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Abstract 

Background: In biomedical applications, valuable data is often split between owners who cannot openly share the 

data because of privacy regulations and concerns. Training machine learning models on the joint data without violat-

ing privacy is a major technology challenge that can be addressed by combining techniques from machine learning 

and cryptography. When collaboratively training machine learning models with the cryptographic technique named 

secure multi-party computation, the price paid for keeping the data of the owners private is an increase in computa-

tional cost and runtime. A careful choice of machine learning techniques, algorithmic and implementation optimiza-

tions are a necessity to enable practical secure machine learning over distributed data sets. Such optimizations can be 

tailored to the kind of data and Machine Learning problem at hand.

Methods: Our setup involves secure two-party computation protocols, along with a trusted initializer that distrib-

utes correlated randomness to the two computing parties. We use a gradient descent based algorithm for training a 

logistic regression like model with a clipped ReLu activation function, and we break down the algorithm into corre-

sponding cryptographic protocols. Our main contributions are a new protocol for computing the activation function 

that requires neither secure comparison protocols nor Yao’s garbled circuits, and a series of cryptographic engineering 

optimizations to improve the performance.

Results: For our largest gene expression data set, we train a model that requires over 7 billion secure multiplications; 

the training completes in about 26.90 s in a local area network. The implementation in this work is a further optimized 

version of the implementation with which we won first place in Track 4 of the iDASH 2019 secure genome analysis 

competition.

Conclusions: In this paper, we present a secure logistic regression training protocol and its implementation, with a 

new subprotocol to securely compute the activation function. To the best of our knowledge, we present the fastest 

existing secure multi-party computation implementation for training logistic regression models on high dimensional 

genome data distributed across a local area network.

Keywords: Logistic regression, Gradient descent, Machine learning, Secure multi-party computation, Gene 

expression data
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Background
Introduction

Machine learning (ML) has many applications in the 

biomedical domain, such as medical diagnosis and per-

sonalized medicine. Biomedical data sets are typically 

characterized by high dimensionality, i.e.  a high num-

ber of features such as lab test results or gene expression 
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values, and low sample size, i.e. a small number of train-

ing examples corresponding to e.g.  patients or tissue 

samples. Adding to these challenges, valuable training 

data is often split between parties (data owners) who can-

not openly share the data because of privacy regulations 

and concerns. Due to these concerns, privacy-preserving 

solutions, using techniques such as secure multi-party 

computation (MPC), become important so that this data 

can still be used to train ML models, perform a diagnosis, 

and in some cases even derive genomic diagnoses [1].

We tackle the problem of training a binary classifier 

on high dimensional gene expression data held by differ-

ent data owners, while keeping the training data private. 

�is work is directly inspired by Track 4 of the iDASH 

2019 secure genome analysis competition.1 �e iDASH 

competition is a yearly international competition for 

participants to create and implement privacy-preserving 

protocols for applications with genomic data. �e goal 

is in evaluating the best-known secure methods and 

advancing new techniques to solve real-world problems 

in handling genomic data. In the 2019 edition there were 

a total of four different tracks, where Track 4 invited par-

ticipants to design MPC solutions for collaborative train-

ing of ML models originating from multiple data owners. 

One of the Track 4 competition data sets consists of 470 

training examples (records) with 17,814 numeric fea-

tures, while the other consists of 225 training examples 

with 12,634 numeric features. An initial fivefold cross-

validation analysis in the clear, i.e.  without any encryp-

tion, indicated that in both cases logistic regression (LR) 

models are capable of yielding the level of prediction 

accuracy expected in the competition, prompting us to 

investigate MPC-based protocols for secure LR training.

�e competition requirements implied the exist-

ence of multiple data owners who each send their train-

ing example(s) in an encrypted or secret shared form 

to data processors (computing nodes), as illustrated in 

Fig. 1. �e honest-but-curious data processors are not to 

learn anything about the data as they engage in computa-

tions and communications with each other. At the end, 

they disclose the trained classifier—in our case, the coef-

ficients of the LR model—to the data owners. Since the 

data processors cannot learn anything about the values in 

the data set, this implies that our protocol is applicable 

in a wide range of scenarios, independently of how the 

original data is split by ownership. Our protocol works in 

scenarios where the data is horizontally partitioned, i.e. 

when each data owner has different records of the data, 

such as data belonging to different patients. It also works 

in scenarios where the data is vertically partitioned, i.e. 

when each data owner has different features of the data, 

such as the expression values for different genes.

Fig. 1 Overview of MPC based secure logistic regression (LR) training. Each of n data owners secret shares their own training data between two 

data processors. The data processors engage in computations and communications to train a ML model, which is at the end revealed to the data 

owners

1 http://www.human genom epriv acy.org/2019/compe titio n-tasks .html, 

accessed on Jan 19, 2020.

http://www.humangenomeprivacy.org/2019/competition-tasks.html
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Real-world applications of privacy-preserving ML, as 

reflected in the iDASH2019 competition requirements, 

call for a careful and purposefully balanced trade-off 

between privacy, accuracy, and efficiency. In the solution 

presented in this paper, no information is leaked, i.e. pri-

vacy is fully preserved. �e price paid for such high secu-

rity is an increase in computational cost (runtime), which 

can be alleviated by a careful choice of “MPC-friendly” 

functions in the ML algorithm. As we explain in the 

description of our methods, in our case we achieve this 

by approximating the sigmoid activation function that is 

traditionally used in logistic regression, by a piecewise 

linear function that is computationally cheaper to evalu-

ate securely. Such so-called ReLu-like activation func-

tions have been used before in MPC protocols, and the 

resulting trained ML models are still referred to as logis-

tic regression models (see e.g.  [2, 3]) even though they 

are strictly speaking slightly different because of a differ-

ent choice of activation function and corresponding loss 

function. In the “Results” section, we report details about 

the effect that using the alternative activation function 

has on the accuracy of the trained LR like classifiers.

