
High Performance Linear Algebra Operations on
Reconfigurable Systems �

Ling Zhuo and Viktor K. Prasanna
Department of Electrical Engineering

University of Southern California
Los Angeles, California, 90089-2560 USA

�lzhuo, prasanna�@usc.edu

ABSTRACT
Field-Programmable Gate Arrays (FPGAs) have become an attrac-
tive option for scientific computing. Several vendors have devel-
oped high performance reconfigurable systems which employ FP-
GAs for application acceleration. In this paper, we propose a BLAS
(Basic Linear Algebra Subprograms) library for state-of-the-art re-
configurable systems. We study three data-intensive operations:
dot product, matrix-vector multiply and dense matrix multiply. The
first two operations are I/O bound, and our designs efficiently uti-
lize the available memory bandwidth in the systems. As these oper-
ations require accumulation of sequentially delivered floating-point
values, we develop a high performance reduction circuit. This cir-
cuit uses only one floating-point adder and buffers of moderate size.
For matrix multiply operation, we propose a design which employs
a linear array of FPGAs. This design exploits the memory hierar-
chy in the reconfigurable systems, and has very low memory band-
width requirements. To illustrate our ideas, we have implemented
our designs for Level 2 and Level 3 BLAS on Cray XD1.

1. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) are a form of recon-
figurable hardware. They offer the design flexibility of software,
but with time performance closer to Application Specific Integrated
Circuits (ASICs). Due to their low computing density, early FPGAs
were mainly used for applications that were not computationally
demanding. However, with rapid advances in technology, current
FPGA devices contain much more resources than their predeces-
sors. For example, a Xilinx Virtex-II Pro FPGA contains millions
of gates, several megabytes of on-chip memory, as well as a large
number of hardware primitives such as fixed-point multipliers [27].
Thus, FPGAs are now attractive for a much broader range of ap-
plications, including those requiring floating-point arithmetic. Re-
cently, FPGAs have been employed to accelerate scientific appli-

�This work is supported by the United States National Science
Foundation under award No. CCR-0311823 and in part by award
No. ACI-0305763. Equipment grants from Xilinx and HP are
gratefully acknowledged.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC|05 November 12-18, 2005, Seattle, Washington, USA
(c) 2005 ACM 1-59593-061-2/05/0011›$5.00

cations, and have achieved superior performance compared with
general-purpose processors [23, 26, 30].

Dramatic increases in the computing power of FPGAs have aroused
strong interests in the supercomputing industry. Several vendors
have developed or are developing high performance reconfigurable
computing systems. Such systems include SRC MAPstation [24],
Cray XD1 [5] and Starbridge Hypercomputer [25], among oth-
ers. In these systems, general-purpose computing systems are com-
bined with FPGAs which serve as a hardware application accelera-
tor. These systems consist of multiple FPGAs and general-purpose
processors that share a memory system. The given application is
partitioned; the control-intensive part is executed on the processors
while the computation-intensive part runs on the FPGAs. Such sys-
tems are referred to as “reconfigurable systems” in this paper.

An interesting feature of these systems is that the FPGAs have ac-
cess to a large amount of memory, either through direct connection
or through the switch provided in these systems. In addition, the
FPGAs usually have access to multiple memory banks; the mem-
ory bandwidth available to FPGA-based computations is greatly
increased. The off-chip memory provided by the systems and the
on-chip memory of the FPGA fabrics together form a memory hi-
erarchy. To develop high-performance designs for these systems, it
is crucial to effectively utilize this memory hierarchy.

Despite the evolution of the device technology and rapid emergence
of reconfigurable systems, corresponding FPGA-based libraries for
scientific computing have been rarely studied. One of the most es-
sential libraries for scientific computing is that for Basic Linear
Algebra Subprograms (BLAS) [16]. It is known that certain op-
erations, such as dot product, matrix-vector multiply and matrix
multiply, are fundamental to most computations in scientific appli-
cations. These operations serve as basic building blocks for many
numerical linear algebra applications, including the solution of lin-
ear systems of equations, linear least square problems, eigenvalue
problems and singular value problems [2, 22]. Building a high per-
formance library for these basic linear algebra operations is crucial
for improving the performance of many scientific applications.

FPGA-based designs for BLAS operations have been discussed
[26, 31]. However, these prior works all target a single FPGA de-
vice and a simple memory model, while reconfigurable systems
consisting of more than one FPGAs have a much more complex
memory model. Therefore, in this work, we propose a BLAS li-
brary which effectively exploits the memory hierarchy and the mul-
tiple FPGAs in these systems. As far as we know, this work is the

1

first one to investigate a complete set of linear algebra operations
on a realistic model of reconfigurable systems.

Our designs for Level 1 and Level 2 BLAS are able to achieve
more than 90% of the peak performance of the FPGA device under
the given memory bandwidth. A reduction circuit is proposed to
accumulate sequentially delivered floating-point values. In contrast
to state of the art [19, 28], this circuit uses only one floating-point
adder. The buffer size needed by the circuit is �����, where �
is the pipeline delay of the adder. Our design for Level 3 BLAS
employs a linear array of FPGAs. It utilizes the DRAM of one
general-purpose processor, the SRAM attached to the FPGAs, and
the on-chip memory of the FPGAs. The performance of this design
scales with the available hardware resources.

To illustrate the performance of our designs, we implemented the
designs on Cray XD1. In XD1, Xilinx Virtex-II Pro XC2VP50
FPGA is used, which contains 23616 slices and about 4 Mb on-chip
memory. For 64-bit floating-point matrix-vector multiply, if the
data are stored in DRAM initially, the performance of our design is
constrained by the bandwidth between DRAM and FPGA. Using a
DRAM memory bandwidth of 1.3 GB/s, our design achieves 262
MFLOPS on one FPGA. If the data are stored in SRAM initially,
our design achieves 1.05 GFLOPS. Our design for matrix multiply
achieves 2.06 GFLOPS on one FPGA, using SRAM memory band-
width of 2.1 GB/s and DRAM memory bandwidth of 24.3 MB/s.
We predict that our design can achieve 12.4 GFLOPS using all the
FPGAs in one chassis of XD1, and achieve 148.3 GFLOPS using
12 chassis in XD1. The required memory bandwidth increases with
the number of FPGAs used. However, the bandwidth requirements
in these cases are all met by the available bandwidth in XD1.

Note that XC2VP50 is not the largest available device; indeed it be-
longs to the previous generation of the Xilinx FPGA family. More-
over, in our experiments, we used our own IEEE-754 format dou-
ble precision floating-point units. These designs are not engineered
for area or speed performance. As the performance of these units
improves, the performance of our design will increase accordingly.
We show that if the area and speed of the floating-point units are im-
proved and a large FPGA device (Xilinx Virtex-II Pro XC2VP100)
is used, a chassis in XD1 can achieve about 50 GFLOPS. Again,
the bandwidth requirements are met by XD1.

The rest of the paper is organized as follows. Section 2 introduces
the structure of FPGAs and related work on BLAS operations. Sec-
tion 3 presents the hardware architecture and the memory model of
representative reconfigurable systems. Section 4 proposes our de-
signs for Level 1 BLAS and Level 2 BLAS. Section 5 discusses our
design for matrix multiply. Section 6 discusses implementation on
Cray XD1 and the achieved and projected performance. Section 7
concludes the paper.

