of memory usage of the 2D FT-SGCT, 3D FT-SGCT,

and the equivalent full grid computations for SFI. It is observed that the memory

requirement of the FT-SGCT is roughly the same as that of the equivalent full grid

for the relatively small SGCT level used. A bigger improvement in memory usage

would be expected for larger levels.

5.4.3.3 Approximation Errors

The computed relative l1 approximation errors of the 2D and 3D FT-SGCT in the

absence of faults for SFI with a single combination are 1.27E−3 and 1.28E−3, respec-

tively, which seems acceptably low. Indeed, these low error rates make SFI a highly

suitable application for the SGCT. For multiple combinations, it is observed that the

accuracy of the combined solution is not improved.

Furthermore, Figure 5.8 shows some plots of the combined and equivalent full

grid solution densities in the absence or presence of faults for SFI. It demonstrates

how much a field deteriorates in the presence of faults. It is observed that with

approximately 0.125% approximation error there is no significant difference between

the combined and equivalent full grid fields.

The C/C++ and PETSc (FORTRAN 90) source codes for our 2D implementa-

tion are available at https://github.com/mdmohsinali/SGCT-Based-Fault-Tolerant-

2D-SFI.

The C/C++ and PETSc (C) source codes for our 3D implementation are available

at https://github.com/mdmohsinali/SGCT-Based-Fault-Tolerant-3D-SFI.
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Figure 5.9: Recovery overhead of a single occurrence of failures for shorter computation for

GENE. The results shown are an average of five experiments for 2d_big_6 input applied to

the 2D SGCT for GENE.

5.5 Failure Recovery Overheads

In this section, we analyze the recovery overheads of the FT-SGCT (alternate combi-

nation formula based fault-tolerant SGCT) and CR-SGCT (applying Checkpoint/Res-

tart technique to the non-fault-tolerant SGCT) for GENE. Then we analyze the recov-

ery overheads of the FT-SGCT in terms of computing extra unknowns. Finally, we

analyze repeated failure recovery overheads for GENE.

The failure recovery overheads for the other two applications (Taxila LBM and

SFI) are almost the same as GENE. So, they are not presented separately.

5.5.1 Recovery Overheads for Shorter Computations

Figure 5.9 shows the component timings that are used to estimate the recovery over-

heads of the two approaches. The first component timing is related to the imple-

mentation of the FT-SGCT, which uses ULFM MPI and the algorithm-based recovery

(in terms of applying alternate combination formula) on the SGCT to recover from

failures. The second component timing is related to the implementation of the CR-

SGCT, which uses a Checkpoint/Restart based recovery on the SGCT to recover from

failures. The components are generated using 2d_big_6 input of GENE, and will be

used for measuring the overheads of both the shorter and longer computations.

The notations in this figure are as follows:

• TRP := TRP(N) is the time taken to recover from process failures and recon-
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struct the broken communicators on N nodes using ULFM MPI (including ac-

knowledgments performed in the alive processes, and spawning the replace-

ment processes on the same node) for a single occurrence of faults.

• TRN := TRN(N) is the time taken to recover the failed nodes from failures

and reconstruct the broken communicators on N nodes using ULFM MPI (in-

cluding acknowledgments performed in the alive processes, and spawning the

replacement processes on a spare node) for a single occurrence of faults.

• TSC := TSC(N) is the time taken to recover the broken communicators on N

nodes via shrinking the communicators.

• TWR := TWR(N) is the time required to write a global checkpoint on N nodes.

• TRD := TRD(N) is the time required to read a checkpoint from N nodes.

• TRM is a single MPI launch time (when restarts from a checkpoint after failure),

which can be calculated by

TRM = (t1 + t2)− (t3 + TRD), (5.1)

where

– t1 is the system time of running the CR-SGCT for 50 time-steps with global

checkpoint write at the end (no checkpoint read),

– t2 is the system time of running the CR-SGCT for 50 time-steps after initial-

izing from checkpoint (written on previous step) and no global checkpoint

write,

– t3 is the system time of running the CR-SGCT for 100 time-steps with

global checkpoint write at the end (no checkpoint read).

Note that checkpoint write and read in GENE could be enabled by “write_checkpoint

= T” and “read_checkpoint = T”, respectively, as parameters along with others as

shown in Table B.1. Similarly, these could be disabled by replacing ‘T’ with ‘F’.

Based on the process times, it is possible to estimate the recovery overheads for

the shorter computations (since shorter computation saves CPU hours). The over-

heads of the FT-SGCT of a one-off process and node failures are TRP and TRN , re-

spectively. With the CR-SGCT, the overhead is the sum of TWR, TRM, and TRD for

a single occurrence of failures. This excludes the overhead of backtrack time. It is

observed that the one-off failure recovery overhead of the CR-SGCT is approximately

4× larger than the spawning based recovery overhead of the FT-SGCT (both for pro-

cess and node failures). With the shrinking based recovery, overhead of the FT-SGCT

is approximately 90× less than that of the CR-SGCT. We expect this gap to increase

in future mature ULFM MPI releases.

It should be noted that we would expect that TRP, TRN ≪ TRM for a mature MPI

implementation, as recovering a failed process involves inherently less work than

relaunching the job from scratch, and that we expect the gap to increase in future

ULFM MPI releases.
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5.5.2 Recovery Time Analysis for Longer Computations

Using results gathered so far, we will estimate the overhead of our implementation

for longer computations and different frequencies of faults. We will compare this

estimate with the time of the CR-SGCT taking into account the overhead generated

by having to backtrack to the previous checkpoint when failures occur. It is as-

sumed that the occurrence of faults is independent and identically distributed on

each compute node. Further, it is assumed that faults are exponentially distributed

and therefore the failure rate is constant. The other variables we use are as follows:

• Tf n is the Mean Time Between Failures (MTBF) on each compute node.

• N is the number of nodes used in the computation.

• Tf n/N is mean time between failures for a computation across N nodes.

• TFT := TFT(N) is the total run time of the FT-SGCT implementation on N

nodes.

• C is the number of combinations throughout the computation.

Experimental results presented in Figures 5.2a and 5.9 allow us to estimate TFT

and TRP, respectively, for different N. Note that in order to have a reasonable approx-

imation error, it is sensible to choose C such that at most 1 fault occurs on average

between combinations, that is, C ≥ TFT/(Tf n/N) = N · TFT/Tf n. The only overhead

of the spawning based recovery is from the recovery of processes and reconstruc-

tion of communicators using ULFM MPI when a failure occurs. As the expected

number of failures is equal to the number of combinations, one has the additional

overhead C · TRP. Note that recovery in the SGCT algorithm only occurs prior to

each combination, application instances not affected by the failures continue to run

independently up to the combination at which time the status of processes within

the global communicator is checked. Thus, C · TRP is actually an upper bound on

the overhead for process recovery throughout the computation. Thus, the expected

overhead is bounded above by

C · TRP =
N · TFT

Tf n
TRP .

