
 Open access Proceedings Article DOI:10.1109/HPSR.2011.5985997

High-performance implementation of in-network traffic pacing — Source link

Y. Sinan Hanay, Abhishek Dwaraki, Tilman Wolf

Institutions: University of Massachusetts Amherst

Published on: 04 Jul 2011 - High Performance Switching and Routing

Topics: TCP pacing, Packet switching, Network packet, NetFPGA and Throughput

Related papers:

 Physical and logical validation of a network based on all-optical packet switching systems

 Design and Implementation of a Prioritized Packet-Processing Module on NetFPGA Platform

 Fast failure recovery for in-band OpenFlow networks

 An architecture for high-speed packet-switched networks

 Next generation routers

Share this paper:

View more about this paper here: https://typeset.io/papers/high-performance-implementation-of-in-network-traffic-pacing-
mnjx0rg6kf

https://typeset.io/
https://www.doi.org/10.1109/HPSR.2011.5985997
https://typeset.io/papers/high-performance-implementation-of-in-network-traffic-pacing-mnjx0rg6kf
https://typeset.io/authors/y-sinan-hanay-u4u5c20co7
https://typeset.io/authors/abhishek-dwaraki-473x60u8is
https://typeset.io/authors/tilman-wolf-3zbyeb83hb
https://typeset.io/institutions/university-of-massachusetts-amherst-2oo68hmp
https://typeset.io/conferences/high-performance-switching-and-routing-c2nm9ere
https://typeset.io/topics/tcp-pacing-32wrpopx
https://typeset.io/topics/packet-switching-25brm032
https://typeset.io/topics/network-packet-2x03c3ea
https://typeset.io/topics/netfpga-2dsv5yjp
https://typeset.io/topics/throughput-1du22mto
https://typeset.io/papers/physical-and-logical-validation-of-a-network-based-on-all-4vzstzntqv
https://typeset.io/papers/design-and-implementation-of-a-prioritized-packet-processing-2m8zodd3hy
https://typeset.io/papers/fast-failure-recovery-for-in-band-openflow-networks-55txisa28r
https://typeset.io/papers/an-architecture-for-high-speed-packet-switched-networks-2j11qkci81
https://typeset.io/papers/next-generation-routers-3qye0y4tw3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/high-performance-implementation-of-in-network-traffic-pacing-mnjx0rg6kf
https://twitter.com/intent/tweet?text=High-performance%20implementation%20of%20in-network%20traffic%20pacing&url=https://typeset.io/papers/high-performance-implementation-of-in-network-traffic-pacing-mnjx0rg6kf
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/high-performance-implementation-of-in-network-traffic-pacing-mnjx0rg6kf
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/high-performance-implementation-of-in-network-traffic-pacing-mnjx0rg6kf
https://typeset.io/papers/high-performance-implementation-of-in-network-traffic-pacing-mnjx0rg6kf

1

High-Performance Implementation of In-Network

Traffic Pacing
Y. Sinan Hanay, Abhishek Dwaraki and Tilman Wolf

Department of Electrical and Computer Engineering

University of Massachusetts

Amherst, MA, USA

{hanay,dwaraki,wolf}@ecs.umass.edu

Abstract—Optical packet switching networks promise to pro-
vide high-speed data communication and serve as the foundation
of the future Internet. A key technological problem is the very
small size of packet buffers that can be implemented in the optical
domain. Existing protocols, for example the transmission control
protocol, do not perform well in such small-buffer networks.
To address this problem, we have proposed techniques for
actively pacing traffic to ensure that traffic bursts are reduced
or eliminated and thus do not cause packet losses in routers with
small buffers. In this paper, we present the design and prototype
of a hardware implementation of a packet pacing system based
on the NetFPGA system. Our results show that traffic pacing
can be implemented with few hardware resources and without

reducing system throughput. Therefore, we believe traffic pacing
can be deployed widely to improve the operation of current and
future networks.

