
High-Performance Implementation of the Level-3 BLAS

Kazushige Goto
Texas Advanced Computing Center
The University of Texas at Austin

Austin, TX 78712
kgoto@tacc.utexas.edu

Robert van de Geijn
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
rvdg@cs.utexas.edu

FLAME Working Note #20

May 6, 2006

Abstract
A simple but highly effective approach for transforming high-performance implementations on cache-

based architectures of matrix-matrix multiplication into implementations of other commonly used matrix-
matrix computations (the level-3 BLAS) is presented. Exceptional performance is demonstrated on
various architectures.

1 Introduction

Attaining high performance for matrix-matrix operations such as symmetric matrix-matrix multiply (Symm),
symmetric rank-k update (Syrk), symmetric rank-2k update (Syr2k), triangular matrix-matrix multiply
(Trmm), and triangular solve with multiple right-hand sides (Trsm) by casting the bulk of computation in
terms of a general matrix-matrix multiply (Gemm) has become a generally accepted practice [7]. Variants
on this theme include loop-based algorithms and recursive algorithms, as well as hybrids that incorporate
both of these [4]. In this paper we show that better performance can be attained by specializing a high-
performance Gemm kernel [5] so that it computes the desired operation. For the busy reader the results are
previewed in Fig. 1.

This paper is organized as follows: In Section 2 we review the basic techniques behind a high-performance
matrix-matrix multiplication implementation. More traditional techniques for implementing level-3 BLAS
are reviewed in Section 3. These alternative techniques are then used to obtain highly optimized implemen-
tations of Symm, Syrk, Syr2k, Trmm, and Trsm, in Sections 4–7. Concluding remarks are given in the
final section.

2 High-Performance Implementation of Matrix-Matrix Multipli-
cation

To understand how to convert a high-performance matrix-matrix multiplication (Gemm) implementation
into a fast implementation for one of the other matrix-matrix operations that are part of the level-3 Basic
Linear Algebra Subprograms (BLAS) [3], one has to first review the state-of-the-art of high-performance
implementation of the Gemm operation. In this section we give a minimal description, referring the interested
reader to [5].

1



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

m=n

G
F

LO
P

S
/s

ec

PPC440 FP2 (700 MHz)

dgemm
dsymm
dsyr2k
dsyrk
dtrmm
dtrsm

Figure 1: Performance of all level-3 BLAS on the IBM PPC440 FP2 (700 MHz). (Curves in the figure
appear, from top to bottom, in the order indicated in the legend.)

+= +=

Figure 2: Left: Partitioning of A and B. Right: Blocking for one individual panel-panel multiplication
(Gepp) operation, C := AjBj + C.

Algorithm: C := Gepp(A,B, C)
Č0

Č1
.
.
.

+:=

Ǎ0

Ǎ1
.
.
.

B

Pack B into B̃
for i = 0, . . . , M − 1

Pack and Transpose Ǎi into Ã

Či := ÃB̃ + Či

endfor

Figure 3: Outline of optimized implementation of Gepp.

Consider the computation C := AB + C, where C, A, and B are m × n, m × k, and k × n matrices,
respectively. Assume for simplicity that m = bmM , n = bnN , and k = bkK, where M , N , K, bm, bn, and
bk are all integers. Partition as in Fig. 2(left):

A → (
A0 A1 · · · AK−1

)
and B →




B̌0

B̌1

...
B̌K−1


 ,

2



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

kernel
dgemm

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

m=n

P
er

ce
nt

 o
f t

ot
al

 ti
m

e

Pentium4 (3.6 GHz)

pack A
pack B

Figure 4: Performance of Gemm on Pentium4 (3.6 GHz). Left: The performance of the Gebp kernel routine
and Gemm is given by the curves labeled “Kernel” and“dgemm”. Right: The curves labeled “Pack A” and
“Pack B” indicate the percent of total time spent in each of these operations.

where Ap and B̌p contain bk columns and rows, respectively1. Then

C := A0B̌0 + A1B̌1 + · · ·+ AK−1B̌K−1 + C.