On the other hand, since the only overhead of the shrinking based recovery is from

the recovery of the broken communicators via shrinking the communicators, the

expected overhead of this recovery is bounded by

C · TSC =
N · TFT

Tf n
TSC .

One sees that this is inversely proportional to the MTBF per node. Note that the

occurrence of faults obviously affects the error of the SGCT. The estimation of this

error, however, is more involved.
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Figure 5.10: Expected relative recovery overhead for longer computation for GENE. The

results shown are an average of five experiments for 2d_big_6 input applied to the 2D SGCT

for GENE.

We will compare the algorithm-based recovery overheads of the FT-SGCT with

the typical overhead of the Checkpoint/Restart applied to the SGCT computation.

Here we define some additional values of interest.

• TCR := TCR(N) is the total run time of the SGCT computation on N nodes using

Checkpoint/Restart for recovery from faults.

• TCR/(Tf n/N) = N · TCR/Tf n is the expected number of faults throughout the

computation.

• TOC =
√

2TWR · Tf n/N is the optimal time between checkpoints proposed by

Young [Young, 1974].

• TCR/TOC is the total number of checkpoints throughout the computation.

• TR := TR(N) is the total recovery time after a fault including restarting MPI

and reading a checkpoint on N nodes. This is equivalent to TRM + TRD.

• TB = TOC/2 is the average backtrack time when a fault occurs, that is, the

typical time between the last checkpoint and a failure for which recomputations

must be done.

Experimental results summarized in Figures 5.2a and 5.9 allow us to estimate

TCR, TWR, and TR for some different values of N for GENE. Similarly, results from

Figures 5.5a and 5.7a can be used with the similar type of results of Figure 5.9 for the
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Taxila LBM and SFI applications to estimate these parameters for these two applica-

tions, respectively.

The total overhead for Checkpoint/Restart consists of two components. The first

is the writing of checkpoints, which throughout the computation is

TCR

TOC
TWR = TCR

√
N · TWR
√

2Tf n
.

Additionally, for each failure, MPI must be restarted, a checkpoint read, and recom-

putation done up to the point at which the failure occurred. This overhead is the

restart time plus the typical recomputation time multiplied by the expected number

of faults, that is,

N
TCR

Tf n
(TR + TB) = TCR

(

NTR

Tf n
+

√
N · TWR
√

2Tf n

)

.

Adding the two together the total Checkpoint/Restart overhead is

N · TCR

Tf n
TR + TCR

√
2N · TWR
√

Tf n
.

Note that this overhead obviously extends the execution time of the application thus

exposing it to more faults and that the same applies for the overhead with algorithm-

based recovery. One may, however, divide the application execution time out of both

overheads, and instead compare the overheads relative to the application execution

times. We are particularly interested in how the two compare as the time between

failures varies. The change in relative overheads with respect to Tf n is plotted in

Figure 5.10 using representative values for the remaining variables obtained from the

previous figures. It is observed that the overhead of the algorithm-based approach is

significantly less than the equivalent computation done using Checkpoint/Restart.

If we compare the CR-SGCT N = 112 and N = 14 with the spawning based

FT-SGCT N = 128 and N = 16, respectively, we observe approximately 15− 100×
less relative overhead in the FT-SGCT than the CR-SGCT for the given lowest value

of Tf n. Similarly, if we compare the shrinking based FT-SGCT N = 128 and N = 16

with the CR-SGCT N = 112 and N = 14, respectively, we observe approximately

350− 3, 500× less relative overhead in the FT-SGCT than the CR-SGCT for the given

lowest value of Tf n.

5.5.3 Overhead due to Computing Extra Grid Points

Some extra sub-grid computations are needed in the SGCT to achieve an algorithm-

based fault resiliency called FT-SGCT. The amount of redundancy determines the

accuracy of the combined solution when multiple sub-grids are lost at a time. This

could be selected based on the reliability of the system on which the application

is running. Applications running on the less reliable system should increase the
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Figure 5.11: Relative overhead required in the SGCT to achieve an ABFT. It is calculated by

dividing the total grid points in the SGCT out of extra grid points computed in the FT-SGCT.

For the 2D case, minimum, implementation, and maximum are calculated with e = 1, 2, and

l − 2, respectively, of equation (5.2). Similarly, for the 3D case, minimum & implementation

and maximum are calculated with e = 1 and l − 3, respectively, of equation (5.3).

amount of redundancy to keep the approximation error in an acceptable level.

The number of grid points on each sub-grid of a layer/plane is half that of its

upper (higher) layer/plane. With the current load balancing strategy, this principle

also applies to the number of cores, if single-threaded MPI processes are used. For

the 2D FT-SGCT, the overhead of computing extra grid points relative to computing

the total grid points in the SGCT, is defined as

relative overhead =
total unknowns in the FT-SGCT− total unknowns in the SGCT

total unknowns in the SGCT

=
extra unknowns

regular unknowns

=
∑

e
i=1

(l−i−1)
2i+1

∑
2
i=1

(l−i+1)
2i−1

,

(5.2)

where l > 2 is the level of the 2D SGCT, and 1 ≤ e ≤ l − 2 is the number of extra

layers. Similarly, for the 3D case, it is defined as

relative overhead =
∑

e
i=1

(l−i−1)(l−i−2)
2i+3

∑
3
i=1

(l−i+2)(l−i+1)
2i

, (5.3)

where l > 3 is the level of the 3D SGCT, and 1 ≤ e ≤ l − 3 is the number of extra
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Figure 5.12: Repeated ULFM MPI failure recovery overheads of the 2D FT-SGCT with level

l = 5 applied to the GENE application over 64 cores. The application is running with multiple

combinations, and before performing each combination a real process fails. This failure is

assumed to be due to a fault in a process or a node. The overhead includes recovery of all

failures. The results shown here are an average of five experiments.

planes.

The relative overhead of our 2D FT-SGCT implementation (with level l = 5 and

two extra layers) is 14.29%, whereas for the 3D case (with level l = 4 and one extra

plane), it is 0.91%.

The minimum, maximum, and the implementation-specific relative overheads of

the 2D and 3D FT-SGCT for various levels are shown in Figure 5.11. It is observed

that the maximum relative overhead of the 3D SGCT is more than 2× lower compared

to the 2D case. This indicates that the relative overhead will be significantly reduced

if combination is performed on higher dimensions, rather than on lower dimensions.

