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Abstract 

The development of n-type high-performance PbTe thermoelectric materials for matching its p-

type counterparts is an urgent matter to expand its practical applications. Here, we introduce Ag2Te 

into n-type Pb0.975Cr0.025Te for achieving a high peak figure of merit of 1.5 at 773 K. Such a high value 

is attributed to the synergistic optimization of carrier and phonon transports by Ag2Te introducing and 

the dynamic doping of Ag. From the detailed structure and property analysis, we found that Ag2Te 

nanoprecipitates establish coherent interfaces and hence potential barriers with the matrix to induce 

energy-dependent carrier scattering and maintain relatively high carrier mobility, leading to an optimal 

electrical-transport properties over a wide temperature range. Moreover, we employ comprehensive 

electron microscopy investigations and approximate Debye-Callaway model to reveal the origin of the 

significantly reduced lattice thermal conductivity in Ag2Te-alloyed Pb0.975Cr0.025Te. The strategies 

used here provide an effective method for designing high-performance thermoelectric material systems. 

Keywords: thermoelectric; n-type PbTe; Ag2Te; dynamic doping; coherent interfaces; energy filtering 
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1. Introduction 

Thermoelectric technology, enabling the direct conversion between heat and electricity based on 

the Seebeck and Peltier effects, is expected to solve the issues of energy shortage and environmental 

pollution [1-4]. To evaluate the conversion efficiency of a thermoelectric material, either as a 

refrigerator or a generator, the dimensionless thermoelectric figure of merit ZT is defined as ZT = 

S2σT/κ, where S, σ, κ and T are the Seebeck coefficient, electrical conductivity, thermal conductivity, 

and the absolute temperature. Generally, thermoelectric power factor (S2σ) reflects the electrical-

transport properties and the thermal conductivity κ determines the thermal-transport properties and is 

composed of the electronic thermal conductivity (κE) and the lattice thermal conductivity (κL) [5]. Thus, 

an ideal thermoelectric material requires high S2σ and low κ simultaneously, achieved by band 

structure engineering, optimizing carrier concentration (n), lattice anharmonicity, nanostructuring, and 

porosity design [6-9]. 

The inherent low κL, caused by high bonding anharmonicity and soft phonon behavior, makes 

PbTe an ideal mid-temperature thermoelectric material [10]. However, unlike that in p-type PbTe 

where both the light (L point) and heavy (Σ point) hole bands participate in hole transport, only one 

conduction band in n-type PbTe participates in the electron transport, which hinders the large-scale 

commercial application of PbTe [11,12]. To solve this matter, numerous efforts are aimed at improving 

the S2σ of n-type PbTe to match their p-type counterparts, mainly including two primary approaches: 

(1) heterovalent element doping or dynamic doping to optimize n for increasing σ [13-18]; (2) band 

structure engineering to increase S (including conduction band flattening [19], resonant levels [20,21] 

or energy filtering effect [22]). However, the mutual coupling of thermoelectric parameters 

complicates the simultaneous optimization of σ and S [23]. Therefore, screening a single compound 

dopant, which can simultaneously introduce dynamic doping and energy filtering effects into PbTe, is 

expected to be an effective approach for enhancing the electrical transport properties. 
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Ag exhibits a temperature-dependent solubility in PbTe, indicating the potential of dynamically 

optimizing n [24]. Recently, both PbTe-Ag2Te heterostructures and Ag-rich nanodots embedded PbTe 

has been reported to block the detrimental minority carriers, leading to enhanced ZT [25,26]. However, 

the mismatched interface between the nanoprecipitate and the matrix can cause severe carrier 

scattering, leading to reduced carrier mobility  and electrical transport properties [27,28]. To solve 

this challenge, we synthesized a series of Pb0.975Cr0.025Te-xAg2Te compounds via a vacuum melting 

followed by hot pressing and investigated the behavior of Ag in Ag2Te-alloyed Pb0.975Cr0.025Te. 