A typical high-performance implementation of Gemm will focus on making each update C := ApB̌p + C,
which we will call a panel-panel multiplication (Gepp), as fast as possible. The overall performance of Gemm
is essentially equal to that of each individual Gepp with panel width equal to an optimal size bk.

Figure 3 gives a high-performance algorithm for the Gepp operation, C := AB + C, where the “k”
dimension is bk. The algorithm requires three highly optimized components:

• Pack B: A routine for packing B into a contiguous buffer. On some architectures this routine may
also reorganize the data for specialized instructions used by the Gebp kernel routine described below.

• Pack and transpose Ǎi: A routine for packing Ǎi into a contiguous buffer. Often this routine also
transposes the matrix to improve the order in which it is accessed by the Gebp kernel routine.

• Gebp kernel routine: This routine computes Či := ÃB̃ + Či using the packed buffers. Gebp stands
for General block-times-panel multiply.

On current architectures the size of Ǎi is chosen to fill about half of the L2 cache (or the memory addressable
by the TLB), as explained in [5]. Considerable effort is required to tune each of these components, especially
the Gebp kernel routine. In subsequent sections we will show how other level-3 BLAS can be implemented
in such a way that this effort can be amortized.

In Fig. 4 the performance and overhead of the various kernels is reported for the high-performance
implementation of dgemm (double-precision Gemm) from [5]. It is this implementation upon which the
remainder of this paper is based. In Fig. 5 we compare the performance of this dgemm implementation with
those of the vendor implementations (MKL and ESSL) and ATLAS.

Throughout the paper performance is presented for double precision (64-bit) computation of the target
operation on a number of architectures:

1The ˇ is used to indicate a partitioning by rows in this paper.

3



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dgemm (MKL)
dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dgemm (GOTO)
dgemm (ESSL)
dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dgemm (MKL)
dgemm (ATLAS)

Figure 5: Performance of various implementations of dgemm.

Architecture Clock speed Peak Performance blocking size Vendor library
bm bk

Intel (R) Pentium4 (R) 3.6 GHz 7.2 GFLOPS/sec 768 192 MKL 8.0.1
IBM Power 5 1.9 GHz 7.6 GFLOPS/sec 256 256 ESSL 4.2.0
IBM PPC440 FP2 700 MHz 2.8 GFLOPS/sec 128 3072 not available to us
Intel (R) Itanium2 (R) 1.5 GHz 6 GFLOPS/sec 128 1024 MKL 8.0.1

We also compare against ATLAS 3.7.11, a public-domain implementation of the BLAS [8], except for the
Itanium2 system, on which ATLAS 3.7.8 attained better performance. In our graphs that report the rate of
execution (GFLOPS/sec) the top line always represents the theoretical peak of the processor. The blocking
sizes bm and bk are as indicated in the above table.

4



Remark 2.1 Key insights from [5] are that (1) the submatrix Âi is typically non-square, (2) the cost of
packing Âi is significant, which means that the column dimension of B should be large, and (3) the cost
of packing B is significant and should therefore be amortized over as many blocks of A as possible and
repacking should be avoided.

3 Traditional Approaches for Implementing the Level-3 BLAS

We use the symmetric matrix-matrix multiplication (Symm), C := AB + C where A is symmetric, as an
example of how traditional approaches to implementing the Level-3 BLAS proceed. We will assume that
only the lower triangular part of A is stored (in the lower triangular part of the array that stores A).