5.5.4 Repeated Failure Recovery Overheads

TRP, TRN , and TSC in Figure 5.9 are the spawning based process failure recovery

overhead, spawning based node failure recovery overhead, and shrinking based com-

municator recovery overhead, respectively, for a single occurrence of faults. But in

practice, process or node failures may happen repeatedly. So, it is an interesting task

to find out how costly the repeated failure recoveries are. An experiment measuring

the overhead of up to 10 repeated failure recoveries of GENE over 64 cores is shown

in Figure 5.12. It shows that our implementation is robust to repeated failures and

recoveries. The spawning based recovery overheads for each subsequent process and

node failures are approximately 0.3 sec and 1.4 sec, respectively. With the shrinking

based recovery, each subsequent communicator recovery takes approximately 0.04

sec.
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5.6 Summary

This chapter evaluates the effectiveness of applying the FT-SGCT on three differ-

ent types of existing complex parallel applications. Experimental evaluations reveal

that applying the FT-SGCT on these applications show competitive execution times

and acceptably low approximation errors, in comparison with the equivalent full

grid computation. This chapter also evaluates the application level or algorithm-

based recovery overheads implemented by ULFM MPI, and compares these with the

checkpointing technique. Analysis shows that the application level recoveries are

less expensive than the checkpointing, and relatively small amount of redundancy is

required in the SGCT to achieve an algorithm-based fault resiliency.

SGCT algorithm is the central part of the application level fault tolerance. De-

tailed experimental evaluation of this algorithm was absent here. To fill this gap, the

next chapter will focus on an in-depth analysis of the SGCT and applications.



Chapter 6

Evaluation of the SGCT and

Applications

The previous chapter demonstrates that the combination algorithm is effective for a

range of applications to be used as the basis of an ABFT. It also shows that this al-

gorithm is computationally faster than the equivalent full grid simulation. However,

there is a lack of in-depth performance analysis of this algorithm and the applications

in various aspects, such as scalability, load balancing, shared memory parallelism,

and so on, which could help optimizing the simulation to execute on the system.

In order to fill some of these gaps, this chapter provides a detailed analysis of the

direct combination algorithm and the applications with respect to combination algo-

rithm’s scalability, load balancing, pure- and hybrid-MPI, process layouts, processor

affinity, and so on.

The organization of this chapter is as follows. Detailed performance analysis of

the combination algorithm is presented in Section 6.2. Section 6.3 analyzes the load

balancing among the processes. A comparison of the pure- and hybrid-MPI perfor-

mance on the combination algorithm and applications is presented in Section 6.4.

An analysis of the effect of decomposed domain shape on application execution per-

formance is discussed in Section 6.5. Section 6.6 explores if there is any effect of

processor affinity on performance for the combination algorithm and applications.

The analysis of Sections 6.3 to 6.6 of this chapter is limited to the 2D version of

the applications. The 3D version shows similar characteristics. Thus, the results of

the 3D version are not presented and analyzed separately.

Contents of this chapter are accepted for publication jointly with others as a part

of the paper titled “Design and Analysis of Two Highly Scalable Sparse Grid Com-

bination Algorithms” [Strazdins et al., 2016b].

6.1 Introduction

Distributed parallel computation methodology of a problem consists of four stages:

partitioning, communication, agglomeration, and mapping [Foster, 1995a]. Partitioning

consists of decomposing the original problem into several small problems so that

they can be computed concurrently. Communication coordinates the computation of

71
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Figure 6.1: Execution time of the average of ten combinations of the direct SGCT in isolation.

The workload of each core is 214 grid points. ‘l’ represents the level of the SGCT. ‘gs’ and

‘w-gs’ denote the combination time, when MPI warm-up time is excluded and included,

respectively. ISend/Recv-based implementations are used. The results shown are an average

of five experiments.

these small problems. In order to achieve benefit from the parallel computation, the

communication should be minimum, or should entirely overlap with the computa-

tion. Agglomeration combines the smaller problems into larger ones, if necessary,

to minimize the overall communication. This should be done in such a way that

the surface-to-volume ratio of each agglomerated problem is decreased, where surface

and volume are proportional to communication and computation, respectively [Fos-

ter, 1995b]. Note that one of the difficulties of high-dimensional problems is the high

surface-to-volume ratio (also known as concentration of measure in mathematics).

Mapping corresponds to assigning each agglomerated problem to a processor in a

manner that attempts to satisfy the competing goals of maximizing processor uti-

lization and minimizing communication costs. This is achieved by balancing loads

among processors so that they finish their computations nearly at the same time.

Communication costs could be further reduced by minimizing the intra-node com-

munication by introducing shared-memory parallelism.

This chapter analyzes some of these factors in detail on the performance of the

combination algorithm, a general advection solver, and three real-world applications.

At the same time, detailed performance analysis of the combination algorithm in

terms of scalability, combination overhead, and other key indicators is presented.
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6.2 SGCT Performance Analysis

Referring to all the previous experiments we were confined to combination levels

l = 4 or l = 5. However, according to [Harding and Hegland, 2013], SGCT with

higher level provides some benefits. First, it may provide more accurate combined

solution. Second, it increases the parallelism. An analysis is carried out to investigate

how the SGCT performance varies with the change of level. Comparing ‘gs’ results

in Figure 6.1, it is observed that the performance gaps for different levels are very

small for both the 2D and 3D versions of the SGCT.

All the ‘gs’ results presented in Figure 6.1 are for ‘warmed’ timings where an

SGCT was performed before the timing was taken (i.e., timings excluding warm-up

time). Figure 6.1 also shows the timings for the direct SGCT without this ‘warmed’

timing (i.e., timings including warm-up time), which are labeled as ‘w-gs’; we see a

degradation in performance by a factor of approximately 20. This is caused by Open

MPI setting up new (inter-grid) connections between processes in order to perform

the SGCT. While not part of the SGCT itself, this overhead needs to be taken into

account by any application using the SGCT.

It is reported in Section 5.2.4.3 of the previous chapter that multiple combinations

of the SGCT reduce the approximation error of the combined solution. In this case,

instead of performing only a single combination, multiple SGCT (gather and scatter)

are applied. An experiment is conducted to measure the overhead of the repeated

SGCT. Strong scaling results in Figure 6.2 indicate that the application scales even

with the SGCT applied relatively frequently. The overhead due to repeated combi-

nation also seems to be small.
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Figure 6.2: Overall execution time of the general advection solver with the direct SGCT

running over 1024 time-steps (MPI warm-up time excluded). ISend/Recv-based implemen-

tations are used. ‘comb’ represents combination. The results shown are an average of five

experiments.
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Although the combination algorithm seems to be computationally efficient and

scalable, a thorough investigation is required to find out the operation which is rel-

atively expensive compared to all the operations involved in the combination. This

will provide an opportunity to improve performance in the future. To achieve this

objective, an experiment similar to Figure 6.1a is carried out. But this time, a block-

ing BSend based implementation is used so that timing for one component is not

overlapped with the others due to the asynchronous communication (ISend/Recv).

