
 Open access Proceedings Article DOI:10.1145/2996890.2996895

High performance in the cloud with FPGA groups — Source link

Anca Iordache, Guillaume Pierre, Peter Sanders, Jose G. F. Coutinho ...+1 more authors

Institutions: University of Rennes, Imperial College London

Published on: 06 Dec 2016 - IEEE/ACM International Conference Utility and Cloud Computing

Topics: Autoscaling, Resource allocation, Reconfigurable computing, Cloud computing and Resource management

Related papers:

 FPGAs in the Cloud: Booting Virtualized Hardware Accelerators with OpenStack

 Challenges of virtualization FPGA in a cloud context

 Designing a virtual runtime for FPGA accelerators in the cloud

 Computing Framework for Dynamic Integration of Reconfigurable Resources in a Cloud

 A Survey on FPGA Virtualization

Share this paper:

View more about this paper here: https://typeset.io/papers/high-performance-in-the-cloud-with-fpga-groups-
rwoqzx4c17

https://typeset.io/
https://www.doi.org/10.1145/2996890.2996895
https://typeset.io/papers/high-performance-in-the-cloud-with-fpga-groups-rwoqzx4c17
https://typeset.io/authors/anca-iordache-2wqnrhzy9s
https://typeset.io/authors/guillaume-pierre-57k8qkcmyv
https://typeset.io/authors/peter-sanders-2huoyoz87n
https://typeset.io/authors/jose-g-f-coutinho-z4zdf6t9bk
https://typeset.io/institutions/university-of-rennes-2sxbfr7v
https://typeset.io/institutions/imperial-college-london-1zhbqb9r
https://typeset.io/conferences/ieee-acm-international-conference-utility-and-cloud-1vsdx3od
https://typeset.io/topics/autoscaling-3a51caa5
https://typeset.io/topics/resource-allocation-3696qy02
https://typeset.io/topics/reconfigurable-computing-k3k3p7je
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/resource-management-3nr2bzdl
https://typeset.io/papers/fpgas-in-the-cloud-booting-virtualized-hardware-accelerators-3aau4onr42
https://typeset.io/papers/challenges-of-virtualization-fpga-in-a-cloud-context-3zfirel1cp
https://typeset.io/papers/designing-a-virtual-runtime-for-fpga-accelerators-in-the-4vsirt8o2j
https://typeset.io/papers/computing-framework-for-dynamic-integration-of-1av1tbxzuv
https://typeset.io/papers/a-survey-on-fpga-virtualization-ew6kojr5kq
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/high-performance-in-the-cloud-with-fpga-groups-rwoqzx4c17
https://twitter.com/intent/tweet?text=High%20performance%20in%20the%20cloud%20with%20FPGA%20groups&url=https://typeset.io/papers/high-performance-in-the-cloud-with-fpga-groups-rwoqzx4c17
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/high-performance-in-the-cloud-with-fpga-groups-rwoqzx4c17
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/high-performance-in-the-cloud-with-fpga-groups-rwoqzx4c17
https://typeset.io/papers/high-performance-in-the-cloud-with-fpga-groups-rwoqzx4c17

HAL Id: hal-01356998
https://hal.inria.fr/hal-01356998

Submitted on 19 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Performance in the Cloud with FPGA Groups
Anca Iordache, Guillaume Pierre, Peter Sanders, Jose Gabriel de F. Coutinho,

Mark Stillwell

To cite this version:
Anca Iordache, Guillaume Pierre, Peter Sanders, Jose Gabriel de F. Coutinho, Mark Stillwell. High
Performance in the Cloud with FPGA Groups. 9th IEEE/ACM International Conference on Utility
and Cloud Computing (UCC 2016), Dec 2016, Shanghai, China. hal-01356998

https://hal.inria.fr/hal-01356998
https://hal.archives-ouvertes.fr

High Performance in the Cloud
with FPGA Groups

Anca Iordache
Guillaume Pierre

IRISA / University of Rennes 1

Peter Sanders
Maxeler Technologies

Jose Gabriel de F. Coutinho
Mark Stillwell

Imperial College London

Abstract—Field-programmable gate arrays (FPGAs) can of-
fer invaluable computational performance for many compute-
intensive algorithms. However, to justify their purchase and ad-
ministration costs it is necessary to maximize resource utilization
over their expected lifetime. Making FPGAs available in a cloud
environment would make them attractive to new types of users
and applications and help democratize this increasingly popu-
lar technology. However, there currently exists no satisfactory
technique for offering FPGAs as cloud resources and sharing
them between multiple tenants. We propose FPGA groups, which
are seen by their clients as a single virtual FPGA, and which
aggregate the computational power of multiple physical FPGAs.
FPGA groups are elastic, and they may be shared among multiple
tenants. We present an autoscaling algorithm to maximize FPGA
groups’ resource utilization and reduce user-perceived computa-
tion latencies. FPGA groups incur a low overhead in the order
of 0.09 ms per submitted task. When faced with a challenging
workload, the autoscaling algorithm increases resource utilization
from 52% to 61% compared to a static resource allocation, while
reducing task execution latencies by 61%.

I. INTRODUCTION

Field-programmable gate arrays (FPGAs) offer invaluable

computational performance for many compute-intensive algo-

rithms. They are becoming increasingly popular in the high-

performance computing community for their excellent com-

putation density, performance/price and performance/energy

ratios [1]. FPGAs are 40 times faster than CPUs at pro-

cessing some of Microsoft Bing’s algorithms [2], and they

are commonly used in domains a diverse as financial data

processing [3], signal processing [4], and DNA sequence

alignment [5]. Intel recently purchased Altera (the biggest

FPGA manufacturer) for $16.7bn, and it expects that 1/3 of

cloud service provider nodes will use FPGAs by 2020 [6].

To justify the purchase and administration costs of such

devices it is necessary to maximize resource utilization over

their expected lifetime. However, maximizing utilization may

be difficult for many applications whose computation needs

are well below the capacity of one FPGA, or whose workload

intensity significantly varies over time. The owners of such

applications are therefore likely to ignore the benefits of

FPGAs and prefer less efficient but more flexible solutions.