3.1 Loop-based approach

In Fig. 6(left) we show a typical computation Symm as a loop that traverses the matrices a block of rows
and/or columns at a time. We believe the notation used in that figure, which has been developed as part
of the FLAME project, to be sufficiently intuitive not to require further explanation [2, 6]. Notice that
the bulk of the computation is cast in terms of Gepp. So far the size of A11 in each iteration is chosen to
equal the optimal bk discussed in Section 2 so that the Gepp updates AT

01B0 and A21B2 attain near-optimal
performance. Since typically bk is small relative to m (the dimension of A) the update C1 := A11B1 + C1,
which we will call a symmetric block-matrix multiplication (Sybm) requires relatively few operations. Letting
n equal the column dimension of C, the total operation count of a Symm operation is 2m2n floating point
operations (flops). A total of 2(m/bk)b2

kn = 2mbkn flops are in the Sybm computations and 2(m − bk)mn
in the Gepp operations. Even if the performance attained by the Sybm operations is less than that of a
Gepp, the overall performance degrades only moderately if m >> bk. In our case, Sybm is implemented by
copying A11 into a temporary matrix, making it “general” by copying the lower triangular part to the upper
triangular part, and calling Gemm.

There are two sources of complications and/or inefficiencies in this approach:

• The three operations (C0 := AT
10B1 + C0, C1 := A11B1 + C1, and C2 := A21B1 + C2) are typically

treated as three totally separate operations, meaning that B1 must be packed redundantly for each
of the three operations. In Fig. 4 it is shown that the packing of B1 is a source of overhead for an
individual Gepp operation that cannot be neglected.

• Since the shape and size of of C1 and the bk × bk block of A11 in the Sybm operation do not match
those of the corresponding submatrices in the Gepp operation, optimization of the Sybm operation
is not a matter of making minor modifications to the kernel Gebp operation. A high-performance
implementation would require a redesign of this kernel.

These problems are most noticeable when A is relatively small.

3.2 Recursive algorithms

Partition

C →
(

CT

CB

)
, A →

(
ATL ?

ABL ABR

)
, and B →

(
BT

BB

)
,

5



Algorithm: [C] := Symm blk(A, B, C)

Partition A→
ţ

ATL ATR

ABL ABR

ű
,

B →
ţ

BT

BB

ű
, C →

ţ
CT

CB

ű

where ATL is 0× 0,
BT has 0 rows, CT has 0 rows

while m(ATL) < m(A) do
Determine block size b =
min(bk, m(ABR))
Repartition

ţ
ATL ATR

ABL ABR

ű
→

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

ţ
BT

BB

ű
→

0
@

B0

B1

B2

1
A ,

ţ
CT

CB

ű
→

0
@

C0

C1

C2

1
A

where A11 is b × b , B1 has b rows,
C1 has b rows

C0 := AT
10B1 + C0 Gepp

C1 := A11B1 + C1 Sybp
C2 := A21B1 + C2 Gepp

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

ţ
BT

BB

ű
←

0
@

B0

B1

B2

1
A ,

ţ
CT

CB

ű
←

0
@

C0

C1

C2

1
A

endwhile

Algorithm: [C] := Symm blk(A, B, C)

Partition A→
ţ

ATL ATR

ABL ABR

ű
,

B →
ţ

BT

BB

ű

where ATL is 0× 0,
BT has 0 rows

while m(ATL) < m(A) do
Determine block size b =
min(bk, m(ABR))
Repartition

ţ
ATL ATR

ABL ABR

ű
→

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

ţ
BT

BB

ű
→

0
@

B0

B1

B2

1
A

where A11 is b× b , B1 has b rows

C :=

0
@

AT
10

A11

A21

1
A B1 + C

Continue withţ
ATL ATR

ABL ABR

ű
←

0
@

A00 A01 A02

A10 A11 A12

A20 A21 A22

1
A,

ţ
BT

BB

ű
←

0
@

B0

B1

B2

1
A

endwhile

C0

C1

C2

+=
A10 A11

A21

B1
+=

AT
10

A11

A21

B1

Figure 6: Algorithms for computing Symm. Left: Typical loop-based algorithm. Right: Casting in terms of
a single Gepp.