Index Terms—small-buffer network, traffic pacing, traffic
burstiness, field-programmable gate array, prototype

I. INTRODUCTION

High-bandwidth data communication is one of the key

foundations for the future Internet. Society’s expectations to

perform many daily activities over the Internet (e.g., entertain-

ment, person communication, e-government, health care, etc.)

has increased the demand for raw bandwidth in the network.

One technology that promises to meet these demands for

bandwidth is optical networking. Optical fiber has long been

used for long-haul, point-to-point data transmissions. However,

the need to convert from the optical domain back to the

electronic domain for switching has limited the throughput that

can be achieved optical-electronic-optical (OEO) networks.

To address these performance limitations, all-optical net-

works (AON) have been developed. Optical circuit switching

(OCS) can be used to provide end-to-end light paths. While

OCS has been successfully deployed for some use case scenar-

ios, the slow timescales at which connections can be set up and

torn down does not match the timescales of highly dynamic

end-to-end Internet connections. As alternative, optical packet

switching (OPS) [1] and optical burst switching (OBS) [2], [3]

has been proposed. In these networks, packets or short bursts

of packets are switched independently in the optical domain.

While OPS and OBS are promising approaches to optical

networks that match the needs of current Internet protocols

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-0721790.

and dynamics, there are important technological challenges

that need to be addressed. Apart from the difficulties of

building a switch that operates in the optical domain, there

are also challenges imposed by the basic operation of the

Internet. Packet switching in the Internet is based on statistical

multiplexing and traffic is forwarded opportunistically without

prior resource reservations. As a result, traffic may compete

for link bandwidth on the output port of a switch. To avoid

packet losses, packet buffers are used to queue packets and

thus absorb short periods of overload. In electronic networks

and OEO networks, these buffers can be implemented easily

with SRAM or DRAM and can be sized to hold a large number

of packets. In all-optical networks, buffers are more difficult to

implement since there exist no practical solution to store light

other than sending it through a delay line [4]. These optical

buffers can only hold a very small number of packets. One

important question is how efficiently can such small-buffer

networks operate with network, transport and application layer

protocols that have been designed for large buffer networks.

The issue of buffer sizing has also been explored in other

contexts (e.g., to reduce the cost of electronic routers by

reducing the amount of buffer memory per port).

One key concern with small-buffer networks is their inter-

action with the transmission control protocol (TCP) [5]. In

particular, the use of congestion control in TCP [6] leads

to significant performance drops in throughput when packet

loss occurs. Several studies have explored how traffic char-

acteristics (e.g., burstiness) impact packet losses in small-

buffer networks and how these losses affect TCP throughput

[7]. While there are arguments that aggregation of traffic in

the network leads to smoothing of traffic bursts [8], there

are also arguments that the conditions for smoothing cannot

be ensured [9]. In this context, we have proposed in our

prior work to actively smooth traffic in the network and

thus achieve the conditions that are necessary for small-buffer

networks to operate efficiently [10]. In particular, we have

shown that burstiness in traffic can compound in the network

and lead to larger average queue lengths in the core (and thus

higher packet loss rates for small-buffer networks) [11]. To

circumvent this problem, it is possible to perform pacing of

traffic and thus reduce or eliminate traffic bursts [12].

In this paper, we present a high-performance implementa-

tion of the traffic pacing technique described in our prior work.

A key aspect of the design of our traffic pacing method is that

2

it is easy to implement and can be performed at high data

rates. Our prototype system based on the NetFPGA platform

[13] shows that traffic pacing can be implemented with a

small amount of hardware resources and does not impede

the throughput performance of the system. Specifically, the

contributions of this paper are:

• A hardware design for a high-performance traffic pacer

based on algorithms described in [12], [14],

• A prototype implementation of the traffic paced on the

NetFPGA platform, and

• Evaluation results to demonstrate the performance and

effectiveness of the hardware design.

We believe that the results from this work are important

since they demonstrate that it is possible to implement traffic

pacing at high data rates with little additional hardware.

Therefore, traffic pacing can be widely deployed and thus help

in ensuring that network traffic characteristics are suitable to

fully utilize a future Internet that is based on high-performance

small-buffer routers.

