
De Cock et al. BMC Med Genomics (2021) 14:23

https://doi.org/10.1186/s12920-020-00869-9

TECHNICAL ADVANCE

High performance logistic regression
for privacy-preserving genome analysis
Martine De Cock1* , Rafael Dowsley2, Anderson C. A. Nascimento1, Davis Railsback1, Jianwei Shen1

and Ariel Todoki1

Abstract

Background: In biomedical applications, valuable data is often split between owners who cannot openly share the

data because of privacy regulations and concerns. Training machine learning models on the joint data without violat-

ing privacy is a major technology challenge that can be addressed by combining techniques from machine learning

and cryptography. When collaboratively training machine learning models with the cryptographic technique named

secure multi-party computation, the price paid for keeping the data of the owners private is an increase in computa-

tional cost and runtime. A careful choice of machine learning techniques, algorithmic and implementation optimiza-

tions are a necessity to enable practical secure machine learning over distributed data sets. Such optimizations can be

tailored to the kind of data and Machine Learning problem at hand.

Methods: Our setup involves secure two-party computation protocols, along with a trusted initializer that distrib-

utes correlated randomness to the two computing parties. We use a gradient descent based algorithm for training a

logistic regression like model with a clipped ReLu activation function, and we break down the algorithm into corre-

sponding cryptographic protocols. Our main contributions are a new protocol for computing the activation function

that requires neither secure comparison protocols nor Yao’s garbled circuits, and a series of cryptographic engineering

optimizations to improve the performance.

Results: For our largest gene expression data set, we train a model that requires over 7 billion secure multiplications;

the training completes in about 26.90 s in a local area network. The implementation in this work is a further optimized

version of the implementation with which we won first place in Track 4 of the iDASH 2019 secure genome analysis

competition.

Conclusions: In this paper, we present a secure logistic regression training protocol and its implementation, with a

new subprotocol to securely compute the activation function. To the best of our knowledge, we present the fastest

existing secure multi-party computation implementation for training logistic regression models on high dimensional

genome data distributed across a local area network.

Keywords: Logistic regression, Gradient descent, Machine learning, Secure multi-party computation, Gene

expression data

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creat iveco mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco
mmons .org/publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Introduction

Machine learning (ML) has many applications in the

biomedical domain, such as medical diagnosis and per-

sonalized medicine. Biomedical data sets are typically

characterized by high dimensionality, i.e. a high num-

ber of features such as lab test results or gene expression

Open Access

*Correspondence: mdecock@uw.edu
1 School of Engineering and Technology, University of Washington

Tacoma, Tacoma, WA 98402, USA

Full list of author information is available at the end of the article

Martine De Cock: Guest Professor at Ghent University.

http://orcid.org/0000-0001-7917-0771
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12920-020-00869-9&domain=pdf

Page 2 of 18De Cock et al. BMC Med Genomics (2021) 14:23

values, and low sample size, i.e. a small number of train-

ing examples corresponding to e.g. patients or tissue

samples. Adding to these challenges, valuable training

data is often split between parties (data owners) who can-

not openly share the data because of privacy regulations

and concerns. Due to these concerns, privacy-preserving

solutions, using techniques such as secure multi-party

computation (MPC), become important so that this data

can still be used to train ML models, perform a diagnosis,

and in some cases even derive genomic diagnoses [1].

We tackle the problem of training a binary classifier

on high dimensional gene expression data held by differ-

ent data owners, while keeping the training data private.

�is work is directly inspired by Track 4 of the iDASH

2019 secure genome analysis competition.1 �e iDASH

competition is a yearly international competition for

participants to create and implement privacy-preserving

protocols for applications with genomic data. �e goal

is in evaluating the best-known secure methods and

advancing new techniques to solve real-world problems

in handling genomic data. In the 2019 edition there were

a total of four different tracks, where Track 4 invited par-

ticipants to design MPC solutions for collaborative train-

ing of ML models originating from multiple data owners.

One of the Track 4 competition data sets consists of 470

training examples (records) with 17,814 numeric fea-

tures, while the other consists of 225 training examples

with 12,634 numeric features. An initial fivefold cross-

validation analysis in the clear, i.e. without any encryp-

tion, indicated that in both cases logistic regression (LR)

models are capable of yielding the level of prediction

accuracy expected in the competition, prompting us to

investigate MPC-based protocols for secure LR training.

�e competition requirements implied the exist-

ence of multiple data owners who each send their train-

ing example(s) in an encrypted or secret shared form

to data processors (computing nodes), as illustrated in

Fig. 1. �e honest-but-curious data processors are not to

learn anything about the data as they engage in computa-

tions and communications with each other. At the end,

they disclose the trained classifier—in our case, the coef-

ficients of the LR model—to the data owners. Since the

data processors cannot learn anything about the values in

the data set, this implies that our protocol is applicable

in a wide range of scenarios, independently of how the

original data is split by ownership. Our protocol works in

scenarios where the data is horizontally partitioned, i.e.

when each data owner has different records of the data,

such as data belonging to different patients. It also works

in scenarios where the data is vertically partitioned, i.e.

when each data owner has different features of the data,

such as the expression values for different genes.

Fig. 1 Overview of MPC based secure logistic regression (LR) training. Each of n data owners secret shares their own training data between two

data processors. The data processors engage in computations and communications to train a ML model, which is at the end revealed to the data

owners

1 http://www.human genom epriv acy.org/2019/compe titio n-tasks .html,

accessed on Jan 19, 2020.

http://www.humangenomeprivacy.org/2019/competition-tasks.html

Page 3 of 18De Cock et al. BMC Med Genomics (2021) 14:23

Real-world applications of privacy-preserving ML, as

reflected in the iDASH2019 competition requirements,

call for a careful and purposefully balanced trade-off

between privacy, accuracy, and efficiency. In the solution

presented in this paper, no information is leaked, i.e. pri-

vacy is fully preserved. �e price paid for such high secu-

rity is an increase in computational cost (runtime), which

can be alleviated by a careful choice of “MPC-friendly”

functions in the ML algorithm. As we explain in the

description of our methods, in our case we achieve this

by approximating the sigmoid activation function that is

traditionally used in logistic regression, by a piecewise

linear function that is computationally cheaper to evalu-

ate securely. Such so-called ReLu-like activation func-

tions have been used before in MPC protocols, and the

resulting trained ML models are still referred to as logis-

tic regression models (see e.g. [2, 3]) even though they

are strictly speaking slightly different because of a differ-

ent choice of activation function and corresponding loss

function. In the “Results” section, we report details about

the effect that using the alternative activation function

has on the accuracy of the trained LR like classifiers.

Contributions

�e main novelty points of our solution for private LR

training over a distributed data set are: (1) a new proto-

col for securely computing the activation function that

avoids the use of full-fledged secure comparison pro-

tocols; (2) a novel method for bit decomposing secret

shared integers and bundling their instantiations; and

(3) several cryptographic engineering enhancements

that together with the novel protocol for the activation

function gave us the fastest privacy-preserving LR imple-

mentation in the world when run in local area networks

(LANs). In summary, we designed a concrete solution for

fast secure training of a binary classifier over gene expres-

sion data that meets the strict security requirements of

the iDASH 2019 competition. For our largest data set, we

train a model that requires over 7 billion secure multi-

plications and the training completes in about 26.9 s in

a LAN.

�is paper significantly expands over a preliminary

version of this result [4], presented at a workshop with-

out formal proceedings. In this version we have a formal

description of all protocols, security proofs and improved

running times.

Related work

A variety of efforts have previously been made to train LR

classifiers in a privacy-preserving way.

One scenario that was considered in previous works

[5–7] is the setting in which a data owner holds the data

while another party (the data processor), such as a cloud

service, is responsible for the model training. �ese solu-

tions usually rely on homomorphic encryption, with the

data owner encrypting and sending their data to the data

processor who performs computations on the encrypted

data without having to decrypt it.