6



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dsymm (GOTO)
dsymm (loop−based)
dsymm (recursive)

Figure 7: Performance of different implementations of Symm: The algorithm put forth later in this paper,
a loop-based algorithm, and a recursive algorithm.

where ATL is a k × k matrix and BT and CT are k × n. Then C := AB + C yields
(

CT

CB

)
=

(
ATL AT

BL

ABL ABR

)(
BT

BB

)
+

(
CT

CB

)

=
(

ATLBT + AT
BLBB + CT

ABLBT + ABRBB + CB

)
.

The terms ATLBT + CT and ABRBB + CB can be achieved by recursive calls to Symm. This time the bulk
of the computation is cast in terms of Gemm: AT

BLBB and ABLBT . Typically the recursion stops when
matrix A is relatively small, at which point A may be copied into a general matrix, after which Gemm can
be employed for this small problem.

There are two sources of complications and/or inefficiencies in this recursive approach:

• The same panels of B will be packed multiple times as part of the individual calls to Gemm, which
itself is cast in terms of Gepp operations.

• Unless care is taken the recursion will not create subproblems of sizes that are integer multiples of bk,
which causes the Gemm operations to attain less than optimal performance.

3.3 Performance

The performance of the two traditional approaches described in this section are reported in Fig. 7. In that
graph we also report the performance attained by the approach delineated later in this paper. The block
size for the loop-based algorithm was taken to equal 192 while the recursion terminated when the size of the
subproblem was less then or equal to 192.

4 Symm

The alternative approach to implementing Symm professed by this paper is ridiculously simple to describe:
Execute exactly the same algorithm as was employed for Gepp by modifying the routine that copies sub-

7



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dsymm (GOTO)
dgemm (GOTO)
dsymm (MKL)
dsymm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Pentium4 (3.6 GHz)

dsymm/dgemm (GOTO)
dsymm/dgemm (MKL)
dsymm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dsymm (GOTO)
dgemm (GOTO)
dsymm (ESSL)
dsymm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)
Power 5 (1.9 GHz)

dsymm/dgemm (GOTO)
dsymm/dgemm (ESSL)
dsymm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dsymm (GOTO)
dgemm (GOTO)
dsymm (MKL)
dsymm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dsymm/dgemm (GOTO)
dsymm/dgemm (MKL)
dsymm/dgemm (ATLAS)

Figure 8: Performance of Symm relative to Gemm. (For the Power5 architecture the line for dsymm and
dgemm are almost coincident. The dsymm line lies ever so slightly above that of dgemm.)

8



matrices of matrix A into packed form to accommodate the symmetric nature of matrix A.
To understand this fully, first consider the algorithm in Fig. 6(right). Notice that if AT

10, A11, and A21

are copied into a single panel of columns of width bk, then the Gepp algorithm in Fig. 3 can be executed.
This approach is inefficient in the sense that these submatrices are first copied and then subsequently packed
as part the Gepp algorithm. This suggests that instead of first copying the three parts into a single column
panel, the Gepp algorithm should be modified so that the copying is done as needed, a block of bm × bk at
a time, as illustrated by

+=

While simple, the method has a number of immediate benefits:

• The packing of the block of rows of B is amortized over all computation with A10, A11, and A21.

• The routine for packing submatrices of A needs only be modified slightly.

• The exact same kernel Gebp routine as for implementing Gepp can be used.

Interestingly enough, the approach yields performance that often exceeds that of Gemm, as shown in Fig. 8.

5 Syrk and Syr2k

Next we discuss the symmetric rank-k (Syrk) and symmetric rank-2k (Syr2k) updates: C := AAT + C
and C := ABT +BAT +C, where C is an m×m symmetric matrix and A and B are m×k. We will assume
that only the lower triangular part of C is stored.

Let us focus on Syrk first. As for the Gemm and Symm operations it is important to understand how
one panel-panel multiply is optimized: the case where A contains bk columns (k = bk) Mimicking the Gepp
implementation yields

+=

The idea now is that the computation of each row panel of C is modified to take advantage of the fact that
only the part that lies at or below the diagonal needs to be updated. One straightforward way to accomplish
this is to break each such row panel into three parts:

+=

The kernel Gebp routine can be used to update the left part. A special kernel updates the lower triangular
block on the diagonal, and the right part is not updated at all.