The remainder of this paper is organized as follows. Sec-

tion II discusses related work. Section III presents queue-

length based pacing, which we have developed in prior work

and which is the basis for the hardware implementation

presented in this paper. Section IV presents the design of

the pacer implementation and a discussion of various design

tradeoffs. Results from the prototype implementation and its

performance are presented in Section V. Section VI summa-

rizes and concludes this paper.

II. RELATED WORK

The size of router buffers is important for effective operation

of networks with statistically multiplexed traffic. The use

of the transmission control protocol (TCP) for most data

communication in the Internet, has led to buffer sizing rec-

ommendations based on the produce of round-trip time and

link capacity. Such large buffers ensure that buffer underflows

can be avoided when TCP reacts to packet loss (indicating

congestion) with multiplicative decrease in transmission rate.

However, such buffers are also expensive and difficult to build

for optical switches. Recently, there have been several studies

showing that aggregation of multiple connections leads to

traffic characteristics that ensure efficient operation even with

smaller buffer sizes [15]. Appenzeller et al. show that buffer

size proportional to square-root of the number of flows may

be sufficient [8].

While small-buffer networks can operate efficiently with

TCP for some scenarios, it has also been shown that this is

not the case for many practical scenarios [9]. In particular,

the presence of TCP connections with short lifetimes are

problematic. Haesegawa et al. show that a high ratio of

short-lived flows has a negative effect on link utilization for

small buffers [16]. Sivaraman et al. [17] show the impact of

small buffers on real-time and TCP traffic and identify short-

timescale burstiness as the major contributor of performance

degradation.

Instead of relying on multiplexing effect to smooth out

traffic bursts, there have been several approaches to actively

change the characteristics of network traffic to meet the needs

of small-buffer networks. Pacing for TCP on end-systems

has been proposed (albeit not in the context of small-buffer

networks) [18]. This approach is difficult to implement since it

requires software modifications on all end-systems. In contrast,

we have proposed to implement pacing functions on nodes in

the network to simplify deployment [10]. A specific pacing

algorithm is presented in [12], [14]. A similar technique

was developed independently by Alparslan et al. [19]. The

hardware implementation of the traffic pacer presented in this

paper is based on the algorithms described in these papers.

There have been numerous works analyzing performance of

TCP pacing or traffic pacing through ns-2 simulations [14],

[16], [18]. To our best knowledge, the only experiment to

measure pacing performance is done in [14], using a software-

based pacer plugin. In our work, we implement a pacer system

in programmable hardware.

III. OPERATION OF QLBP PACKET PACER

As the basis for discussion of the hardware design of the

high-performance pacer presented in Section IV, we briefly

review the general operation of the traffic pacer described in

[10], [12], [14]. The figures, notation, and some text in this

section are repeated from these papers to provide the necessary

background for the reader.

A. Traffic Pacing in Network

The traffic pacing that we describe in this paper is im-

plemented in electronics and thus cannot be part of a all-

optical network. Figure 1 shows our perspective on how we

can deploy traffic pacing in a future Internet with an all-

optical core. By conditioning traffic in the edge networks,

the all-optical core can operate efficiently – even with very

small buffers. Pacers can be deployed opportunistically; traffic

that traverses multiple pacers achieves better throughput in the

small-buffer core, but there is no requirement that a pacer has

to be traversed. Also, pacing is done indiscriminately for all

traffic; there is no per-flow adjustment of the pacing rate, but

all traffic is handled the same.

B. Pacing Algorithm

The pacing mechanism considered in our work is Queue

Length Based Pacing (QLBP) [12], [14]. The goal of the pacer

is to approximate constant bit-rate (CBR) traffic by delaying

certain packets. However, since the pacer cannot know the

arrival times of future packets, it is not able to perfectly

determine the transmission times that would correspond to

CBR. Instead, it uses an adaptive process to determine if and

how much packets should be delayed.