2. BACKGROUND & RELATED WORK
2.1 FPGAs
Field Programmable Gate Arrays (FPGAs) provide a hardware fab-
ric upon which applications can be programmed. An FPGA device
consists of tens of thousands of logic blocks (clusters of slices)
whose functionality is determined by programmable configuration
bits. These logic blocks are connected using a set of routing re-
sources that are also programmable. Thus, mapping a design to an
FPGA consists of determining the functions to be computed by the
logic blocks, and using the configurable routing resources to con-
nect the blocks. The configurations of logic blocks and the rout-

ing resources can be modified by loading a stream of bits onto the
FPGA. Recently, the number of logic blocks in an FPGA device
has increased rapidly. At the same time, more hardware primitives
are embedded into FPGA fabrics, including fixed-point multipliers,
embedded memory blocks, etc.

Many researchers have studied the impact of increasing comput-
ing power of current FPGAs. Floating-point cores with various
precision as well as various number of pipeline stages have been
designed [10, 20]. In [32], floating-point sparse matrix-vector mul-
tiply has been implemented on an FPGA device. More complex
applications, for example, molecular dynamics, have also been im-
plemented on FPGAs and have been shown to achieve high perfor-
mance [23].

2.2 BLAS Operations
The set of Basic Linear Algebra Subprograms, which is commonly
referred to as BLAS, is used in a wide range of software, includ-
ing LINPACK [6]. BLAS are building block routines for perform-
ing basic vector and matrix operations, and are divided into three
levels: Level 1 BLAS perform vector-vector operations, Level 2
BLAS perform matrix-vector operations, and Level 3 BLAS per-
form matrix-matrix operations. Optimizations for BLAS library
on general-purpose processors have been widely studied [7, 16].
These include loop unrolling to reduce loop overhead, register block-
ing to reduce the number of memory accesses and cache blocking
to maximize cache reuse and also to reduce memory accesses.

The early work on FPGA-based linear algebra focused on fixed-
point arithmetic [3, 14]. Recently, there have been some efforts in
implementing floating-point linear algebra applications. In [30], we
proposed a design for floating-point dense matrix multiplication.
For problem size �, the effective latency of the design is �����,
using storage size of �����. In [8], a block matrix multiplication
algorithm is discussed for large �, and a floating-point MAC (Mul-
tiplier and ACcumulator) is implemented. In [26], FPGA-based
implementations of operations from all levels of BLAS library are
considered. The main focus of that work was to examine the po-
tential capacity of FPGAs in performing BLAS operations. In [31],
we analyzed the design tradeoffs for BLAS operations under vari-
ous hardware resource constraints.

These prior works are all based on a simple computational model
which consists of a single FPGA and dedicated memory, as shown
in Figure 1. However, as a reconfigurable system contains multiple
levels of memory and multiple FPGAs, achieving high performance
on it is much more challenging. In this paper, we propose BLAS
designs based on the computational model of the reconfigurable
systems that is discussed in Section 3.2.

FPGA

On-chip
Memory

External
Memory

Figure 1: Simple FPGA-based Memory Model

2.3 Reduction Circuit
In many linear algebra operations, such as dot product and matrix-
vector multiply, accumulation of sets of floating-point values is re-
quired. Thus, a reduction circuit is needed in designs for these op-

2

FPGA
XC2VP50

RapidArray
Processor 3.2 GB/s

Microprocessors
(1MB cache)

HyperTransport
3.2 GB/s

2 GB/s

SRAM
(16 MB)

12.8 GB/s

3 GB/s

DRAM
(8 GB)

RT

Compute Blade

FPGA
XC2VP50

Compute Blade

Microprocessors
(1MB cache)

3 GB/s FPGA
XC2VP50

Compute Blade

Microprocessors
(1MB cache)

…

Internal RapidArray Switch

Chassis

External RapidArray Switch Other Chassis

2 GB/s

FPGA
XC2VP50

RapidArray
Processor 3.2 GB/s

Microprocessors
(1MB cache)

HyperTransport
3.2 GB/s

2 GB/s

SRAM
(16 MB)

12.8 GB/s

3 GB/s

DRAM
(8 GB)

RT

Compute Blade

FPGA
XC2VP50

Compute Blade

Microprocessors
(1MB cache)

FPGA
XC2VP50

Compute Blade

Microprocessors
(1MB cache)

3 GB/s FPGA
XC2VP50

Compute Blade

Microprocessors
(1MB cache)

FPGA
XC2VP50

Compute Blade

Microprocessors
(1MB cache)

…

Internal RapidArray Switch

Chassis

External RapidArray Switch Other Chassis

2 GB/s

Figure 2: Hardware Architecture of Cray XD1

erations. Actually, besides linear-algebra applications, many other
scientific applications need reduction circuits. For example, such
accumulation is needed at the end of the Lennard-Jones computa-
tions in molecular dynamics [23].

When the adder is pipelined, sequential additions can lead to read-
after-write data hazards. Simple solutions exist for this problem,
such as using a single-stage but slow adder or stalling the pipeline.
However, these solutions are ineffective and may greatly hurt the
performance. Thus, reduction circuits for pipelined architectures
have to be specially designed. Research in this area started sev-
eral decades ago, when pipelined computers and vector computers
first became available. Kogge proposes a method which uses �����
adders to reduce � inputs [15]. In [21], the authors propose a vec-
tor reduction method which uses one adder and a fixed number of
buffers. The method in [21] is well suited for reducing one input
vector. However, for multiple input vectors, the method has to in-
terleave the sets; otherwise, the buffer in their design will overflow.

In order to achieve high clock speed, floating-point adders imple-
mented on FPGAs are usually deeply pipelined. We have proposed
several reduction circuits suitable for implementation on FPGAs
using pipelined adders. The design in [28] uses one adder and a
buffer of size �������� for reducing multiple input sets, where � is
the size of the largest input set. However, in this design, the size of
each set must be a power of 2. For � not a power of 2, we have pro-
posed two designs that employ two adders [19]. One design needs
a buffer of size ��������, while the other design needs a buffer
of size ��������, where � is the number of pipeline stages in the
floating-point adder. All of our designs complete the reduction of
� inputs in ���� time. In this paper, we propose a reduction circuit
which uses one floating-point adder only, and can reduce multiple
input sets of arbitrary size without stalling.

3. RECONFIGURABLE HIGH-END COM-
PUTING SYSTEMS

3.1 Hardware Architecture

Six BanksSix Banks
DualDual--portedported

OnOn--Board MemoryBoard Memory
(24 MB)(24 MB)

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

4800 MB/s4800 MB/s
192b192b

2400 MB/s each
GPIO

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

ControllerController
XC2V6000XC2V6000

User Logic 1User Logic 1
XC2V6000XC2V6000

User Logic NUser Logic N
XC2V6000XC2V6000

108b108b

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

108b108b

1400 MB/s
sustained
payload

MAPMAP

1400 MB/s
sustained
payload

DualDual--portedported
MemoryMemory
(4 MB)(4 MB)

Six BanksSix Banks
DualDual--portedported

OnOn--Board MemoryBoard Memory
(24 MB)(24 MB)

Six BanksSix Banks
DualDual--portedported

OnOn--Board MemoryBoard Memory
(24 MB)(24 MB)

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

4800 MB/s4800 MB/s
192b192b

2400 MB/s each
GPIO

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

ControllerController
XC2V6000XC2V6000

User Logic 1User Logic 1
XC2V6000XC2V6000

User Logic NUser Logic N
XC2V6000XC2V6000

108b108b

4800 MB/s4800 MB/s
(6 x 64b)(6 x 64b)

108b108b

1400 MB/s
sustained
payload

MAPMAP

1400 MB/s
sustained
payload

DualDual--portedported
MemoryMemory
(4 MB)(4 MB)

Figure 3: Hardware Architecture of SRC MAP Processor

3.1.1 SRC MAPstation
In SRC MAPstation, one Intel microprocessor runs on a Linux op-
erating system, and the reconfigurable logic resource is referred to
as a MAP processor. Each MAP processor consists of two Xilinx
FPGAs and one FPGA-based controller. Each FPGA has access
to six banks of on-board (SRAM) memory. Through the FPGA
controller, the microprocessors and the FPGAs communicate and
share their memory. The hardware architecture of a MAP pro-
cessor is shown in Figure 3 [24]. SRC uses its own compilation
system, Carte, to provide a unified application development envi-

3

ronment [24].