Contributions

�e main novelty points of our solution for private LR 

training over a distributed data set are: (1) a new proto-

col for securely computing the activation function that 

avoids the use of full-fledged secure comparison pro-

tocols; (2) a novel method for bit decomposing secret 

shared integers and bundling their instantiations; and 

(3) several cryptographic engineering enhancements 

that together with the novel protocol for the activation 

function gave us the fastest privacy-preserving LR imple-

mentation in the world when run in local area networks 

(LANs). In summary, we designed a concrete solution for 

fast secure training of a binary classifier over gene expres-

sion data that meets the strict security requirements of 

the iDASH 2019 competition. For our largest data set, we 

train a model that requires over 7 billion secure multi-

plications and the training completes in about 26.9  s in 

a LAN.

�is paper significantly expands over a preliminary 

version of this result [4], presented at a workshop with-

out formal proceedings. In this version we have a formal 

description of all protocols, security proofs and improved 

running times.

Related work

A variety of efforts have previously been made to train LR 

classifiers in a privacy-preserving way.

One scenario that was considered in previous works 

[5–7] is the setting in which a data owner holds the data 

while another party (the data processor), such as a cloud 

service, is responsible for the model training. �ese solu-

tions usually rely on homomorphic encryption, with the 

data owner encrypting and sending their data to the data 

processor who performs computations on the encrypted 

data without having to decrypt it.

When the data is held by multiple data owners, they 

can either execute an MPC protocol among themselves 

to train the model, or delegate the computation to a set of 

data processors that run a MPC protocol. It is the latter 

setting that we follow in this paper.

Existing MPC approaches to secure LR differ in the 

numerical optimization algorithms used for LR training 

and in the cryptographic primitives leveraged [2, 8–10]. 

�e SPARK protocol [8] uses additive homomorphic 

encryption (Paillier cryptosystem) and uses Newton–

Raphson as the numerical optimization algorithm to find 

the values of the weights that maximize the log-likeli-

hood. �e SPARK protocol can use the actual logistic 

function without approximating it at the cost of the plain-

text data being horizontally partitioned and seen by the 

data processors. �e two protocols from [9] rely on the 

Newton-Raphson method, both approximate the logis-

tic function, and both use additive secret sharing. �e 

first protocol includes the use of Yao’s garbled circuits 

to compute the approximation of the logistic function, 

while the second protocol uses a Taylor approximation 

and Euler’s method. �e PrivLogit method [10] uses Yao’s 

garbled circuits and Paillier encryption; their protocol 

uses the Newton-Raphson method and a constant Hes-

sian approximation to speed up computation. However, 

this protocol relies on the plaintext data being horizon-

tally partitioned and seen by the data processors, which, 

like the work in [8], would not align with the iDASH 2019 

competition requirements. We also point out a protocol 

secure against active adversaries from SecureNN [11] for 

computing a ReLu. While we compute a different func-

tion (clipped ReLu), we share a similar idea that using the 

most significant bit of an input can tell us the output of 

the function.

The work closest to ours is SecureML [2], which was 

the fastest protocol for privately training LR models 

based on secure MPC prior to our work. SecureML 

separates the data owners from the data processors, 

and uses mini-batch gradient descent. The main nov-

elty points of SecureML are a clipped ReLu activation 

function, a novel truncation protocol, and a combina-

tion of garbled circuits and secret sharing based MPC 

in order to obtain a good trade-off between commu-

nication, computation and round complexities. The 

SecureML protocol is evaluated on a data set with up 

to 5000 features, while—to the best of our knowledge—

the existing runtime evaluation of all other approaches 

for MPC based LR training is limited to 400 features 
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or less [8–10]. Like our solution, the SecureML proto-

col is split into an offline and online phase (the offline 

phase can be executed before the inputs are known 

and is responsible for generating multiplication tri-

ples). The SecureML solution is based on two servers, 

while our solution is based on three servers, namely a 

party who pre-computes so-called multiplication tri-

ples in the offline stage, and two parties who actively 

compute the final result. If we exclude the preprocess-

ing/offline stage from SecureML and exclude the pre-

distribution of triples in our solution, we are left with 

protocols that work in exactly the same setting. We 

compare the runtime of both solutions in the “Results” 

section, showing that our implementation is substan-

tially faster.

A preliminary version of this work appeared in a 

workshop without formal proceedings [4]. This paper 

is a substantially longer and detailed description that 

includes security proofs, detailed comparison with the 

state-of-the-art, and improved running times.

Paper organization

We first discuss below our work as compared to others. 

In the “Methods” section, we present preliminary infor-

mation on MPC, describe the secure subprotocols that 

are building blocks for our secure LR training protocol, 

and finally describe the protocol itself. In the “Results” 

section we describe details of our implementation and 

runtime results for the overall protocol and micro-

benchmarks for our secure activation function proto-

col. We experimentally compare our solution with the 

state-of-the-art SecureML approach [2], demonstrating 

substantial runtime improvements. In the “Discussion” 

section, we note possible future work to improve and 

extend our results, and finally in the “Conclusions” sec-

tion we present our summary remarks.

Methods
Logistic regression

Logistic regression is a common Machine Learning 

algorithm for binary classification. �e training data 

D consists of training examples d = (xd , td) in which 

xd = �xd,1, xd,2, . . . , xd,m� is an m-dimensional numeri-

cal vector, containing the values of m input attributes 

for example d, and td ∈ {0, 1} is the ground truth class 

label. Each xd,i for i ∈ {1, 2, . . . ,m} is a real number 

value.

As illustrated in Fig.  2a, we train a neuron to map 

the xd ’s to the corresponding td’s, correctly classify-

ing the examples. �e neuron computes a weighted 

sum of the inputs (the values of the weights are 

learned during training) and subsequently applies 

an activation function to it, to arrive at the output 

od = f (w0 · xd,0 + w1 · xd,1 + · · · + wn · xd,n) , which is 

interpreted as the probability that the class label is 1. 

Note that, as is common in neural network training, 

we extend the input attribute vector with a dummy fea-

ture xd,0 which has value 1 for all xd’s. �e traditionally 

used activation function for LR is the sigmoid function 

σ(z) =
1

1+e−z  . Since the sigmoid function σ requires 

division and evaluation of an exponential function, 

which are expensive operations to perform in MPC, we 

approximate it with the activation function ρ from [2], 

which is shown in Fig. 2b.