Comparing the costs of all the operations related to the combination, it is observed

that the interpolation operation seems to be relatively costly for the SGCT algorithm.

For instance, with level l = 9 2D SGCT, interpolation takes 20%− 52% of the total

combination time (i.e., combination and interpolation takes 6.42E−3 sec and 3.37E−3

sec, respectively, on 26 cores; with 1664 cores, these timings are 1.77E−2 sec and

3.45E−3 sec, respectively). The 3D version also shows the similar characteristics to

this. Thus, the interpolation routine should be targeted for the further improvement

of the direct SGCT algorithm, even though it does not dominate the total combination

time in these tests. Otherwise, we should consider the hierarchical SGCT algorithm

which does not need to do interpolation [Strazdins et al., 2015].

Figure 6.3: An analysis of the TAU-generated load balancing of the 2D direct SGCT comput-

ing the GENE application with 2d_big_6 input and a single combination (MPI warm-up time

included). p′ = 8 processes are allocated to each of the upper diagonal of sub-grids.
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6.3 Load Balancing and Communication Profiles

As mentioned in Section 2.5 (Related Work), there are different ways of load balanc-

ing for the SGCT. A simple and static master-slave load balancing model for the SGCT

is proposed in [Griebel et al., 1993; Garcke and Griebel, 2001]. With the assumption

that a single core will compute multiple tasks (sub-grids), the master sorts the tasks

in descending order based on the number of unknowns of the sub-grids. Then for

a given P number of cores (sufficiently less than the number of tasks), the master

distributes the first P tasks among the P cores. After that, the remaining tasks are

distributed among the cores in such a way that the current largest task is assigned

to one of the cores with the smallest workload. This policy is repeated until all the

tasks are distributed among the cores. A similar strategy is followed in [Griebel

et al., 1992a] to calculate the load using the number of unknowns, and both a static

and dynamic load balancing strategies are proposed. With the static version, all the

loads are distributed in advance by following the same policy of [Griebel et al., 1993;

Garcke and Griebel, 2001] across all the multi-core groups (rather than a single-core

group of [Griebel et al., 1993; Garcke and Griebel, 2001]) owned by the sub-grids.

Later, this strategy is adopted in [Harding et al., 2014]. With dynamic load balanc-

ing, each group is assigned only a single task from the sorted list of tasks before

initiating the computation. Whenever a core group finishes with its current task, the

next task from the list is assigned to it. This techniques is iterated until the whole

computation is finished. A similar static and dynamic load balancing technique is

proposed in [Heene et al., 2013]. Only the difference is that it estimates the load of

a sub-grid with the number of unknowns and the anisotropy of the discretization of

the sub-grid.

A simple strategy is used on a global SPMD parallelism model in this thesis to

balance the load among the processes to execute the SGCT based applications. The

same number (p′ ∈ N) of processes is allocated on each of the distinct set of processes

Pi on the uppermost diagonal in the grid index space (see Figure 2.4; in the 3D case,

the diagonal becomes a plane and three planes are required for the non-fault-tolerant

case). The next lower diagonal is allocated ⌈p′/2⌉ processes. This strategy balances

the amount of data points and hence work across each process, which approximates

to a first order to the load for that process. To support the alternate combination

technique (i.e., FT-SGCT), four diagonals/planes of sub-grids are used, and ⌈p′/4⌉
and ⌈p′/8⌉ processes are allocated for each sub-grid on the next two lower diagonals,

respectively.

An analysis of load balancing is carried out based on this balancing strategy.

The TAU profiling tool [Shende and Malony, 2006] is used to generate the reported

timings. It is observed from Figure 6.3 that the first order approximation of loads

to each process sufficiently balances loads among the MPI processes (ranks) for the

2D direct SGCT computing the GENE application. However, it can be seen that the

second sub-grid is computed fastest, and the first and fourth sub-grids are slowest.

The GENE application is observed to be very sensitive to the number of pro-

cesses allocated to each of its five dimensions (excluding species). In our current
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(a) computing whole application: MPI task

(b) performing a single combination: MPI task

Figure 6.4: An analysis of the IPM generated load balancing of the 2D direct SGCT solving

the general advection problem on level l = 11 with a single combination (MPI warm-up time

excluded). p′ = 16 processes are allocated to each of the upper diagonal of sub-grids. The

workload per core is 214 points and the number of time-steps is 214. Total execution time is

4.06 sec, and combination time is 0.0058 sec.

implementation, we set processes only for the two or three dimensions (for the 2D

and 3D FT-SGCT respectively), and the remaining are set to 1. The process grid for

the second sub-grid properly distributes the processes across all the dimensions, so

it is computed fastest.
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2D application full grid size time-steps others

advection (213 + 1)× (213 + 1) 213 -

GENE Nv × Nu = 28 × 28 10 Table B.1

Taxila LBM 213 × 213 20 Table B.2

SFI 211 × 211 default -

Table 6.1: Parameters used in advection, GENE, Taxila LBM, and SFI experiments.

In order to analyze the load balancing a little bit deeper, Figure 6.4 gives IPM

profiles [Wright et al., 2009; IPM] for the 2D general advection solver with a level

l = 11 direct SGCT (profiles for the GENE application are also similar to this appli-

cation). We can clearly see the structure of the advection sub-problems. MPI_Isend

and MPI_Recv are used only in the advection phase, being used for halo exchanges.

The fluctuations in MPI_Waitany in part (a) indicates load imbalance across the pro-

cess grid caused by differences in computational speed across the different sets of

advection problems. It is also the dominant communication time for the SGCT oper-

ation (part (b)). Since we are using a simple load balancing strategy, this little amount

of load imbalance is expected.
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Figure 6.5: A comparison of the pure- and hybrid-MPI performance for the 2D direct SGCT

with level l = 4 and a single combination (MPI warm-up time excluded). With pure-MPI,

p′ = 64 processes, each process contains a single thread and each thread maps to a single

core, are allocated to each of the upper diagonal of sub-grids. With hybrid-MPI, p′ = 8

processes, each process contains 8 threads and each thread maps to a single core, are allocated

to each of the upper diagonal of sub-grids. Other necessary parameters are from Table 6.1.