We claim that making FPGAs available in a cloud envi-

ronment would lower the barrier and make them attractive

to new classes of applications. For example, FPGAs can be

programmed to execute the AdPredictor click-through rate

prediction algorithm [7] orders of magnitude faster than its

counterpart implementations based on CPUs [8]. A personal-

ized advertisement service using this algorithm could exploit

this performance to process incoming new facts in real-time to

continuously adapt its recommendations to any change in user

behavior. However, simply providing entire physical FPGAs

attached to a virtual machine instance (similar to the GPU-

enabled instance types proposed by Amazon Web Services)

would not be sufficient, as the workload of a personalized

advertisement service may vary considerably over time. Max-

imizing the FPGA utilization therefore requires one to deliver

elastic processing capacities ranging from fractions of a single

device’s capability to that of multiple devices merged together.

Turning complex FPGA devices into easy-to-use cloud

resources requires one to address two main issues. First,

programming FPGAs requires skills and expertise. FPGAs are

essentially a set of logical gates (AND, OR, NOT) which

can be dynamically wired programmatically. The best perfor-

mance is obtained when the FPGA design closely matches

the data-flow logic of the program itself, following a pipelined

architecture. Circuit designs are typically compiled from high-

level programming languages, but this process requires specific

skills and experience [9]. While this is not a major issue

for large organizations willing to invest massively in FPGA

technologies, it may be a significant hurdle for smaller users.

The second issue is the lack of satisfactory techniques for

virtualizing FPGAs. Current solutions are based either on stati-

cally partitioning the gate array between multiple applications

(i.e., sharing in space), or on naive context switching (i.e.,

sharing in time). As discussed in Section II, both techniques

exhibit significant problems: sharing in space implies that

each application must use a smaller number of digital gates,

thereby negatively impacting performance. Conversely, naive

time sharing incurs prohibitive context-switching costs, as

reconfiguring an FPGA from one circuit design to another

takes in the order of a couple of seconds.

To become fully integrated as regular cloud resources,

virtual FPGAs should exhibit the following properties:

Management. FPGAs should expose an abstract interface that

allows them to be managed by the cloud platform, including

tasks such as allocation, deallocation, deployment, execution,

and resource utilization monitoring.

Programmability. Once FPGAs have been provisioned to

cloud tenants, they should be programmable to tailor their

application needs, similar to CPU compute resources.

Sharing. Like other types of cloud resources, FPGAs should

allow the same physical device to be shared by multiple

tenants in order to maximize resource utilization.

Accessibility. To facilitate sharing, FPGAs should not only

be made available to virtual machines executing on the same

host. Rather, they should be organized as a pool of resources

remotely accessible from any host.

Performance. To retain the high performance/price ratio of

physical FPGAs, the performance overhead of FPGA virtu-

alization should remain minimal.

High utilization. When multiple virtual FPGAs compete for

a limited set of physical resources, the processing capacity

of physical FPGAs should be dynamically assigned to the

virtual FPGAs which need it the most.

Isolation. Sharing resources requires that each resource in-

stance is completely isolated from each other, not allowing

tenants to access each other’s data through the shared device.

We propose the notion of FPGA groups. An FPGA group

is composed of one or more physical FPGAs which are

configured with the exact same circuit design. By load-

balancing incoming execution requests between its members,

an FPGA group may be considered by its clients as a virtual

FPGA with aggregates the computational capacity of multiple

physical FPGAs. FPGA groups are elastic, as one can easily

add or remove physical devices to/from a group. An FPGA

group may, for example, be created by a cloud tenant whose

computational needs exceed the capacity of a single FPGA.
FPGA groups may also be shared among multiple tenants

who wish to use the same circuit design. Although this

condition is very unlikely in the case where tenants compile

their own circuit designs from custom code, we claim it

is realistic in the case of circuit designs chosen from a

standard library. Such a library would typically contain highly-

optimized circuits for common types of functions in domains

such as data analysis (with functions such as regression,

correlation and clustering), multimedia (with functions such

as video encoding and fast Fourier transform), and machine

learning (with functions for Bayesian and neural networks).
Finally, multiple FPGA groups may also compete for the

use of a limited set of physical devices. In this case, we

present an autoscaling algorithm which dynamically assigns

FPGAs to FPGA groups. This algorithm maximizes FPGA

utilization (which improves the cloud provider’s revenues),

while reducing individual task execution times in most cases.
The key novelty in this work is that virtual FPGAs can

time-share a pool of physical FPGAs, which grows or shrinks

dynamically in response to load. Cloud tenants view a virtual

FPGA as a single device which encompasses all its logic

resources and memory, which may be backed by multiple

physical FPGAs at runtime. Cloud tenants simply load their

circuit once to create static or self-managed elastic groups.
Our experiments show that FPGA groups incur a low

overhead in the order of 0.09 ms per task, while effectively

aggregating the processing capacity of multiple FPGAs. When

faced with a challenging workload, our autoscaling algorithm

increases resource utilization from 52% to 61% compared to

a static resource allocation, while reducing the average task

execution latency by 61%.

This paper is organized as follows. Section II introduces the

state of the art. Section III presents the design of FPGA groups,

and Section IV discusses elasticity and autoscaling. Finally,

Section V evaluates our work and Section VI concludes.

II. STATE OF THE ART

A. FPGA primer

FPGAs are semiconductor devices organized as two-

dimensional or three-dimensional arrays of Configurable Logic

Blocks (CLBs) [10]. Each CLB is an elementary circuit which

can be programmatically configured to realize a variety of

simple logical functions, such as AND/OR/NOT digital gates,

flip-flops and 1-bit full adders. The interconnection between

CLBs is highly reconfigurable as well, allowing one to realize

any digital electronic circuit — within the size limits of the

gate array — by proper reconfiguration of the CLBs and their

interconnection matrix. FPGA boards are often also equipped

with external memory and a PCI Express R© interface for high-

performance communication with their host machine.

FPGA circuit designs are usually implemented using hard-

ware description languages such as Verilog and VHDL, which

operate at a very low level of abstraction using logic elements

such as digital gates, registers and multiplexors. These de-

scriptions can also be automatically derived from higher-level

programming languages similar to C, Java or OpenCL [9],

[11]. However, to obtain the best possible performance, FPGA

programmers must still have a deep understanding of the

mapping between a high-level program and its low-level trans-

lation, and annotate their code with appropriate optimization

guidelines [12]. Efficient programming of FPGAs therefore

requires specific training and experience, which effectively

creates a barrier to entry for new developers to exploit the

full potential of FPGAs. For this reason, FPGA manufacturers

propose highly-optimized off-the-shelf libraries for specific

computations. Although many of these libraries are domain-

specific, they can also provide generic functions such as

various types of data analysis computations, multimedia pro-

cessing, and machine learning [13], [14].