Fig. 2 Architecture. a Neuron; b approximation of sigmoid activation function σ by clipped ReLu ρ
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For training, we use the full gradient descent based 

algorithm shown in Algorithm 1 to learn the weights for 

the LR model. On line 3, we choose not to use early stop-

ping2 because in that case the number of iterations would 

depend on the values in the training data, hence leaking 

information [9]. Instead, we use a fixed number of itera-

tions during training.

Our scenario

In the scenario considered in this work the data is not 

held by a single party that performs all the computation, 

but distributed by the data owners to the data processors 

in such way that each data processor does not have any 

information about the data in the clear. Nevertheless, the 

data processors would still like to compute a LR model 

without leaking any other information about the data 

used for the training. To achieve this goal, we will use 

techniques from MPC.

Our setup is illustrated in Fig. 1. We have multiple data 

owners who each hold disjoint parts of the data that is 

going to be used for the training. �is is the most gen-

eral approach and covers the cases in which the data is 

horizontally partitioned (i.e. for each training sample 

d = (xd , td) , all the data for d is held by one of the data 

owners), vertically partitioned (for each feature, the val-

ues of that feature for all training samples are held by 

one of the data owners), and even arbitrary partitions. 

�ere are two data processors who collaborate to train 

a LR model using secure MPC protocols, and a trusted 

initializer (TI) that predistributes correlated randomness 

to the data processors in order to make the MPC compu-

tation more efficient. �e TI is not involved in any other 

part of the execution, and does not learn any data from 

the data owners or data processors.

We next present the security model that is used and 

several secure building blocks, so that afterwards we can 

combine them in order to obtain a secure LR training 

protocol.

Security model

�e security model in which we analyze our protocol 

is the universal composability (UC) framework [12] as 

it provides the strongest security and composability 

guarantees and is the gold standard for analyzing cryp-

tographic protocols nowadays. Here we will only give a 

short overview of the UC framework (for the specific case 

of two-party protocols), and refer interested readers to 

the book of Cramer et al. [13] for a detailed explanation.

�e main advantage of the UC framework is that the 

UC composition theorem guarantees that any protocol 

proven UC-secure can also be securely composed with 

other copies of itself and of other protocols (even with 

arbitrarily concurrent executions) while preserving its 

security. Such guarantee is very useful since it allows the 

modular design of complex protocols, and is a necessity 

for protocols executing in complex environments such as 

the Internet.

�e UC framework first considers a real world scenario 

in which the two protocol participants (the data pro-

cessors from Fig.  1, henceforth denoted Alice and Bob) 

interact between themselves and with an adversary A and 

an environment Z (that captures all activity external to 

the single execution of the protocol that is under consid-

eration). �e environment Z gives the inputs and gets the 

outputs from Alice and Bob. �e adversary A delivers the 

messages exchanged between Alice and Bob (thus mod-

eling an adversarial network scheduling) and can corrupt 

one of the participants, in which case he gains the control 

over it. In order to define security, an ideal world is also 

considered. In this ideal world, an idealized version of the 

functionality that the protocol is supposed to perform 

is defined. �e ideal functionality F  receives the inputs 

directly from Alice and Bob, performs the computations 

locally following the primitive specification and delivers 

the outputs directly to Alice and Bob. A protocol π exe-

cuting in the real world is said to UC-realize functional-

ity F  if for every adversary A there exists a simulator S 

such that no environment Z can distinguish between: (1) 

an execution of the protocol π in the real world with par-

ticipants Alice and Bob, and adversary A ; (2) and an ideal 

execution with dummy parties (that only forward inputs/

outputs), F  and S.

2 �is is a technique that uses a metric, such as the accuracy on a held-out 

validation data set, to check when a model starts to overfit and will then stop 

training at that point.
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�is work like the vast majority of the privacy-preserv-

ing machine learning protocols in the literature consid-

ers honest-but-curious, static adversaries. In more detail, 

the adversary chooses the party that he wants to cor-

rupt before the protocol execution and he also follows 

the protocol instructions (but tries to learn additional 

information).

Setup assumptions and the trusted initializer model

Secure-two party computations are impossible to achieve 

without further assumptions. We consider the trusted 

initializer model, in which a trusted initializer function-

ality FD

TI
 pre-distributes correlated randomness to Alice 

and Bob. A trusted initializer has been often used to 

enable highly efficient solutions both in the context of 

privacy-preserving machine learning [14–18] as well as 

in other applications, e.g., [19–24].

If a trusted initializer is not desirable, the comput-

ing parties can “emulate” such a trusted party by using 

computational assumptions in an offline phase in asso-

ciation with a suitable setup assumption, as done e.g.  in 

SecureML [2].3 Even with such a different technique to 

realize the offline phase, the online phase of our proto-

cols would remain the same. �e novelties of our work 

are in the online phase, and can be used in combination 

with any standard technique for the offline phase, such 

as the TI assumption (as we do in our implementation), 

or the computational assumptions made in SecureML. 

Our solution for the online phase leads to substantially 

better runtimes than SecureML, as we document in the 

“Results” section.

Simplifications In our proofs the simulation strategy 

is simple and will be described briefly: all the messages 

look uniformly random from the recipient’s point of view, 

except for the messages that open a secret shared value 

to a party, but these ones can be easily simulated using 

the output of the respective functionalities. �erefore a 

simulator S , having the leverage of being able to simu-

late the trusted initializer functionality FD

TI
 in the ideal 

world, can easily perform a perfect simulation of a real 

protocol execution; therefore making the real and ideal 

worlds indistinguishable for any environment Z . In the 

ideal functionalities the messages are public delayed out-

puts, meaning that the simulator is first asked whether 

they should be delivered or not (this is due to the mod-

eling that the adversary controls the network scheduling). 

�is fact as well as the session identifications are omit-

ted from our functionalities’ descriptions for the sake of 

readability.

Secret sharing based secure multi-party computation

Our MPC solution is based on additive secret sharing 

over a ring Zq = {0, 1, . . . , q − 1} . When secret sharing 

a value x ∈ Zq , Alice and Bob receive shares xA and xB , 

respectively, that are chosen uniformly at random in Zq 

with the constraint that xA + xB = x mod q . We denote 

the pair of shares by �x�q . All computations are modulo q 

and the modular notation is henceforth omitted for con-

ciseness. Note that no information of the secret value x 

is revealed to either party holding only one share. �e 

secret shared value can be revealed/opened to each party 

by combining both shares. Some operations on secret 

shared values can be computed locally with no commu-

nication. Let �x�q , �y�q be secret shared values and c be a 

constant. Alice and Bob can perform the following opera-

tions locally:

• Addition ( z = x + y ): Each party locally adds its local 

shares of x and y in order to obtain a share of z. �is 

will be denoted by �z�q ← �x�q + �y�q.
• Subtraction ( z = x − y ): Each party locally subtracts 

its local share of y from that of x in order to obtain a 

share of z. �is will be denoted by �z�q ← �x�q − �y�q
.