The results shown are an average of five experiments.
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Figure 6.6: A comparison of the performance due to different process layouts for the 2D di-

rect SGCT with level l = 4 and a single combination (MPI warm-up time excluded). p′ = 64

processes are allocated to each of the upper diagonal of sub-grids. Other necessary parame-

ters are from Table 6.1. The results shown are an average of five experiments.

6.4 Pure-/Hybrid-MPI Performance Analysis

The combination algorithm (and the applications) seems to be communication-inten-

sive. With a significantly larger number of cores, communication cost is expected

to dominate over computation cost. A possible way of resolving this issue is to

minimize the explicit intra-node communication and to make more efficient use of

the shared memory of the node by hybrid-MPI.

We use the simplest execution model for hybrid-MPI. We introduce “#pragma

omp parallel for” directives in front of individual loops in order to achieve the fine-

grained loop-level work sharing.

Experiments are carried out on Raijin cluster to compare the performance of the

pure- and hybrid-MPI. Note that a Raijin node consists of 2 processor sockets, each

comprising 8 cores. With the pure version, each MPI process is mapped to each core,

and a single OpenMP thread is working for each process. Alternatively, the hybrid

version maps each MPI process to each socket, and each MPI process runs with 8

OpenMP threads. With this setup 1/8-th of MPI processes are used in hybrid-MPI

compared to pure-MPI, but the same core counts are used in both cases for each

experiment. As a result, total amount of inter-process communications in the hybrid

version is 8 times less than that of the pure version. For both cases, the levels of

thread provided by Open MPI are MPI_THREAD_SINGLE.

An experiment is carried out to evaluate the performance of the pure- and hybrid-

MPI on the 2D direct SGCT applied to a general advection solver and three real-world
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Figure 6.7: 2D linear and block mapping of 32x4 process grid onto the cores of Raijin nodes.

Processes with the same color are mapped onto the cores of the same node. Different color

represents they are mapped onto the different nodes.

applications. It is observed from the experimental results of Figure 6.5 that the hybrid

version is computationally more expensive than the pure version. An analysis reveals

that the overall communication is reduced in hybrid-MPI compared to pure-MPI, but

the scheduling of threads to cores by an MPI process causes that process to wait for

a longer period of time. As for example, from the IPM [Wright et al., 2009; IPM]

profile of a 2D general advection solver it is observed that the communication is

reduced from 16.87% to 1.43% in hybrid-MPI than pure-MPI. An analysis of pure-

and hybrid-MPI performance for the GENE application in [Sáez and Soba, 2008] also

shows that GENE execution in hybrid-MPI is 10% slower than pure-MPI. Detailed

analysis shows that hybrid-MPI reduces the communication in GENE, but the idle

time in the working scheduling of the threads in the hybrid version is the root cause

of decreasing the overall performance compared to the pure version. Reducing this

thread scheduling overhead at run-time could boost up the hybrid-MPI performance.

This could possibly be investigated further in the future.

6.5 Effect of Process Layouts on Performance

Process layouts of each sub-grid determine the shape of the decomposed domain.

Changing domain shape changes the communication pattern for both the computa-

tion of application on each sub-grid and performing the combination. As for exam-

ple, 1D and 2D process grids may need to update the boundary values on two and

four directions, respectively. Each application has its own communication require-

ments, and so process layouts may affect them differently. We analyze the effect on

a general advection solver and three real-world applications with different process

layouts.

Process layouts for ‘original’ (original or proposed) of the 2D Gi with i = (3, 0),
(2, 1), (1, 2), (0, 3), (2, 0), (1, 1), and (0, 2) are 16x4, 8x8, 8x8, 4x16, 8x4, 8x4, and

4x8, respectively. Process layouts of the 2D full grid are 16x16. In the 2D case, a
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Figure 6.8: A comparison of the performance due to the linear and block mappings for the

2D direct SGCT with level l = 4 and a single combination (MPI warm-up time excluded).

p′ = 64 processes are allocated to each of the upper diagonal of sub-grids. Other necessary

parameters are from Table 6.1. The results shown are an average of five experiments.

legend AxB,CxD indicates that the process layouts of each sub-grid on upper and

lower layers are AxB and CxD, respectively.

An experiment is carried out to analyze the effect of process layouts on the 2D

direct SGCT applied to a general advection solver and three real-world applications.

In this case, each single-threaded MPI process is mapped onto a distinct CPU core. It

is observed from the experimental results of Figure 6.6 that process layouts affect the

performance differently on different applications. As for example, process layouts

8x8,8x4 and 4x16,4x8 reduce computation costs for the GENE and SFI applications

(both sub-grids and combination) compared to the original layouts, but there is no

significant difference in performance is observed for the other two applications. So,

if the SGCT needs to change its own layouts to adapt to the application, it will not

affect the performance significantly.

6.6 Effect of Processor Affinity on Performance

Each process is mapped onto physical processor core(s) to execute the task assigned

to it. It should be done in such a way that the overall execution time (both sub-grids

and combination) is minimized. There are two strategies a mapping algorithm fol-

lows to achieve this. First, tasks that are able to execute concurrently are mapped

onto different processors to increase the concurrency. Second, tasks that need fre-

quent communication are mapped onto the same processor so as to reduce the com-

munication cost. Application instances executing on each sub-grid are mapped onto

different processors to increase the concurrency/parallelism, but this increases the
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communication cost when the sub-grid solutions are combined into a single combi-

nation grid. Alternately, an attempt can be taken to decrease the communication cost

for combination, but it sacrifices the application concurrency/parallelism.

In order to analyze the effect of processor affinity on performance, each single-

threaded MPI process is mapped onto a distinct CPU core. The process-to-core map-

ping of all the previous benchmarks were done by mapping the processes to cores

linearly (default), similar to the approach shown in Figure 6.7a for the 2D process

grid. It is an interesting part of research to investigate what happens to performance

if processes are mapped block-wise, similar to the approach shown in Figure 6.7b for

the 2D process grid.

An experiment is conducted on the 2D direct SGCT applied to a general ad-

vection solver and three real-world applications to compare the performance of the

linear and block mappings. Experimental results shown in Figure 6.8 reveal that the

block mapping increases the combination performance for the Taxila LBM and SFI

applications compared to the linear mapping. Moreover, the block mapping seems

to be a little bit faster compared to the linear mapping for computing advection on

sub-grids. For the other cases, however, no significant performance difference is ob-

served. Thus, run-time block process-to-core mapping can be applied to the SGCT

based applications to enhance their performance.