FPGAs can outperform CPU-based compute resources by

at least one order of magnitude while running at considerably

lower clock frequencies due to the fact that the physical orga-

nization of a hardware design can closely match the dataflow

logic of the implemented algorithm and be implemented in

a deep pipelined architecture. This allows multiple function

executions to operate in parallel over different parts of the

gate array, providing high-throughput performance. A typical

usage pattern therefore consists for a client program to issue

large batches of task execution requests which can then be

efficiently pipelined by the FPGA.

B. Integrating FPGAs in virtualized environments

Client programs running on traditional machines typically

use an FPGA as a co-processor device. Applications access the

FPGA via local library functions designed to translate function

Fig. 1: Local and remote virtualization of accelerators; (a)

using PCI passthrough; (b) using API remoting locally; and

(c) using API remoting remotely.

calls to batches of asynchronous task execution requests issued

via the PCIe bus.

Integrating FPGAs in a virtualized environment requires

one to rethink the communication between the client program

within a virtual machine, and the FPGA. Ideally, this commu-

nication should exhibit as little overhead as possible so as not

to reduce the interest of using accelerators. It should also allow

any VM to make use of any FPGA device, regardless of the

physical location of the VM and the FPGA. There exist three

main techniques for this, which have been applied either to

support access to FPGAs or GPGPUs (the issues and solutions

being very similar for both types of devices).

I/O passthrough exposes the accelerator to a virtual ma-

chine running on the same server using the ‘passthrough’

feature supported by all modern hypervisors [15]. This

technique, illustrated in Figure 1(a), is for example used

by Amazon EC2 to create GPU-enabled virtual machine

instances [16]. I/O passthrough delivers performance levels

similar to the native capacity of the PCI bus. However, it

restricts the usage of an accelerator only to the VMs running

on the same host. In addition, it currently does not allow

multiple co-located VMs to share the same physical FPGA.

Paravirtualization allows multiple VMs to share a phys-

ical accelerator by providing a device model backed by

the hypervisor, the guest operating system and the device

driver. Examples of this approach include GPUvm [17] and

pvFPGA [18] supporting GPGPUs and FPGAs, respectively.

However, this technique suffers from performance overheads

and remains limited to sharing the accelerator between VMs

running on the same server machine.

API remoting, shown in Figure 1(b), allows multiple appli-

cations to use a common accelerator API such as OpenCL

or CUDA. Calls to the API are intercepted in the VM and

passed through to the host OS on which the accelerator is

accessible. Each VM appears to have exclusive access to

the accelerator and software on the host to resolves any

contention. A number of technologies employ API remoting

in a tightly coupled systems including vCUDA [19], gVir-

tuS [20] and LoGV [21]. In such a case the issue of sharing

becomes one of scheduling and the applications obtain a

fraction of the accelerator dependent on the other users and

the scheduling algorithm employed.

API remoting also allows accessing a (possibly shared)

accelerator remotely, as shown in Figure 1(c). In this case,

the choice of network technology becomes very important

as it can become the dominating performance factor. The

advent of high-speed networks such as Infiniband which

have bandwidths similar to that of PCI provide a solution by

enabling the use of accelerators on separate nodes to the host

application. A number of technologies employ API remoting

over a network including rCUDA [22], DS-CUDA [23],

dOpenCL [24] and VirtualCL [25]. Additional studies with

Infiniband networks show that this is a practical solution for

rCUDA [26] and DS-CUDA [27].

C. Related work on FPGA virtualization

Allowing cloud tenants to reserve fractions of an FPGA’s

processing capacity requires a cloud operator to share FPGA

devices among multiple tenants. Most of the research on ac-

celerator virtualization is focused on the many-to-one solution

where several applications share a single accelerator, since the

accelerator is the expensive device that needs to be shared.

Sharing in space consists in running multiple independent

FPGA designs (possibly belonging to different tenants) next

to each other in the gate array. This is made possible by

a technique called partial reconfiguration where the FPGA

area is divided in multiple regions, allowing each region

to be reconfigured with a particular circuit design [28],

[29]. This approach effectively parallelizes the execution

of the different designs, and increases the device’s uti-

lization. However, space sharing reduces the area that is

made available to host an FPGA design, which can have

a considerable performance impact because it limits the

number of functional units that can work in parallel. Sharing

in space also requires some switching logic in the FPGA to

route incoming requests to the appropriate design, which can

add additional overhead.

Sharing in time consists in executing a single FPGA design

at any point of time, but of switching the FPGA usage from

tenant to tenant over time (similarly to operating system

process-level context switching). This approach is often

overlooked in the FPGA community due to the very high

reconfiguration costs from one design to another: a naive

implementation would impose prohibitive context switching

costs in the order of a couple of seconds.

The shared FPGA groups proposed in this paper belong to

the sharing-in-time category. In order to avoid issuing costly

FPGA reconfigurations each time a new task is submitted,

shared FPGA groups retain the same configuration across large

numbers of task submissions, and incur reconfiguration costs

only when an FPGA needs to removed from one group and

added to another. Apart from this infrequent operation, tasks

submitted by multiple tenants can therefore execute with no

reconfiguration delay.

TABLE I: A summary of related work.

Approach
Accel.

type
Sharing method Access

Sharing

type

Amazon EC2 [16] GPGPU PCI passthrough Host Many-to-one
GPUvm [17] GPGPU Paravirt. Host Many-to-one
pvFPGA [18] FPGA Paravirt. Host Many-to-one
vCUDA [19] GPGPU API remoting Host Many-to-one
gVirtuS [20] GPGPU API remoting Host Many-to-one
rCUDA [26] GPGPU API remoting Network Many-to-one
DS-CUDA [27] GPGPU API remoting Network Many-to-one
[28], [29] FPGA Partial reconf. Host Many-to-one
FPGA groups FPGA Time-Sharing Network Many-to-many

A summary of related work is presented in Table I. These

approaches focus on many-to-one scenarios allowing multiple

VMs to share a single FPGA. To our best knowledge, our

approach is the first method which also considers the one-to-

many and the many-to-many situations where an application

may use a single (virtual) accelerator which is backed by

multiple physical FPGAs.