The length of the packet queue for an output port is used to

determine the transmission rate in QLBP. The transmission rate

µ(t) at time t is determined by queue length q(t) as follows:

µ(t) =

{ µmax−µmin

Qmax

q(t) + µmin, q(t) < Qmax

µmax, q(t) ≥ Qmax

(1)

Parameter Qmax is the maximum queue length at which

pacing is allowed and µmin and µmax are the minimum and

3

�✁✂✄☎✆☎✝✞✟ �✁✂✄☎✆☎✝✞✟�✁✂✄☎✆☎✝✞✟
✠ ✠
✡☛☞✡☛☞ ✡☛☞✡☛☞

✠✠
✡☛☞

✠
✠

✡☛☞ ✡☛☞
✠✠✠✌✍✎✁✏ ✌✝ ✁✞✝✑✒✓✔✎✁✏✓✞☎☎ ✝✒ ✞✁✕✒✓✍✞✖✌✍✔✞✝ ☎✖✌✍✎✁✏

Packet-switched optical core

with small buffers

✗✒✁✏✞✓ ✌✘✞✓✌✏✞✙✚✞✚✞ ✛✞✁✏✝✜ ✂✚✞✝✒ ✢✚✓☎✝✆ ✝✓✌✕✕✎✍

✗✎✝✝✛✞ ✒✓ ✁✒✙✚✞✚✎✁✏ ✂✚✞ ✝✒✖✌✍✔✞✝ ✖✌✍✎✁✏
Edge and access

networks

Fig. 1. Network Architecture with Traffic Pacing (from [10]).

min

max

! "t

! "q t0
max
Q

Fig. 2. Pacing Rate of QLBP (from [14]).

maximum transmission rates. Figure 2 shows the transmission

rate of the pacer as a function of queue length.

Based on the transmission rate of the pacer, the delay

experienced by a packet is

d(t) =
S

µ(t)
, (2)

where S is the size of the packet. Figure 3 shows the delay as

a function of queue length. In the implementation of QLBP,

the pacing delay is activated after a packet is transmitted to

ensure that individual packets that do not belong to a burst do

not get delayed.

Thus, QLBP has the following properties that make it

effective for use in small-buffer networks:

• For longer queue lengths, the pacing delay is lower. This

 !q t0
max
Q

 !d t

min

S

"

max

S

"

Fig. 3. Pacing Delay of QLBP (from [14]).

rule ensures that the link can be fully utilized.

• For an empty queue, the maximum delay is limited. This

rule ensures that packets do not get delayed indefinitely.

• The first packet arriving at the pacer does not get delayed.

This rule ensures that pacing is only activated when

multiple packets (i.e., a burst) are observed.

C. Effectiveness of QLBP Pacer

Figure 4 shows the effectiveness of our pacing ap-

proach. Traffic bursts traversing the multiple pacing nodes

are smoothed out to nearly match constant bit-rate traffic.

Using this QLBP pacing at multiple nodes in the network edge

ensures that traffic in the core nearly matches CBR traffic and

thus can efficiently utilize small-buffer networks.

4

0 0.05 0.1 0.15 0.2 0.25 0.3
0

50

100

150

200

Time (s)

P
ac

ke
t I

nd
ex

no pacer
with 1 pacer
with 2 pacers
with 3 pacers
ideal CBR

Fig. 4. Effectiveness of Pacing on Multiple Nodes (from [14]).

Fig. 5. State Diagram of Pacer Implementation.

IV. HIGH-PERFORMANCE DESIGN OF PACKET PACER

To ensure that traffic pacing improves the throughput per-

formance of a small-buffer network, it is critical that the traffic

pacer itself does not present a performance bottleneck. There-

fore, it is important to develop a suitable high-performance

design of such a system. We discuss our implementation in this

section and evaluation results from the prototype in Section V

This section deals with the architecture of the pacer and

how it has been implemented in hardware. We look at the

underlying platform that is used and the reference designs that

have been modified to suit our needs. We first discuss the

NetFPGA in more detail.

1) The NetFPGA Platform: The NetFPGA is a Gigabit

Ethernet open platform for networking research which has

been developed at Stanford University [13]. It consists of a

Xilinx Virtex 2Pro FPGA along with a Spartan 3 FPGA built

Fig. 6. NetFPGA Reference Router Pipeline (from [20]).

onto a PCI card along with SRAM, DRAM and 4 Gigabit

Ethernet ports. This PCI card plugs into the PCI socket of

any PC and can be used to develop and test new networking

methodologies and protocols.