The implementation of Syr2k is a simple extension of this, where a slight optimization is that each row
panel of C is updated with the appropriate part of both ABT and BAT since this keeps the panel of C in
the L3 cache, if present. Again, the performance is impressive, as illustrated in Figs. 9 and 10.

6 Trmm

We will examine the specific case of the triangular matrix-matrix multiply (Trmm) B := LB, where L is a
lower triangular m×m matrix and B is m× n.

9



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dsyrk (GOTO)
dsyrk (MKL)
dsyrk (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Pentium4 (3.6 GHz)

dsyrk/dgemm (GOTO)
dsyrk/dgemm (MKL)
dsyrk/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dgemm (GOTO)
dsyrk (GOTO)
dsyrk (ESSL)
dsyrk (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dsyrk/dgemm (GOTO)
dsyrk/dgemm (ESSL)
dsyrk/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dsyrk (GOTO)
dsyrk (MKL)
dsyrk (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dsyrk/dgemm (GOTO)
dsyrk/dgemm (MKL)
dsyrk/dgemm (ATLAS)

Figure 9: Performance of Syrk relative to Gemm.

10



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dsyr2k (GOTO)
dsyr2k (MKL)
dsyr2k (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Pentium4 (3.6 GHz)

dsyr2k/dgemm (GOTO)
dsyr2k/dgemm (MKL)
dsyr2k/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dgemm (GOTO)
dsyr2k (GOTO)
dsyr2k (ESSL)
dsyr2k (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dsyr2k/dgemm (GOTO)
dsyr2k/dgemm (ESSL)
dsyr2k/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dsyr2k (GOTO)
dsyr2k (MKL)
dsyr2k (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dsyr2k/dgemm (GOTO)
dsyr2k/dgemm (MKL)
dsyr2k/dgemm (ATLAS)

Figure 10: Performance of Syr2k relative to Gemm.

11



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dtrmm (GOTO)
dtrmm (MKL)
dtrmm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Pentium4 (3.6 GHz)

dtrmm/dgemm (GOTO)
dtrmm/dgemm (MKL)
dtrmm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dgemm (GOTO)
dtrmm (GOTO)
dtrmm (ESSL)
dtrmm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dtrmm/dgemm (GOTO)
dtrmm/dgemm (ESSL)
dtrmm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dtrmm (GOTO)
dtrmm (MKL)
dtrmm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dtrmm/dgemm (GOTO)
dtrmm/dgemm (MKL)
dtrmm/dgemm (ATLAS)

Figure 11: Performance of Trmm relative to Gemm.

12



Again, this operation can be cast in terms of a sequence of panel-panel multiplies:

=

0
0

0
0

An examination of how the Gepp algorithm can be modified for the special needs of Trmm yields

+=

One notices that again most of the computation can be cast in terms of the kernel Gebp routine, except for
the computation with the blocks that contain part of the diagonal. There are a number of ways of dealing
with those special blocks:

• As the block is packed and transposed the elements in from the upper triangular part can be set to zero
after which the kernel Gebp routine can be used without modification. The advantage is that only
the packing routine needs to be modified slightly. The disadvantage is that considerable computation
is performed with elements that equal zero.

• Modify the kernel Gebp routine so that it does not compute with elements that lie above the diago-
nal. Conceptually this means changing a few loop-bounds. In practice there is loop-unrolling that is
incorporated in the kernel Gebp routine that makes this somewhat more complex. One possibility for
overcoming this while making only slight changes to the kernel routine is to set those elements that lie
in a region covered by the loop-unrolling to zero and to compute with those but not other elements
that lie above the diagonal. This can then be accomplished by only modifying loop-bounds in the
kernel routine without disturbing code related to loop-unrolling.

We favor the second solution in our implementations. The performance of the Trmm routine is demonstrated
in Fig. 11.