When the data is held by multiple data owners, they

can either execute an MPC protocol among themselves

to train the model, or delegate the computation to a set of

data processors that run a MPC protocol. It is the latter

setting that we follow in this paper.

Existing MPC approaches to secure LR differ in the

numerical optimization algorithms used for LR training

and in the cryptographic primitives leveraged [2, 8–10].

�e SPARK protocol [8] uses additive homomorphic

encryption (Paillier cryptosystem) and uses Newton–

Raphson as the numerical optimization algorithm to find

the values of the weights that maximize the log-likeli-

hood. �e SPARK protocol can use the actual logistic

function without approximating it at the cost of the plain-

text data being horizontally partitioned and seen by the

data processors. �e two protocols from [9] rely on the

Newton-Raphson method, both approximate the logis-

tic function, and both use additive secret sharing. �e

first protocol includes the use of Yao’s garbled circuits

to compute the approximation of the logistic function,

while the second protocol uses a Taylor approximation

and Euler’s method. �e PrivLogit method [10] uses Yao’s

garbled circuits and Paillier encryption; their protocol

uses the Newton-Raphson method and a constant Hes-

sian approximation to speed up computation. However,

this protocol relies on the plaintext data being horizon-

tally partitioned and seen by the data processors, which,

like the work in [8], would not align with the iDASH 2019

competition requirements. We also point out a protocol

secure against active adversaries from SecureNN [11] for

computing a ReLu. While we compute a different func-

tion (clipped ReLu), we share a similar idea that using the

most significant bit of an input can tell us the output of

the function.

The work closest to ours is SecureML [2], which was

the fastest protocol for privately training LR models

based on secure MPC prior to our work. SecureML

separates the data owners from the data processors,

and uses mini-batch gradient descent. The main nov-

elty points of SecureML are a clipped ReLu activation

function, a novel truncation protocol, and a combina-

tion of garbled circuits and secret sharing based MPC

in order to obtain a good trade-off between commu-

nication, computation and round complexities. The

SecureML protocol is evaluated on a data set with up

to 5000 features, while—to the best of our knowledge—

the existing runtime evaluation of all other approaches

for MPC based LR training is limited to 400 features

Page 4 of 18De Cock et al. BMC Med Genomics (2021) 14:23

or less [8–10]. Like our solution, the SecureML proto-

col is split into an offline and online phase (the offline

phase can be executed before the inputs are known

and is responsible for generating multiplication tri-

ples). The SecureML solution is based on two servers,

while our solution is based on three servers, namely a

party who pre-computes so-called multiplication tri-

ples in the offline stage, and two parties who actively

compute the final result. If we exclude the preprocess-

ing/offline stage from SecureML and exclude the pre-

distribution of triples in our solution, we are left with

protocols that work in exactly the same setting. We

compare the runtime of both solutions in the “Results”

section, showing that our implementation is substan-

tially faster.

A preliminary version of this work appeared in a

workshop without formal proceedings [4]. This paper

is a substantially longer and detailed description that

includes security proofs, detailed comparison with the

state-of-the-art, and improved running times.

Paper organization

We first discuss below our work as compared to others.

In the “Methods” section, we present preliminary infor-

mation on MPC, describe the secure subprotocols that

are building blocks for our secure LR training protocol,

and finally describe the protocol itself. In the “Results”

section we describe details of our implementation and

runtime results for the overall protocol and micro-

benchmarks for our secure activation function proto-

col. We experimentally compare our solution with the

state-of-the-art SecureML approach [2], demonstrating

substantial runtime improvements. In the “Discussion”

section, we note possible future work to improve and

extend our results, and finally in the “Conclusions” sec-

tion we present our summary remarks.

Methods
Logistic regression

Logistic regression is a common Machine Learning

algorithm for binary classification. �e training data

D consists of training examples d = (xd , td) in which

xd = �xd,1, xd,2, . . . , xd,m� is an m-dimensional numeri-

cal vector, containing the values of m input attributes

for example d, and td ∈ {0, 1} is the ground truth class

label. Each xd,i for i ∈ {1, 2, . . . ,m} is a real number

value.

As illustrated in Fig. 2a, we train a neuron to map

the xd ’s to the corresponding td’s, correctly classify-

ing the examples. �e neuron computes a weighted

sum of the inputs (the values of the weights are

learned during training) and subsequently applies

an activation function to it, to arrive at the output

od = f (w0 · xd,0 + w1 · xd,1 + · · · + wn · xd,n) , which is

interpreted as the probability that the class label is 1.

Note that, as is common in neural network training,

we extend the input attribute vector with a dummy fea-

ture xd,0 which has value 1 for all xd’s. �e traditionally

used activation function for LR is the sigmoid function

σ(z) =
1

1+e−z . Since the sigmoid function σ requires

division and evaluation of an exponential function,

which are expensive operations to perform in MPC, we

approximate it with the activation function ρ from [2],

which is shown in Fig. 2b.

Fig. 2 Architecture. a Neuron; b approximation of sigmoid activation function σ by clipped ReLu ρ

Page 5 of 18De Cock et al. BMC Med Genomics (2021) 14:23

For training, we use the full gradient descent based

algorithm shown in Algorithm 1 to learn the weights for

the LR model. On line 3, we choose not to use early stop-

ping2 because in that case the number of iterations would

depend on the values in the training data, hence leaking

information [9]. Instead, we use a fixed number of itera-

tions during training.

Our scenario

In the scenario considered in this work the data is not

held by a single party that performs all the computation,

but distributed by the data owners to the data processors

in such way that each data processor does not have any

information about the data in the clear. Nevertheless, the

data processors would still like to compute a LR model

without leaking any other information about the data

used for the training. To achieve this goal, we will use

techniques from MPC.

Our setup is illustrated in Fig. 1. We have multiple data

owners who each hold disjoint parts of the data that is

going to be used for the training. �is is the most gen-

eral approach and covers the cases in which the data is

horizontally partitioned (i.e. for each training sample

d = (xd , td) , all the data for d is held by one of the data

owners), vertically partitioned (for each feature, the val-

ues of that feature for all training samples are held by

one of the data owners), and even arbitrary partitions.

�ere are two data processors who collaborate to train

a LR model using secure MPC protocols, and a trusted

initializer (TI) that predistributes correlated randomness

to the data processors in order to make the MPC compu-

tation more efficient. �e TI is not involved in any other

part of the execution, and does not learn any data from

the data owners or data processors.

We next present the security model that is used and

several secure building blocks, so that afterwards we can

combine them in order to obtain a secure LR training

protocol.

Security model

�e security model in which we analyze our protocol

is the universal composability (UC) framework [12] as

it provides the strongest security and composability

guarantees and is the gold standard for analyzing cryp-

tographic protocols nowadays. Here we will only give a

short overview of the UC framework (for the specific case

of two-party protocols), and refer interested readers to

the book of Cramer et al. [13] for a detailed explanation.

�e main advantage of the UC framework is that the

UC composition theorem guarantees that any protocol

proven UC-secure can also be securely composed with

other copies of itself and of other protocols (even with

arbitrarily concurrent executions) while preserving its

security. Such guarantee is very useful since it allows the

modular design of complex protocols, and is a necessity

for protocols executing in complex environments such as

the Internet.