6.7 Summary

This chapter presents an in-depth performance analysis of the combination algorithm

and applications. It is observed that the combination algorithm is scaling with level,

and the repeated application of the combination algorithm adds only a small over-

head. It is also observed that it is possible to roughly balance the loads among the

processes with a simple strategy. The communication of a highly communication-

intensive application could be reduced by a factor with the shared-memory imple-

mentation by hybrid-MPI, but with an unacceptable degradation of performance in

the solver. Process layouts responsible for determining the shape of the decomposed

domain do not appear to significantly affect the performance of the combination

(and applications as well), which facilitates the use of application-constrained lay-

outs when integrating with the SGCT. An analysis of the block and linear mapping

shows that the block mapping may improve the performance of computing the sub-

grids and performing the combination for some of the applications.
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Chapter 7

Conclusion

Considering the power consumption, clock frequencies, node size, performance, and

other system requirements, frequent component failures seem to be inevitable in

upcoming exascale systems. The MTBF is expected to be so small that even a highly

tuned checkpointing technique could not be applied efficiently as fault recovery for

the ultra-large-scale scientific simulations running on them. The increasing volume of

simulation data also makes the checkpointing technique infeasible. A cost-effective

model to process the increased amount of scientific simulation data and a feasible

technique to recover from faults in an exascale system are thus two of the many

urgent requirements for the next generation ultra-large-scale scientific simulations.

In this thesis, we have presented an overview of a general parallel Sparse Grid

Combination Technique (SGCT) algorithm and its associated load balancing strategy,

which is used to process ultra-large-scale scientific simulation data in a cost-effective

way with only small loss of accuracy. The algorithm can be applied over several of

the dimensions of a multi-dimensional field of a time-evolving PDE application. It

also easily supports parallelization in the non-SGCT dimensions. Thus, it is capable

of supporting extremely large-scale applications.

We have shown how, using a general methodology, it can be integrated into three

existing, complex real-world applications – the GENE gyrokinetic plasma applica-

tion, Taxila Lattice Boltzmann Method (Taxila LBM) application, and Solid Fuel Ig-

nition (SFI) application – with minimal changes to the source code to evaluate its

effectiveness. The software engineering effort required to integrate the SGCT into

the application was acceptable. Even if the application has the complication of non-

trivial boundary conditions, which needs to be applied for the SGCT, it is likely

the application itself will provide the required code, as was the case for the GENE

application. Not only can the application benefit from the efficiency-accuracy trade-

offs of the SGCT, for a relatively small amount of extra effort, it can also be made

fault-tolerant in the form of an Algorithm-Based Fault Tolerance (ABFT).

For relatively large fields of GENE, the large core count overhead of the com-

bination was of the order of 1 to 100 msec (excluding MPI warm-up time), which

is easily acceptable compared with the current and near future MTBFs. Successful

integration of the Taxila LBM and SFI applications with the SGCT also shows the

similar characteristics. Furthermore, we have shown that the 2D, and especially the

3D, SGCT have significant computational efficiencies compared with traditional full
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grid simulation while having acceptable losses in accuracy. We did find however that

the ‘smoothness’ of the dimensions of the field chosen for the SGCT were important

in this respect. In the case of multiple failures, multiple combinations can be used to

reduce the error.

Using a recent release of User Level Failure Mitigation (ULFM) MPI, we have

shown how it can be applied to recover a HPC application from process/node fail-

ures. We designed and implemented a toolkit which could be directly integrated into

any grid based applications as a part of making them fault-tolerant.

We have shown that the integration of ULFM MPI with the fault-tolerant version

of the SGCT can be used to recover complex applications from both process and

node failures. Compared with the built-in checkpoint infrastructure in the GENE

application and job restart from the checkpoint, our spawning and shrinking based

approaches have approximately 1/4 and 1/90 of the overhead, respectively, for a

one-off failure excluding the overhead of backtrack time. An analysis for a long-

running application taking the backtrack time into account shows that our spawning

based technique has an overhead between one and two orders of magnitude less. A

similar analysis for the shrinking based technique shows an overhead between two

and three orders of magnitude less than the checkpointing technique. We expect this

performance gap to increase as the relatively recent ULFM MPI matures. An exper-

iment with repeated failures shows that the ULFM MPI implementation is robust to

repeated failures and recoveries.

We have analyzed in our experiments that only 14.29% and 0.91% redundancies

are required to make the direct SGCT fault-tolerant for the current implementation

of the 2D and 3D cases, respectively. An increase of the number of sub-grids leads

only to a very slow increase of the required redundancies.

We have shown that the combination algorithm achieves higher scalability suit-

able for exascale computing. We have also shown that the communication of the

SGCT based application could be reduced by applying hybrid-MPI, but with an un-

acceptable degradation of performance in the application. It has been shown that

changing the shape of the decomposed domains does not affect the performance of

the SGCT based applications significantly, and thus application-constrained process

layouts could be used in the integrated applications. We have also analyzed the

block and linear mappings and shown that the block mapping may improve the per-

formance of computing the sub-grids and performing the combination for some of

the applications.

We expect that our SGCT based ABFT technique will show significant advan-

tages on current and future platforms beyond the ones we had access to for this

thesis. This includes both much larger systems where checkpointing overheads be-

come prohibitive, and systems whose components are less reliable than supercom-

puter nodes, e.g. very cheap processors operated at minimal voltage in order to save

power.
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7.1 Future Work

The potential future directions for this line of research are as follows.

Since the integration methodology of the SGCT/FT-SGCT and an application is

general, this could be applied to other complex PDE based applications suitable for

the SGCT. Some example applications could be: (1) Overture1, which uses finite vol-

ume and finite differences on regular meshes. (2) OpenFOAM2, which is a relatively

well-known computational fluid dynamics toolbox. It is mainly designed to use

meshes but would accept structured rectangular meshes. (3) OpenLB3, which is an

open-source lattice Boltzmann code to address a vast range of problems in compu-

tational fluid dynamics. (4) Flashcode4, the “Direct Solvers for Uniform Grid” part of

this code.

In this thesis, the combination algorithm is applied on up to 3 dimensions. This

can be extended to higher dimensions. The higher the dimensions the SGCT is ap-

plied to, the higher the computational efficiency expected to be achieved. Such ex-

tension may reduce the computational complexity of ultra-large-scale scientific sim-

ulations.

The work in this thesis handles the permanent or fail-stop type of faults, where

failure detection seems to be straight-forward and relatively easy using the ULFM

MPI semantics. This research could be extended to handle soft faults, where fault

detection is one of the key challenges. Since the faulty components continue to

execute the application without reporting any symptom of the soft fault, it is difficult

to detect. The detection could be performed by scanning the memory footprints for

any unusual activity happening there. If so, an explicit signal should be issued to the

process accessing the affected part of the memory so that the remaining processes can

detect it as a process failure by the ULFM MPI semantics. Some system-level research

which could detect unusual memory operations are available in [Allan, 2014; Narsale

and Huang, 2009; Ndai et al., 2005; Meaney et al., 2005]; and these could be integrated

with the work in this thesis to tolerate soft faults.