7 Trsm

We will examine the specific case of the triangular solve with multiple right-hand sides (Trsm) B := L−1B,
where L is a lower triangular m×m matrix and B is m× n. An algorithm that casts most computation in
terms of Gepp is given in Fig. 13.

Let us examine the combined updates B1 := L−1
11 B1 and B2 := B2 − L21B1:

+=

It is in how to deal with the blocks that contain the diagonal that complications occur. For these blocks

• B1 will have been copied into a packed array B̃.

• The current row panel will have bm rows. Let us denote this row panel by the matrix C.

13



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Pentium4 (3.6 GHz)

dgemm (GOTO)
dtrsm (GOTO)
dtrsm (MKL)
dtrsm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Pentium4 (3.6 GHz)

dtrsm/dgemm (GOTO)
dtrsm/dgemm (MKL)
dtrsm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

Power 5 (1.9 GHz)

dtrsm (GOTO)
dgemm (GOTO)
dtrsm (ESSL)
dtrsm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Power 5 (1.9 GHz)

dtrsm/dgemm (GOTO)
dtrsm/dgemm (ESSL)
dtrsm/dgemm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

m=n

G
F

LO
P

S
/s

ec

Itanium2 (1.5 GHz)

dgemm (GOTO)
dtrsm (GOTO)
dtrsm (MKL)
dtrsm (ATLAS)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100

110

m=n

P
er

fo
rm

an
ce

 r
el

at
iv

e 
to

 d
ge

m
m

 (
pe

rc
en

t)

Itanium2 (1.5 GHz)

dtrsm/dgemm (GOTO)
dtrsm/dgemm (MKL)
dtrsm/dgemm (ATLAS)

Figure 12: Performance of Trsm relative to Gemm.

14



Algorithm: [C] := Symm blk(A, B, C)

Partition L→
ţ

LTL 0

LBL LBR

ű
, B →

ţ
BT

BB

ű

where LTL is 0× 0 and BT has 0 rows

while m(LTL) < m(L) do
Determine b = min(bk, m(LBR))
Repartition

ţ
LTL 0

LBL LBR

ű
→

0
@

L00 0 0

L10 L11 0
L20 L21 L22

1
A,

ţ
BT

BB

ű
→

0
@

B0

B1

B2

1
A

where L11 is b× b and B1 has b rows

B1 := L−1
11 B1 Trsm

B2 := B2 − L21B1 Gepp

Continue withţ
LTL 0

LBL LBR

ű
←

0
@

L00 0 0
L10 L11 0

L20 L21 L22

1
A,

ţ
BT

BB

ű
←

0
@

B0

B1

B2

1
A

endwhile

Figure 13: Algorithm for computing Trsm that casts most computation in terms of Gepp.

• A typical block of L11, A, that contains the diagonal will have the shape

A =
.

• Partitioning C, A, and B̃ as

C →
CT

CB
,

A →
ABL

AT L

ABR

AT R

, and

B̃ →
B̃T

B̃B

the operation to be performed can then given by

– CT := A−1
TR(CB −ATLCT ).

The data in CT coincides with the part of B that was copied into B̃. Thus the result in CT needs
also be updated in the corresponding part of B̃.

– CB := CB −ABLB̃T −ABRB̃B .
Again, the data in CB coincides with the part of B that was copied into B̃. Thus the result in CB

needs also be updated in the corresponding part of B̃.

Clearly, the kernel that implements this requires considerable care and cannot be simply derived from the
kernel Gebp routine. Performance of our implementation is reported in Fig. 12.

8 Conclusion

In this paper, we have presented a simple yet highly effective approach to implementing level-3 BLAS
routines by modifying the currently most effective technique for implementing matrix-matrix multiplication.

15



0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

LU with partial pivoting Pentium4 (3.6 GHz)

Fully optimized
Fused dtrsm/dgemm
MKL
LAPACK

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

m=n

G
F

LO
P

S
/s

ec

LU with partial pivoting Power 5 (1.9 GHz)

Fully optimized
ESSL
Fused dtrsm/dgemm
LAPACK

Figure 14: Performance of LU factorization with partial pivoting for different levels of optimization. For the
graph on the right, the “Fused dtrsm/dgemm” curve is almost indistinguishable from the “Reference” curve.