III. FPGA GROUPS

A client application using FPGAs usually executes on a host

that has an FPGA board connected via a dedicated bus, such

as PCI Express R©. The application must first reconfigure the

FPGA with a specific design which provides the appropriate

function, and then perform a sequence of I/O operations on

the FPGA, including initializing static data on the FPGA,

streaming input data to it, and streaming results from it. The

computation is performed on the data as it flows through the

logic of the FPGA design.
However, in this architecture the FPGAs are accessible only

to applications running on the host machine, which limits

the number of applications that can share the FPGAs. To

support full many-to-many mapping between FPGAs and the

VMs accessing them, our solution is to co-locate a number

of FPGAs in so-called “MPC-X” appliances which can be

communicated with using the API remoting technique over

an Infiniband network [30]. This solution allows the client

applications to run on regular servers and use FPGAs remotely

on the MPC-X appliance.

A. The MPC-X Appliance

Figure 2 provides an overview of an MPC-X. In this setup,

tasks and results are sent to the appliance across an Infiniband

network. This network technology is particularly suitable for

such usage thanks to its low packet latency, and RDMA

support which avoids unnecessary data copying within the

MPC-X.
The switch fabric of the MPC-X manages the arrival and

execution of tasks on the appropriate FPGA. Although it would

seem natural to implement it in software, and to execute it in

a standard processor within the MPC-X device, such design

is likely to incur significant performance overheads without

RDMA support [30], [31]. Instead, the MPC-X implements the

switch fabric directly in hardware. As it is only concerned with

the efficient execution of tasks on FPGAs, it can be designed

solely for this purpose so its performance is not be impacted

by the side effects of running the application’s CPU code.

Fig. 3: System architecture with three application VMs and

two MPC-X’s. Application A uses function f() provided by a

group of five FPGAs. Applications B and C share a group of

three FPGAs supplying function g().

RAM

48GB
FPGA

RAM

48GB
FPGA

RAM

48GB
FPGA

...

In
fi
n
ib

a
n
d
 n

e
tw

o
rk

Switch

fabric

Fig. 2: An MPC-X with eight

FPGAs and two Infiniband inter-

faces.

We envisage that

a cloud infrastructure

supporting FPGAs in a

multi-tenant environment

will consist of multiple

MPC-X appliances

interconnected with

(some of) the CPU

machines using

Infiniband networks.

Each MPC-X provides

a number of FPGA

devices accessible to any

CPU client machine via

the Infiniband network.

Our MPC-X

appliances include

eight FPGAs — each equipped with 48 GB of RAM —

and two Infiniband interfaces to overcome any bandwidth

limitation of the Infiniband connection.

B. Resource Management

MPC-X’s and physical FPGAs are passive hardware de-

vices. They have no operating system nor embedded software

that can handle even basic resource management operations

such as allocating/deallocating FPGAs, sharing them between

applications, and establishing a connection with authorized

client programs.

These operations are handled by a software component

called the Orchestrator, as shown in Figure 3. The Orchestrator

runs in a regular server machine connected to the same Infini-

band network as the MPC-X’s and the client machines. Similar

to cloud resource manager services such as OpenStack Nova,

the Orchestrator is in charge of maintaining the reservation

state of each FPGA, including whether it is currently reserved

and by which tenant. When a client reserves one or more

(physical) FPGAs, the Orchestrator chooses available FPGAs,

updates their reservation state, and returns a handle to the

client containing the address of the MPC-X it belongs to and a

local identifier. The Orchestrator is also in charge of managing

the FPGA groups, as we discuss next.

C. FPGA Groups

A client application which requires the combined processing

capacity of multiple FPGAs can obviously reserve the devices

it needs, configure all FPGAs with the same design, and load-

balance its task execution requests across them. However, this

introduces complexity in the application as it would need to

decide how many FPGAs to request and then load balance

the tasks across those FPGAs. Sharing these FPGAs across

multiple client machines is even more challenging.

We propose a virtualization infrastructure using so-called

FPGA groups. An FPGA group presents itself to an application

as a single virtualized FPGA. However this virtual computa-

tional resource can be backed by a pool of physical FPGAs

that perform the actual computation. All the FPGAs within

the group are configured with the same hardware design. The

client application submits tasks to the virtual FPGA in exactly

the same way it would of a single physical FPGA.

As shown in Figure 3, in our current implementation, an

FPGA group resides entirely within a single MPC-X. When

the Orchestrator receives a request to create a new group, it

allocates the required number of FPGAs within one MPC-X.

It then sets up a new receive (Rx) buffer to hold the arriving

tasks requests and a number of queues equal to the number of

physical FPGAs in the MPC-X (regardless of the number of

FPGAs assigned to this group). A new set of Rx buffer and

queues is created each time a new client application wants to

use the FPGA group, and deleted after the client application

terminates. For example, in Figure 3, the FPGA group holding

function g() is shared between application B and application

C; each application access its own Rx buffer and queues in

the FPGA server.

On the application side the group is represented as a fixed-

size in-flight queue which holds references to the tasks that are

being processed on the MPC-X. There is also a wait queue

which stores the waiting tasks.

We carefully designed this organization to minimize the

task-submission overhead. Each application can submit its own

tasks from the client-side wait queue to the group-side queues

with no interference with other clients. When a task arrives in

the MPC-X’s Rx buffer, the MPC-X places the tasks into the

task queue with the shortest length. The request is then placed

into the task queue with the shortest length.

Creating as many task queues as there are FPGAs in the

MPC-X implies that the number of task queues is always

greater or equal to the number of FPGAs in a group. This

allows (as we discuss in the next section) to minimize the

time taken to dynamically scale the group at runtime. When

a queue has at least one task to execute, it attempts to lock

an FPGA from the pool of FPGAs in the group. When a lock

has been obtained, the task is executed on the corresponding

FPGA. After execution, the FPGA is unlocked and the task

result is sent back to the application. Thus, each queue has a

simple and sequential behavior. Note that tasks in the same

task queue do not necessarily execute on the same FPGA.

An additional benefit of creating a separate Rx buffer

per client application is that it makes it easy to revoke an

application’s access to the FPGA group, for example if the

tenant decides to stop using a shared FPGA group.