• Multiplication by a constant ( z = cx ): Each party 

multiplies its local share of x by c to obtain a share of 

z. �is will be denoted by �z�q ← c�x�q
• Addition of a constant ( z = x + c ): Alice adds c to 

her share xA of x to obtain zA , while Bob sets zB = xB . 

�is will be denoted by �z�q ← �x�q + c.

The secure multiplication of secret shared values (i.e., 

z = xy ) cannot be done locally and involves communi-

cation between Alice and Bob. To obtain an efficient 

secure multiplication solution, we use the multiplica-

tion triples technique that was originally proposed by 

Beaver [35]. We use a trusted initializer to pre-dis-

tribute the multiplication triples (which are a form of 

correlated randomness) to Alice and Bob. We use the 

same protocol πDMM for secure (matrix) multiplication 

3 Using a setup assumption, like the trusted initializer, in two-party secure 

computation protocols is a necessity in order to get UC-security [25, 26]. 

Other possible setup assumption to achieve UC-security include: a common 

reference string [25–27], the availability of a public-key infrastructure [28], 

the random oracle model [29, 30], the existence of noisy channels between the 

parties [31, 32], and the availability of tamper-proof hardware [33, 34].
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of secret shared values as in [17, 36] and denote by πDM 

the protocol for the special case of multiplication of 

scalars and πIP for the inner product. As shown in [17] 

the protocol πDMM (described in Protocol  2) UC-real-

izes the distributed matrix multiplication functionality 

FDMM in the trusted initializer model.

Converting to �xed-point representation

Each data owner initially needs to convert their train-

ing data to integers modulo q so that they can be secret 

shared. As illustrated in Fig. 3, each feature value x ∈ R 

is converted into a fixed point approximation of x using 

a two’s complement representation for negative num-

bers. We define this new value as Q(x) ∈ Zq . �is con-

version is shown in Eq. (1):

Specifically, when we convert Q(x) into its bit representa-

tion, we define the first a bits from the right to hold the 

fractional part of x, and the next b bits to represent the 

non-negative integer part of x, and the most significant 

bit (MSB) to represent the sign (positive or negative). We 

define � to represent the total number of bits such that 

the ring size q is defined as q = 2
� . It is important to 

choose a � that is large enough to represent the largest 

number x that can be produced during the LR protocol, 

and therefore � should be chosen to be at least 2(a + b) 

(see Truncation). It is also important to choose a b that is 

large enough to represent the maximum possible value of 

the integer part of all x’s (this is dependent on the data). 

�is conversion and bit representation is shown in Fig. 3.

Truncation

When multiplying numbers that were converted into 

a fixed point representation with a fractional bits, the 

resulting product will end up with a more bits repre-

senting the fractional part. For example, a fixed point 

representation of x and y, for x, y > 0 , is x · 2
a and y · 2

a , 

respectively. �e multiplication of both these terms 

results in xy · 2
2a , showing that now 2a bits are repre-

senting the fractional part, which we must scale back 

down to xy · 2
a to do any further computations. In our 

solution, we use the two-party local truncation pro-

tocol for fixed point representations of real numbers 

proposed in [2] that we will refer to as πtrunc . It does 

not involve any messages between the two parties, each 

party simply performs an operation on its own local 

share. �is protocol almost always incurs an error of at 

most a bit flip in the least-significant bit. However, with 

probability 2a+1−� , where a is the number of fractional 

bits, the resulting value is completely random.

When this truncation protocol is performed on 

increasingly large data sets (in our case we run over 7 

billion secure multiplications), the probability of an 

erroneous truncation becomes a real issue—an issue 

not significant in previous implementations. �ere 

are two phases in which truncation is performed: (1) 

(1)Q(x) =

{

2
� −

⌊

2
a · |x|

⌋

if x < 0
⌊

2
a · x

⌋

if x ≥ 0
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when computing the dot product (inner product) of 

the current weights vector with a training example in 

line 7 of Algorithm  1, and (2) when the weight differ-

entials ( �wi ) are adjusted in line 9 of Algorithm 1. If a 

truncation error occurs during (1), the resulting erro-

neous value will be pushed into a reasonable range by 

the activation function and incur only a minor error for 

that round. If the error occurs during (2), an element 

of the weights vector will be updated to a completely 

random ring element and recovery from this error 

will be impossible. To mitigate this in experiments, 

we make use of 10–12 bits of fractional precision with 

a ring size of 64 bits, making the probability of failure 
1

253
< p <

1

251
 . �e number of truncations that need to 

be performed is also reduced in our implementation 

by waiting to perform truncation until it is absolutely 

required. For instance, instead of truncating each result 

of multiplication between an attribute and its corre-

sponding weight, a single truncation can be performed 

at the end of the entire dot product.

Additional error is incurred on the accuracy by 

the fixed point representation itself. �rough cross-

validation with an in-the-clear implementation, we 

determined that 12 bits of fractional precision provide 

enough accuracy to make the output accuracy indistin-

guishable between the secure version and the plaintext 

version.

Conversion of sharings

For efficiency reasons, in some of the steps for securely 

computing the activation function we use secret shar-

ings over Z2 , while in others we use secret sharings over 

Z
2� . �erefore we need to be able to convert between 

the two types of secret sharings.

We use the two-party protocol from [17] for perform-

ing the bit-decomposition of a secret-shared value �x�
2� 

to shares �xi�2 , where x� · · · x1 is the binary representa-

tion of x. It works like the ripple carry adder arithmetic 

circuit based on the insight that the difference between 

the sum of the two additive shares held by the parties 

and an “XOR-sharing” of that sum is the carry vec-

tor. As proven in [17], the bit-decomposition protocol 

Fig. 3 Fixed-point representation. Register map of fixed-point representation of numbers shared over Z
2� with examples



Page 9 of 18De Cock et al. BMC Med Genomics           (2021) 14:23  

πdecomp (described in Protocol  3) UC-realizes the bit-

decomposition functionality Fdecomp.