The methodology inherently avoids unnecessary recopying of data into packed format. It suggests that
routines like those that pack and kernel routines be exposed as building blocks for libraries.

The performance comparison with the MKL library on the Itanium2 architecture may appear to present
a counterexample to the techniques advocated by this paper, since for some operations the MKL implemen-
tation outperforms our implementations. We note that their implementations require substantially more
effort than those supported by our work.

There are a number of other situations in which exposing these building blocks will become advantageous
if not necessary.

• A typical LU factorization (with or without pivoting) performs a Trsm operation with a matrix that
subsequently becomes an operand in a Gepp. This could allow a new packing of that data to be avoided
if the packed array used in the implementation of the Trsm is saved. The benefits are illustrated in
Fig. 14. The curve labeled “LAPACK” corresponds to the LAPACK implementation of LU with
partial pivoting [1], with an optimized blocking size of 64 on both the Pentium4 and the Power 5
architectures. This implementation makes separate calls to dtrsm and dgemm, requiring the “B”
matrix to be repacked. The curve labeled “Fused dtrsm/dgemm” fuses the dtrsm and dgemm calls
so that the packed “B” matrix can be reused, while keeping the blocking size the same. Notice that
the improvement is worthwhile on the Pentium4 but not on the Power 5.

A fully optimized implementation of LU with partial pivoting, which optimizes the swapping of multiple
rows (dlaswp), adds recursion to the “factorization of the current panel”, and increases the blocking
size to 192 and 256 on the Pentium4 and Power 5 architectures, respectively, is labeled by “Fully
optimized”.

• Implementation of level-3 BLAS on SMP or multi-core platforms could easily incur redundant pack-
ing operations by the different threads. Exposing the building blocks could avoid this, improving
performance considerably.

We believe this suggests that the standardization of interfaces to such building blocks is in order.

16



Additional information

Implementations of the described techniques are available for essentially all current architectures. Libraries
can be obtained from http://www.tacc.utexas.edu/resources/software/.

Acknowledgments

This research was sponsored in part by NSF Grant CCF-0540926. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. The Itanium2 server used in this research was donation by Hewlett-
Packard. Access to the IBM PPC440 FP2 was arranged by Lawrence Livermore National Laboratory. The
Texas Advanced Computer Center provided access to the other architectures. We would like to thank Dr.
John Gunnels and members of the FLAME team for their comments on an earlier draft of this paper.

References

[1] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, Jack J. Dongarra, J. Du Croz, S. Ham-
marling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third ed.). Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[2] Paolo Bientinesi and Robert van de Geijn. Representing dense linear algebra algorithms: A farewell to
indices. FLAPACK Working Note #17 TR-2006-10, The University of Texas at Austin, Department of
Computer Sciences, 2006.

[3] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain Duff. A set of level 3 basic linear algebra
subprograms. ACM Trans. Math. Soft., 16(1):1–17, March 1990.

[4] Erik Elmroth, Fred Gustavson, Isak Jonsson, and Bo K̊agström. Recursive blocked algorithms and hybrid
data structures for dense matrix library software. SIAM Review, 46(1):3–45, 2004.

[5] Kazushige Goto and Robert van de Geijn. Anatomy of high-performance matrix multiplication. ACM
Trans. Math. Soft. in review.

[6] John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn. FLAME: Formal
linear algebra methods environment. ACM Trans. Math. Soft., 27(4):422–455, December 2001.

[7] B. K̊agström, P. Ling, and C. Van Loan. GEMM-based level 3 BLAS: High performance model imple-
mentations and performance evaluation benchmark. ACM Trans. Math. Soft., 24(3):268–302, 1998.

[8] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra software. In Proceedings of
SC’98, 1998.

17