D. Discussion

Memory isolation. One important issue for virtual FPGAs

is memory isolation between multiple independent tasks

running simultaneously in the same FPGA group, but po-

tentially belonging to different tenants. FPGAs do not have

Memory Management Units (MMUs) nor kernel/userspace

separation, which makes it impossible for them to page

memory the same way CPU-based servers do. When an

FPGA group is used by a single user (e.g., to serve tasks

issued by an elastic set of VMs), the FPGA group will

consider all incoming tasks as if they had been issued by a

single VM. In multi-tenant scenarios, our system currently

does not address isolation issues. As a consequence, we

restrict this multi-tenant scenario to the use of stateless

FPGA designs such as signal processing and video encoding.

Inter-task dependencies. We assumed so far that tasks are

independent from each other: this allows us to execute

incoming tasks in a worker thread-pool pattern. However,

one may for example want to stream large amounts of data

and to perform statistical analysis across multiple tasks. To

address these issues, a client can send a pseudo-task to the

FPGA group which performs a ‘lock’ function. This then

reserves a queue and its associated FPGA exclusively for

this client until the ‘unlock’ function is sent. Obviously, we

can lock only a finite number of concurrent times – i.e., the

number of FPGAs.

Orchestrator scalability. Although we represented the Or-

chestrator (and the Autoscaler introduced in the next section)

as a single server in our architecture, they maintain very

simple state which may be stored in a fault-tolerant key-

value store: for each FPGA group they essentially store a

copy of the circuit design (which represents about 40 MB per

design) and the list of FPGAs which are currently part of the

group. This allows for easy replication and/or partitioning

across the data-center. In addition, any temporary unavail-

ability of the Orchestrator would only impair the ability to

start/delete/resize FPGA groups, without affecting the avail-

ability of the existing FPGA groups, or their functionality.

Scaling an FPGA group beyond a single MPC-X. There

is no fundamental reason why FPGA groups cannot span

more than one MPC-X. This is essentially a limitation of

our current implementation: spreading FPGA groups across

multiple servers would require an additional load-balancing

mechanism at the client side, which implies that the

client-side library must receive notifications upon every

update in the list of MPC-X’s belonging to a group. This

feature is currently under development.

IV. ELASTICITY AND AUTOSCALING

What has been described so far uses a fixed number of

physical FPGAs in each FPGA group. However this structure

allows the easy addition and removal of FPGAs from a group

without any disruption to executing tasks or any interaction

with the client application. We discuss FPGA group elasticity

first, then present our autoscaling algorithm.

A. Elasticity of virtual FPGAs

The design of FPGA groups makes it easy to add or remove

FPGAs to/from an FPGA group located in the same MPC-X.

All that has to be done is reconfigure the FPGA with the

appropriate design and update the load-balancing information

in the task queues at the server side. The resized group

still presents itself to an application as a single virtualized

FPGA, however this virtual computational resource has a

varying number of physical FPGAs that will perform the actual

computation.

This elasticity allows a cloud provider to place multiple

FPGA groups on the same MPC-X and dynamically reassign

physical FPGAs to groups according to the demand each

group is experiencing, similar to the way hypervisors can

dynamically reallocate the CPU shares granted to virtual

CPUs. This automatic elasticity is managed by a software

component called the Autoscaler, as shown in Figure 3.

B. Autoscaling of virtual FPGAs

The workload incurred by FPGA groups may significantly

vary over time because of workload fluctuations in client

applications themselves, as well as the arrival or departure

of client applications making use of each group. Increasing

the number of applications using the same group raises the

contention of the FPGAs in the group and consequently

it affects the performance of individual applications. The

Autoscaler monitors the resource utilization of each group and

periodically rebalances the number of FPGAs assigned to each

group.

The aim of this algorithm is to maximize the infrastructure

utilization while improving the overall application completion

time. Therefore, more applications get access to the FPGAs,

which in turn is also beneficial for the cloud provider.

The Autoscaler periodically computes the average task

runtime for each FPGA group (defined as the sum of the

queuing time and the processing time). It then resizes the

groups to minimize the average runtime across all groups

which share the same MPC-X.

Note that resizing FPGA groups is an expensive operation,

as it requires to reconfigure one or more FPGAs with a new

hardware design. To avoid spending more time reconfiguring

FPGAs than using them for processing incoming tasks, the

periodicity (currently set by the adminstrators) at which group

size is updated should be at least an order of magnitude greater

than the reconfiguration time, which we have observed to be in

the order of a few seconds in our appliances (see Section V).

The Autoscaler periodically computes the total queue length

per client application and per FPGA group. A group with

t1

t2
t3

Client
2

Client
3

Client
1

r 1

r 3

r 2

G
1

G
2

FPGA FPGA FPGA FPGA FPGA FPGA

Fig. 4: Two FPGA groups receiving tasks and the server-side

task queues (client-side queues are omitted as they do not

participate in the autoscaling algorithm).

empty task queues is scaled down to the minimum working

size of one FPGA, allowing other groups to utilize the idle

FPGAs. When not enough FPGAs are available to satisfy all

the demands, the Autoscaler balances the groups by assigning

FPGAs in proportion to their workloads.
Figure 4 shows the metrics of interest in FPGA group scal-

ing. Tasks from applications can have a different runtime ti.

We define T as the total runtime of all tasks in an application’s

queue Q corresponding to a group G: T = t× size(q).
The total processing time for all tasks submitted to a group

G is the sum of the total processing time of all the queues in

the group: RG =
∑

Ti.
The objective of the autoscaler is to balance the overall

completion times for the n groups sharing FPGAs of the same

MPC-X. This is achieved by minimizing the mean of absolute

values of RGi
differences:

minimize

n
∑

i=1

n
∑

j=1

| RGi
−RGj

|

n2

Solving this optimization problem requires knowing the size

of the queues using a group and the runtime t of every task.