2) The NetFPGA IPv4 Reference Router: The IPv4 refer-

ence router is part of the NetFPGA base package and consists

of library modules connected together in a pipelined fashion

to enable the design to operate at almost 125 MHz [20]. It is

essential to understand the modular design of the NetFPGA to

make optimal use of the existing design. Below is shown the

pipeline structure of the NetFPGA reference design. We first

take a look at that design and then go into the details of our

design. Figure 6 shows the Reference Router pipeline.

There are 4 Gigabit Ethernet ports on the PCI card, which

serve as ingress/egress ports for the design. Each of the MAC

ports have a corresponding CPU DMA port that acts as the

conduit between the NetFPGA card and the host PC via the

PCI bus. These DMA ports are used to relay packets to the

host PC’s processor in the eventuality of the NetFPGA being

unable to process them.

Apart from the Rx/Tx ports, the NetFPGA has other mod-

ules that are part of the reference design. One of them is the

input arbiter, which takes packets from each of the Rx ports in

a round robin manner and hands them off to the output port

lookup module. Another is the output port lookup module,

which is responsible for the IP/LPM lookups and Ethernet

header modifications before the packet is pushed to output

queues, which places it in the queue for the corresponding

output MAC.

The pipelining is done in such a way that each module

consists of a small input FIFO where the previous module

writes data into. The current module picks up data from here

to process. This enables the pipeline to go ahead unhindered.

In case a certain module is not ready to accept data, the

input FIFO is filled with data and then the pipeline begins

5

to stall backwards until the input buffers are full and packets

get dropped.
3) Packet Pacer Design: In this section, we look at the

design of the packet pacer on the NetFPGA and how is fits

into the reference pipeline. Figure 5 shows the state diagram of

the pacer. The packet pacer is been split into various individual

modules handle discrete functionalities. Each of the modules

is explained below.

• The Input State Machine: This state machine handles the

job of monitoring the input FIFO for data. Once data is

available in the input FIFO and the pacer module is ready

to process data, it transfers the packet from the input

FIFO to the pacer FIFO where it is held till it reaches its

transmission time. The FIFOs are explained in the next

section.

• The FIFOs: There are two FIFOs, which handle the

incoming packets. One is 72 bits wide, and holds the

packet and some control information. The other is 32

bits wide and holds the size of packets that come into

the module. The smaller 32 bit FIFO has a N-1 mapping

to the larger FIFO and the size of the packet at the head of

the queue is held in a global register, which is explained

below.

• The Signal Control Block: The Signal Control Block

is responsible for maintaining the current queue size,

previous transmission time and next transmission time

data. Once the input state machine enqueues a packet,

it sends a signal to the signal control block, which

first updates the queue size to reflect the new packet

and then activates the calculate block to calculate the

next transmission time of the packet. The timer control

embedded in the control block monitors the validity of the

transmission time. When the timer expires on a calculated

transmission time value, the control block sends a signal

to the output state machine asking it to dequeue the packet

at the head of the queue. Once the output state machine

has dequeued a packet, the signal control block receives

the acknowledgement and updates it current queue size

to reflect the new changes.

• The Delay Lookup/Calculation block: This block is re-

sponsible for updating the signal control block with the

new transmission time on every enqueue or dequeue. De-

pending on the implementation, it incorporates an array

of floating point cores or a Block RAM based Single port

ROM. The latency of this block is also dependent on the

implementation, with the floating point implementation

imparting greater accuracy, but also adding a lot more to

the latency due to the complexity involved. On the other

hand, the single port ROM does not add much in terms

of latency itself since the lookup is very fast, typically

one cycle, but approximates the calculated delay using

pre-calculated, extrapolated values.

• The Timer Control Block: This block creates a reference

time-line for the timer functionality. It consists of a

timer that up-counts on every clock and simultaneously

monitors whether there next transmission time has been

reached. Once the timer hits the next transmission time,

it sends a signal to the output state machine to start

dequeuing the packet. The block is part of the Signal

Control Block.