3.1.2 Cray XD1
Cray XD1 [5] also uses FPGAs as hardware accelerator. The ba-
sic architectural unit is a compute blade, which contains two AMD
Opteron processors and one Xilinx Virtex-II Pro FPGA. Each FPGA
has access to four banks of QDR II SRAM. Through the RapidAr-
ray Processors, the FPGAs can access the DRAM of the micropro-
cessors. Compute blades communicate through RapidArray inter-
nal switches, and six compute blades fit into one chassis. Inside a
chassis, the FPGAs are connected in a circular array through the
Xilinx RocketI/O Multi-Gigabit Transceivers [27]. Multiple chas-
sis are connected using RapidArray external switches. A typical
installation of XD1 contains 12 chassis. The hardware architec-
ture of XD1 is shown in Figure 2. The “RT” between RapidArray
Processor and the FPGA refers to the RapidArray Transport links
designed by Cray.

3.2 Computational Model
3.2.1 System Model

In this section, we discuss a computational model of reconfigurable
high-end computing systems by abstracting their features. In these
systems, there are multiple compute nodes. Each node consists
of one or more general-purpose processors and one FPGA device.
The processors are attached to DRAM memory, while the FPGA is
attached to SRAM memory. The processors and the FPGA share
the memory within each node; the FPGA can directly access the
DRAM without the cooperation of the processor.

All the nodes are connected through an interconnect network. The
system can be modeled as shown in Figure 4. In the figure, ��,
� � � , ���� refer to the compute nodes. �� is the local memory of
�� and consists of DRAM and SRAM. Compared with Figure 2,
Figure 4 provides a high-level abstraction.

M0

DRAM SRAM

P0

Processor FPGA

...

Ml-1

Pl-1

Interconnect Network

Figure 4: Computational Model

In our work, we focus on designs on FPGAs. Thus, the computa-
tions are performed on the FPGA using the local memory in each
node, but not the processors.

3.2.2 Memory Model
Inside each node, the FPGA has access to multiple levels of mem-
ory that have various storage capacity and bandwidth. The first
level is the on-chip memory of FPGAs, usually Block RAMs (BRAMs).
BRAMs are embedded hardware primitives on FPGA fabrics. In a
large state-of-the-art device, the aggregate memory bandwidth of

BRAMs is over 100 GB/s, while the total size is usually less than
10 Mb.

Processor

FPGA

SRAM

DRAM

BRAM

Processor

FPGA

SRAM

DRAM

BRAM FPGA

SRAM

DRAM

BRAM

Figure 5: Memory Model for a Single Node in Reconfigurable
Systems

Table 1: Characteristics of memory for a single FPGA in re-
configurable systems

SRC Cray
Level Size Bandwidth Size Bandwidth

A 648 KB 260 GB/s 522 KB 209 GB/s
B 24 MB 4.8 GB/s 16 MB 12.8 GB/s
C 8 GB 1.4 GB/s 8 GB 3.2 GB/s

The second level of memory is off-chip but on-board memory, which
is usually SRAM. To access this memory, the FPGA-based designs
have to incorporate certain memory controllers. The storage capac-
ity of SRAM memory is much larger than that of the on-chip mem-
ory, however its bandwidth to FPGA is much lower. An FPGA also
has access to the main memory of the general purpose processor,
which is usually DRAM and in the range of gigabytes. The band-
width between DRAM and the FPGA is much less and usually is
less than 5 GB/s.

These various levels of memory together form a memory hierarchy,
as shown in Figure 5. The characteristics of memory at each level
are summarized in Table 1. Here we refer to the on-chip memory as
Level A, SRAM as Level B, and DRAM as Level C. The memory
hierarchy in reconfigurable systems is quite similar to that in the
general-purpose processor systems. However, the bandwidth of the
first memory level in the reconfigurable systems is much higher.
This permits high computational parallelism as well as high I/O
parallelism in FPGA-based systems. Secondly, an application ex-
ecuted on a general-purpose processor usually has no control over
the content in the cache. In contrast, FPGA-based designs in the
reconfigurable systems initiate read and write operations to the var-
ious levels of memory, and can utilize the memory more efficiently.
The third difference is that in the reconfigurable systems, the FP-
GAs can directly access Level C memory without going through
Level B memory.

4. LEVEL 1 & 2 BLAS
We consider dot product from Level 1 BLAS and matrix-vector
multiply from Level 2 BLAS. Although our designs can be applied
to non-square matrices, in the following discussion, only the square
matrices are considered. The operations use floating-point arith-
metic.

4.1 Dot Product

4

In this operation, two vectors, � and �, each consisting of � ele-
ments, are given. The operation can be formulated as:

�� � �

����
���

����

In this operation, for each pair of floating-point numbers, one floating-
point multiplication and one floating-point addition are performed.
Since there is no data reuse in this operation, it is I/O bound. In
particular, its performance is determined by the rate at which the
vectors are input.

A tree-based architecture can be used to compute dot product. In
this architecture, in each clock cycle, � multipliers accept elements
from each of the vectors and initiate � multiplications. An adder
tree with � � � adders is employed to sum up the outputs of the
multipliers. When � 	 �, we need a reduction circuit to accu-
mulate the outputs of the root adder in the adder tree. Design of
reduction circuits is discussed in Section 4.3.

By varying the value of �, the architecture can match with the avail-
able I/O bandwidth. Moreover, the floating-point adders and mul-
tipliers are pipelined so that additions, multiplications and I/O op-
erations can be overlapped.

4.2 Matrix-Vector Multiply
This operation multiplies an � � � matrix with a column vector,
and yields another column vector. It can be formulated as:

 � ��

� �
����
���

����� �� � �
 �
 � � �
 �� ��

Each element of � is used in only one floating-point multiplica-
tion. Therefore, this operation is also I/O bound. However, since
each element in � is used � times, there is certain data reuse. Ac-
cording to the format in which matrix � is stored, we propose two
architectures for this operation.

If � is stored in row-major order, matrix-vector multiply actually
consists of � dot products. Thus, we use a tree-based architecture
similar to that for dot product. Each multiplier is attached to a local
storage, which stores part of vector �. In particular, the �th mul-
tiplier (� � �
 �
 � � �
 � � �) stores elements �
 � � �
 � � �
 ��

�
�

����� of �. In each clock cycle, each multiplier reads one element
of �, finds the corresponding element of � in the local storage, and
multiplies the two numbers. An adder tree is used to accumulate
the outputs of the multipliers. When � 	 �, a reduction circuit is
needed outside the adder tree. One advantage of the tree-based ar-
chitecture is that it can be easily extended for sparse matrix-vector
multiply [32].

On the other hand, if � is stored in column-major order, another
architecture can be used. In this architecture, there are � adders,
each is connected to a multiplier. The adder is attached to a local
storage, which stores the intermediate results of some elements of
vector
. In particular, the �th adder (� � �
 �
 � � �
 � � �) stores
the intermediate results of elements �
 � � �
 � � �
 ��

�
� ��� � �

of vector
. During each clock cycle, the � multipliers multiply
� distinct elements of � with one element of �. The adders then
accumulate the results of the multiplications with the intermediate
results of
 stored in the local storage. In this architecture, the
intermediate result of
� (� � �
 �
 � � �
 � � �) is only used every
� clock cycles. Therefore, as long as � is larger than the number

of pipeline stages in the floating-point adder, data hazards do not
occur.