Interestingly, our comprehensive experimental results indicate that excessive doping of Ag in 

Pb0.975Cr0.025Te introduces dynamic doping and establishes coherent interface potential barriers 

between the Ag2Te nanoprecipitate and the matrix, which realizes energy-dependent carrier scattering 

and band alignment with relatively high , leading to increased S2σ. On the other hand, the introduction 

of point defects, nanostructures, and mesoscale structures, induced by Ag2Te alloying, plays a 

predominant role in significantly suppressed κL [9,28]. Furthermore, our developed Debye-Callaway 

model illustrates the underlying mechanism to the reduction of κL. Benefiting from the synergistically 

optimized carrier and phonon transports by the incorporation of Cr and Ag, a peak ZT of ~1.5 at 773 

K and an average ZTave of ~0.93 from 323 to 823 K with a calculated conversion efficiency of ~ 13.2% 

are achieved in Pb0.975Cr0.025Te-1.5% Ag2Te.  

2. Experimental section 

2.1 Material synthesis.  

Stoichiometric high-purity elements [Pb (99.99%), Te (99.999%), Cr (99.999%), and Ag 

(99.999%)] were sealed in vacuum quartz tubes, heated to 1373 K within 6 h, and held for 6h. After 

quenched in ice water, quartz tubes were annealed at 873 K for 72h to synthesize polycrystalline n-

type Pb0.975Cr0.025Te-xAg2Te (x=0, 0.5%, 1.0%, 1.5%, 2.0%). The obtained ingots were crushed into 

fine powders, then sintered into disk-shaped specimens with a diameter of 12.5 mm via rapid hot 

pressing at 873 K for 45 minutes with a 50 MPa uniaxial pressure. The densities of obtained disks were 
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measured by the Archimedes method and confirmed to be higher than 97% of the theoretical density 

(Table S1). 

2.2 Phase and microstructure characterization.  

Powder X-ray diffraction (XRD) measurements were performed on an X-ray diffractometer using 

Cu–Kα radiation. The morphological, structural, and chemical characteristics of the synthesized 

samples were investigated by the scanning electron microscopy (SEM, JEOL 7100, equipped with 

electron backscatter diffraction detector) and probe-corrected STEM/TEM (Hitachi HF5000, equipped 

with energy-dispersive X-ray spectroscopy (EDS) detector and secondary electron detector). The 

cross-sectional TEM specimens were prepared by the FEI Scios focus ion beam system. 

2.3 Thermoelectric property measurement.  

The S and σ were performed using a CTApro (Beijing Cryoall Science and Technology Co., Ltd, 

China) instrument in a helium atmosphere from 300 K to 873 K. The thermal diffusivity D was 

performed by the laser flash method (NETZSCH, LFA 467) from 300 K to 873 K. The heat capacity 

Cp was determined from the measurements of Blachniκ by Cp(kB/atom) = 3.07 + 0.00047(T/Κ−300) 

for PbTe [29]. The Hall carrier concentration nH and Hall mobility µH were determined by Hall 

measurements using a Van der Pauw technique. 

3. Result and discussion 

Ag2Te was found to strongly change structures and electrical properties of Pb0.975Cr0.025Te. Fig. 

S1a displays room temperature X-ray diffraction (XRD) patterns for the Pb0.975Cr0.025Te-xAg2Te (x=0, 

0.5%, 1.0%, 1.5%, 2.0%). It can be seen that the samples are crystallized in the cubic rock-salt PbTe 

structure (space group Fm-3m) and no obvious impurities are observed within the detection limit. The 

lattice parameter (a) increases slightly with increasing the Ag2Te content due to the larger ionic radius 

of Ag+ (~1.26 Å) than Pb2+ (~1.2 Å) and Cr2+ (~0.84 Å), as shown in Fig. S1b. Fig. 1 shows 

temperature-dependent σ, S, nH, and H of the Pb0.975Cr0.025Te-xAg2Te (x=0, 0.5%, 1.0%, 1.5%, 2.0%). 

