
International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

29

High Performance Lossless Multimedia Data Compression

through Improved Dictionary

K. R. Kolhe
Lecturer, Department of IT

Engineering, Bharati Vidyapeeth
Deemed University, College of
Engineering, Pune-Satara Road,
Pune-411043, Maharashtra, India

P. R. Devale
Professor, Department of IT

Engineering, Bharati Vidyapeeth
Deemed University, College of
Engineering, Pune-Satara Road,
Pune-411043, Maharashtra, India

P. Shrivastava
A-501, Shri Datta Niwas, Dattanagar,
Ambegaon, Katraj, Pune-411 043,

Maharashtra, India

ABSTRACT

The advent of modern electronic world has opened up various

fronts in multimedia interaction. They are used in various fields

for various purposes of education, entertainment, research and

many more. This has led to storage and retrieval of multimedia

content regularly. But due to limitations of current technology the

disk space and the transmission bandwidth fall behind in the race

with the requirement of multimedia content. This imposes a need

to compress multimedia content so that they can be easily stored

requiring lesser space and easily transferred from one point to

another. Some online dictionary based compression technique can

be applied to reduce the data packet size. When the repetition rate

of the same symbols within the data are high the compression

techniques works very well. During the process of encoding and

decoding, the building of online dictionary in the primary memory

ensures the single pass over the data, and the dictionary need not

to be transmitted over the network. Our proposed Improved

Dictionary technique scans the data byte-wise, so that the chances

of repetition of individual symbols are higher for text messages.

Fixed length coding transmits fixed length codes for all dictionary

entries. For bigger messages better optimization in terms of size

reduction can be achieved through variable length coding with

L-Z technique, where transmitted code length corresponding to

individual dictionary entries will vary according to the

requirement dynamically.

KEY WORDS: Multimedia Compression, Lossless and lossy

Compression, LZ-77, LZ-78, LZW

1. INTRODUCTION
Many like to accumulate data and hate to throw anything away.

No matter how big a storage device one has, sooner or later it is

going to overflow. Data compression is useful because it delays

this inevitability. As storage devices get bigger and cheaper, it

becomes possible to create, store, and transmit larger and larger

data files. In the old days of computing, most files were text or

executable programs and were therefore small. No one tried to

create and process other types of data simply because there was no

room in the computer. In the 1970s, with the advent of

semiconductor memories and floppy disks, still images, which

require bigger files, became popular. These were followed by

audio and video files, which require even bigger files. We hate to

wait for data transfers. When sitting at the computer, waiting for

a Web page to come in or for a file to download, we naturally feel

that anything longer than a few seconds is a long time to wait.

Compressing data before it is transmitted is therefore a natural

solution.

 CPU speeds and storage capacities have increased dramatically

in the last two decades, but the speed of mechanical components

(and therefore the speed of disk in- put/output) has increased by a

much smaller factor. Thus, it makes sense to store data in

compressed form, even if plenty of storage space is still available

on a disk drive. Compare the following scenarios: (1) A large

program resides on a disk. It is read into memory and is executed.

(2) The same program is stored on the disk in compressed form.

It is read into memory, decompressed, and executed. It may come

as a surprise to learn that the latter case is faster in spite of the

extra CPU work involved in decompressing the program. This is

because of the huge disparity between the speeds of the CPU and

the mechanical components of the disk drive.

 A similar situation exists with regard to digital

communications. Speeds of communications channels, both wired

and wireless are increasing steadily but not dramatically. It

therefore makes sense to compress data sent on telephone lines

between fax machines, data sent between cellular telephones, and

data (such as web pages and television signals) sent to and from

satellites. The field of data compression is often called source

coding. We imagine that the input symbols (such as bits, ASCII

codes, bytes, audio samples, or pixel values) are emitted by a

certain information source and have to be coded before being sent

to their destination. The source can be memory less, or it can have

memory. In the former case, each symbol is independent of its

predecessors.

Data compression is the general term for the various algorithms

and programs developed to address this problem. A compression

program is used to convert data from an easy-to-use format to one

optimized for compactness. Likewise, an uncompression program

returns the information to its original form.[1]

2. COMPRESSION TECHNIQUES
Compression Techniques use two algorithms namely

Compression and Reconstructions. The compression algorithm

that takes an input ‘X’ and generates a representation, ‘Xc’ to

generate the reconstruction ‘Y’. It will follow convention and

refer to both the compression and reconstruction algorithms

together to mean the compression algorithm.

Based on the requirements of reconstruction, data compression

schemes can be divided into two broad classes: Loss less

compression schemes in which is ‘Y’ identical to ‘X’, and lossy

compression schemes, which generally provide much higher

compression than lossless compression but allow ‘Y’ to be

different from ‘X’

Table 2.1 shows two different ways that data compression

algorithms can be categorized [2]. Methods have been classified

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

30

as either lossless or lossy. Compression techniques that allow this

type of degradation are called lossy. This distinction is important

because lossy techniques are much more effective at compression

than lossless methods. The higher the compression ratio, the more

noise added to the data.