In our implementation we use a highly parallelized 

and optimized version of the bit-decomposition pro-

tocol πdecomp in order to improve the communication 

efficiency of the overall solution. �e optimizations are 

described in the Appendix.

�e opposite of a secure bit-decomposition is con-

verting from bit sharing to an additive sharing over a 

larger ring. In our secure activation function protocol, 

we require securely converting a bit sharing to an addi-

tive sharing in 2� . �is is done using the protocol π
2to2� 

from [18] (described in Protocol 4) that UC-realizes the 

secret sharing conversion functionality F
2to2�.
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Secure activation function

We propose a new protocol that evaluates ρ from Fig. 2b 

directly over additive shares and does not require full 

secure comparisons, which would have been more expen-

sive. Instead of doing straightforward comparisons 

between z, 0.5 and −0.5 , we derive the result through 

checking two things: (i) whether z′
= z + 1/2 is positive or 

negative; (ii) whether z′
≥ 1 . Both checks can be performed 

without using a full comparison protocol.

When z′ is bit decomposed, the most significant bit is 0 if 

z′ is non-negative and 1 if z′ is negative. In fact, if out of the 

� bits, the a lowest bits are used to represent the fractional 

component and the b next bits are used to represent the 

integer component, then the remaining � − a − b bits all 

have the same value as the most significant bit. We will use 

this fact in order to optimize the protocol by only perform-

ing a partial bit-decomposition and deducting whether z′ is 

positive or negative from the (a + b + 1)-th bit.

In the case that z′ is negative, the output of ρ is 0. But, if 

z′ is positive, we need to determine whether z′
≥ 1 in order 

to know if the output of ρ should be fixed to 1 or to z′ . A 

positive z′ is such that z′
≥ 1 if and only if at least one of the 

b bits corresponding to the integer component of z′ repre-

sentation is equal to 1, therefore we only need to analyze 

those b bits to determine if z′
≥ 1.

Our secure protocol πρ is described in Protocol 5. �e 

AND operation corresponds to multiplications in Z2 . By 

the application of De Morgan’s law, the OR operation is 

performed using the AND and negation operations. �e 

successive multiplications can be optimized to only take 

a logarithmic number of rounds by using well-known 

techniques.

�e activation function protocol πρ UC-realizes the 

activation function functionality Fρ . �e correctness can 

be checked by inspecting the three possible cases: (i) if 

z > 1/2 , then pos = 1 and geq1 = 1 (since at least one of 

the bits representing the integer component of z + 1/2 will 

have a value 1). �e output is thus �2a�
2� (the fixed-point 

representation of 1); if −1/2 ≤ z < 1/2 , then pos = 1 and 

geq1 = 0 , and therefore the output will be �z′�
2� , which 

is the fixed-point representation of z + 1/2 ; if z < −1/2 , 

then pos = 0 and the output will be a secret sharing repre-

senting zero as expected. �e security follows trivially from 

the UC-security of the building blocks used and the fact 

that no secret sharing is opened.
Secure logistic regression training

We now present our secure LR training protocol that 

uses a combination of the previously mentioned building 

blocks.

Notice that in the full gradient descent technique 

described in Algorithm 1, the only operations that cannot 

be performed fully locally by the data processors, i.e. on 

their own local shares, are:
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• �e computation of the inner product in line 7

• �e activation function ρ in line 7

• �e multiplication of td − od with dd,i in line 9

Our secure LR training protocol πLR−Training (described 

in Protocol 6) shows how the secure building blocks 

described before can be used to securely compute 

these operations. �e inner product is securely com-

puted using πIP on line 5, and since this involves mul-

tiplication on numbers that are scaled to a fixed-point 

representation, we truncate the result using πtrunc . �e 

activation function is securely computed using πρ on 

line 6. �e multiplication of td − od with xd,i is done 

using secure multiplication with batching on line 11. 

Since this also involves multiplication on numbers that 

are scaled, the result is truncated using πtrunc in line 14. 

A slight difference between the full gradient descent 

technique described in Algorithm  1 and our protocol 

πLR−Training , is that instead of updating �wi after every 

evaluation of the activation function, we batch together 

all activation function evaluations before computing 

the �wi . Since the activation function requires a bit-

decomposition of the input, we can now make use of 

the efficient batch bit-decomposition protocol batch-

πdecompOPT (see Appendix) within the activation func-

tion protocol πρ.

�e LR training protocol πLR−Training UC-realizes the 

logistic regression training functionality FLR−Training . 

�e correctness is trivial and the security follows 

straightforwardly from the UC-security of the building 

blocks used in πLR−Training.
�e following steps describe end-to-end how to 

securely train a LR classifier: 

1 �e TI sends the correlated randomness needed for 

efficient secure multiplication to the data processors. 

Note that while our current implementation has the 

TI continuously sending the correlated randomness, 

it is possible for the TI to send all correlated random-

ness as the first step, and therefore can leave and not 

be involved during the rest of the protocol.

2 Each data owner converts the values in the set of 

training examples D that it holds to a fixed-point rep-

resentation as described in Eq. 1. Each value is then 

split into two shares, which are then sent to the data 

processor 1 and data processor 2 respectively.

3 Each data processor receives the shares of data from 

the data owners. �ey now have secret sharings 

(�xd�, �td�) of the set of training examples D. �e 

learning rate η and number of iterations niter are pre-

determined and public to both data processors.

4 �e data processors collaborate to train the LR 

model. �ey both follow the secure LR training pro-

tocol πLR−Training.
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5 At the end of the protocol, each data processor will 

hold shares of the model’s weights �wi� . Each data 

processor sends their shares to all of the data own-

ers, who can then combine the shares to learn the 

weights of the LR model.

Cryptographic engineering optimizations

Sockets and threading

A single iteration of the LR protocol is highly paralleliz-

able in three distinct segments: (1) computing the dot 

products between the current weights and the data set, 

(2) computing the activation of each dot product result, 

and (3) computing the gradient and updating the weights. 