�e UC framework first considers a real world scenario

in which the two protocol participants (the data pro-

cessors from Fig. 1, henceforth denoted Alice and Bob)

interact between themselves and with an adversary A and

an environment Z (that captures all activity external to

the single execution of the protocol that is under consid-

eration). �e environment Z gives the inputs and gets the

outputs from Alice and Bob. �e adversary A delivers the

messages exchanged between Alice and Bob (thus mod-

eling an adversarial network scheduling) and can corrupt

one of the participants, in which case he gains the control

over it. In order to define security, an ideal world is also

considered. In this ideal world, an idealized version of the

functionality that the protocol is supposed to perform

is defined. �e ideal functionality F receives the inputs

directly from Alice and Bob, performs the computations

locally following the primitive specification and delivers

the outputs directly to Alice and Bob. A protocol π exe-

cuting in the real world is said to UC-realize functional-

ity F if for every adversary A there exists a simulator S

such that no environment Z can distinguish between: (1)

an execution of the protocol π in the real world with par-

ticipants Alice and Bob, and adversary A ; (2) and an ideal

execution with dummy parties (that only forward inputs/

outputs), F and S.

2 �is is a technique that uses a metric, such as the accuracy on a held-out

validation data set, to check when a model starts to overfit and will then stop

training at that point.

Page 6 of 18De Cock et al. BMC Med Genomics (2021) 14:23

�is work like the vast majority of the privacy-preserv-

ing machine learning protocols in the literature consid-

ers honest-but-curious, static adversaries. In more detail,

the adversary chooses the party that he wants to cor-

rupt before the protocol execution and he also follows

the protocol instructions (but tries to learn additional

information).

Setup assumptions and the trusted initializer model

Secure-two party computations are impossible to achieve

without further assumptions. We consider the trusted

initializer model, in which a trusted initializer function-

ality FD

TI
 pre-distributes correlated randomness to Alice

and Bob. A trusted initializer has been often used to

enable highly efficient solutions both in the context of

privacy-preserving machine learning [14–18] as well as

in other applications, e.g., [19–24].

If a trusted initializer is not desirable, the comput-

ing parties can “emulate” such a trusted party by using

computational assumptions in an offline phase in asso-

ciation with a suitable setup assumption, as done e.g. in

SecureML [2].3 Even with such a different technique to

realize the offline phase, the online phase of our proto-

cols would remain the same. �e novelties of our work

are in the online phase, and can be used in combination

with any standard technique for the offline phase, such

as the TI assumption (as we do in our implementation),

or the computational assumptions made in SecureML.

Our solution for the online phase leads to substantially

better runtimes than SecureML, as we document in the

“Results” section.

Simplifications In our proofs the simulation strategy

is simple and will be described briefly: all the messages

look uniformly random from the recipient’s point of view,

except for the messages that open a secret shared value

to a party, but these ones can be easily simulated using

the output of the respective functionalities. �erefore a

simulator S , having the leverage of being able to simu-

late the trusted initializer functionality FD

TI
 in the ideal

world, can easily perform a perfect simulation of a real

protocol execution; therefore making the real and ideal

worlds indistinguishable for any environment Z . In the

ideal functionalities the messages are public delayed out-

puts, meaning that the simulator is first asked whether

they should be delivered or not (this is due to the mod-

eling that the adversary controls the network scheduling).

�is fact as well as the session identifications are omit-

ted from our functionalities’ descriptions for the sake of

readability.

Secret sharing based secure multi-party computation

Our MPC solution is based on additive secret sharing

over a ring Zq = {0, 1, . . . , q − 1} . When secret sharing

a value x ∈ Zq , Alice and Bob receive shares xA and xB ,

respectively, that are chosen uniformly at random in Zq

with the constraint that xA + xB = x mod q . We denote

the pair of shares by �x�q . All computations are modulo q

and the modular notation is henceforth omitted for con-

ciseness. Note that no information of the secret value x

is revealed to either party holding only one share. �e

secret shared value can be revealed/opened to each party

by combining both shares. Some operations on secret

shared values can be computed locally with no commu-

nication. Let �x�q , �y�q be secret shared values and c be a

constant. Alice and Bob can perform the following opera-

tions locally:

• Addition (z = x + y): Each party locally adds its local

shares of x and y in order to obtain a share of z. �is

will be denoted by �z�q ← �x�q + �y�q.
• Subtraction (z = x − y): Each party locally subtracts

its local share of y from that of x in order to obtain a

share of z. �is will be denoted by �z�q ← �x�q − �y�q
.

• Multiplication by a constant (z = cx): Each party

multiplies its local share of x by c to obtain a share of

z. �is will be denoted by �z�q ← c�x�q
• Addition of a constant (z = x + c): Alice adds c to

her share xA of x to obtain zA , while Bob sets zB = xB .

�is will be denoted by �z�q ← �x�q + c.

The secure multiplication of secret shared values (i.e.,

z = xy) cannot be done locally and involves communi-

cation between Alice and Bob. To obtain an efficient

secure multiplication solution, we use the multiplica-

tion triples technique that was originally proposed by

Beaver [35]. We use a trusted initializer to pre-dis-

tribute the multiplication triples (which are a form of

correlated randomness) to Alice and Bob. We use the

same protocol πDMM for secure (matrix) multiplication

3 Using a setup assumption, like the trusted initializer, in two-party secure

computation protocols is a necessity in order to get UC-security [25, 26].

Other possible setup assumption to achieve UC-security include: a common

reference string [25–27], the availability of a public-key infrastructure [28],

the random oracle model [29, 30], the existence of noisy channels between the

parties [31, 32], and the availability of tamper-proof hardware [33, 34].

Page 7 of 18De Cock et al. BMC Med Genomics (2021) 14:23

of secret shared values as in [17, 36] and denote by πDM

the protocol for the special case of multiplication of

scalars and πIP for the inner product. As shown in [17]

the protocol πDMM (described in Protocol 2) UC-real-

izes the distributed matrix multiplication functionality

FDMM in the trusted initializer model.

Converting to �xed-point representation

Each data owner initially needs to convert their train-

ing data to integers modulo q so that they can be secret

shared. As illustrated in Fig. 3, each feature value x ∈ R

is converted into a fixed point approximation of x using

a two’s complement representation for negative num-

bers. We define this new value as Q(x) ∈ Zq . �is con-

version is shown in Eq. (1):

Specifically, when we convert Q(x) into its bit representa-

tion, we define the first a bits from the right to hold the

fractional part of x, and the next b bits to represent the

non-negative integer part of x, and the most significant

bit (MSB) to represent the sign (positive or negative). We

define � to represent the total number of bits such that

the ring size q is defined as q = 2
� . It is important to

choose a � that is large enough to represent the largest

number x that can be produced during the LR protocol,

and therefore � should be chosen to be at least 2(a + b)

(see Truncation). It is also important to choose a b that is

large enough to represent the maximum possible value of

the integer part of all x’s (this is dependent on the data).

�is conversion and bit representation is shown in Fig. 3.

Truncation

When multiplying numbers that were converted into

a fixed point representation with a fractional bits, the

resulting product will end up with a more bits repre-

senting the fractional part. For example, a fixed point

representation of x and y, for x, y > 0 , is x · 2
a and y · 2

a ,

respectively. �e multiplication of both these terms

results in xy · 2
2a , showing that now 2a bits are repre-

senting the fractional part, which we must scale back

down to xy · 2
a to do any further computations. In our

solution, we use the two-party local truncation pro-

tocol for fixed point representations of real numbers

proposed in [2] that we will refer to as πtrunc . It does

not involve any messages between the two parties, each

party simply performs an operation on its own local

share. �is protocol almost always incurs an error of at

most a bit flip in the least-significant bit. However, with

probability 2a+1−� , where a is the number of fractional

bits, the resulting value is completely random.