The information concerning the number of tasks in the queue

can be retrieved periodically from the Orchestrator. On the

other hand, the runtime of a task is unknown in the system. In

order to determine it we rely on the periodical measurements

the Autoscaler is retrieving from the Orchestrator. These

measurements express how many tasks of each type have

been executed in the measuring interval. Aggregating this

information for several measurements helps in building a linear

equation system where the unknown variables are the runtimes

of tasks corresponding to the queues connected to a FPGA

group and the coefficients are the number of tasks executed in

one measurement interval.
The resulting system for one group is as follows:

A11 × t1 + A12 × t2 + · · · + A1n × tn = I

A21 × t1 + A22 × t2 + · · · + A2n × tn = I

· · ·

Am1 × t1 + Am2 × t2 + · · · + Amn × tn = I

Algorithm 1 Autoscaling Algorithm

Input: Groups G = {G1, G2, . . . , Gn}
Output: Group sizes Snew

1: I = scaling interval (e.g. 10s)
2: S ← {S1, S2, . . . , Sn} where Si is the current size of Gi ∈ G
3: initialize Snew = {0, 0, · · · , 0}
4: for i = 1 to |G| do
5: A ← {A1, A2, . . . , An} number of executed tasks for each

queue of group Gi in the last measurement interval I
6: T ← {T1, T2, . . . , Tn} total runtime estimates for Ai on Gi

of size Si using NNLS
7: t ← {Tj/Si} for j ∈ {1 . . . n} runtime estimate of Tj on

single FPGA
8: TW ← tasks waiting to be executed on Gi

9: Ri ←
∑

TW × t required processing time for Gi

10: Snew ← {
Ri×

∑n
j=0

Sj
∑

n
j=0

Rj
} for i ∈ {1 . . . n}

11: return Snew

where:

n = number of applications using the group;

m = number of past measurements of task execution;

I = measuring interval;

ti = task runtime corresponding to queue i;

Aij = number of executed tasks of type j in the interval i

Note that the Autoscaler builds a system for each group.

In order to solve the system and calculate the runtimes ti
we apply a non-negative least-squares (NNLS) algorithm [32]:

given an m × n matrix A and an m-vector I , the algorithm

computes an n-vector T that solves the least squares problem

A× T = I , subject to T ≥ 0.

Solving the linear system provides an approximation of the

task runtimes which are then used in calculating the total

processing time required of a group. The Autoscaler then

assigns an FPGA share proportional to the demand on each

group. The scaling algorithm is presented in Algorithm 1.

This algorithm tries to treat all applications as fairly as

possible in order to minimize the overall runtime of the current

workload. An extension to this work might rather prioritize

certain applications that are considered more valuable.

V. EVALUATION

We now evaluate the performance of FPGA groups con-

sidering two perspectives: (i) the cloud provider’s interest

to maximize resource utilization and accommodate as many

client applications as possible; and (ii) client applications

aiming to minimize the runtime and cost of their tasks.

Our experiments are based on a single MPC-X equipped

with eight ALTERA STRATIX-V FPGAs and two Infiniband

interfaces which load-balance the workload between appli-

cations and the appliance. The Orchestrator distributes the

workload by selecting which connection an application should

use to access the MPC-X at load time. Latency measurements

were issued at the client side while utilization measurements

were done by querying the MPC-X’s public API.

In our experiments, the average time to configure the FPGA

when resizing a group is 3.78 s±0.13, but the actual time for

0 100 200 300 400 500 600

Time (s)

0.5

1.0

1.5

2.0

2.5

3.0

L
a
te

n
cy

(m
s)

Physical FPGA

V irtual FPGA

(a) Task execution delays

0.0 0.5 1.0 1.5 2.0 2.5

Latency (ms)

0

1

2

3

4

5

6

P
ro

b
a
b
il

it
y

d
e
n

si
ty

0.78

0.87

0.33

Task
runtime

Physical FPGA

V irtual FPGA

(b) Statistical distribution of task execution delays

Fig. 5: FPGA virtualization overhead.

moving an FPGA from one group to another is slightly larger

because of the need to wait until currently-running tasks have

finished executing. The Autoscaler is configured to re-evaluate

the FPGA group sizes every 10 seconds. An additional server

machine submits tasks to the FPGAs.

A. Virtualization overhead

We first evaluate the performance overhead due to the FPGA

group mechanisms. We submit a simple task workload to a

single FPGA so that it does not overload the FPGAs: the client

issues one task requiring 0.33 ms every second.

Figure 5 compares the task execution latency when the

application addresses a single non-virtualized FPGA (without

FPGA groups) and a virtualized FPGA group composed of a

single FPGA. We can see that, even in the fastest case, the

client-side task submission and network transfers between the

client machine and the FPGA add a total execution latency

in the order of 0.45 ms. This is the reason why FPGA pro-

grammers typically submit task execution requests in batches

so they incur the network overhead only once for the whole

batch rather than once per task.

We can also see the performance overhead due to virtual-

ization: the latency of tasks submitted to the virtual FPGA

is on average 0.09 ms greater than when submitted to the

physical FPGA. This difference is due to the additional queues

introduced by FPGA groups. We can however note that

virtualization does not increase the variability of execution

latencies compared to a non-virtualized scenario.

0 1 2 3 4 5 6 7 8

FPGA Group Size

10
−1

10
0

10
1

10
2

10
3

A
v
e
ra

g
e

L
a
te

n
cy

(m
s)

1500 tasks/s

3000 tasks/s

6000 tasks/s

Fig. 6: Effects of FPGA group elasticity.

B. FPGA group elasticity

We now evaluate the effectiveness of FGPA group elas-

ticity to handle large task execution workloads. We issued

a constant load of 1500 tasks/second, 3000 tasks/second or

6000 tasks/second to FPGA groups of various sizes. Each task

has an execution time on the FPGA of 1 ms.
Figure 6 shows the effect of varying the FPGA group sizes

when handling these workloads. The smallest workload (1500

tasks/second) can in principle be handled with two FPGAs.

When using only one FPGA, task execution requests pile up

in the queues: execution latencies are very high, with very

high variability. However, with a group of size 2, the task

execution latency decreases to roughly 0.64 ms, with almost no

variability. When increasing the group size further, the average

task execution latency decreases even further down to 0.23 ms.

Similar behavior happens with larger workloads: when the

FPGA group is too small to handle the incoming stream of task

execution requests, task execution latencies are very high, with

large standard deviation. When the group becomes sufficiently

large to handle the tasks, latencies decrease drastically with

very low standard deviation.
This demonstrates that FPGA groups can actually aggregate

the processing capacity of multiple physical FPGAs. Varying

the group size effectively allows one to control the capacity

of the virtual FPGA, while keeping these operations totally

invisible for the client application.