In each of these phases, a large number of computations 

are required, but none have dependencies on others. We 

take advantage of this by completing each of these phases 

with thread pools that can be configured for the machine 

running the protocol. We implemented the proposed 

protocols in Rust; with Rust’s ownership concept, it is 

possible to yield results from threads without message 

passing or reallocation. Hence, the code is constructed 

to transfer ownership of results at each phase back to the 

main thread to avoid as much inter-process communica-

tion as possible. Additionally, all threads complete socket 

communications by computing all intermediate results 

directly in the socket buffer by implementing the buffer 

as a union of byte array and unsigned 64-bit integer array. 

�is buffer is allocated on the stack by each thread which 

circumvents the need for a shared memory block while 

also avoiding slower heap memory. �e implementation 

of this configuration reduced running times significantly 

based on our trials.

Further, all modular arithmetic operations are handled 

implicitly with the Rust API’s Wrapping struct which tells 

the ALU to ignore integer overflow. As long as the size 

of the ring over which the MPC protocols are performed 

is selected to align with a provided primitive bit width 

(i.e. 8, 16, 32, 64, 128) it is possible to omit computing the 

remainder of arithmetic with this construction.

Results
We implemented the protocols from the “Methods” sec-

tion in Rust4 and experimentally evaluated them on the 

BC-TCGA and GSE2034 data sets of the iDASH 2019 

competition. Both data sets contain gene expression data 

from breast cancer patients which are normal tissue/non-

recurrence samples (negative) or breast cancer tissue/

recurrence tumor samples (positive) [37].

Table  1 contains accuracy results obtained with LR 

with sigmoid activation function, using the implemen-

tation in the sklearn library [38], and default parameter 

settings. �ese models were not trained in a privacy-pre-

serving manner, and the results in Table  1 are included 

merely for comparison purposes. As Table 1 shows, reg-

ularization with ridge or lasso regression did not have a 

significant impact on the accuracies, which is the reason 

why we did not include regularization in our privacy-pre-

serving training protocols for the iDASH competition. In 

the “Discussion” section we provide information on how 

Protocol 6 can be expanded to include regularization as 

well.

�e results obtained with our privacy-preserving pro-

tocols are given in Table 2. Using Protocol 6, we trained 

LR models with a clipped ReLu activation function on 

both data sets with a learning rate η = 0.001 . We use 

a fixed number of iterations for each data set: 10 itera-

tions for the BC-TCGA data set and 223 iterations for 

the GSE2034 data set. �e accuracy of the resulting mod-

els, evaluated with fivefold cross-validation, is presented 

in Table  2, along with the average runtime for training 

those models. It is important to note that these are the 

same accuracies that are obtained when training LR with 

a clipped ReLu activation function in the clear, i.e. there 

is no accuracy loss in the secure version. Comparing the 

accuracies in Table 1 and 2, one observes that for the BC-

TCGA data set there is no significant difference between 

the use of a sigmoid activation function (Table 1)and the 

clipped ReLu activation function (Table 2). While the dif-

ference in accuracy on the second data set is significant, 

we decided to proceed with clipped ReLu anyway for 

the iDASH competition as the rules stipulated that “this 

competition does not require for the best performance 

model”. Instead, the criteria were privacy (no informa-

tion leakage permitted), efficiency (short runtimes), and 

reasonable accuracy. �is is a reflection of real-world 

applications of privacy-preserving machine learning, 

where an acceptable balance among privacy, accuracy, 

and efficiency is obtained by choosing primitives (such as 

clipped ReLu) that are MPC-friendly.

Table 1 Accuracy results obtained with  �vefold cross-

validation with  LR, using the  traditional sigmoid 

activation function and cross-entropy loss

Models were trained for 100 iterations. All computations are done in-the-clear, 

i.e. without use of the privacy-preserving protocols proposed in this paper

# no regularization 
(%)

Ridge 
regression (%)

Lasso 
regression 
(%)

BC-TCGA 99.57 99.57 99.57

GSE2034 68.83 68.84 68.83

4 https ://bitbu cket.org/uwtpp ml/idash 2019.

https://bitbucket.org/uwtppml/idash2019
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We used integer precision b = 15 , fractional preci-

sion a = 12 and ring size � = 64 (these choices were 

made based on experiments in the clear as mentioned in 

the previous section). We ran the experiments on AWS 

c5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory. 

Each of the parties ran on separate machines (connected 

with a Gigabit Ethernet network), which means that the 

results in Table 2 cover communication time in addition 

to computation time. �e results show that our imple-

mentation allows to securely train models with state-of-

the-art accuracy [37] on the BC-TCGA and GSE2034 

data sets within about 2.52 s and 26.90 s respectively.

A previous version of this implementation was submit-

ted to the iDASH 2019 Track 4 competition. 9 of the 67 

teams who entered Track 4 completed the challenge. Our 

solution was one of the 3 solutions who tied for the first 

place. Our implementation trained on all of the features 

for both data sets (no feature engineering is done), and 

generated a model that gave the highest accuracy, with 

runtimes that were well within the competition’s limit of 

24 h. �e implementation presented in the current work 

is further optimized in relation to the iDASH version and 

achieves far better runtimes.

We note that while SecureML differs from our work in 

their setup and cryptographic primitives, it shares many 

similarities to ours and reports a fast runtime such that 

we find it valuable as a standard to compare to. While 

SecureML does not originally use a TI to predistribute 

the multiplication triples, it would be easy to adapt their 

result to use a TI for that purpose. �erefore, in order to 

have a fair comparison, we compare our protocol runt-

ime against only their online runtime (thus excluding 

their offline runtime). We evaluated our implementation’s 

runtime against SecureML’s implementation by running 

their implementation on the same AWS machines using 

the same data sets (see Table 3 for runtime comparisons). 

For both data sets, our online phase runs faster than 

SecureML’s online phase which trains BC-TCGA in 12.73 

seconds and GSE2034 in 49.95 s.