When this truncation protocol is performed on

increasingly large data sets (in our case we run over 7

billion secure multiplications), the probability of an

erroneous truncation becomes a real issue—an issue

not significant in previous implementations. �ere

are two phases in which truncation is performed: (1)

(1)Q(x) =

{

2
� −

⌊

2
a · |x|

⌋

if x < 0
⌊

2
a · x

⌋

if x ≥ 0

Page 8 of 18De Cock et al. BMC Med Genomics (2021) 14:23

when computing the dot product (inner product) of

the current weights vector with a training example in

line 7 of Algorithm 1, and (2) when the weight differ-

entials (�wi) are adjusted in line 9 of Algorithm 1. If a

truncation error occurs during (1), the resulting erro-

neous value will be pushed into a reasonable range by

the activation function and incur only a minor error for

that round. If the error occurs during (2), an element

of the weights vector will be updated to a completely

random ring element and recovery from this error

will be impossible. To mitigate this in experiments,

we make use of 10–12 bits of fractional precision with

a ring size of 64 bits, making the probability of failure
1

253
< p <

1

251
 . �e number of truncations that need to

be performed is also reduced in our implementation

by waiting to perform truncation until it is absolutely

required. For instance, instead of truncating each result

of multiplication between an attribute and its corre-

sponding weight, a single truncation can be performed

at the end of the entire dot product.

Additional error is incurred on the accuracy by

the fixed point representation itself. �rough cross-

validation with an in-the-clear implementation, we

determined that 12 bits of fractional precision provide

enough accuracy to make the output accuracy indistin-

guishable between the secure version and the plaintext

version.

Conversion of sharings

For efficiency reasons, in some of the steps for securely

computing the activation function we use secret shar-

ings over Z2 , while in others we use secret sharings over

Z
2� . �erefore we need to be able to convert between

the two types of secret sharings.

We use the two-party protocol from [17] for perform-

ing the bit-decomposition of a secret-shared value �x�
2�

to shares �xi�2 , where x� · · · x1 is the binary representa-

tion of x. It works like the ripple carry adder arithmetic

circuit based on the insight that the difference between

the sum of the two additive shares held by the parties

and an “XOR-sharing” of that sum is the carry vec-

tor. As proven in [17], the bit-decomposition protocol

Fig. 3 Fixed-point representation. Register map of fixed-point representation of numbers shared over Z
2� with examples

Page 9 of 18De Cock et al. BMC Med Genomics (2021) 14:23

πdecomp (described in Protocol 3) UC-realizes the bit-

decomposition functionality Fdecomp.

In our implementation we use a highly parallelized

and optimized version of the bit-decomposition pro-

tocol πdecomp in order to improve the communication

efficiency of the overall solution. �e optimizations are

described in the Appendix.

�e opposite of a secure bit-decomposition is con-

verting from bit sharing to an additive sharing over a

larger ring. In our secure activation function protocol,

we require securely converting a bit sharing to an addi-

tive sharing in 2� . �is is done using the protocol π
2to2�

from [18] (described in Protocol 4) that UC-realizes the

secret sharing conversion functionality F
2to2�.

Page 10 of 18De Cock et al. BMC Med Genomics (2021) 14:23

Secure activation function

We propose a new protocol that evaluates ρ from Fig. 2b

directly over additive shares and does not require full

secure comparisons, which would have been more expen-

sive. Instead of doing straightforward comparisons

between z, 0.5 and −0.5 , we derive the result through

checking two things: (i) whether z′
= z + 1/2 is positive or

negative; (ii) whether z′
≥ 1 . Both checks can be performed

without using a full comparison protocol.

When z′ is bit decomposed, the most significant bit is 0 if

z′ is non-negative and 1 if z′ is negative. In fact, if out of the

� bits, the a lowest bits are used to represent the fractional

component and the b next bits are used to represent the

integer component, then the remaining � − a − b bits all

have the same value as the most significant bit. We will use

this fact in order to optimize the protocol by only perform-

ing a partial bit-decomposition and deducting whether z′ is

positive or negative from the (a + b + 1)-th bit.

In the case that z′ is negative, the output of ρ is 0. But, if

z′ is positive, we need to determine whether z′
≥ 1 in order

to know if the output of ρ should be fixed to 1 or to z′ . A

positive z′ is such that z′
≥ 1 if and only if at least one of the

b bits corresponding to the integer component of z′ repre-

sentation is equal to 1, therefore we only need to analyze

those b bits to determine if z′
≥ 1.

Our secure protocol πρ is described in Protocol 5. �e

AND operation corresponds to multiplications in Z2 . By

the application of De Morgan’s law, the OR operation is

performed using the AND and negation operations. �e

successive multiplications can be optimized to only take

a logarithmic number of rounds by using well-known

techniques.

�e activation function protocol πρ UC-realizes the

activation function functionality Fρ . �e correctness can

be checked by inspecting the three possible cases: (i) if

z > 1/2 , then pos = 1 and geq1 = 1 (since at least one of

the bits representing the integer component of z + 1/2 will

have a value 1). �e output is thus �2a�
2� (the fixed-point

representation of 1); if −1/2 ≤ z < 1/2 , then pos = 1 and

geq1 = 0 , and therefore the output will be �z′�
2� , which

is the fixed-point representation of z + 1/2 ; if z < −1/2 ,

then pos = 0 and the output will be a secret sharing repre-

senting zero as expected. �e security follows trivially from

the UC-security of the building blocks used and the fact

that no secret sharing is opened.
Secure logistic regression training

We now present our secure LR training protocol that

uses a combination of the previously mentioned building

blocks.

Notice that in the full gradient descent technique

described in Algorithm 1, the only operations that cannot

be performed fully locally by the data processors, i.e. on

their own local shares, are:

Page 11 of 18De Cock et al. BMC Med Genomics (2021) 14:23

• �e computation of the inner product in line 7

• �e activation function ρ in line 7

• �e multiplication of td − od with dd,i in line 9

Our secure LR training protocol πLR−Training (described

in Protocol 6) shows how the secure building blocks

described before can be used to securely compute

these operations. �e inner product is securely com-

puted using πIP on line 5, and since this involves mul-

tiplication on numbers that are scaled to a fixed-point

representation, we truncate the result using πtrunc . �e

activation function is securely computed using πρ on

line 6. �e multiplication of td − od with xd,i is done

using secure multiplication with batching on line 11.

Since this also involves multiplication on numbers that

are scaled, the result is truncated using πtrunc in line 14.

A slight difference between the full gradient descent

technique described in Algorithm 1 and our protocol

πLR−Training , is that instead of updating �wi after every

evaluation of the activation function, we batch together

all activation function evaluations before computing

the �wi . Since the activation function requires a bit-

decomposition of the input, we can now make use of

the efficient batch bit-decomposition protocol batch-

πdecompOPT (see Appendix) within the activation func-

tion protocol πρ.

�e LR training protocol πLR−Training UC-realizes the

logistic regression training functionality FLR−Training .

�e correctness is trivial and the security follows

straightforwardly from the UC-security of the building

blocks used in πLR−Training.
�e following steps describe end-to-end how to

securely train a LR classifier:

1 �e TI sends the correlated randomness needed for

efficient secure multiplication to the data processors.

Note that while our current implementation has the

TI continuously sending the correlated randomness,

it is possible for the TI to send all correlated random-

ness as the first step, and therefore can leave and not

be involved during the rest of the protocol.

2 Each data owner converts the values in the set of

training examples D that it holds to a fixed-point rep-

resentation as described in Eq. 1. Each value is then

split into two shares, which are then sent to the data

processor 1 and data processor 2 respectively.

3 Each data processor receives the shares of data from

the data owners. �ey now have secret sharings

(�xd�, �td�) of the set of training examples D. �e

learning rate η and number of iterations niter are pre-

determined and public to both data processors.

4 �e data processors collaborate to train the LR

model. �ey both follow the secure LR training pro-

tocol πLR−Training.

Page 12 of 18De Cock et al. BMC Med Genomics (2021) 14:23

5 At the end of the protocol, each data processor will

hold shares of the model’s weights �wi� . Each data

processor sends their shares to all of the data own-

ers, who can then combine the shares to learn the

weights of the LR model.

Cryptographic engineering optimizations

Sockets and threading

A single iteration of the LR protocol is highly paralleliz-

able in three distinct segments: (1) computing the dot

products between the current weights and the data set,

(2) computing the activation of each dot product result,

and (3) computing the gradient and updating the weights.