• The Output State Machine: This state machine is activated

by the Signal Control block once the timer has expired

and the next transmission time has been reached. It is

responsible for handling the packet dequeue and also

making sure that the packet size global register is updated

with the new packet’s size.

The whole pacer module is connected between the output

port lookup module and the output queues module on the

NetFPGA. This is the initial design and makes it global to the

router. All packets entering the router are paced. As a next

step to this, the pacer module is replicated and the granularity

shifted to per-port pacing.

A. Implementation of the Delay Calculation Block

The critical path in our design is in the delay calculation

block. It takes two inputs: packet size, Sp, and instantaneous

queue size, q(t), calculates the delay, and outputs tnext. tnext
is calculated as follows:

tnext = tlast + Sp/(
µmax − µmin

Qmax

· q(t) + µmin) (3)

In the above equation, the packet size Sp and the instantaneous

queue length q(t) are inputs to the calculation black, while

umin and umax are parameters. We denote the right term

in the addition as the, d, delay in our discussion from now

onwards, that is:

It can be seen that to calculate delay, d, a straightforward

approach requires two divisions, one multiplication and one

addition at the minimum, not to mention a host of conversions

from integer to the IEEE 754 format to perform the floating

point operations.

In the sections below, we discuss alternative hardware

implementations of this delay calculation. We present an exact

implementation that employs using floating point operations

for precision. We also present a look up table based imple-

mentation for higher throughput.

1) Floating Point Implementation (FPI): In our implemen-

tation, we use floating point blocks to precisely calculate the

d. In doing so, first step is to convert the unit of d from time

to clock cycles, that is dclk = fclk×d. At this point a designer

may want to implement the delay block straightforwardly by

using 2 dividers, 1 multiplier and 1 adder. In addition to

these, floating to fixed point converters are needed to convert

fixed values. Division is a time consuming operation even

in hardware. The division µmax−µmin

Qmax

can be transformed

to a shift operation if Qmax is selected to be a power of

2. Qmax can be selected conveniently as a power of 2 for

buffer sizes less than 500. For a detailed discussion of Qmax,

reader can refer to [12]. We have used IP cores provided

by Xilinx to perform the floating point operations such as

division, addition, multiplication, fixed to float and the vice

versa conversions. Floating point divider is pipelined so that

it completes in 4 cycles.

6

2) Lookup Table Implementation (LTI) : It is possible to

avoid expensive operations such as divisions and multiplica-

tions by storing pre-calculated delay values in a lookup table.

The inputs to this LTI block are q(t) and Sp, and look-up

table can be implemented in Block RAM as a single-port

ROM. The valid range for Qmax is from 1 to buffer size. The

pacer is intended to be used in small-buffer networks of 20-30

packets, which is around 10-15 Kb on average. For the sake

of consistency and ease of calculation, we store both packet

size Sp and instantaneous queue size q(t) in terms of 8-byte

words, since this is the data width of the pipeline anyway. This

results in a maximum packet size of 187 words for a 1500 byte

packet. The delay ranges from a maximum of 20,000 cycles

max(d) = Sp/umin for the MTU to a few hundred cycles

for small size packets. Extrapolating these statistics brings us

to a possible 200K to 300K entries with a memory size of 1

Mbits.

V. EVALUATION

In this section, we evaluate the throughput and hardware

overhead of implemented pacer. We compare our implemented

pacing capable router against base reference router implemen-

tation that comes with NetFPGA. This gives us some insight

on area overhead of employing a pacing inside a router.

A. Hardware Overhead

NetFPGA reference router’s pipeline clock runs at 125

MHz. NetFPGA can be set to run at either 62.5 MHz or

125 MHz. In our initial straightforward implementation, the

maximum achievable clock frequency was 59 MHz. After

modifying the delay equation algebraically as explained in the

previous section, the pacer could be run at 125 MHz.

