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Abstract. Large–scale computation on graphs and other discrete struc-
tures is becoming increasingly important in many applications, includ-
ing computational biology, web search, and knowledge discovery. High–
performance combinatorial computing is an infant field, in sharp contrast
with numerical scientific computing.
We argue that many of the tools of high-performance numerical comput-
ing – in particular, parallel algorithms and data structures for computa-
tion with sparse matrices – can form the nucleus of a robust infrastruc-
ture for parallel computing on graphs. We demonstrate this with a graph
analysis benchmark using the sparse matrix infrastructure in StarP, our
parallel dialect of the matlab programming language.

1 Sparse matrices and graphs

Sparse matrix computations allow structured representation of irregular data
structures and decompositions, and irregular access patterns in parallel applica-
tions. Every sparse matrix problem is a graph problem and every graph problem
is a sparse matrix problem. We reiterate the basic principles that have to be con-
sidered while designing sparse matrix data structures and algorithms [2], which
also result in efficient operations on graphs.

1. Storage for a sparse matrix should be θ(max(n, nnz))
2. Operations on sparse matrices should take time proportional to the size of

the data accessed and the number of nonzero arithmetic operations.

A graph consists of a set of vertices V , connected by edges E. A graph can
then be specified by tuples (u, v, w) – this means that there exists a directed
edge of weight w from vertex u to vertex v. This is the same as a nonzero w at
location (u, v) in a sparse matrix. According to principle 1, the storage required
is θ(|V | + |E|). An undirected graph has edges in both directions resulting in a
corresponding symmetric sparse matrix. Special properties in graphs typically
translate into a richer structure in the corresponding sparse matrix.
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Sparse matrix operation Graph operation

G = sparse (U, V, W) Construct a graph from an edge list
[U, V, W] = find (G) Obtain the edge list from a graph
vtxdeg = sum (spones(G)) Get vertex degrees for undirected graphs
indeg = sum (spones(G)) Indegrees for directed graphs
outdeg = sum (spones(G), 2) Outdegrees for directed graphs
N = G(i, :) Find all neighbours of vertex i

Gsub = G(p, p) Extract a subgraph of G
G(I, J) = 0 Delete graph edges
G(I, J) = W Add or modify graph edges
G = G(label, label) Permute or relabel the vertices of a graph
reach = G * start Breadth first search step

Table 1. Correspondence between some sparse matrix and graph operations.

A correspondence between sparse matrix operations and graph operations is
listed in Table 1. Consider breadth first search (BFS). A BFS can be performed
by multiplying a sparse matrix G with a sparse vector x. The simplest case is
doing a BFS starting from vertex i. In this case, we set x(i) = 1, all other el-
ements being zeros. x = G ∗ x simply picks out column i of G which contains
the neighbours of vertex i. We can also do several independent BFS searches
simultaneously, by using sparse matrix sparse matrix multiplication [6]. A de-
tailed analaysis of sequential [2] and parallel [7] sparse matrix data structures
and algorithms is available in earlier work by the authors.

2 An example: SSCA #2 graph analysis benchmark

Fig. 1. (a) SSCA #2 graph (b) SSCA #2 graph plotted with Fiedler co–ordinates.

The SSCAs (Scalable Synthetic Compact Applications) are a set of bench-
marks designed to complement existing benchmarks such as the HPL and the
NAS parallel benchmarks. Specifically, SSCA #2 [1] is a compact application
that has multiple kernels accessing a single data structure representing a di-
rected multigraph with weighted edges. The data generator generates an edge
list in random order for a multigraph of sparsely connected cliques as shown in
Figure 1. The four kernels are as follows:

1. Kernel 1: Create a data structure for further kernels.



2. Kernel 2: Search graph for a maximum weight edge.
3. Kernel 3: Perform breadth first searches from a set of start vertices.
4. Kernel 4: Recover the underlying clique structure from the undirected graph.
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Fig. 2. (a) Input graph (b) After clustering, clusters are along the diagonal.

We implement only the integer version of the benchmark. The first three
kernels are easily implemented using the infrastructure described in the earlier
section. We focus our attention on kernel 4, which can be considered to be a par-
titioning problem or a clustering problem. We have several implementations of
kernel 4 based on spectral partitioning (Figure 1) and seed growing techniques
(Figure 2). The seed growing implementations scale better than the spectral
methods, as expected. We will demonstrate how we use the infrastructure de-
scribed above to implement kernel 4 in a few lines of matlab.

J = sparse(v,1:nseeds,1,n,nseeds); % Sparse matrix, 1 seed per column.

J = G*J; % Vertices reachable with 1 hop.

J = J + G*J; % Vertices reachable with 1 or 2 hops.

J = J > 1; % Vertices reachable with at least 2 paths of 1 or 2 hops.

Fig. 3. Breadth first parallel clustering by seed growing.

Our implementation starts out by picking out a set of seeds from the graph.
These seeds may be chosen such that they form an independent set. One way to
do this is to run one round of Luby’s algorithm [4], which is part of our toolbox,
or simply pick them randomly. Then, we grow the seeds so that each seed claims
all vertices reachable by at least 2 paths of length 1 or 2. Since there may be some
overlap, we use each vertex attaches itself to a cluster using a ’peer pressure’
algorithm. Figure 3 describes the ’seed growing’ and Figure 4 describes the ’peer
pressure’ algorithm.

Our implementation of SSCA #2 uses StarP [3], which is a parallel imple-
mentation of the matlab language with global array semantics. We are in the



% Each vertex chooses a random neighbour in the independent set.

neighbours = G * sparse(IndepSet, IndepSet, 1, n, n);

R = sprand (neighbours);

[ignore, vote] = max (R, [], 2);

% Collect neighbour votes and join the most popular cluster.

[I, J] = find (G);

S = sparse (IndepSet, vote(J), 1, n, n);

[ignore, cluster] = max (S, [], 2);

Fig. 4. Parallel clustering by peer pressure

process of porting it to MIT Lincoln Labs’ Pmatlab [8] and the Mathworks
Parallel Matlab [5], when available.

3 Concluding remarks

We have run the full SSCA #2 benchmark in StarP on graphs with 227 = 134
million vertices on the SGI Altix, and we observe good scaling as we vary the
problem size and number of processors. We have also manipulated graphs with
400 millon vertices and 4 billion edges. Note that the code in Figure 3 and
Figure 4 are not pseudocode, but actual code from our implementation. The
entire kernel 4 implementation is on the order of 100 lines of code. Although
the code fragments look very simple and structured, they are anything but. All
operations are on sparse matrices, resulting in highly irregular communication
patterns on irregular data structures. We conclude that sparse matrices lend
themselves as a natural data structure for operations on large graphs.
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