In each of these phases, a large number of computations

are required, but none have dependencies on others. We

take advantage of this by completing each of these phases

with thread pools that can be configured for the machine

running the protocol. We implemented the proposed

protocols in Rust; with Rust’s ownership concept, it is

possible to yield results from threads without message

passing or reallocation. Hence, the code is constructed

to transfer ownership of results at each phase back to the

main thread to avoid as much inter-process communica-

tion as possible. Additionally, all threads complete socket

communications by computing all intermediate results

directly in the socket buffer by implementing the buffer

as a union of byte array and unsigned 64-bit integer array.

�is buffer is allocated on the stack by each thread which

circumvents the need for a shared memory block while

also avoiding slower heap memory. �e implementation

of this configuration reduced running times significantly

based on our trials.

Further, all modular arithmetic operations are handled

implicitly with the Rust API’s Wrapping struct which tells

the ALU to ignore integer overflow. As long as the size

of the ring over which the MPC protocols are performed

is selected to align with a provided primitive bit width

(i.e. 8, 16, 32, 64, 128) it is possible to omit computing the

remainder of arithmetic with this construction.

Results
We implemented the protocols from the “Methods” sec-

tion in Rust4 and experimentally evaluated them on the

BC-TCGA and GSE2034 data sets of the iDASH 2019

competition. Both data sets contain gene expression data

from breast cancer patients which are normal tissue/non-

recurrence samples (negative) or breast cancer tissue/

recurrence tumor samples (positive) [37].

Table 1 contains accuracy results obtained with LR

with sigmoid activation function, using the implemen-

tation in the sklearn library [38], and default parameter

settings. �ese models were not trained in a privacy-pre-

serving manner, and the results in Table 1 are included

merely for comparison purposes. As Table 1 shows, reg-

ularization with ridge or lasso regression did not have a

significant impact on the accuracies, which is the reason

why we did not include regularization in our privacy-pre-

serving training protocols for the iDASH competition. In

the “Discussion” section we provide information on how

Protocol 6 can be expanded to include regularization as

well.

�e results obtained with our privacy-preserving pro-

tocols are given in Table 2. Using Protocol 6, we trained

LR models with a clipped ReLu activation function on

both data sets with a learning rate η = 0.001 . We use

a fixed number of iterations for each data set: 10 itera-

tions for the BC-TCGA data set and 223 iterations for

the GSE2034 data set. �e accuracy of the resulting mod-

els, evaluated with fivefold cross-validation, is presented

in Table 2, along with the average runtime for training

those models. It is important to note that these are the

same accuracies that are obtained when training LR with

a clipped ReLu activation function in the clear, i.e. there

is no accuracy loss in the secure version. Comparing the

accuracies in Table 1 and 2, one observes that for the BC-

TCGA data set there is no significant difference between

the use of a sigmoid activation function (Table 1)and the

clipped ReLu activation function (Table 2). While the dif-

ference in accuracy on the second data set is significant,

we decided to proceed with clipped ReLu anyway for

the iDASH competition as the rules stipulated that “this

competition does not require for the best performance

model”. Instead, the criteria were privacy (no informa-

tion leakage permitted), efficiency (short runtimes), and

reasonable accuracy. �is is a reflection of real-world

applications of privacy-preserving machine learning,

where an acceptable balance among privacy, accuracy,

and efficiency is obtained by choosing primitives (such as

clipped ReLu) that are MPC-friendly.

Table 1 Accuracy results obtained with �vefold cross-

validation with LR, using the traditional sigmoid

activation function and cross-entropy loss

Models were trained for 100 iterations. All computations are done in-the-clear,

i.e. without use of the privacy-preserving protocols proposed in this paper

no regularization
(%)

Ridge
regression (%)

Lasso
regression
(%)

BC-TCGA 99.57 99.57 99.57

GSE2034 68.83 68.84 68.83

4 https ://bitbu cket.org/uwtpp ml/idash 2019.

https://bitbucket.org/uwtppml/idash2019

Page 13 of 18De Cock et al. BMC Med Genomics (2021) 14:23

We used integer precision b = 15 , fractional preci-

sion a = 12 and ring size � = 64 (these choices were

made based on experiments in the clear as mentioned in

the previous section). We ran the experiments on AWS

c5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory.

Each of the parties ran on separate machines (connected

with a Gigabit Ethernet network), which means that the

results in Table 2 cover communication time in addition

to computation time. �e results show that our imple-

mentation allows to securely train models with state-of-

the-art accuracy [37] on the BC-TCGA and GSE2034

data sets within about 2.52 s and 26.90 s respectively.

A previous version of this implementation was submit-

ted to the iDASH 2019 Track 4 competition. 9 of the 67

teams who entered Track 4 completed the challenge. Our

solution was one of the 3 solutions who tied for the first

place. Our implementation trained on all of the features

for both data sets (no feature engineering is done), and

generated a model that gave the highest accuracy, with

runtimes that were well within the competition’s limit of

24 h. �e implementation presented in the current work

is further optimized in relation to the iDASH version and

achieves far better runtimes.

We note that while SecureML differs from our work in

their setup and cryptographic primitives, it shares many

similarities to ours and reports a fast runtime such that

we find it valuable as a standard to compare to. While

SecureML does not originally use a TI to predistribute

the multiplication triples, it would be easy to adapt their

result to use a TI for that purpose. �erefore, in order to

have a fair comparison, we compare our protocol runt-

ime against only their online runtime (thus excluding

their offline runtime). We evaluated our implementation’s

runtime against SecureML’s implementation by running

their implementation on the same AWS machines using

the same data sets (see Table 3 for runtime comparisons).

For both data sets, our online phase runs faster than

SecureML’s online phase which trains BC-TCGA in 12.73

seconds and GSE2034 in 49.95 s.

We then compare online microbenchmark computa-

tion times. For the computation of the activation func-

tion, our run of the SecureML code reported around

0.057–0.059 ms for 1 activation, while our implemen-

tation completes 1024 evaluations in around 30 ms

(0.029 ms per activation function). �is makes our secure

activation function implementation nearly twice as fast

as SecureML’s. Additionally, it eliminates the overhead

of switching between Yao gates and additive secret shar-

ing. Furthermore, our activation function runs more effi-

ciently (per evaluation) the more evaluations of it need to

be computed, due to the design of the batch bit-decom-

position protocol. �is is illustrated in Table 4 where the

calculated runtime per evaluation (runtime divided by

number of evaluations) decreases as the number of eval-

uations increase.

Discussion
Our runtime experiments on securely training a LR

model show that it is feasible to train on data that

includes a large number of attributes, as is common

with genomic data. Given the high dimensionality of the

genomic data, an interesting direction for future work

would be the design of MPC protocols for privacy-pre-

serving feature reduction. If any kind of feature reduction

is used, it would result in a decrease in secure training

runtime with a possibility for a slight decrease in the

accuracy. We demonstrate this by choosing (in the clear)

54 features of the BC-TCGA data set that were part of the

76-gene signature described in [39]. Training on these 54

Table 2 Accuracy and training runtime for LR like models with clipped ReLu activation function, and trained in a privacy-

preserving manner using the protocols proposed in this paper

features # pos. samples # neg. samples # of iterations Fivefold CV
accuracy (%)

Avg. runtime (s)

BC-TCGA 17,814 422 48 10 99.58 2.52

GSE2034 12,634 142 83 223 64.82 26.90

Table 3 Runtime comparisons between SecureML and our

work

BC-TCGA
training
(online) (s)

GSE2034
training
(online) (s)

Activation function
(one evaluation)
(ms)

Our work 2.52 26.90 0.030

SecureML 12.73 49.95 0.057

Table 4 Activation function runtimes

evaluations Avg. runtime (ms) Runtime per activation
(runtime/#eval) (ms)

256 9 0.035

512 16 0.031

1024 30 0.029

2048 59 0.028

Page 14 of 18De Cock et al. BMC Med Genomics (2021) 14:23

features, we get a fivefold cross-validation accuracy of

98.93% (training on all features produced 99.58%), and

the average secure training time (of three runs) is 0.51 s,

which is about a 2 s decrease from training on all 17,814

features. �e genes in the GSE2034 data set are not

labeled in a way where we can map them to the 76-gene

signature to test the accuracy for a reduced number of

features, but we test the runtime of training on 76 attrib-

utes and we get an average of 6.71 s, which is about a 20 s

decrease from training on all 12,634 features. �is shows

that if feature reduction can be performed, runtimes can

be improved while still being able to produce an accurate

trained model.