C. FPGA group autoscaling

We now evaluate the FPGA group autoscaling algorithm

using three synthetic applications that can be executed using

FPGA groups which compete for resources:
Application A consists of tasks which require 0.33 ms of

execution time. This mimics the behavior of a Fast Fourier

Transform operated over a buffer of 262,144 double-

precision values. To maximize execution efficiency, tasks are

submitted in batches of 300 tasks.

Application B is a scaled-up version of application A where

tasks require 1 ms of execution time. Here as well, tasks are

sent by batches of 300 tasks.

Application C consists of long-running tasks such as video

encoding which require 100 ms of execution time. Tasks are

sent by batches of 3 tasks.

Figure 7 compares the behavior and performance of static-

size and autoscaled FPGA groups based on two workload sce-

narios. For both figures the static-size groups were provisioned

with two FPGAs for application A, four for application B,

and two for application C. We chose these numbers such that

the group sizes would be proportional to the total workload

execution time of each application.

Figure 7a shows a scenario with a light workload where the

FPGA server has more than enough resources to process all

incoming requests, despite workload variations in applications

A, B and C (depicted in the top part of the figure). In

this situation, the static FPGA allocation reaches an average

resource utilization of 32%, while keeping low individual

batch execution latencies (on average 0.43 s per batch).

In this scenario where no group resizing is necessary, the

autoscaling system incurs the overhead of FPGA group recon-

figuration while having nothing to gain from this operation. It

would be very easy to adjust Algorithm 1 so that it refrains

from any resizing operation when all current queue lengths

are small enough. We however decided to let the Autoscaler

overreact to workload variations to highlight the overhead of

FPGA group reconfiguration.

The bottom half of Figure 7a shows the resizing deci-

sions taken by the Autoscaler, and their impact on resource

utilization and batch execution latency. We see a spike in

execution latency each time an significant resizing operation

takes place. The reason for this is threefold: first, upon any

reconfiguration there is a period of several seconds during

which fewer FPGAs are available to process batch execution

requests; second, the FPGA group which gets shrunk may not

have sufficient resources to process its workload, so requests

queue up until the next resizing operation where the group

size may be increased again; and, finally, in this particular

experiment these unavoidable costs are not compensated by

any benefits from the useless rescaling operation.

Figure 7b shows a scenario with twice as much workload

as previously. Here, the static FPGA groups cannot efficiently

process all incoming requests. In particular, application A does

not have enough resources to handle its peak workload, so

batch execution latencies for application A grow substantially,

up to 22 s per batch. On the other hand, during peak activity

of application A, application B underutilizes its own resources

so the obvious solution is to temporarily reassign FPGAs

from application B to application A. This is exactly what the

Autoscaler does in this case. As a result, application A now

shows much better performance, at the expense of slightly

slowing down application B. Interestingly, between times

150 s and 200 s, both applications A and B experience high

workloads, which together exceed the total processing capacity

of the system. In this situation, the Autoscaler maintains a

reasonable fairness between all applications.

These experiments highlight the interest of dynamically re-

sizing FPGA groups in situations where multiple applications

compete for limited resources. On the one hand, autoscaling

increases the average resource utilization from 52% to 61%,

which allows the cloud provider to process more workload

2468

1
0

Submitted
Jobs/sec.

A
B

C

5
0

1
0
0

StaticGroups
Utilisation(%)

3
2
.5

3
%
±

1
8
.0

2

T
im

e
(s

)

246

StaticGroups
JobLatency(s)

O
v
e
ra

ll
a
v
e
ra

g
e

:
0
.4

3
s
±

0
.1

5

5
0

1
0
0

ElasticGroups
Utilisation(%)

3
8
.0

5
%
±

1
9
.1

2

T
im

e
(s

)

246

ElasticGroups
JobLatency(s)

O
v
e
ra

ll
a
v
e
ra

g
e

:
0
.5

9
s
±

0
.6

4

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

T
im

e
(s

)

02468

ElasticGroups
Size

(a
)

L
o
w

w
o

rk
lo

ad

5

1
0

1
5

Submitted
Jobs/sec.

A
B

C

5
0

1
0
0

StaticGroups
Utilisation(%)

5
1
.9

4
%
±

2
3
.2

4

T
im

e
(s

)

5

1
0

1
5

2
0

StaticGroups
JobLatency(s)

O
v
e
ra

ll
a
v
e
ra

g
e

:
6
.4

9
s
±

6
.6

8

5
0

1
0
0

ElasticGroups
Utilisation(%)

6
0
.9

1
%
±

2
8
.5

9

T
im

e
(s

)

5

1
0

1
5

2
0

ElasticGroups
JobLatency(s)

O
v
e
ra

ll
a
v
e
ra

g
e

:
2
.5

5
s
±

2
.7

6

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

T
im

e
(s

)

02468

ElasticGroups
Size

(b
)

H
ig

h
w

o
rk

lo
ad

F
ig

.
7

:
F

P
G

A
g

ro
u

p
au

to
sc

al
in

g

with the same resources. Using static groups only, the adminis-

trator of application A would probably rather decide to reserve

additional FPGAs to handle high-workload scenarios. On the

other hand, the Autoscaler benefits the tenants by reducing the

average batch execution latency by 61%, from 6.49 s to 2.55 s,

thanks to a better usage of these resources.

VI. CONCLUSION

FPGAs have the potential of complementing the current

landscape of accelerator devices for high-performance compu-

tations. When applied to suitable problems, they deliver excel-

lent performance, computational density and energy consump-

tion. However, currently FPGAs remain limited to scenarios

where a single device is attached to one client application.

Maximizing FPGA utilization in such conditions is not easy.

We proposed to virtualize FPGAs as a way to increase their

usage flexibility. With FPGA groups, one can create virtual

FPGAs which aggregate the processing capacity of one or

more physical FPGAs. FPGA groups can be resized manually

or automatically to maximize device utilization and further

improve user’s experience. FPGA groups can be used by a

single tenant, or shared between multiple tenants. However, to

isolate tenants from each other, this second scenario should

be limited to stateless FPGA designs, i.e., designs that do not

keep state from one job to another.