We then compare online microbenchmark computa-

tion times. For the computation of the activation func-

tion, our run of the SecureML code reported around 

0.057–0.059  ms for 1 activation, while our implemen-

tation completes 1024 evaluations in around 30  ms 

(0.029 ms per activation function). �is makes our secure 

activation function implementation nearly twice as fast 

as SecureML’s. Additionally, it eliminates the overhead 

of switching between Yao gates and additive secret shar-

ing. Furthermore, our activation function runs more effi-

ciently (per evaluation) the more evaluations of it need to 

be computed, due to the design of the batch bit-decom-

position protocol. �is is illustrated in Table 4 where the 

calculated runtime per evaluation (runtime divided by 

number of evaluations) decreases as the number of eval-

uations increase.

Discussion
Our runtime experiments on securely training a LR 

model show that it is feasible to train on data that 

includes a large number of attributes, as is common 

with genomic data. Given the high dimensionality of the 

genomic data, an interesting direction for future work 

would be the design of MPC protocols for privacy-pre-

serving feature reduction. If any kind of feature reduction 

is used, it would result in a decrease in secure training 

runtime with a possibility for a slight decrease in the 

accuracy. We demonstrate this by choosing (in the clear) 

54 features of the BC-TCGA data set that were part of the 

76-gene signature described in [39]. Training on these 54 

Table 2 Accuracy and training runtime for LR like models with clipped ReLu activation function, and trained in a privacy-

preserving manner using the protocols proposed in this paper

# features # pos. samples # neg. samples # of iterations Fivefold CV 
accuracy (%)

Avg. runtime (s)

BC-TCGA 17,814 422 48 10 99.58 2.52

GSE2034 12,634 142 83 223 64.82 26.90

Table 3 Runtime comparisons between SecureML and our 

work

BC-TCGA 
training 
(online) (s)

GSE2034 
training 
(online) (s)

Activation function 
(one evaluation) 
(ms)

Our work 2.52 26.90 0.030

SecureML 12.73 49.95 0.057

Table 4 Activation function runtimes

# evaluations Avg. runtime (ms) Runtime per activation 
(runtime/#eval) (ms)

256 9 0.035

512 16 0.031

1024 30 0.029

2048 59 0.028
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features, we get a fivefold cross-validation accuracy of 

98.93% (training on all features produced 99.58%), and 

the average secure training time (of three runs) is 0.51 s, 

which is about a 2 s decrease from training on all 17,814 

features. �e genes in the GSE2034 data set are not 

labeled in a way where we can map them to the 76-gene 

signature to test the accuracy for a reduced number of 

features, but we test the runtime of training on 76 attrib-

utes and we get an average of 6.71 s, which is about a 20 s 

decrease from training on all 12,634 features. �is shows 

that if feature reduction can be performed, runtimes can 

be improved while still being able to produce an accurate 

trained model.

While regularization did not appear to have a signifi-

cant effect on the data sets of the iDASH2019 Track 4 

competition (see Table 1), the question of how to perform 

regularization in a privacy-preserving manner with MPC 

is still relevant and interesting. Protocol 6 for secure LR 

training can be adapted to include ridge regression by 

changing the weight update rules (Line 12 of Protocol 6) 

to include a term that depends linearly on the value of 

the weights. �is means that only secure additions and 

secure multiplications with a constant are needed, which 

are relatively inexpensive to perform in MPC and would 

not significantly change the runtimes. On the other hand, 

the penalty introduced in lasso regression depends on the 

absolute value of the weights. Established techniques for 

learning the parameters of a lasso model, such as coordi-

nate descent, require a secure comparison—an expensive 

operation—per weight per iteration. �is would drasti-

cally affect the runtime of our protocols. �erefore, for 

the specific case of our protocols, we would suggest the 

use of the much MPC-friendlier ridge regression.

Our main contribution is the proposal of the fast-

est implementation and protocol for privacy-preserving 

training of LR models. Our novelty points are the new 

protocol for privately evaluating the activation function 

ρ which can be computed using only additive shares and 

MPC protocols, without using a protocol for secure com-

parison. We use ρ as an approximation of the sigmoid 

function σ since that is what is traditionally used in LR 

training, but σ is also used as an activation function in 

neural networks. �erefore, our fast secure protocol for 

computing ρ can also result in faster neural network 

training. While training neural networks are out of the 

scope of this paper, we note that our results can be appli-

cable to those types of ML models as well.

Conclusions
In this paper, we have described a novel protocol for 

implementing secure training of LR over distributed 

parties using MPC. Our protocol and implementa-

tion present several novel points and optimizations 

compared to existing work, including: (1) a novel pro-

tocol for computing the activation function that avoids 

the use of full-fledged secure comparison protocols; (2) 

a series of cryptographic engineering optimizations to 

improve the performance.

With our implementation, we can train on the BC-

TCGA data set with 17,814 features and 375 samples 

with 10 iterations in 2.52  s, and we can train on the 

GSE2034 data set with 12,634 features and 179 samples 

with 223 iterations in 26.90 s. A less optimized version 

of this implementation won first place at the iDASH 

2019 Track 4 competition when considering accuracy 

and efficiency. Our solution is particularly efficient for 

LANs where we can perform 1024 secure computa-

tions of the activation function in about 30 ms. To the 

best of our knowledge, ours is the fastest protocol for 

privately training logistic regression models over local 

area networks.

While the scenario where computing parties com-

municate over a local area network is a relevant one, it 

is also important to develop tailored solutions for the 

case where the parties are potentially connected over the 

internet and across different countries. �e solutions for 

each of these cases will be substantially different depend-

ing on what kind of delay is more important in the net-

work: propagation, transmission, processing, or queuing 

delays. We expect that round and communication com-

plexities would need to be traded, depending on the com-

munication settings’ specifics. We leave it as a future 

extension of our work to optimize it for more general 

communication scenarios.
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Appendix
Optimization of πdecomp

Overview and previous work

�e functionality Fdecomp (described in “Methods” sec-

tion) is easily realized as an adder circuit that takes as 

inputs each bit of the additive shares of a secret sharing 

�x�
2� in a large ring Z

2� and outputs an “XOR-sharing” 

of the secret �x1�2, . . . , �x��2 . First, each party regards 

its share of �x�
2� , denoted xi , as an XOR-shared secret 

�xi,1�2, . . . , �xi,��2 and passes it to the adder circuit. �e 

adder circuit then computes the carry vector which 

accounts for the rollover of binary addition. Adding this 

vector to all bitwise shares �x1,j�2, �x2,j�2 resolves the dif-

ference between �x1,1� · · · �x1,�� ⊕ �x2,1� · · · �x2,�� and the 

bit-decomposed secret x.