While regularization did not appear to have a signifi-

cant effect on the data sets of the iDASH2019 Track 4

competition (see Table 1), the question of how to perform

regularization in a privacy-preserving manner with MPC

is still relevant and interesting. Protocol 6 for secure LR

training can be adapted to include ridge regression by

changing the weight update rules (Line 12 of Protocol 6)

to include a term that depends linearly on the value of

the weights. �is means that only secure additions and

secure multiplications with a constant are needed, which

are relatively inexpensive to perform in MPC and would

not significantly change the runtimes. On the other hand,

the penalty introduced in lasso regression depends on the

absolute value of the weights. Established techniques for

learning the parameters of a lasso model, such as coordi-

nate descent, require a secure comparison—an expensive

operation—per weight per iteration. �is would drasti-

cally affect the runtime of our protocols. �erefore, for

the specific case of our protocols, we would suggest the

use of the much MPC-friendlier ridge regression.

Our main contribution is the proposal of the fast-

est implementation and protocol for privacy-preserving

training of LR models. Our novelty points are the new

protocol for privately evaluating the activation function

ρ which can be computed using only additive shares and

MPC protocols, without using a protocol for secure com-

parison. We use ρ as an approximation of the sigmoid

function σ since that is what is traditionally used in LR

training, but σ is also used as an activation function in

neural networks. �erefore, our fast secure protocol for

computing ρ can also result in faster neural network

training. While training neural networks are out of the

scope of this paper, we note that our results can be appli-

cable to those types of ML models as well.

Conclusions
In this paper, we have described a novel protocol for

implementing secure training of LR over distributed

parties using MPC. Our protocol and implementa-

tion present several novel points and optimizations

compared to existing work, including: (1) a novel pro-

tocol for computing the activation function that avoids

the use of full-fledged secure comparison protocols; (2)

a series of cryptographic engineering optimizations to

improve the performance.

With our implementation, we can train on the BC-

TCGA data set with 17,814 features and 375 samples

with 10 iterations in 2.52 s, and we can train on the

GSE2034 data set with 12,634 features and 179 samples

with 223 iterations in 26.90 s. A less optimized version

of this implementation won first place at the iDASH

2019 Track 4 competition when considering accuracy

and efficiency. Our solution is particularly efficient for

LANs where we can perform 1024 secure computa-

tions of the activation function in about 30 ms. To the

best of our knowledge, ours is the fastest protocol for

privately training logistic regression models over local

area networks.

While the scenario where computing parties com-

municate over a local area network is a relevant one, it

is also important to develop tailored solutions for the

case where the parties are potentially connected over the

internet and across different countries. �e solutions for

each of these cases will be substantially different depend-

ing on what kind of delay is more important in the net-

work: propagation, transmission, processing, or queuing

delays. We expect that round and communication com-

plexities would need to be traded, depending on the com-

munication settings’ specifics. We leave it as a future

extension of our work to optimize it for more general

communication scenarios.

Abbreviations

ML: Machine learning; MPC: Multi-party computation; LR: Logistic regression;

UC: Universal composability; MSB: Most significant bit; TI: Trusted initializer;

LAN: Local area network.

Acknowledgements

The authors want to thank P. Mohassel for making the SecureML code avail-

able that was used for the experimental comparison in the “Results” section.

Authors’ contributions

All authors worked together on the overall design of the solution in the clear

and in private. MDC proposed the use of LR and derived the gradient descent

algorithm for minimizing the sum of squared errors with a neuron with a

clipped ReLu activation function. DR designed the new cryptographic proto-

cols for secure batch bit-decomposition and secure activation function. DR

implemented the entire solution in the RUST programming language. DR was

responsible for running the experiments of our work, and AT was responsible

for running the experiments on SecureML. RD verified and wrote the func-

tionality and security proofs of our protocols. JS provided in-the-clear model

testing, and worked on the submission details to the iDASH competition. All

authors discussed results and wrote the manuscript together. All authors read

and approved the final manuscript.

Funding

Rafael Dowsley was supported by the BIU Center for Research in Applied

Cryptography and Cyber Security in conjunction with the Israel National Cyber

Bureau in the Prime Minister’s Office.

Page 15 of 18De Cock et al. BMC Med Genomics (2021) 14:23

Availability of data and materials

The genomic data set was available upon request during the iDASH 2019

competition. https ://iu.app.box.com/s/6pbyn xgscy xl7fa cstig b8w6j c17o9 9z

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details
1 School of Engineering and Technology, University of Washington Tacoma,

Tacoma, WA 98402, USA. 2 Faculty of Information Technology, Monash Univer-

sity, Clayton 3800, Australia.

Appendix
Optimization of πdecomp

Overview and previous work

�e functionality Fdecomp (described in “Methods” sec-

tion) is easily realized as an adder circuit that takes as

inputs each bit of the additive shares of a secret sharing

�x�
2� in a large ring Z

2� and outputs an “XOR-sharing”

of the secret �x1�2, . . . , �x��2 . First, each party regards

its share of �x�
2� , denoted xi , as an XOR-shared secret

�xi,1�2, . . . , �xi,��2 and passes it to the adder circuit. �e

adder circuit then computes the carry vector which

accounts for the rollover of binary addition. Adding this

vector to all bitwise shares �x1,j�2, �x2,j�2 resolves the dif-

ference between �x1,1� · · · �x1,�� ⊕ �x2,1� · · · �x2,�� and the

bit-decomposed secret x.

Naively, this carry vector can be obtained with lin-

ear communication complexity by means of ripple carry

addition, as is described in Protocol 3. But, it is possible

to achieve logarithmic communication complexity and

even constant complexity [40] (though with worse per-

formance than the logarithmic version for all reasonable

bit lengths).

�e highest performing realization of Fdecomp for real-

istic bit lengths is based on a speculative adder circuit

[17] in which at each layer the next set of carry bits are

computed twice; once for each case that the previous

carry bit had been 0 and 1. �is protocol has ⌈log(�)⌉ + 2

rounds of communication and requires a total data trans-

fer of 4�⌈log(�)⌉ + 6� bits.

We propose a new, highly optimised protocol based on

a matrix composition network that reduces the number

of communication rounds by 1 (or 2, in special cases)

and requires a small fraction of the aforementioned data

transfer cost.

Matrix composition network

To sum the binary numbers a and b, the i-th bit is given

by si = ai ⊕ bi ⊕ ci−1 , where ci = aibi ⊕ aici−1 ⊕ bici−1.

In an alternate view, the carry can be seen to depend on

two signals which in turn depend on a and b. Generate

(gi = aibi) creates a new carry bit at the i-th position,

and Propogate (pi = ai ⊕ bi) perpetuates the previous

carry bit, if it exists. In this representation, si = pi ⊕ ci−1

and ci = gi + pici−1 . �is sum-of-products form of the

expression for ci lends itself to a matrix representation

When matrices in the form of Mi are composed, the

lower entries remain unchanged. �is implies that

�erefore, to compute all ci , it is sufficient to compute the

set of all matrix compositions

Note that it is not necessary to compute the �-th carry

bit because s� depends on c�−1 . Treating the carry-in to

the 1st bit as the vector (0, 1), all ci can be derived implic-

itly from the upper right-hand entry of M1.i (here, M1,i

denotes the matrix composed of all matrices M1 through

Mi , consecutively).