As can be seen, the increased σ and decreased /S/ with increasing the temperature is opposite to the 
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behavior of Pb0.975Cr0.025Te, showing a typical temperature-dependent nH caused by the temperature-

induced increase of Ag solubility in PbTe [24], as shown in Fig. 1c. At the near-room temperature, the 

simultaneous decrease of nH and µH causes σ to decrease from ~847 S cm−1 of Pb0.975Cr0.025Te to ~201 

S cm−1 of Pb0.975Cr0.025Te-0.5%Ag2Te. Generally, as the composition increases, a decrease in nH at 

room temperature will increaseH, and the decreasing H indicates the presence of additional carrier 

scattering sources [30]. This observation can be further confirmed by the temperature-dependent µH 

for all Pb0.975Cr0.025Te-xAg2Te samples in Fig. 1d, which gradually deviates from the tendency of T-

2.75 (a typical case of the dominant charge carrier scattering by acoustic phonons in n-type PbTe) upon 

the increased Ag2Te content [24]. The room-temperature S increases from ~199 µV K-1 of the 

Pb0.975Cr0.025Te to ~296 µV K-1 of the Pb0.975Cr0.025Te-0.5%Ag2Te, while the room-temperature nH 

only decreases from ~3.63×1018 cm-3 of the Pb0.975Cr0.025Te to ~2.72×1018 cm-3 of the Pb0.975Cr0.025Te-

0.5%Ag2Te, indicating an uncertain factor must rise in the band structure or trigger energy filtering 

effect. 
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Fig. 1. Temperature-dependent (a) electrical conductivity σ, (b) Seebeck coefficient S, (c) Hall carrier 

concentration nH, and (d) Hall carrier mobility for the Pb0.975Cr0.025Te-xAg2Te (x=0, 0.5%, 1.0%, 1.5%, 

2.0%). 

 

To reveal the origin of the abnormally increased S, the single Kane band (SKB) model was used 

to identify changes in the band structure [31]. As shown in Fig. 2a, the S of the PbAgTe:Ag2Te is well 

consistent with the Pisarenko line assuming the effective mass m* of 0.25me, indicating that the band 

structure is not significantly altered by Ag at the different content in this work [24]. In our previous 

work, Cr-doped PbTe with m* of 0.30 me was confirmed to possess resonant levels effect [32]. For the 

Ag2Te-alloyed Pb0.975Cr0.025Te, the S is overall higher than those at the curve of 0.30me and gradually 

deviates from the curve with increasing the Ag2Te content, indicating that the abnormally decreased 

H and increased S come from the energy filtering effect rather than the changed band structure. It 

should be mentioned that the energy filtering effect can be manifested by the bending of the charge 

carrier band formed at the nanoprecipitate-matrix interface, which acts as a slowly changing potential 
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with sufficient strength to scatter low-energy carriers [22,33]. Generally, these nanoprecipitate 

scattering sources as the second phase impurities cannot change the band structure of the matrix, 

leading to the modulated scattering parameter rx without affecting m* [34]. Since acoustic phonon 

scattering is the dominant carrier-scattering mechanism, the scattering parameter of Pb0.975Cr0.025Te 

(r0) should be -0.5 at room temperature. The ratio of the scattering parameter rx+1 for Pb0.975Cr0.025Te-

xAg2Te (x=0.5%, 1.0%, 1.5%, 2.0%) to r0+1 can be expressed as [34]: 

                                  

2/3

0 0 0

1

1

x x xr S n

r S n

 
  

  
                                                 (1) 

which is modified from [35]: 

     
2/32 2 2 *8 / 3 / 3 1BS k eh m T n r            (2) 

where Sx (S0) and nx (n0) are the measured S and n at room temperature, kB is the Boltzmann constant, 

and h is the Planck constant. As shown in Fig. 2b, the calculated rx increases significantly with 

increasing the Ag2Te content, confirming that the enhancement in S is attributable to the enlarged rx 

by adding nanoprecipitates.  

To comprehensively elucidate the effects of energy-dependent carrier scattering, we calculated 

the interface potential barriers (Eb) between the nanoprecipitates and the matrix, which is assumed to 

be related to σexpressed as: 

1/2 exp b

B

E
T

k T


 
  

 
         (3) 

Fig. 2c displays a plot of In(σT1/2) versus 1/(kBT) for the Pb0.975Cr0.025Te-xAg2Te, and a good 

linear relationship can be observed, indicating the rationality of this assumption. As shown in Fig. 2b, 

the obtained absolute values of interface potential barriers |Eb| increase with increasing the Ag2Te 

content, indicating that the number of interfaces or phase boundaries was increased by the introduction 

of Ag2Te. However, forming interfaces or phase boundaries causes the deterioration of µ and in turn 

the electrical transport properties [37]. As shown in Fig. 2d, the room-temperature µH decreases after 
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introducing Ag2Te, but it is still superior to other reported Ag-doped PbTe systems [26,38] and is close 

to PbAgTe: Ag2Te samples with lower nH [24], revealing the special coherence between the 

nanoparticles and the matrix in the Ag2Te-alloyed Pb0.975Cr0.025Te. 