1http://www.overtureframework.org/
2http://www.openfoam.com/
3http://optilb.com/openlb/
4http://flash.uchicago.edu/site/flashcode/
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Appendix A

Process Recovery by ULFM MPI

Fault tolerance is a promising and trending research area in this decade. ULFM MPI

is moving this research area a step forward. However, it is not completely clear to

the researchers how effective ULFM MPI is in this area, as there are only a limited

amount of practical work available. Additionally, the details of actually how the

ULFM MPI semantics could be used are not clearly presented. The key objective of

this chapter is to present the idea in a brief and managed way so that it could be

applied to different applications of this area with a less effort.

In order to achieve this objective, this chapter presents some high-level/mid-level

algorithms for the detection, identification, and recovery of process and node failures.

Algorithm 3 is the main algorithm which uses Algorithm 2 as an error handler,

Algorithm 5 as a detector and identifier of the failed processes, Algorithm 4 as a part

of repairing the broken communicator via spawning the replacement processes or

shrinking the broken communicator, and Algorithm 6 as a part of ordering the ranks

in the reconstructed communicator for the spawning based approach.

A low-level implementation with documentation of these algorithms is done in

C. It is available at https://github.com/mdmohsinali/ULFM-Process-Failure-Recovery

to download, test, and apply as a toolkit for the targeted applications.

Function void mpiErrorHandler(MPI_Comm * comm, int *error_code, · · · )
Input: A communicator (comm).
Output: Error handler of communicator comm.

1: MPI_Group failedGroup;
2: OMPI_Comm_failure_ack(*comm);
3: OMPI_Comm_failure_get_acked(*comm, &failedGroup);

/* Sometimes a delay of at least 10 milliseconds (with usleep(10000);) is
needed here */

Algorithm 2: Procedure for handling errors.
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Function MPI_Comm communicatorReconstruct(MPI_Comm myWorld,
bool shrinkMode)

Input: Broken communicator (myWorld).
Output: Reconstructed communicator (reconstructedComm).

1: iterCounter← 0;
2: MPI_Comm_create_errhandler(mpiErrorHandler, &newErrHand); // Pass Algorithm 2
3: MPI_Comm_get_parent(&parent);

4: do
6: failure← 0;
7: returnValue← MPI_SUCCESS;

8: if parent = MPI_COMM_NULL then // Parent
9: if (iterCounter = 0) then

10: reconstructedComm← myWorld;

11: MPI_Comm_set_errhandler(reconstructedComm, newErrHand);
12: OMPI_Comm_agree(reconstructedComm, &flag); // Synchronize

13: returnValue← MPI_Barrier(reconstructedComm); // To detect failure

14: if returnValue 6= MPI_SUCCESS then
15: tempIntracomm← repairComm(&reconstructedComm, shrinkMode); //

Call Algorithm 4
16: failure← 1;

17: else
18: failure← 0;

19: else if not shrinkMode then // Child and not shrinkMode
20: MPI_Comm_set_errhandler(parent, newErrHand);
21: OMPI_Comm_agree(parent, &flag); // Synchronize (child part)

// Merging intercommunicator (child part)
22: MPI_Intercomm_merge(parent, true, &unorderIntracomm);

// Receiving rank information from parent
23: MPI_Recv(&oldRank, 1, MPI_INT, 0, MERGE_TAG, unorderIntracomm,

&mpiStatus);

// Ordering ranks in the new intracommunicator
24: MPI_Comm_split(unorderIntracomm, 0, oldRank, &tempIntracomm);

25: returnValue← MPI_ERR_COMM ;
26: failure← 1;

27: if returnValue 6= MPI_SUCCESS then
28: reconstructedComm← tempIntracomm;

29: if returnValue 6= MPI_SUCCESS and parent = MPI_COMM_NULL then // Parent
was failed

30: parent← reconstructedComm;

31: if returnValue 6= MPI_SUCCESS and parent 6= MPI_COMM_NULL then // Child
was failed

32: parent← MPI_COMM_NULL;

33: iterCounter++;
34: while (failure);
35: return reconstructedComm;

Algorithm 3: Procedure for reconstructing the broken communicator due to process
failures.
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Function MPI_Comm repairComm(MPI_Comm * brokenComm,
bool shrinkMode)

Input: Broken communicator (brokenComm).
Output: Part of repaired communicator (repairedComm or shrunkenComm).

1: SLOTS← 16; // Suppose slots count in each host (node) is 16
2: OMPI_Comm_revoke(&brokenComm); // Revoke the communicator
3: OMPI_Comm_shrink(*brokenComm, &shrunkenComm);// Shrink the communicator
4: if shrinkMode then
5: return shrunkenComm;

6: else // not shrinkMode
7: (failedRanks, totalFailed)← failedProcsList(brokenComm); // Call Algorithm 5
8: The list failedRanks with size totalFailed contains ranks of the failed processes that are happened due

to both process and node failures. Process and node failure detection algorithm is applied to split this
list into two lists: failedRanksDueToProcFail with size totalFailedDueToProcFail and
failedRanksDueToNodeFail with size totalFailedDueToNodeFail. ;

9: if process failure then
10: for i← 0; i < totalFailedDueToProcFail; i++ do
11: hostfileLineIndex← ⌊failedRanksDueToProcFaili/SLOTS⌋;
12: Read hostfileLineIndexthentry (0th is the starting) without slots information from rankmap

file (hostfile) to hostNameToLaunchi ;
13: appLaunchi ← "./ApplicationName";
14: argvLaunchi ← argv;
15: procsLaunchi ← 1;
16: MPI_Info_create(&hostInfoLaunchi);

// host information where to spawn the processes
17: MPI_Info_set(hostInfoLaunchi , "host", hostNameToLaunchi);

18: else // node failure
19: for j← 0; j < totalFailedDueToNodeFail; j++ do

20: Set hostfileLineIndex with ⌊j/SLOTS⌋th unused line index of hostfile reserved for spare nodes.
Initially, all the line indices reserved for spare nodes are flagged as unused. After mapping a
total of SLOTS processes to the same unused line index, the unused flag of that line index is
changed to used. ;

21: Read hostfileLineIndexthentry without slots information from hostfile to
hostNameToLaunchi+j;

22: appLaunchi+j ← "./ApplicationName";

23: argvLaunchi+j ← argv;

24: procsLaunchi+j ← 1;

25: MPI_Info_create(&hostInfoLaunchi+j);
// host information where to spawn the processes