In both of the architectures, the size of required on-chip memory
is � words. When vector � is too large to be stored on the FPGA,
block matrix-vector multiply is employed. Suppose the on-chip
memory of the FPGA can store at most � words. In the first ar-
chitecture, matrix � is partitioned into blocks of size � � �, and
� is partitioned into blocks of size � � �. Each � block is read in
row-major order and multiplied with the corresponding � block. In
the second architecture, matrix � is partitioned into � � � blocks,
and
 is partitioned into � � � blocks. Each � block is read in
column-major order and multiplied with vector � to generate the
corresponding
 block.

Note that both dot product and matrix-vector multiply are I/O bound
operations. Therefore, even if the computing power is unlimited,
the performance of these operations is bounded by the available
memory bandwidth. If the problem size is so small that all the
source data can be stored in SRAM, the performance of the op-
erations is constrained by the bandwidth between the FPGA and
SRAM. Otherwise, if the source data are stored in DRAM, the per-
formance is constrained by the bandwidth between the FPGA and
DRAM.

4.3 Reduction Circuit
As discussed above, a reduction circuit is needed in the architec-
tures for both dot product and matrix-vector multiply. In this paper,
we propose a reduction circuit which uses only one floating-point
adder to reduce multiple input sets of arbitrary size. Suppose there
are � input sets. We use �� to denote the size of the �th input set
(� � � � � � �), where �� is an arbitrary positive integer. The
inputs in the sets are delivered sequentially, and the reduction cir-
cuit reduces all the inputs in a set into a single value. We use � to
denote the number of pipeline stages in the floating-point adder.

4.3.1 Intuitive Idea
When �� � �, we can reduce �� inputs to � items using one adder,
without causing read-after-write data hazards. To achieve this, we
write the first � inputs into a buffer; in each of the subsequent clock
cycles, one item in the buffer and the new input to the circuit are
given to the adder as operands; the output of the adder is written
back to the buffer. After �� � � clock cycles, �� inputs are reduced
to � items.

However, due to data dependencies, reducing the resulting � items
requires ��� ������ clock cycles using a tree traversal. During
this period, a buffer is needed to store the incoming inputs, and the
buffer size increases with the number of input sets.

To reduce the buffer size, we need to utilize the adder more effi-
ciently. Suppose � distinct sets are stored in a buffer and each set
has � items. Then we can interleave the additions from the � sets
so that the adder is fully utilized and no data hazard occurs. In this
way, reducing �� items from � distinct sets at most takes �� clock
cycles. At the same time, another buffer of size �� is needed to
store the new inputs. Thus, we can reduce multiple inputs sets with
one adder and two buffers of size ��.

4.3.2 Architecture
Based on the idea discussed above, we propose a reduction circuit
whose architecture is shown in Figure 6. It contains one floating-
point adder and two buffers of size ��. The input can enter one

5

Table 2: Characteristics of 64-bit Floating-Point Units and Reduction Circuit
Adder Multiplier Reduction Circuit

Number of Pipeline Stages 14 11 -
Area (Slices) 892 835 1658

Clock Speed (MHz) 170 170 170

of the buffers, or the adder directly. The adder selects its operands
from the input and the buffers. If the output of the adder is the final
result of a set, it is written into external memory; otherwise, it is
written back into one of the buffers.

Buffer 1

Buffer 2

AdderInput Output

Figure 6: Architecture of reduction circuit

The buffer which accepts new inputs is denoted as Buf��. For set
�, if �� � �, �� inputs are written into Buf�� directly; otherwise, �
inputs are written into Buf�� and are then added with the remaining
new inputs of the set. In the �� (if �� � �) or � (if �� � �) cycles in
which Buf�� accepts new inputs, the adder is used by another buffer.
This buffer is called Buf���, which stores no more than � items for
each set. Buf��� interleaves � additions from � distinct sets. The
results of these additions are written back to Buf���. Buffer 1 and
Buffer 2 function as Buf�� and Buf��� alternately. When Buf�� is
full, the two buffers are swapped. That is, Buf�� becomes Buf���
and Buf��� becomes Buf��.

The adder reads from Buf��� only when Buf�� is accepting new
inputs. In such clock cycles, the adder does not read from Buf��.
Hence the use of the adder is collision-free. When Buf�� is full
and becomes Buf���, each of its column contains items from � dis-
tinct sets. Therefore, when the adder reads from Buf��� column by
column, the adder interleaves additions from � distinct sets. Thus
the circuit avoids any read-after-write hazard. Moreover, it can be
shown that the buffers in our design do not overflow. This is be-
cause �� clock cycles are needed to fill Buf�� and �� clock cycles
are needed to empty Buf���. Detailed proofs can be found in [29].

In the reduction circuit, the latency of reducing one input set de-
pends on the sizes of subsequent sets. Therefore, we calculate the
total latency of reducing � sets. We have proved that the reduction

circuit reduces � sets in less than (
����
���

�� � 	��) cycles [29].

4.4 Performance
In this section, we examine the performance our design for double
precision floating-point dot product and matrix-vector multiply on
a single FPGA. Our target device is Xilinx Virtex-II Pro XC2VP50,
which is used in XD1. This device contains 23616 slices, about 4
Mb of on-chip memory and 852 I/O pins. In our experiments, we
used Xilinx ISE 6.2i [27] and Mentor Graphics ModelSim 5.7 [17]
development tools.

We used our own floating-point adder and multiplier. The im-

plementation details of these units can be found in [9]. These
floating-point units comply with the IEEE-754 double-precision
format [12]. Their characteristics are shown in Table 2. The charac-
teristics of the reduction circuit are also shown in Table 2. Although
the reduction circuit contains only one floating-point adder, its area
increases due to the control logic. Its clock speed is determined by
that of the floating-point adder, and is 170 MHz.

We have implemented the tree-based architectures on the target de-
vice. If we ignore the memory bandwidth constraint, the maximum
value of � is determined by the number of I/O pins for dot product;
for matrix-vector multiply, � is determined by the number of slices
on the device. However, in these two cases, the required memory
bandwidth exceeds the available bandwidth between the FPGA and
SRAM in XD1. Since the maximum bandwidth from SRAM to the
FPGA is 6.4 GB/s, in our experiments, we set � � 	 for dot prod-
uct, and � �
 for matrix-vector multiply. The characteristics of
the designs are shown in Table 3, which are obtained after place &
route. For dot product, our design uses about 16% of the total area
of the FPGA device; for matrix-vector multiply, our designs uses
less than 31% of the total area.

Table 3: Characteristics of Designs for Level 1 BLAS and Level
2 BLAS

BLAS Level 1 Level 2
No. of Multipliers, � 2 4

Area (Slices) 5210 9669
% of Total Area 22% 41%

Clock Speed (MHz) 170 170
Memory Bandwidth (GB/s) 5.5 5.6

Sustained MFLOPS 557 1355
% of Peak MFLOPS 80% 97%

We next measure the sustained MFLOPS performance of the de-
signs. � is chosen to be 2048 so that vector � is stored in the on-chip
memory and matrix � is stored in SRAM. We compare the sus-
tained MFLOPS performance of the designs to the peak MFLOPS
performance. Since both Level 1 and Level 2 BLAS are I/O bound,
their peak MFLOPS is determined by the memory bandwidth be-
tween FPGA and SRAM. Suppose the memory bandwidth is ��
words per second and the computing power is unlimited. For dot
product, the minimum latency is ��

�	
second. Thus, the peak per-

formance is ��
��
�	

� �� FLOPS. For matrix-vector multiply, the

minimum latency � ��

�	
second. Thus, the peak performance of

matrix-vector multiply is ���

��
�	
� 	�� FLOPS. Due to the la-

tency of the reduction circuit, our design for dot product achieves
80% of the peak performance using a memory bandwidth of 5.5
GB/s, as shown in Table 3. However, the effect of reduction cir-
cuit becomes negligible for matrix-vector multiply, and our design
achieves more than 95% of the peak performance.