 

Fig. 2. (a) Room-temperature S as a function of nH, with a comparison to theoretical predictions and 

literature results [24,32]. (b) Calculated scattering parameter rx and interface potential barriers Eb as a 

function of Ag2Te content. (c)The plot of In(σT1/2) versus 1/(kBT). (d) Room-temperature µH as a 

function of nH, with a comparison to theoretical line and literature results [14,24,26,32,38]. 

 

To verify the roles of Ag2Te in achieving the observed electronic transport properties, we carried 

out comprehensive electron microscopy investigations to examine the nanostructure at the 

Pb0.975Cr0.025Te-1.5%Ag2Te. Fig. 3a is a high-angle annular dark-field (HAADF) STEM image of the 

Pb0.975Cr0.025Te-1.5%Ag2Te, displaying that the micron-sized second phase and high density of 

nanoprecipitates are embedded in the matrix. To confirm the chemical characteristics of the 

Pb0.975Cr0.025Te-1.5%Ag2Te, the energy dispersive spectrometry (EDS) elemental maps of Pb, Te, Ag, 
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and Cr are shown in Fig. 3b-c, indicating that the secondary phase is Cr-enriched while the 

nanoprecipitates are Ag-enriched. Fig. 3d shows a bright-field transmission electron microscopy (BF-

TEM) image, with a high density of Ag-enriched nanosized precipitates marked. Fig. 3e shows a high-

resolution TEM (HRTEM) image of the interface between the PbTe matrix and the nanoprecipitate, 

which is sharp and coherent. Based on the crystallographic analysis, the nanoprecipitates adopt the β-

Ag2Te phase (Space Group P121). To understand the orientation relationship at the interface, the 

selected area electron diffraction (SAED) pattern was obtained from the interface, as shown in Fig. 3f. 

After carefully indexing the overlapped diffraction pattern, the orientation relationships of (11̅1̅)
PbTe

// 

(101̅)
Ag2Te

 and (11̅3)
PbTe

//(01̅1)
Ag2Te

 can be confirmed. Based on the crystallographic analysis, 2d 

(11̅1̅)
PbTe

=7.46 Å, d (101̅)
Ag2Te

=7.52 Å; 2d(11̅3)
PbTe

=3.90 Å, d(01̅1)
Ag2Te

=3.83 Å. Therefore, the 

lattice mismatches between these parallel planes are less than 2%, leading to the formation of the 

coherent interface. Fig. 3g shows an enlarged HRTEM image displaying the orientation relationship, 

which can be conducive to maintaining relatively high µ. Fig. 3h shows the schematic atomic model. 

To understand the energy filtering effect triggered by Ag2Te nanoprecipitates embed in the matrix, the 

assumed band alignment between Ag2Te and PbTe is schematically illustrated in Fig. 3i. As can be 

seen, due to the large bandgap difference (~0.05eV for Ag2Te and ~0.30eV for PbTe at room 

temperature) [39,40], the discontinuity of the conduction band and the valence band is form electron 

and hole barriers for scattering low energy carriers and thus gives rise to increased S [41]. 
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Fig. 3. Structural and compositional characterizations of the Pb0.975Cr0.025Te-1.5%Ag2Te. (a) HAADF-

STEM image of Pb0.975Cr0.025Te-1.5%Ag2Te, containing micron-sized second phase and a high density 

of nanoprecipitates. (b) and (c) elemental maps for the elemental distributions of Pb, Te, Cr, and Ag. 