We envisage that cloud operators may exploit FPGA groups

in two different ways. An Infrastructure-as-a-Service cloud

may augment its compute resource offering by providing

FPGA-groups as a service that any tenant may create, resize

and use as they wish. Alternatively, a Platform-as-a-Service

cloud may use shared FPGA groups to offer efficient high-

level computation services for standard algorithms such as Fast

Fourier transform, machine learning and video compression,

similar to the “Amazon Machine Learning” service provided

by Amazon Web Services [33]. Users of these services would

not even realize that FPGAs are processing their API calls.

Enjoying the performance benefits of FPGA groups using a

pay-as-you-go model, and without having to master their com-

plex programming model, would arguably help democratize

FPGA-based high performance in the cloud.

REFERENCES

[1] S. Sirowy and A. Forin, “Wheres the beef? Why FPGAs are so fast,”
Microsoft Research, Tech. Rep. MSR-TR-2008-130, 2008.

[2] R. McMillan, “Microsoft supercharges Bing search with programmable
chips,” Wired, 2014, http://www.wired.com/2014/06/microsoft-fpga/.

[3] S. Parsons, D. E. Taylor, D. V. Schuehler, M. A. Franklin, and R. D.
Chamberlain, “High speed processing of financial information using
FPGA devices,” U.S. patent US7921046 B2, 2011, https://www.google.
com/patents/US7921046.

[4] R. Woods, J. McAllister, Y. Yi, and G. Lightbody, FPGA-based Imple-

mentation of Signal Processing Systems. Wiley, 2008.
[5] J. Arram, W. Luk, and P. Jiang, “Ramethy: Reconfigurable acceleration

of bisulfite sequence alignment,” in Proc. ACM/SIGDA Intl. Symposium

on Field-Programmable Gate Arrays, 2015.
[6] Intel, “Acquisition of altera,” Intel Invester Conference Call Deck, 2015,

http://bit.ly/1Q1VBqK.
[7] T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich, “Web-scale

bayesian click-through rate prediction for sponsored search advertising
in Microsofts Bing search engine,” in Proc. ICML, 2010.

[8] J. G. Coutinho, O. Pell, E. ONeill, P. Sanders, J. McGlone, P. Grigoras,
W. Luk, and C. Ragusa, “HARNESS project: Managing heterogeneous
computing resources for a cloud platform,” in Reconfigurable Comput-

ing: Architectures, Tools, and Applications. Springer, 2014.
[9] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA programming for the

masses,” ACM Queue, vol. 11, no. 2, 2013.
[10] D. W. Page, “Dynamic data re-programmable PLA,” U.S. patent US

4524430 A, 1985, http://www.google.com/patents/US4524430.
[11] J. M. Cardoso and P. C. Diniz, Compilation Techniques for Reconfig-

urable Architectures. Springer, 2009.
[12] P. Grigoraş, X. Niu, J. G. Coutinho, W. Luk, J. Bower, and O. Pell,

“Aspect driven compilation for dataflow designs,” in Proc. ASAP, 2013.
[13] Maxeler Technologies, “Maxeler AppGallery,” http://appgallery.maxeler.

com/.
[14] Xilinx Inc., “Applications,” http://www.xilinx.com/applications.html.
[15] J. P. Walters, A. J. Younge, D.-I. Kang, K.-T. Yao, M. Kang, S. P. Crago,

and G. C. Fox, “GPU-Passthrough performance: A comparison of KVM,
Xen, VMWare ESXi, and LXC for CUDA and OpenCL applications,”
in Proc. IEEE CLOUD, 2014.

[16] Amazon Web Services, “EC2: Elastic Compute Cloud,” http://aws.
amazon.com/ec2/.

[17] Y. Suzuki, S. Kato, H. Yamada, and K. Kono, “GPUvm: why not
virtualizing GPUs at the hypervisor?” in Proc. USENIX ATC, 2014.

[18] W. Wang, M. Bolic, and J. Parri, “pvFPGA: accessing an FPGA-
based hardware accelerator in a paravirtualized environment,” in Proc.

CODES+ISSS, 2013.
[19] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-accelerated high-

performance computing in virtual machines,” IEEE Transactions on

Computers, vol. 61, no. 6, 2012.
[20] G. Giunta, R. Montella, G. Agrillo, and G. Coviello, “A GPGPU

transparent virtualization component for high performance computing
clouds,” in Proc. Euro-Par, 2010.

[21] M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess, and F. Bellosa,
“LoGV: Low-overhead GPGPU virtualization,” in Proc. FHC, 2013.

[22] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Ortı́,
“rCUDA: Reducing the number of GPU-based accelerators in high
performance clusters,” in Proc. HPCS, 2010.

[23] M. Oikawa, A. Kawai, K. Nomura, K. Yasuoka, K. Yoshikawa, and
T. Narumi, “DS-CUDA: A middleware to use many GPUs in the cloud
environment,” in Proc. SCC, 2012.

[24] P. Kegel, M. Steuwer, and S. Gorlatch, “dOpenCL: Towards a uniform
programming approach for distributed heterogeneous multi-/many-core
systems,” in Proc. HCW, 2012.

[25] A. Barak and A. Shiloh, “The VirtualCL (VCL) cluster platform,” http:
//www.mosix.org/txt vcl.html.

[26] C. Reaño, R. Mayo, E. S. Quintana-Orti, F. Silla, J. Duato, and A. J.
Peña, “Influence of InfiniBand FDR on the performance of remote GPU
virtualization,” in Proc. IEEE Cluster, 2013.

[27] A. Kawai, K. Yasuoka, K. Yoshikawa, and T. Narumi, “Distributed-
shared CUDA: Virtualization of large-scale GPU systems for pro-
grammability and reliability,” Proc. FCTA, 2012.

[28] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“FPGAs in the cloud: Booting virtualized hardware accelerators with
OpenStack,” in Proc. FCCM, 2014.

[29] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and
K. Wang, “Enabling FPGAs in the cloud,” in Proc. CF, 2014.

[30] M. Technologies, “New Maxeler MPC-X series: Maximum performance
computing for big data applications,” 2012, http://bit.do/b9ZYX.

[31] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy, and D. Panda,
“Efficient inter-node MPI communication using GPUDirect RDMA for
InfiniBand clusters with NVIDIA GPUs,” in Proc. ICPP, 2013.

[32] Turku PET Centre, “libtpcmodel,” http://www.turkupetcentre.net/
software/libdoc/libtpcmodel/nnls 8c source.html.

[33] Amazon Web Services, “Amazon Machine Learning,” http://aws.
amazon.com/aml/.