From the MPC perspective, this matrix composition

requires two Z2 multiplications: pi+1pi and pi+1gi as seen

in the equation below. �e OR operation (+), which usu-

ally requires multiplication in MPC, is reduced to XOR

based on the observation that pi+1 and gi+1 cannot both

be true for a given i.

�e entire set of matrix compositions can be realized in

a logarithmic depth network by, at the i-th layer, com-

puting all compositions M1.j that require fewer than 2i−1

compositions. To set up conditions to allow us to mini-

mize the total data transfer, the constraint is added that

each M1.j should be the composition of the “largest”

matrix from the previous layer, M1.2i−2 , with the remain-

der M2i−2+1.j . If M2i−2+1.j doesn’t exist in the network, it

is added recursively following the same set of constraints.

Figure 4 shows an example with � = 17 . �is network

is hereafter referred to as ComposeNetp where p is the

highest order bit to decompose. �e protocol description

[

ci
1

]

=

[

pi gi
0 1

][

ci−1

1

]

= Mi

[

ci−1

1

]

.

[

ci
1

]

=

[

pi gi
0 1

][

pi−1 gi−1

0 1

][

ci−2

1

]

= MiMi−1

[

ci−2

1

]

.

i
�

j=1

Mj

�

�

�

�

1 ≤ i < �

.

[

pi+1 gi+1

0 1

][

pi gi
0 1

]

=

[

pi+1pi pi+1gi + gi+1

0 1

]

https://iu.app.box.com/s/6pbynxgscyxl7facstigb8w6jc17o99z

Page 16 of 18De Cock et al. BMC Med Genomics (2021) 14:23

that follows considers only the case where p = � , though

the protocol functions the same for any p ≤ � . For

instance, in Protocol 3, when using πdecomp to find the

MSB of a secret, it is sufficient to set p = a + b + 1.

E�ciency discussion

�e setup phase prior to the call to ComposeNet�

requires � multiplications over Z2 to compute all �gj� . �is

corresponds to one communication round and 2� bits of

data transfer.

A call to ComposeNet� has communication com-

plexity corresponding to the depth of the network,

⌈log(� − 1)⌉ , and �
2
 multiplications over Z2 per layer, with

fewer on the final layer when � − 1 is not a power of 2.

However, due to the fact that the matrices at each node of

ComposeNet� are reused extensively and known to not

change value, the Beaver Triples used to mask the matri-

ces can be desgined to contain redundancies to minimise

the data transfer at each layer [2]. By re-using correlated

randomness where information leakage is not possible,

only �
2

− (2i−i
− 1) masks need to be transferred at depth

i, for i > 0 . At depth 0, there are � masks; one for each

matrix. Each matrix mask is 2 bits (one for each of the

Propogate and Generate bits), so the total data transfer

is 2� + 2
∑⌈log(�−1)⌉−1

i=1
(�

2
+ 1 − 2

i−1).

�e recombination phase after ComposeNet� is com-

puted has only local computations and thus contributes

nothing to the complexity.

Combining all phases, we see that πdecompOPT has a

communication cost of ⌈log(� − 1)⌉ + 1 and a total data

transfer cost of 4� + 2
∑⌈log(�−1)⌉−1

i=1 (�

2 + 1 − 2i−1) bits.

Comparing with the speculative adder’s performance, the

number of communication rounds is decreased by 1 in all

cases and 2 in the case that � − 1 is a power of 2. �e total

data transfer cost has roughly 1
3
 the data transfer rate of

the previous work at � = 8, 16 . For higher all bit lengths,

the ratio quickly converges near 1
4
.

Implementation and batching

ComposeNet� can be implemented efficiently as a set

of index pairs that correspond to the positions of the

Propogate and Generate bits that need to be combined

at each layer. Once per layer, all products pi+1pi , pi+1gi

can be computed in a single call to πDM by taking the

Fig. 4 ComposeNet� for � = 17 . Computes the set of all matrix compositions M1 ,M1.2 ,M1.3 , . . . ,M1.(�−1) . The notation Mi.j means “the composition

of all matrices i through j.” The greyed nodes are only used for intermediate computations and the white nodes are part of the solution set

Page 17 of 18De Cock et al. BMC Med Genomics (2021) 14:23

bitwise product between the concatenations pi+1||pi+1 ,

pi||gi and splitting the result.

Extending to the case that many values need to be bit

decomposed at the same time (as in Protocol 6), a vector

of inputs can be decomposed “in parallel” by taking verti-

cal slices over the Generate and Propogate bits of each

element and re-packing them into a transposed form. In

this way, each layer of ComposeNet� can operate on a

vector of matrices (represented as two lists of bit slices)

to produce a vector of matrix compositions. �is method

has no effect on the number of rounds of communication

and the total data transfer scales linearly with the length

of the input vector.

Received: 2 March 2020 Accepted: 30 December 2020

References

 1. Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving

genomic diagnoses without revealing patient genomes. Science.

2017;357(6352):692–5.

 2. Mohassel P, Zhang Y. SecureML: a system for scalable privacy-preserving

machine learning. In: 2017 IEEE symposium on security and privacy (SP);

2017; p. 19–38.

 3. Schoppmann P, Gascón A, Raykova M, Pinkas B. Make some room for the

zeros: data sparsity in secure distributed machine learning. In: Proceed-

ings of the 2019 ACM SIGSAC conference on computer and communica-

tions security; 2019; p. 1335–50.

 4. De Cock M, Dowsley R, Nascimento A, Railsback D, Shen J, Todoki A. Fast

secure logistic regression for high dimensional gene data. In: Privacy in

machine learning (PriML2019). Workshop at NeurIPS; 2019; p. 1–7.

 5. Bonte C, Vercauteren F. Privacy-preserving logistic regression training.

BMC Med Genomics. 2018;11(4):86.

 6. Chen H, Gilad-Bachrach R, Han K, Huang Z, Jalali A, Laine K, et al. Logistic

regression over encrypted data from fully homomorphic encryption.

BMC Med Genomics. 2018;11(4):81.

 7. Kim A, Song Y, Kim M, Lee K, Cheon JH. Logistic regression model training

based on the approximate homomorphic encryption. BMC Med Genom-

ics. 2018;11(4):83.

 8. El Emam K, Samet S, Arbuckle L, Tamblyn R, Earle C, Kantarcioglu M. A

secure distributed logistic regression protocol for the detection of rare

adverse drug events. J Am Med Inform Assoc. 2012;20(3):453–61.

 9. Nardi Y, Fienberg SE, Hall RJ. Achieving both valid and secure logistic

regression analysis on aggregated data from different private sources. J

Priv Confid. 2012; 4(1).

 10. Xie W, Wang Y, Boker SM, Brown DE. Privlogit: efficient privacy-preserving

logistic regression by tailoring numerical optimizers. arXiv preprint arXiv

:16110 1170. 2016; p. 1–25.

 11. Wagh S, Gupta D, Chandran N. SecureNN: 3-party secure computation for

neural network training. Proc Priv Enhanc Technol. 2019;1:24.

 12. Canetti R. Universally composable security: a new paradigm for cryp-

tographic protocols. In: 42nd Annual symposium on foundations of

computer science, FOCS 2001, 14–17 Oct 2001, Las Vegas, Nevada, USA.

IEEE Computer Society; 2001; p. 136–45.

 13. Cramer R, Damgård I, Nielsen JB. Secure multiparty computation and

secret sharing. Cambridge: Cambridge University Press; 2015.