26: MPI_Info_set(hostInfoLaunchi+j, "host", hostNameToLaunchi+j);

// Spawn new processes on the same host which experiences process failures
27: MPI_Comm_spawn_multiple(totalFailed, appLaunch, argvLaunch, procsLaunch,

hostInfoLaunch, 0, shrunkenComm, &tempIntercomm, MPI_ERRCODES_IGNORE);

// Merging intercommunicator (parent part)
28: MPI_Intercomm_merge(tempIntercomm, false, &unorderIntracomm);
29: OMPI_Comm_agree(tempIntercomm, &flag); // Synchronize (parent part)
30: MPI_Comm_size(shrunkenComm, &shrunkenGroupSize);
31: for i← 0; i < totalFailed; i++ do
32: childi ← shrunkenGroupSize + i;

33: MPI_Comm_rank(unorderIntracomm, &newRank);
34: MPI_Comm_size(unorderIntracomm, &totalProcs);

// Sending rank information to child
35: if newRank = 0 then
36: for i← 0; i < totalFailed; i++ do
37: MPI_Send(&failedRanksi , 1, MPI_INT, childi , MERGE_TAG, unorderIntracomm);

// Ordering ranks in the new intracommunicator
38: rankKey← selectRankKey(newRank, shrunkenGroupSize, failedRanks, totalProcs); // Call

Algorithm 6
39: MPI_Comm_split(unorderIntracomm, 0, rankKey, repairedComm);
40: return repairedComm;

Algorithm 4: Procedure as a part of repairing the broken communicator.
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Function int * failedProcsList(MPI_Comm * brokenComm)

Input: Broken communicator (brokenComm).
Output: List of failed processes (failedRanks) and number of failed processes

(totalFailed).

1: MPI_Comm_group(*brokenComm, &oldGroup);
2: MPI_Comm_group(shrunkenComm, &shrinkGroup);
3: MPI_Comm_size(*brokenComm, &oldSize);

4: MPI_Group_compare(oldGroup, shrinkGroup, &result);

5: if result 6= MPI_IDENT then
6: MPI_Group_difference(oldGroup, shrinkGroup, &failedGroup);

7: MPI_Comm_rank(*brokenComm, &oldRank);
8: MPI_Group_size(failedGroup, &totalFailed);

9: for i← 0; i < oldSize; i++ do
10: tempRanksi ← i;

11: MPI_Group_translate_ranks(failedGroup, totalFailed, tempRanks, oldGroup,
failedRanks);

12: return failedRanks and totalFailed;

Algorithm 5: Procedure for creating list and number of failed processes.

Function int selectRankKey(int mpiRank, int shrunkenGroupSize,
int * failedRanks, int totalProcs)

Input: MPI rank (mpiRank), shrunken communicator size
(shrunkenGroupSize), list of failed processes (failedRanks), and MPI
global communicator size (totalProcs).

Output: Key value of a rank (key) to be used for splitting the communicator to
order the ranks.

1: j← 0;

2: for i← 0; i < totalProcs; i++ do
3: if i /∈ failedRanks then
4: shrinkMergeListj ← i;
5: j++;

6: for i← 0; i < shrunkenGroupSize; i++ do
7: if mpiRank = i then
8: key← shrinkMergeListi;

9: return key;

Algorithm 6: Procedure for selecting the keys of ranks to be used for splitting the
communicator to order the ranks.
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Application Input Parameters

This chapter presents some parameters which are used to initialize different applica-

tions for performing different experiments.

&parallelization

!n_procs_s = 1

!n_procs_v = 1

!max_npv = 4

!n_procs_w = 16

!n_procs_x = 4

!n_procs_y = 1

!max_npy = 2

!n_procs_z = 2

!n_procs_sim = 128

/

&box

n_spec = 1

nx0 = 160

nky0 = 24

nz0 = 16

nv0 = 32

nw0 = 16

kymin = 0.6064E-01

lv = 3.00

lw = 9.00

lx = 147.760

x0 = 0.5000

n0_global = 4

mu_grid_type = ’equidist’

/

&in_out

diagdir = ’/out’

read_checkpoint = F

write_checkpoint = F

istep_field = 100

istep_mom = 100

istep_nrg = 20

istep_vsp = 0

istep_schpt = 5000

write_std = T

momentum_flux = F

/

&general

nonlinear = T

x_local = F

comp_type = ’IV’

!perf_vec = 1 1 2 1 1 1 2 1 1

!nblocks = 256

arakawa_zv = T

arakawa_zv_order = 4

hypz_opt = F

timescheme = ’RK4’

dt_max = 0.2110E-01

courant = 0.30

timelim = 86000

ntimesteps = 100

underflow_limit = 0.1000E-09

beta = 0.0000000

debye2 = 0.0000000

collision_op = ’none’

init_cond = ’db’

hyp_x = 2.000

hyp_z = 1.000

hyp_v = 0.2000

/

&nonlocal_x

dealiasing = F

l_buffer_size = 0.4000E-01

u_buffer_size = 0.2500E-01

rad_bc_type = 1

/

&geometry

magn_geometry = ’circular’

trpeps = 0.18270000

major_R = 1.0000000

major_R = 1.0000000

minor_r = 0.36550000

q_coeffs = 0.854, 0.00, 2.184

mag_prof = T

rhostar = 0.54140000E-02

norm_flux_projection = F

/

&species

name = ’ions’

prof_type = 4

kappa_T = 6.910000

LT_center = 0.500000

LT_width = 0.40E-01

kappa_n = 2.21800

Ln_center = 0.500000

Ln_width = 0.40E-01

delta_x_T = 0.80000

delta_x_n = 0.80000

mass = 1.0000000

temp = 1.0000000

dens = 1.0000000

charge = 1

/

&units

/

Table B.1: Parameters in testsuite/big/parameters_6 file used in GENE experiments.
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parameter 2D 3D

-flow_relaxation_mode 0 (SRT) 0 (SRT)

-discretization d2q9 d3q19

-ncomponents 2 2

-component1_name outer outer

-mm_outer 1.0 1.0

-tau_outer 1.0 1.0

-component2_name inner inner

-mm_inner 1.0 1.0

-tau_inner 1.0 1.0

-g_11 0.0 0.0

-g_22 0.0 0.0

-g_12 0.1 0.1

-g_21 0.1 0.1

-rho_outer 0.97,0.03 0.97,0.03

-rho_inner 0.03,0.97 0.03,0.97

-bc_periodic_x enabled enabled

-bc_periodic_y enabled enabled

-bc_periodic_z disabled enabled

-walls_type 2 2

Table B.2: Parameters of Taxila LBM experiments from tests/bubble_2D/input_data and

tests/bubble_3D/input_data files.
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