(d) BF-TEM image of the dense Ag-enriched nano-precipitates. (e) HRTEM image of an interface 

between PbTe and Ag2Te. (f) The SAED image obtained from the marked region in (e). (g) Enlarged 

HRTEM image showing the detailed orientation relationship analysis and (h) corresponding atomic 

model. (i) The schematic band alignment between Ag2Te and PbTe. 
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Since the microstructure/nanostructure of the Pb0.975Cr0.025Te-xAg2Te can influence the phonon 

scattering and reduce κ, we further systematically examined the microstructures of the Pb0.975Cr0.025Te-

1.5%Ag2Te. Fig. 4a shows a BF-TEM image of the phase boundary between the Cr2Te3 and matrix, in 

which the rock-salt structured PbTe is aligned along its [112] zone-axis. Fig. 4b shows the EDS 

quantitative analysis, suggesting that the atomic ratio of Cr:Te = 2:3, and the matrix composition is 

Ag-doped PbTe with a small amount of Cr, explaining the decreased nH at the room temperature. Fig. 

4c shows an HRTEM image along the [112] direction, obtained from a typical area from the matrix. 

Its atomic-resolution HAADF STEM image is shown in Fig. 4d. As can be seen, the Z-contrast derived 

from different atoms, and dense lattice distortion can be induced massive point defects. Fig. 4e shows 

an HRTEM image containing grain boundaries and phase interfaces, in which intense strain fields can 

be seen in the area close to interfaces. Fig. 4f shows a corresponding enlarged HRTEM image, in 

which the d spacing of [002] planes of Cr2Te3 can be observed. The existence of point defects, 

nanostructures, and mesoscale structures introduced by Cr and Ag doping in PbTe play significant 

roles in scattering phonons from low to high wavelengths and in turn results in an ultra-low κL. 
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Fig. 4. Structural and compositional characterization of the Pb0.975Cr0.025Te-1.5%Ag2Te. (a) BF-TEM 

image showing the microstructure, inset displaying the [112] zone-axis diffraction pattern of PbTe. (b) 

EDS spectra obtained from the PbTe matrix and Cr2Te3 secondary phase. (c) HRTEM image of PbTe 

viewing along the [112] zone-axis. (d) Atomic-resolution HAADF STEM image of PbTe, showing 

dense lattice distortion. (e) HRTEM image of mismatched grain boundary between Cr2Te3 and PbTe, 

with corresponding enlarged HRTEM images shown in (f). 

 

As shown in Fig. 5a, the S2σ of the Pb0.975Cr0.025Te-xAg2Te increases with increasing the 

temperature, reaching a peak value of 23.5 µW cm-1 K-2 at 673 K in Pb0.975Cr0.025Te-1.5%Ag2Te. Fig. 

5b shows the total thermal conductivity (κ) and lattice thermal conductivity (κL) as a function of 

temperature. The κ=DCpρ=κL+LσT, where D, Cp, ρ, and L are thermal diffusivity, heat capacity, 

density, and Lorenz number [42,43]. All the measured and calculated results are shown in Fig. S2 and 

Table S1. The minimum κL notably decreases from 0.90 Wm-1K-1 of the Pb0.975Cr0.025Te to 0.49 Wm-
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1K-1 of the Pb0.975Cr0.025Te-1.5%Ag2Te. Ag2Te nanoprecipitates can effectively intensify the phonon 

scattering and maintain relatively high µ due to the coherent interface. We further compared the ratio 

of µH/κL as well as the minimum κL in Fig. 5c. Compared with the previously reported n-type PbTe 

containing Ag or energy filtering [24,44-47], the Pb0.975Cr0.025Te-1.5%Ag2Te shows an excellent µH/κL 

and relatively low minimum κL, indicating Ag2Te nanoprecipitates can simultaneously optimize carrier 

and phonon transport in this work. To investigate the individual contribution of six dominant phonon 

scattering sources, including Umklapp process (U), normal process (N), grain boundary (GB) 

scattering, point defect (PD) scattering, micro precipitate (MP) scattering, and nano precipitate (NP) 

scattering, we employed the Debye-Callaway model in Ag2Te-alloyed Pb0.975Cr0.025Te. The spectral 

lattice thermal conductivity (κs) can be calculated by [48,49]: 

 

3 4

222 1

x

B B
s tot

x

k k T x e

e
 

 

 
  

  
       (4) 

where v is the sound velocity (plot in Fig. S3), ℏ  is Plank’s reduced constant, x is defined as x = 