Table I shows the resource usage in the reference router

design that is part of the NetFPGA base package. In addition

to that, it shows the overhead that the FPI implementation

adds to the reference design, which is around 10%. LTI, on

the other hand, uses even lesser resources due to precision

being sacrificed for throughput and speed. Please note that the

number of slices is not a meaningful metric in terms of area

since it shows how optimally logic gates have been packed

together.

Table II gives some insight about maximum achievable

throughput and minimum possible latency. Since our floating

divider takes 4 cycles to complete, and is not pipelined,

maximum achievable throughput with FPI is 2 Gbps, where

as with LTI that is 8 Gbps. We see an extra cycle of latency

with LTI and 4 cycles of latency with FPI implementation.

Figure 7 demonstrates the pacing. It shows the dequeuing

of the packets in reference router (non-paced) and in our

pacing-capable router implementation (paced). Each point in

this figure corresponds to the departure time of a packet. There

are about 30 packets leaving the queue. It takes about 2 ns

without pacer for all 30 packets leave the queue, while it takes

about 4.5 ns for all 30 packets leave the queue when a pacer

is installed. Without a pacer incoming packets leave the queue

more bursty as it can be seen in the figure. However, when

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5

x 10
4

0

5

10

15

20

25

30

time (ns)

P
ac

ke
t I

nd
ex

Effect of Pacing

Unpaced
Paced

Pkt Size=64 bytes

Fig. 7. Operation of Prototype Pacer.

 0

500

1000

1500

2000

2500

3000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

de
la

y
(n

s)

queue length (bytes)

delay vs instantaneous queue length

ref
64 bytes

256 bytes
576 bytes

1300 bytes

Fig. 8. Measured Delay and Reference Delay vs. Queue Length on Prototype
Pacer.

the pacer is used the pacer delays the departure of the packet

except the first one, and in turn smoothes the traffic.

Figure 8 shows the implemented LTI based pacer delay

characteristics for different size packets and different queue

lengths. Reference plot lines (shown as ‘ref’ in the figure)

show the exact values and dots represent the delay values

that are calculated by our LTI implementation. Since our

LTI implementation uses interpolation to calculate delays of

intermediate values, it sacrifices a little accuracy with respect

to FPI implementation. This figure shows that if average size

of the incoming packets is small then the error will be small

regardless of the queue length.

VI. SUMMARY AND CONCLUSIONS

High-performance networks with small packet buffers rep-

resent a possible core technology for the future Internet. An

important consideration is to ensure that traffic characteristics

are suitable for these networks. The burstiness of traffic

generated by the widely used transmission control protocol

is particularly problematic for networks with small buffers.

In prior work, we have shown that traffic pacing on nodes

7

TABLE I
RESOURCE UTILIZATION OF PROTOTYPE PACER ON NETFPGA PLATFORM.

Reference Router FPI LTI

Resource Type Count Utilization Count Utilization Overhead Count Utilization Overhead

Flip Flops 16,433 34% 17,180 36% 4.5% 16,552 35% 0.7%
4 input LUTs 22,954 48% 25,423 53% 10.8% 23,792 50% 3.7%
Block RAMs 106 45% 111 47% 4.7% 132 56% 24.5%
MULT18X18s 0 0% 6 2% +6 0 0 0%

Slices 15,796 66% 17,530 74% 11.0% 15,514 65% -1.8%

TABLE II
PERFORMANCE OF PROTOTYPE PACER.

Reference Router FPI LTI

Maximum Block Latency (cycles) 1 4 1
Clock Frequency (MHz) 125 125 125

Theoretical Upper Limit (Gb/s) 8 2 8
Extra Latency (clock cycles) 0 4 1

inside the network can alleviate these problems and lead

to higher network throughput. In this paper, we present the

design and prototype implementation of a high-performance

pacing system that can be implemented with low overhead

on the output port of routers. We show that the design

performs pacing as intended and that it does not degrade the

performance of the router. We believe that this work presents

an important step toward the efficient operation and wide-scale

deployment of small-buffer networks, including optical packet-

switched networks.

REFERENCES

[1] D. K. Hunter and I. Andonovic, “Approaches to optical Internet packet
switching,” IEEE Communications Magazine, vol. 38, no. 9, pp. 116–
122, Sep. 2000.