 14. De Cock M, Dowsley R, Nascimento ACA, Newman SC. Fast, privacy pre-

serving linear regression over distributed datasets based on pre-distrib-

uted data. In: 8th ACM workshop on artificial intelligence and security

(AISec); 2015. p. 3–14.

 15. David B, Dowsley R, Katti R, Nascimento AC. Efficient uncondition-

ally secure comparison and privacy preserving machine learning

classification protocols. In: International conference on provable security.

Springer; 2015. p. 354–67.

 16. Fritchman K, Saminathan K, Dowsley R, Hughes T, De Cock M, Nascimento

A, et al. Privacy-Preserving scoring of tree ensembles: a novel framework

for AI in healthcare. In: Proceedings of 2018 IEEE international conference

on big data; 2018. p. 2412–21.

 17. De Cock M, Dowsley R, Horst C, Katti R, Nascimento A, Poon WS, et al. Effi-

cient and private scoring of decision trees, support vector machines and

logistic regression models based on pre-computation. IEEE Trans Depend

Secure Comput. 2019;16(2):217–30.

 18. Reich D, Todoki A, Dowsley R, De Cock M, Nascimento ACA. Privacy-Pre-

serving Classification of Personal Text Messages with Secure Multi-Party

Computation. In: Wallach HM, Larochelle H, Beygelzimer A, d’Alché-Buc

F, Fox EA, Garnett R, editors. Advances in Neural Information Processing

Systems 32 (NeurIPS); 2019. p. 3752–64.

 19. Rivest RL. Unconditionally secure commitment and oblivious transfer

schemes using private channels and a trusted initializer. 1999. http://

peopl e.csail .mit.edu/rives t/Rives t-commi tment .pdf.

 20. Dowsley R, Van De Graaf J, Marques D, Nascimento AC. A two-party

protocol with trusted initializer for computing the inner product. In:

International workshop on information security applications. Springer;

2010. p. 337–50.

 21. Dowsley R, Müller-Quade J, Otsuka A, Hanaoka G, Imai H, Nasci-

mento ACA. Universally composable and statistically secure verifiable

secret sharing scheme based on pre-distributed data. IEICE Trans.

2011;94–A(2):725–34.

 22. Ishai Y, Kushilevitz E, Meldgaard S, Orlandi C, Paskin-Cherniavsky A. On

the power of correlated randomness in secure computation. In: Theory of

cryptography. Springer; 2013; p. 600–20.

 23. Tonicelli R, Nascimento ACA, Dowsley R, Müller-Quade J, Imai H, Hanaoka

G, et al. Information-theoretically secure oblivious polynomial evaluation

in the commodity-based model. Int J Inf Secur. 2015;14(1):73–84.

 24. David B, Dowsley R, van de Graaf J, Marques D, Nascimento ACA, Pinto

ACB. Unconditionally secure, universally composable privacy preserving

linear algebra. IEEE Trans Inf Forensics Secur. 2016;11(1):59–73.

 25. Canetti R, Fischlin M. Universally composable commitments. In: Kilian J,

editor. Advances in cryptology—CRYPTO 2001, 21st annual international

cryptology conference, Santa Barbara, CA, USA, 19–23 August 2001, Pro-

ceedings. vol. 2139 of Lecture notes in computer science. Springer; 2001.

p. 19–40.

 26. Canetti R, Lindell Y, Ostrovsky R, Sahai A. Universally composable two-

party and multi-party secure computation. In: Reif JH, editor. Proceedings

on 34th annual ACM symposium on theory of computing, 19–21 May

2002, Montréal, Québec, Canada; 2002. p. 494–503.

 27. Peikert C, Vaikuntanathan V, Waters B. A framework for efficient and

composable oblivious transfer. In: Wagner DA, editor. Advances in

cryptology—CRYPTO 2008, 28th annual international cryptology confer-

ence, Santa Barbara, CA, USA, 17–21 Aug 2008. Proceedings. vol. 5157 of

Lecture notes in computer science. Springer; 2008. p. 554–71.

 28. Barak B, Canetti R, Nielsen JB, Pass R. Universally composable protocols

with relaxed set-up assumptions. In: 45th Symposium on foundations of

computer science (FOCS 2004), 17–19 Oct 2004, Rome, Italy, Proceedings.

IEEE Computer Society; 2004. p. 186–195.

 29. Hofheinz D, Müller-Quade J. Universally composable commitments using

random oracles. In: Naor M, editor. Theory of cryptography, first theory of

cryptography conference, TCC 2004, Cambridge, MA, USA, 19–21 Febru-

ary 2004, proceedings. vol. 2951 of Lecture notes in computer science.

Springer; 2004. p. 58–76.

 30. Barreto PSLM, David B, Dowsley R, Morozov K, Nascimento ACA. A frame-

work for efficient adaptively secure composable oblivious transfer in the

ROM. IACR Cryptol ePrint Arch. 2017;2017:993.

 31. Dowsley R, Müller-Quade J, Nascimento ACA. On the possibility of univer-

sally composable commitments based on noisy channels. In: SBSEG 2008.

Gramado, Brazil; 2008. p. 103–14.

 32. Dowsley R, van de Graaf J, Müller-Quade J, Nascimento ACA. On the

composability of statistically secure bit commitments. J Internet Technol.

2013;14(3):509–16.

 33. Katz J. Universally composable multi-party computation using tamper-

proof hardware. In: Naor M, editor. Advances in cryptology—EUROCRYPT

http://arxiv.org/abs/161101170
http://arxiv.org/abs/161101170
http://people.csail.mit.edu/rivest/Rivest-commitment.pdf
http://people.csail.mit.edu/rivest/Rivest-commitment.pdf

Page 18 of 18De Cock et al. BMC Med Genomics (2021) 14:23

•

fast, convenient online submission

•

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

2007, 26th annual international conference on the theory and applica-

tions of cryptographic techniques, Barcelona, Spain, 20–24 May 2007,

Proceedings. vol. 4515 of Lecture notes in computer science. Springer;

2007. p. 115–28.

 34. Dowsley R, Müller-Quade J, Nilges T. Weakening the isolation assumption

of tamper-proof hardware tokens. In: Lehmann A, Wolf S, editors. ICITS

15: 8th international conference on information theoretic security. vol.

9063 of Lecture notes in computer science. Springer, Heidelberg; 2015. p.

197–213.

 35. Beaver D. Commodity-based cryptography. STOC. 1997;97:446–55.

 36. Dowsley R. Cryptography based on correlated data: foundations and

practice. Germany: Karlsruhe Institute of Technology; 2016.

 37. Xie H, Li J, Zhang Q, Wang Y. Comparison among dimensionality reduc-

tion techniques based on random projection for cancer classification.

Comput Biol Chem. 2016;65:165–72.

 38. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,

et al. Scikit-learn: machine learning in Python. J Mach Learn Res.

2011;12:2825–30.

 39. Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, et al. Gene-

expression profiles to predict distant metastasis of lymph-node-negative

primary breast cancer. Lancet. 2005;365(9460):671–9.

 40. Toft T. Constant-rounds, almost-linear bit-decomposition of secret shared

values. In: Topics in cryptology—CT-RSA 2009, The Cryptographers’ Track

at the RSA conference 2009, San Francisco, CA, USA, 20–24 April 2009.

Proceedings; 2009. p. 357–71.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-

lished maps and institutional affiliations.

	High performance logistic regression for privacy-preserving genome analysis
	Abstract
	Background:
	Methods:
	Results:
	Conclusions:

	Background
	Introduction
	Contributions
	Related work
	Paper organization

	Methods
	Logistic regression
	Our scenario
	Security model
	Setup assumptions and the trusted initializer model
	Secret sharing based secure multi-party computation
	Converting to fixed-point representation
	Truncation
	Conversion of sharings
	Secure activation function
	Secure logistic regression training
	Cryptographic engineering optimizations
	Sockets and threading

	Results
	Discussion
	Conclusions
	Acknowledgements
	References