ℏω/kBT (with ω denoting the phonon frequency), and τtot is combined relaxation time. More 

calculation details are presented in the Supporting Information. Fig. 5d shows the calculated κs with 

respect to ω by models of U+N, U+N+GB, U+N+GB+PD, U+N+GB+PD+MP, 

U+N+GB+PD+MP+NP at 300 K. The colored area between the curves is the degree of κL reduction 

caused by the introduction of an additional phonon scattering center. It can be seen that GB and MP 

only perform a small magnitude of scattering phonon in the low-frequency range because of the 

relatively large grain size. Notably, the introduction of high-density Ag2Te nanoprecipitates and point 

defects remarkably reduce κL contributed by low-frequency and high-frequency phonons, respectively. 

Therefore, optimizing phonon scattering sources by Ag2Te doping can significantly reduce κL of the 

Cr-alloyed PbTe, securing high thermoelectric performance. To sum up, the introduction of Ag2Te 

nanoprecipitates not only optimizes n in a wide temperature range, but also builds interface potential 

barriers to scatter low-energy carriers, leading to the improvement of electrical transport properties. 
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Consequently, an outstanding peak ZT ~1.5 at 773K is achieved in the Pb0.975Cr0.025Te-

1.5%Ag2Te, as shown in Fig. 5e. A high average ZTave ~0.93 with the corresponding calculated 

conversion efficiency  ~ 13.3% can be obtained in the entire measured temperature (Fig. S4). To our 

best knowledge, such an excellent overall ZT is competitive to most cutting-of-edge n-type PbTe 

systems containing Ag or energy filtering (Fig. 5f) [24,46-49]. Additionally, the repeated measurement 

results of the Pb0.975Cr0.025Te-1.5%Ag2Te (Fig. S5) indicate that our sample possesses good thermal 

stability and reproducibility, showing great potentials in the practical device application. 

 

Fig. 5. (a) Temperature-dependent S2σ (PF). (b) Temperature-dependent the total thermal conductivity 

(κ) and the lattice thermal conductivity (κL). (c) µH/κL and the minimum κL of the Pb0.975Cr0.025Te-

1.5%Ag2Te with previous samples containing Ag or energy filtering. PbTe-Ag [24], PbTe-Ag2Te-La 

[44], PST-Sb-Cu2Te [45], PbTe-InSb [46], PBT-MgO [47]. (d) Calculated spectral lattice thermal 

conductivity κs of Ag2Te-doped Pb0.975Cr0.025Te sample based on the Debye-Callaway model at 300K. 

(e) Temperature-dependent ZT and (f) compare with previous samples containing Ag or energy 

filtering [24,44-47,50]. 
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4. Conclusion 

For the first time, we demonstrate the synergy of dynamic doping and energy filtering by 

introducing Ag2Te nanoprecipitates to realize optimized electrical transport performance in the Cr-

doped PbTe. The temperature-induced gradual increase in Ag solubility causes a dynamical carrier 

concentration and the nanoprecipitate-matrix coherent interface can establish potential barriers for 

energy-selective carrier scattering, thereby increasing the Seebeck coefficient, maintaining relatively 

high mobility, and in turn enhancing power factor. Simultaneously, the detailed microstructure of Ag 

and Cr co-doped PbTe was uncovered by our comprehensive electron microscopy studies, displaying 

dense lattice distortion, coherent Ag2Te nanoprecipitates, and microscale Cr2Te3 secondary phase, 

which can scatter phonons to varying degrees and jointly suppress thermal transports. Consequently, 

the combination of both optimized carrier and phonon transport leads to a peak ZT of 1.5 at 773K in 

Pb0.975Cr0.025Te-1.5%Ag2Te and the average ZTave ~0.93 from 323 K to 823K temperature range. The 

strategies in this work can provide a new venue for maximizing the performance of thermoelectric 

materials. 
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Appendix A. Supporting information  

Modelling study details. Density, XRD patterns and calculated lattice parameter a, thermal diffusivity, 

heat capacity, Lorenz number, electronic thermal conductivity sound velocities, ZTave and 

corresponding calculated conversion efficiencyof Pb0.975Cr0.025Te-xAg2Te. Repeated property 

measurement results of Pb0.975Cr0.025Te-1.5% Ag2Te. 
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