[2] C. Qiao and M. Yoo, “Optical burst switching (OBS) – a new paradigm
for an optical Internet,” Journal of High Speed Networks, vol. 8, no. 1,
pp. 69–84, Mar. 1999.

[3] S. Verma, H. Chaskar, and R. Ravikanth, “Optical burst switching: A
viable solution for terabit IP backbone,” IEEE Network, vol. 14, no. 6,
pp. 48–53, Nov. 2000.

[4] R. Langenhorst, M. Eiselt, W. Pieper, G. Grosskopf, R. Ludwig,
L. Kuller, E. Dietrich, and H. G. Weber, “Fiber loop optical buffer,”
Journal of Lightwave Technology, vol. 14, no. 3, pp. 324–335, Mar.
1996.

[5] J. Postel, “Transmission Control Protocol,” Information Sciences Insti-
tute, RFC 793, Sep. 1981.

[6] V. Jacobson, “Congestion avoidance and control,” in Proc. of ACM

SIGCOMM 88, Stanford, CA, Aug. 1988, pp. 314–329.

[7] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on router
buffer sizing: recent results and open problems,” SIGCOMM Computer

Communication Review, vol. 39, pp. 34–39, Apr. 2009.

[8] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
SIGCOMM Computer Communication Review, vol. 34, no. 4, Oct. 2004.

[9] A. Dhamdhere and C. Dovrolis, “Open issues in router buffer sizing,”
SIGCOMM Computer Communication Review, vol. 36, no. 1, pp. 87–92,
Jan. 2006.

[10] T. Wolf, W. Gong, and Y. Cai, “Burstiness as traffic metric in next-
generation optical core networks,” in Proc. of IEEE Photonics Society

Summer Topicals, Newport Beach, CA, Jul. 2009, pp. 129–130.

[11] Y. Cai, Y. Liu, W. Gong, and T. Wolf, “Impact of arrival burstiness to
queue length: An infinitesimal perturbation analysis,” in Proc. of 48th

IEEE Conferences on Decision and Control (CDC), Shanghai, China,
Dec. 2009.

[12] Y. Cai, B. Jiang, T. Wolf, and W. Gong, “A practical on-line pacing
scheme at edges of small buffer networks,” in Proc. of the 29th IEEE

Conference on Computer Communications (INFOCOM), San Diego,
CA, Mar. 2010.

[13] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA–an open platform for gigabit-
rate network switching and routing,” in MSE ’07: Proceedings of

the 2007 IEEE International Conference on Microelectronic Systems

Education, San Diego, CA, Jun. 2007, pp. 160–161.
[14] Y. Cai, Y. S. Hanay, and T. Wolf, “Practical packet pacing in small-buffer

networks,” in Proc. of IEEE International Conference on Communica-

tions (ICC), Dresden, Germany, Jun. 2009.
[15] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and T. Roughgarden,

“Part III: Routers with very small buffers,” SIGCOMM Computer

Communication Review, vol. 35, no. 3, pp. 83–90, Jul. 2005.
[16] G. Hasegawa, T. Tomioka, K. Tada, and M. Murata, “Simulation studies

on router buffer sizing for short-lived and pacing TCP flows,” Computer

Communications, vol. 31, no. 16, pp. 3789–3798, 2008.
[17] V. Sivaraman, H. Elgindy, D. Moreland, and D. Ostry, “Packet pacing in

small buffer optical packet switched networks,” IEEE/ACM Transactions

on Networking, vol. 17, no. 4, pp. 1066–1079, Aug. 2009.
[18] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the perfor-

mance of TCP pacing,” in Proc. of IEEE INFOCOM 2000, Tel Aviv,
Israel, Mar. 2000, pp. 1157–1165.

[19] O. Alparslan, S. Arakawa, and M. Murata, “Node pacing for optical
packet switching,” in Proc. of the International Conference on Photonics

in Switching, Aug. 2008, pp. 1–2.
[20] “NetFPGA,” http://www.netfpga.org/.