5. LEVEL 3 BLAS

6

The last BLAS operation we consider in this paper is dense matrix
multiply from level 3 BLAS. Suppose we have two ��� matrices,
� and �. This operation computes � � ��, given by:

��� �
����
���

������ ��
 � � �
 �
 � � �
 �� ��

In contrast to the other two operations, matrix multiply has lots of
data reuse. Each element of � and � is used � times. Thus, this
operation is not I/O bound if appropriate architecture and algorithm
are used.

A

B
(registers)

Adder
C’

(on-chip
memory)

Multiplier

C (on-chip memory)

External
Memory

PE 0 PE1 ... PEk-1

Figure 7: Architecture for Matrix Multiply on a Single Node

The key to an effective design of matrix multiply is to fully uti-
lize the internal memory. Suppose the size of the internal memory
is � . It has been proved [11] that the I/O complexity of any im-
plementations of the “usual” matrix multiply algorithm is �� ���

�
�,

when ���� � � � �����. Here the I/O complexity refers to the
total number of words that are read from and written to the external
memory by the algorithm.

In [31], we proposed an FPGA-based design for matrix multiply.
This architecture achieves asymptotically optimal latency and uses
minimum memory bandwidth with the given on-chip memory. How-
ever, in [31], the output of the result matrix is not fully addressed.
In this paper, we first complete the architecture in [31] by enabling
streaming output. In Section 5.2, we further extend our design to
the memory hierarchy and multiple nodes in reconfigurable sys-
tems.

5.1 Matrix Multiply
In our design, there are � Processing Elements (PEs) connected in a
linear array. The PEs are labeled from left to right, as ���
 ���

� � �
 �����. ��� reads matrices � and � from the external mem-
ory, and transfers them along the linear array. The final elements
of � are transferred in the opposite direction, and are written to the
external memory by ���. Each PE consists of three I/O ports, one
floating-point multiplier and one floating-point adder.

In this design, the internal memory is the on-chip memory of the

FPGA. Suppose its size is � , and � �
�

�
�

. Each PE also con-

tains �

�

registers, and two local storage of size
�

�
. One local

storage stores intermediate results of � and is denoted as �� stor-
age; another storage stores the final elements of � and is called �
storage.

The design is shown in Figure 7. It performs block matrix multiply
where the block size is ���. The blocks are denoted as ��� and
���, where �
 �
 � � �
 �
 � � �
 �

� �. Without loss of generality,

we assume � is a multiple of �, and � is a multiple of �.

For each block matrix multiply �������, ��� is read in column-
major order, while ��� is read in row-major order. ���, � �
�
 � � �
 � � �, is in charge of computing columns �, �� � ��, � � � ,
��

�
������� of ���. The computation starts by reading the first

row of ��� into the architecture. As these � numbers traverse the
linear array, ���, � � �
 � � �
 ���, stores the �th, �����th, � � � ,
��

�
� ��� � ��th numbers into its registers. Afterwards, every

�

clock cycles, one element of ��� and one element of ��� are read
into the architecture. As an element of ��� passes through a PE,
it is multiplied with every element of ��� stored in the PE whose
row index matches its column index. The intermediate results for
��� are stored in �� storage.

In this design, each intermediate result of ��� is updated every
�

�

clock cycles. Therefore, as long as
�

�
is larger than � (the number

of pipeline stages in the floating-point adder), no data hazard will
occur.

When a final element of � is generated, it is transferred to � stor-
age of ����� if � � �; otherwise, it is written to the external

memory. Each PE generates
�

�
final elements of � in consecutive

clock cycles. When the PE is transferring these elements (� � �)
or writing them to the memory (� � �), the elements transferred
to the PE by its right neighbor are stored in � storage. Afterward,
the PE starts to transfer or write the elements stored in � storage.
Therefore, the size of � storage is also
�

�
.

Our design performs ��� � ��� in three stages. The first stage
initializes the registers of all the PEs using the first row of ���. It
takes ��

�
���� �� �
�

�
���� �� clock cycles. The second

stage performs arithmetic computations, and the last element of �
is generated by ����� after �� �

�
� �� � �� �
�

�
� � �

�

�
�
�

�
� �� � �� � � clock cycles. In the third stage, the

last element of � traverses the linear array from ����� to ���.
This takes at most
�

�
� �� � �� clock cycles. When a series of

block matrix multiplies are performed consecutively, the first stage
of one block multiply can be overlapped with the other two stages
of the previous block multiply. Therefore, the effective latency for
computing ��� ���� is
�

�
.

For � � � matrix multiply, this architecture performs � �

�� block

matrix multiplies. Thus, the effective latency of our design is � �

���

7

�

�
� ��

�
. The total storage size used by the design is 	��. Two

words from the external memory are input every

�

cycles. The

design outputs �� words to the external memory every
�

�
cycles.

Thus, the required memory bandwidth is ��

words per clock cy-

cle. The I/O complexity of our design is ���
�

�, which is the lower

bound on I/O complexity with internal memory of size 	��.

5.2 Matrix Multiply on Multiple FPGAs
To perform matrix multiply in the reconfigurable systems, we can
directly use the architecture in Section 5.1. Since the architecture
consists of a linear array of PEs, it can be easily implemented on
multiple FPGAs. However, such an implementation does not uti-
lize the SRAM attached to the FPGAs. In this section, we present
a matrix multiply design which efficiently utilizes the memory hi-
erarchy of the reconfigurable systems discussed in Section 3.

The design in Section 5.1 employs three types of storage. The first
type is the register file, which stores selected elements of �; the
second is the on-chip memory of FPGA, which stores the interme-
diate or final results of ���; and the third type of storage is the
external memory, which stores matrices � and � and also accepts
the final elements of �.

Based on this storage hierarchy, we propose a design for matrix
multiply which uses multiple FPGAs. In this design, the internal
memory is SRAM and the on-chip memory. Suppose the total size
of the SRAM available to the FPGAs is 	��. We first partition the
matrices � and � into � � � blocks. These blocks are denoted
as ��� and ��� , �
 �
 � � �
 �
 � � �
 �

�
� �. Each ��� (���) is

further partitioned into smaller blocks of size � � �, which are
denoted as ���

�� and ���
��, �
 �
 � � �
 �
 � � �
 �

� �. Without loss

of generality, we assume � is a multiple of �, and � is a multiple of
�.

The design is shown in Figure 8. In this design, there are � FP-
GAs connected in a linear array. Each FPGA is attached to its own
SRAM. The FPGAs are labeled from left to right, as FPGA�
 FPGA�
 � � �
 FPGA���.
FPGA� reads elements of � and � from the DRAM of the proces-
sor which is connected to FPGA�. When the final results of �
traverse the linear array and reach FPGA�, they are written back to
the same DRAM.

The organization of each FPGA in the linear array is similar to
that of the PE in Figure 7. It uses one storage of size ��

�
to store

elements in ��� . This storage is implemented using the on-chip
memory. The FPGA also contains two storage of size ��

�
to store

the intermediate results and the final results of ��� , respectively.
These storage are implemented using SRAM.