Naively, this carry vector can be obtained with lin-

ear communication complexity by means of ripple carry 

addition, as is described in Protocol 3. But, it is possible 

to achieve logarithmic communication complexity and 

even constant complexity [40] (though with worse per-

formance than the logarithmic version for all reasonable 

bit lengths).

�e highest performing realization of Fdecomp for real-

istic bit lengths is based on a speculative adder circuit 

[17] in which at each layer the next set of carry bits are 

computed twice; once for each case that the previous 

carry bit had been 0 and 1. �is protocol has ⌈log(�)⌉ + 2 

rounds of communication and requires a total data trans-

fer of 4�⌈log(�)⌉ + 6� bits.

We propose a new, highly optimised protocol based on 

a matrix composition network that reduces the number 

of communication rounds by 1 (or 2, in special cases) 

and requires a small fraction of the aforementioned data 

transfer cost.

Matrix composition network

To sum the binary numbers a and b, the i-th bit is given 

by si = ai ⊕ bi ⊕ ci−1 , where ci = aibi ⊕ aici−1 ⊕ bici−1. 

In an alternate view, the carry can be seen to depend on 

two signals which in turn depend on a and b. Generate 

( gi = aibi ) creates a new carry bit at the i-th position, 

and Propogate ( pi = ai ⊕ bi ) perpetuates the previous 

carry bit, if it exists. In this representation, si = pi ⊕ ci−1 

and ci = gi + pici−1 . �is sum-of-products form of the 

expression for ci lends itself to a matrix representation

When matrices in the form of Mi are composed, the 

lower entries remain unchanged. �is implies that

�erefore, to compute all ci , it is sufficient to compute the 

set of all matrix compositions

Note that it is not necessary to compute the �-th carry 

bit because s� depends on c�−1 . Treating the carry-in to 

the 1st bit as the vector (0, 1), all ci can be derived implic-

itly from the upper right-hand entry of M1.i (here, M1,i 

denotes the matrix composed of all matrices M1 through 

Mi , consecutively).

From the MPC perspective, this matrix composition 

requires two Z2 multiplications: pi+1pi and pi+1gi as seen 

in the equation below. �e OR operation (+), which usu-

ally requires multiplication in MPC, is reduced to XOR 

based on the observation that pi+1 and gi+1 cannot both 

be true for a given i.

�e entire set of matrix compositions can be realized in 

a logarithmic depth network by, at the i-th layer, com-

puting all compositions M1.j that require fewer than 2i−1 

compositions. To set up conditions to allow us to mini-

mize the total data transfer, the constraint is added that 

each M1.j should be the composition of the “largest” 

matrix from the previous layer, M1.2i−2 , with the remain-

der M2i−2+1.j . If M2i−2+1.j doesn’t exist in the network, it 

is added recursively following the same set of constraints.

Figure 4 shows an example with � = 17 . �is network 

is hereafter referred to as ComposeNetp where p is the 

highest order bit to decompose. �e protocol description 
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that follows considers only the case where p = � , though 

the protocol functions the same for any p ≤ � . For 

instance, in Protocol  3, when using πdecomp to find the 

MSB of a secret, it is sufficient to set p = a + b + 1.

E�ciency discussion

�e setup phase prior to the call to ComposeNet� 

requires � multiplications over Z2 to compute all �gj� . �is 

corresponds to one communication round and 2� bits of 

data transfer.

A call to ComposeNet� has communication com-

plexity corresponding to the depth of the network, 

⌈log(� − 1)⌉ , and �
2
 multiplications over Z2 per layer, with 

fewer on the final layer when � − 1 is not a power of 2. 

However, due to the fact that the matrices at each node of 

ComposeNet� are reused extensively and known to not 

change value, the Beaver Triples used to mask the matri-

ces can be desgined to contain redundancies to minimise 

the data transfer at each layer [2]. By re-using correlated 

randomness where information leakage is not possible, 

only �
2

− (2i−i
− 1) masks need to be transferred at depth 

i, for i > 0 . At depth 0, there are � masks; one for each 

matrix. Each matrix mask is 2 bits (one for each of the 

Propogate and Generate bits), so the total data transfer 

is 2� + 2
∑⌈log(�−1)⌉−1

i=1
( �

2
+ 1 − 2

i−1).

�e recombination phase after ComposeNet� is com-

puted has only local computations and thus contributes 

nothing to the complexity.

Combining all phases, we see that πdecompOPT has a 

communication cost of ⌈log(� − 1)⌉ + 1 and a total data 

transfer cost of 4� + 2
∑⌈log(�−1)⌉−1

i=1 ( �

2 + 1 − 2i−1) bits. 

Comparing with the speculative adder’s performance, the 

number of communication rounds is decreased by 1 in all 

cases and 2 in the case that � − 1 is a power of 2. �e total 

data transfer cost has roughly 1
3
 the data transfer rate of 

the previous work at � = 8, 16 . For higher all bit lengths, 

the ratio quickly converges near 1
4
.

Implementation and batching

ComposeNet� can be implemented efficiently as a set 

of index pairs that correspond to the positions of the 

Propogate and Generate bits that need to be combined 

at each layer. Once per layer, all products pi+1pi , pi+1gi 

can be computed in a single call to πDM by taking the 

Fig. 4 ComposeNet� for � = 17 . Computes the set of all matrix compositions M1 ,M1.2 ,M1.3 , . . . ,M1.(�−1) . The notation Mi.j means “the composition 

of all matrices i through j.” The greyed nodes are only used for intermediate computations and the white nodes are part of the solution set
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bitwise product between the concatenations pi+1||pi+1 , 

pi||gi and splitting the result.

Extending to the case that many values need to be bit 

decomposed at the same time (as in Protocol 6), a vector 

of inputs can be decomposed “in parallel” by taking verti-

cal slices over the Generate and Propogate bits of each 

element and re-packing them into a transposed form. In 

this way, each layer of ComposeNet� can operate on a 

vector of matrices (represented as two lists of bit slices) 

to produce a vector of matrix compositions. �is method 

has no effect on the number of rounds of communication 

and the total data transfer scales linearly with the length 

of the input vector.
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