Each FPGA is configured to perform the matrix multiply design
described in Section 5.1, which is labeled as “MM” in Figure 8.
MM performs ���

������
��, and generates part of ���

��. MM contains
� PEs, and the local storage of the PEs in MM is implemented using
the on-chip memory of the FPGA device. The total size of the on-
chip memory needed by MM is 	��. The result of MM is given to
a floating-point adder and is combined with the intermediate result
of ���

��.

The algorithm is similar to that in Section 5.1, except that each
element is substituted by a � � � block. For ��� � ��� , ���

is read in column-major order, and ��� is read in row-major order.
The first row of��� blocks of ��� is first read into the design. As

A

B
(on-chip

memory)

Adder
C’

(SRAM)

MM

C (SRAM)

A, B
(DRAM)

FPGA
+

SRAM
...

DRAM
(not used)

DRAM
(not used)

FPGA
+

SRAM

FPGA
+

SRAM

Figure 8: Matrix Multiply on Multiple Nodes

these �

blocks traverse the linear array of FPGAs, FPGA� stores
blocks � , ��� ��, � � � , �� �

�
� ���� �� into the on-chip memory.

As ���
�� passes through an FPGA, it is multiplied by MM with �

�

blocks of ��� stored in the FPGA.

Recall that MM employs � PEs, and reads one element of � and
one element of � every

�
cycles. Therefore, for this hierarchical

design, one � � � block of ��� and one block of ��� are read
from DRAM every �

�
��� �

�
�
��

��
cycles.

Following the analysis in Section 5.1, the effective latency of com-
puting ��� � ��� is ��

��
. Thus, for � � � matrix multiply, the ef-

fective latency of this design is ��

��
cycles. The total size of SRAM

used is 	��. The I/O complexity of our design (the total number of
words that are read from and written to DRAM) is ���

�

�
�. This is

the lower bound on I/O complexity of � � � matrix multiply with
internal memory of size 	��.

5.3 Performance
We implemented our design in Section 5.1 on a Xilinx Virtex-II Pro
XC2VP50 FPGA. The experimental setup is the same as in Section
4.4. Due to the constraint of on-chip memory, we set � � �	�.
Using our 64-bit floating-point adder and multiplier, a single PE
occupies 2158 slices, and runs at 155 MHz after place & route. As
shown in Figure 9, the area of the design increases linearly with
�, the number of PEs in the design. On the other hand, as more
PEs are used, more routing resources are needed and the routing
becomes more complex. Thus, the achievable clock speed of the
design degrades as � increases. We can configure at most 10 PEs

8

on the above device. In this case, the maximum achievable clock
speed is 125 MHz in this case. Therefore, the maximum sustained
GFLOPS performance of our design on the device is 	�� �

�

��
�

���

����
= 2.5 GFLOPS for 64-bit matrix multiply.

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10
No. of PEs

A
re

a
(S

lic
es

)

120

130

140

150

160

C
lo

ck
 S

pe
ed

 (
M

H
z)

Area

Clock Speed

Figure 9: Area & Clock Speed of Matrix Multiply Design on a
Single FPGA

6. EXPERIMENTAL RESULTS
6.1 Design Flow
To illustrate our ideas, we implemented our designs on a Cray XD1.
In XD1, to utilize the FPGA accelerator, two programs are needed.
One is a C program which runs on the processors, and the other is
a VHDL program that describes an FPGA-based design.

Before loaded onto XD1, an FPGA-based design needs to be modi-
fied as follows: 1. SRAM memory controllers (SRAM cores) need
to be inserted if the design needs to access the SRAM banks; 2.
An RT (RapidArray Transport) core needs to be inserted for the de-
sign to communicate with the processor; 3. An application-specific
component Rt Client is needed to control the communications be-
tween the FPGA, the processor and the SRAM. The resulting struc-
ture of an FPGA-based design on XD1 is shown in Figure 10.

RT
Core

RapidArray
Processor

RT Client

User Design

SRAM
Cores

SRAM Bank

SRAM Bank

SRAM Bank

SRAM Bank

Figure 10: Block Diagram of an FPGA-based Design on Cray
XD1

After modifying the design, the following steps are required to load
the design onto XD1 [4]:

1. Write the C program and build the executable for it.
2. Synthesize, place & route the FPGA-based design using Xil-

inx ISE [27]. At this step, the design can be debugged using
ModelSim of Mentor Graphics [17], a simulator for VHDL.

3. Generate the binary file for the FPGA-based design. The
file is then converted to Cray-specific FPGA logic file using
command-line tools on XD1.

4. Load the logic file onto the FPGA. Write a job script for the
design, and submit the job to the system.

6.2 Matrix-Vector Multiply
We implemented the tree-based architecture for Level 2 BLAS in
Section 4 on Cray XD1. In our experiments, one node was used.
Before the computation starts, matrix � is read from the DRAM
of the processor and distributed to the four SRAM banks attached
to the FPGA. Next, the processor initializes the local storage of
the PEs using vector �. During the computation, the design on the
FPGA reads one word from each SRAM bank in one clock cycle.
The processor and the FPGA communicate through several status
registers about the problem size � and completion of initialization
and computation.

Since the size of SRAM memory attached to an FPGA is 16 MB, �
can at most be

�
	� ��	
. In our experiments, we set � � ��	
.

As discussed in Section 4.4, based on the available bandwidth be-
tween FPGA and SRAM, we set � �
.

The additional components including the RT core, memory con-
trollers and control logic for status registers occupy approximately
3000 slices. They also affect the clock speed of the design. The
characteristics of the design are shown in Table 4. As the design
reads one 64-bit word and 8-bit parity code from each SRAM bank
during every clock cycle, the achieved SRAM memory bandwidth
is 5.9 GB/s. The total latency for performing matrix-vector multi-
ply is �������� seconds. The computation time is ��
����� sec-
onds, and the remaining time is spent in moving the data between
DRAM and SRAM. The achieved DRAM memory bandwidth is
1.3 GB/s.

Under the used DRAM memory bandwidth, the peak performance
of any design for matrix-vector multiply is 325 MFLOPS (calcu-
lated as discussed in Section 4.4). The sustained performance of
our design is 262 MFLOPS, which is about 80% of the peak perfor-
mance. If matrix � is initially stored in SRAM, our design achieves
1.05 GFLOPS.

Table 4: Performance of Level 2 and Level 3 BLAS on a single
FPGA in XD1

BLAS Level 2 Level 3
� 4 8

Area (Slices) 13772 21029
% of Total Area 58% 89%

Clock Speed 164 MHz 130 MHz
SRAM Bandwidth 5.9 GB/s 2.1 GB/s
DRAM Bandwidth 1.3 GB/s 24.3 MB/s

Sustained 262 2.06
Performance MFLOPS GFLOPS

% of Peak 80.6% 46.6%
Performance

6.3 Matrix Multiply
We implemented one node in the design shown in Figure 8 on XD1,
that is, � � �. Thus, our design uses one FPGA and the processor
connected to it. The elements of matrices � and � are read from
DRAM of the processor, written into the on-chip memory and then
read by the “MM” component in Figure 8. Two of the four SRAM
banks attached to the FPGA are used for storing intermediate re-
sults of �, and is called �� storage (Section 5.1). The other two
banks store the final results of � and serve as � storage. As in the
matrix-vector multiply design, several status registers are employed
for communication between the processor and the FPGA.

9

Our design on one FPGA consists of � PEs and one floating-point
adder. Due to the RT core and the memory controllers, at most 8
PEs can be configured on the device, that is, � � �. To simplify
the implementation, we set � � � � �. Under the constraint on
the size of SRAM, � can be at most 1024. In our experiment we set
� � ��	.

The characteristics of the design is shown in Table 4. For � � ��	,
the total latency of matrix multiply is ���� ���� seconds. Unlike
matrix-vector multiply, only 0.7% of the total latency is for I/O
operations. During most of the time, the floating-point operations
are performed concurrently with the I/O operations.

Since three � � � blocks are read from or written into DRAM
memory every
��

�
clock cycles, the DRAM bandwidth used by

the design is 48.8 MB/s. As for SRAM, one word is read from and
written into �� storage during every clock cycle, and the bandwidth
is 2.1 GB/s. Note that when only one FPGA is used, � storage is
not needed. When multiple FPGAs are employed, one ��� block
is read from and written into � storage every
��

�
clock cycles.

Thus, the total SRAM bandwidth required by the design is 2.1 GB/s
+ 32.5 MB/s = 2.1 GB/s.

For � � ��	, the sustained performance is 2.06 GFLOPS. For
� � ��	, we set � � ��	; that is, matrices � and � are partitioned
into blocks of size ��	� ��	. These blocks are read by the design
consecutively. If the results of block multiplies are accumulated by
the general-purpose processors, the sustained performance of the
FPGA will not be affected.

For our design of matrix multiply, the peak performance is not
determined by the available memory bandwidth, but by available
hardware resources on the FPGA device. In the ideal scenario, only
floating-point units are configured on the device without incurring
any overheads, and each unit performs one floating-point operation
during every clock cycle. Hence, the peak performance of the de-
vice is calculated as 2 � maximum number of floating-point units
that can be configured on the device � maximum clock speed of
the units. Using our floating-point units, the peak performance of
XC2VP50 is thus 4.42 GFLOPS. Our design achieves a little less
than 50% of the peak performance due to the clock speed degra-
dation caused by the routing and the control logic. Moreover, the
components for XD1, such as the RT core and the memory con-
trollers, occupy more than 10% of the slices on the FPGA.

Note that a 2.6 GHz AMD Opteron processor with a L1 cache
of 64 KB and a L2 cache of 1 MB achieves 4.1 GFLOPS. This
was obtained using dgemm function of 64-bit AMD Core Math Li-
brary [1]. A 3.2 GHz Xeon processor-based platform with 1 MB
L3 cache achieves 5.5 GFLOPS performing 64-bit matrix multi-
ply, while a 3 GHz Pentium 4 processor with 512 KB L2 cache
achieves 5.0 GFLOPS. These numbers were obtained by executing
Intel Math Kernel Library [13]. Note that the math libraries for the
processors employ common software optimizations as well as sev-
eral optimizations specific to the processors. In contrast, our design
is not optimized with respect to area or clock speed. Manual place-
ment or other optimizations can be employed to further improve
the performance of our design.

6.4 Projected Performance
6.4.1 Performance of A Single Chassis

We now examine the performance of our design of matrix multiply
in Figure 8 using one chassis of XD1. In this case, �, the number of

FPGAs, is 6 because one chassis of XD1 contains 6 FPGAs. Since
	�� cannot be larger than the total size of SRAM (96 MB), we set
� � 	�
�. Every
��

��
cycles, FPGA� exchanges at most three ��

� blocks with DRAM if � � �, or with FPGA��� if � � �. For
� � � � �, the required DRAM bandwidth and the interconnect
bandwidth between two adjacent FPGAs equals 73.1 MB/s. This
bandwidth is much smaller than the available DRAM bandwidth
and the interconnection bandwidth among FPGAs in XD1. On the
other hand, employing multiple FPGAs does increase the latency
because each element needs to traverse more PEs. The increase in
the latency is � � � �
� clock cycles. It is negligible compared
with the total latency. The sustained performance of a chassis �
2.06 � 6 = 12.4 GFLOPS.

Most of the PE area is occupied by the floating-point adder and
floating-point multiplier. Thus, the performance of our design de-
pends largely on that of the employed floating-point units. The
implementation of these units has no effect on the architecture or
the control logic of the design. Therefore, when improved floating-
point units are available, they can be plugged into our design easily.
Moreover, if the performance of these units is improved, the perfor-
mance of the design will improve accordingly [30]. The PE used
in our experiments occupies more than 2000 slices and runs at 155
MHz. Therefore, we project the performance of our design when
the area of PE ranges from 1600 to 2000 slices, and the clock speed
increases from 160 MHz to 200 MHz.

Figure 11 shows the projected sustained performance of one chas-
sis, as a function of the area and the clock speed of the PE. We
calculate the GFLOPS performance using equation: 2 � number
of PEs on the device � clock speed of the PE � 6. Also, 25% of
the performance is deducted to account for the degradation of the
clock speed caused by the routing. When the PE occupies 1600
slices and runs at 200 MHz, one chassis can achieve more than 27
GFLOPS. As more PEs are configured and the clock speed of the
PEs increases, the memory bandwidth requirement also increases.
If we set � � 	�
�, and � � �, with the smallest and fastest PE,
the required SRAM bandwidth of our design is 2.5 GB/s, and the
required DRAM bandwidth is 147.7 MB/s. These requirements are
met by the available memory bandwidth in XD1.

1600
1700

1800
1900

2000

160

170

180

190

200
16

20

24

28

Area of PE (Slices)

Clock Speed (MHz)

G
F

LO
P

S

Figure 11: Projected Sustained Performance of Matrix Multi-
ply Design Using a Chassis in XD1

The performance of our design also depends on the device used.

10

XC2VP50 is a relatively small device in the Xilinx Virtex-II Pro
family. With a larger device, more PEs can be configured and
higher performance can be achieved. Figure 12 shows the pro-
jected sustained performance of our design using a chassis if Xil-
inx Virtex-II Pro XC2VP100 were to be used in XD1. XC2VP100
contains 44096 slices, about 8 Mb of on-chip memory and 1164
I/O pins. As this device contains about twice as many slices as
XC2VP50, its performance is also about twice as that of XC2VP50.
With the smallest and fastest PE, the required SRAM bandwidth
and DRAM bandwidth are 2.7 GB/s and 284.8 MB/s respectively.
These requirements are met by the available memory bandwidth in
XD1.

1600
1700

1800
1900

2000

160

170

180

190

200
30

35

40

45

50

Area of PE (Slices)

Clock Speed (MHz)

G
F

LO
P

S

Figure 12: Projected Sustained Performance of Matrix Mul-
tiply Design Using a Chassis, With Xilinx Virtex-II Pro
XC2VP100

6.4.2 Performance of Multiple Chassis
We also predict the performance of our design using all the chassis
in Cray XD1. In a typical installation, there are 12 chassis in XD1.
They communicate through a crossbar-switch fabric that connects
the RapidArray processors. The link between two chassis has a
bandwidth of 4 GB/s.

When 12 chassis are employed, the total number of FPGAs � �
�
�	 � �	. With the current FPGA device in XD1 and the PE in our
implementation, � � �. As each element of the input matrices has
to traverse all the PEs, the latency is increased by ��� � ��
 clock
cycles. For large �, this increased latency is negligible compared
with the total latency.

The SRAM bandwidth required by the design is 3.0 GB/s, and the
required DRAM bandwidth is 877.5 MB/s. These requirements
are met by the available bandwidth in XD1. The required inter-
connection bandwidth between two chassis is the same as the re-
quired DRAM bandwidth, and is also met by the interconnection
bandwidth in XD1. Thus, using 12 chassis, our design for matrix
multiply can achieve 	��
 �
� �	 � �
��� GFLOPS.

7. CONCLUDING REMARKS
In this paper, we analyzed the memory model of reconfigurable
high-end computing systems, which employ FPGAs as hardware
accelerator. We proposed an FPGA-based BLAS library for such
systems. Our designs can employ multiple FPGAs and effectively
utilize the memory hierarchy in these systems. Three operations,

dot product, matrix-vector multiply and matrix multiply, were dis-
cussed. To illustrate our ideas, the designs were implemented on
Cray XD1. For 64-bit matrix multiply, our design achieved a sus-
tained performance of 2.06 GFLOPS. We projected that on a 12-
chassis installation of XD1, 148.3 GFLOPS can be achieved by our
design. In our experiments, we used our own floating-point units. If
the performance of these units is improved, the performance of our
designs will improve accordingly. We also proposed a compact but
efficient reduction circuit. This circuit is able to accumulate multi-
ple sets of floating-point values without stalling the pipeline in the
floating-point adder. The circuit uses one adder and two buffers of
size ��, where � is the number of pipeline stages in the adder.

Besides the work presented in this paper, we have proposed FPGA-
based designs for other linear algebra applications. For example,
we have proposed a design for Sparse Matrix-Vector Multiply (Sp-
MXV)[32], which employs the tree-based architecture similar to
the one discussed in Section 4. This design makes no assumption
on the sparsity of the matrix, and accepts matrices in Compressed
Row Storage format. As the design exploits both computational
parallelism and I/O parallelism of the FPGA, it achieves high per-
formance for floating-point SpMXV.

Based on the SpMXV design, we have proposed an FPGA-based
design for floating-point Jacobi iterative solver [18]. Jacobi is a
basic iterative method, and is usually used as preconditioners for
the more efficient methods like conjugate gradient (CG) [22]. Our
design is parameterized, deeply pipelined and highly parallelized.
For matrices having irregular structure, our design achieves a large
speedup over highly optimized software implementations on general-
purpose processor systems.

In the future, we plan to extend our existing designs and investigate
more linear algebra applications for implementations on reconfig-
urable systems. Besides effectively utilizing the memory hierarchy
and multiple FPGAs in these systems, we plan to exploit the com-
puting power of the general-purpose processors that are connected
to the FPGAs.

Acknowledgement
The authors thank Dr. Geert C. Wenes from Cray Inc. for pro-
viding technical documentations and assistance with understanding
the XD1 architecture. Thanks are also due to Aditya Kothadiya for
useful feedback on earlier versions of this manuscript.

8. REFERENCES
[1] AMD Core Math Library.

http://developer.amd.com/acml.aspx.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der
Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd Ed.. SIAM, 1994.

[3] D. Benyamin, W. Luk, and J. Villasenor. Optimizing
FPGA-based Vector Product Designs. In Proc. IEEE Symp.
FPGAs for Custom Computing Machines (FCCM’99), pages
188–197, April 1999.

[4] Cray Inc. Cray XD1 FPGA Development.

[5] Cray Inc. http://www.cray.com/.

[6] J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK
Users’ Guide. Soc. for Industrial and Applied Math., 1979.

11

[7] J. J. Dongarra, J. D. Croz, S. Hammarling, and I. Duff. A set
of level 3 Basic Linear Algebra Subprograms. ACM Trans.
Math. Software, 16(1):1–17, Mar. 1990.

[8] Y. Dou, S. Vassiliadis, G. Kuzmanov, and G. Gaydadjiev.
64-bit Floating-Point FPGA Matrix Multiplication. In Proc.
13th Int’l Symp. Field Programmable Gate Arrays
(FPGA’05), February 2005.

[9] G. Govindu, R. Scrofano, and V. K. Prasanna. A Library of
Parameterizable Floating-Point Cores for FPGAs and Their
Application to Scientific Computing. In Proc. Int’l Conf.
Eng. Reconfigurable Systems and Algorithms (ERSA’05),
June 2005.

[10] G. Govindu, L. Zhuo, S. Choi, and V. K. Prasanna. Analysis
of High-Performance Floating-Point Arithmetic on FPGAs.
In Proc. 11th Reconfigurable Architectures Workshop, April
2004.

[11] J. Hong and H. Kung. I/O Complexity: The Red Blue Pebble
Game. In Proc. ACM Symp. Theory of Computing, pages
326–333, May 1981.

[12] Inst. of Electrical and Electronics Engineers. IEEE 754
Standard for Binary Floating-Point Arithmetic. IEEE, 1984.

[13] Intel Corp. http://www.intel.com.

[14] J. W. Jang, S. Choi, and V. K. Prasanna. Area and Time
Efficient Implementation of Matrix Multiplication on
FPGAs. In Proc. 1st IEEE Int’l Conf. Field Programmable
Technology (FPT’02), December 2002.

[15] P. M. Kogge. The Architecture of Pipelined Computers.
Hemisphere Pub. Corp., 1981.

[16] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic
Linear Algebra Subprograms for FORTRAN usage. ACM
Trans. Math. Software, 5(3):308–323, 1979.

[17] Mentor Graphics Corp. http://www.mentor.com/.

[18] G. R. Morris and V. K. Prasanna. An FPGA-Based
Floating-Point Jacobi Iterative Solver. submitted to 8th Int’l
Symp. Parallel Architectures, Algorithms, and Networks,
2005.

[19] G. R. Morris, L. Zhuo, and V. K. Prasanna.
High-Performance FPGA-Based General Reduction
Methods. In Proc. IEEE Symp. Field-Programmable Custom
Computing Machines (FCCM’05), April 2005.

[20] Nallatech. http://www.nallatech.com.

[21] L. M. Ni and K. Hwang. Vector Reduction Methods for
Arithmetic Pipelines. In Proc. 6th Int’l Symp. Computer
Arithmetic, pages 144–150, June 1983.

[22] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling. Numerical Recipes in C : The Art of Scientific
Computing. Cambridge Univ. Press, 1992.

[23] R. Scrofano and V. K. Prasanna. Computing Lennard-Jones
Potentials and Forces with Reconfigurable Hardware. In
Proc. Int’l Conf. Eng. of Reconfigurable Systems and
Algorithms (ERSA’04), pages 284–290, June 2004.

[24] SRC Computers, Inc. http://www.srccomp.com/.
[25] Starbridge Hypercomputers.

http://www.starbridgesystems.com/
products/hardware.html.

[26] K. D. Underwood and K. S. Hemmert. Closing the Gap:
CPU and FPGA Trends in Sustainable Floating-Point BLAS
Performance. In Proc. IEEE Symp. Field-Programmable
Custom Computing Machines (FCCM’04), April 2004.

[27] Xilinx Inc. http://www.xilinx.com.

[28] L. Zhuo, G. R. Morris, and V. K. Prasanna. Designing
Scalable FPGA-Based Reduction Circuits Using Pipelined
Floating-Point Cores. In Proc. 12th Reconfigurable
Architectures Workshop, April 2005.

[29] L. Zhuo and V. K. Prasanna. High-Performance and
Area-Efficient Reduction Circuits on FPGAs. unpublished
report.

[30] L. Zhuo and V. K. Prasanna. Scalable and Modular
Algorithms for Floating-Point Matrix Multiplication on
FPGAs. In Proc. 18th Int’l Parallel & Distributed Processing
Symp. (IPDPS’04), New Mexico, USA, April 2004.

[31] L. Zhuo and V. K. Prasanna. Design Tradeoffs for BLAS
Operations on Reconfigurable Hardware. In Proc. 34th Int’l
Conf. Parallel Processing (ICPP’05), Oslo, Norway, June
2005.

[32] L. Zhuo and V. K. Prasanna. Sparse Matrix-Vector
Multiplication on FPGAs. In Proc. 13th ACM Int’l Symp.
Field-Programmable Gate Arrays (FPGA’05), California,
USA, February 2005.

12