Table 2.1

Lossless compression ratios are generally in the range of 2:1 to

8:1.

Lossy compression, works on the assumption that the data

doesn't have to be stored perfectly. Much information can be

simply thrown away from images, video data, and audio data, and

the when uncompressed; the data will still be of acceptable

quality.

2.1 RUN LENGTH EN CODING
"Run length encoding (RLE)" is the simplest techniques of data

compression [3]&[4], It’s also known as "run length limiting

(RLL)". Let a text file in which the same characters are often

repeated, one after another. This redundancy provides an

opportunity for compressing the file. Compression software can

scan through the file, find these redundant strings of characters,

and then store them using an escape character (ASCII 27),

followed by the character and a binary count of the number of

times it is repeated. For example, the 50 character sequence:

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXabcs…

 can be converted to: <ESC>X<31>abcs…

It eliminates 28 characters, compressing the text by more than a

factor of two. The compression software must be smart enough

not to compress strings of two or three repeated characters, since

for three characters run length encoding would have no

advantage, and for two it would actually increase the size of the

output file.

 In this scheme have two potential problems. First, an escape

character may actually occur in the file. Then it uses two escape

characters to represent it, which can, once again, actually make

the output file bigger if the uncompressed input file includes lots

of escape characters.

 The second problem is that a single byte cannot specify run

lengths greater than 256. This difficulty can be dealt with by using

multiple escape sequences to compress one very long string.

 Run length encoding is really not very useful for compressing

text files, a typical text file doesn't have a lot of long, repetitive

character strings. It is very useful for compressing bytes of a

monochrome image file, which normally consists of solid black

picture bits, or "pixels", in a sea of white pixels, or the reverse. It

can also be used effectively with colour graphics files that consist

of large simple blocks of a single colour.

2.2 HUFFMAN CODING
"Huffman coding" is a more sophisticated and efficient lossless

compression technique [3],[4]&[1], in which the characters in a

data file are converted to a binary code, where the most common

characters in the file have the shortest binary codes, and the least

common have the longest.

The Huffman [6] code is a Variable Length Code (VLC), which

means that symbols may be mapped into code words with

different number of bits. The idea with Huffman encoding is that

symbols that occur more frequently are coded with shorter code

words. This means that the probability of the occurrence of each

symbol must be known. The Huffman code is constructed by

building a tree called Huffman tree, where each symbol

corresponds to a leaf in the Huffman tree. The two symbols with

lowest probability are combined into a new node in the tree. The

probability of this node is the sum of the probability of two

merged symbols. The two branches from the new node are

assigned with 0 and 1 respectively. The procedure of combining

two leaves and/or nodes with lowest probability is then repeated

until the root node is reached. The probability of the root node is

1 because it is the sum of the probabilities for all symbols. The

code word for each symbol is obtained from the Huffman tree.

3. DICTIONARY BASED CODING

3.1 L-Z-W CODING
LZ-77 is an example of “substitutional coding". Lempel and Ziv

came up with an improved scheme in 1978, appropriately named

"LZ-78", and it was refined by a Mr. Terry Welch in 1984,

making it "LZW". LZ-77 uses pointers to previous words or parts

of words in a file to obtain compression. LZW takes that scheme

one step further, actually constructing a "dictionary" of words or

parts of words in a message, and then using pointers to the words

in the dictionary [3].

Let’s the example messages are:-

 how_many_cans_can_a_canner_can

The LZW algorithm stores strings in a "dictionary" with entries

for 4,096 variable-length strings. The first 255 entries are used to

contain the values for individual bytes, so the actual first string

index is 256. As the string is compressed, the dictionary is built

up to contain every possible string combination that can be

obtained from the message, starting with two characters, then

three characters, and so on.

 Dictionary contains the following strings:

 256 -> ho 263 -> y_ 270 -> _a

257 -> ow 264 -> _c 271 -> a_

258 -> w_ 265 -> ca 272 -> _can

259 -> _m 266 -> ans 273 -> nn

260 -> ma 267 -> s_ 274 -> ne

261 -> an 268 -> _ca 275 -> er

262 -> ny 269 -> an_ 276 -> r_

The compressed output for example looks like this

how_many_c<261>s<264><261>_a<268>nner<272>

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

31

3.2 L-Z-W DATA COMPRESSION

LZW Fundamentals
The original Lempel Ziv approach to data compression was first

published in 1977. Terry Welch's refinements to the algorithm

were published in 1984. The algorithm is surprisingly simple.

LZW compression replaces strings of characters with single

codes. It does not do any analysis of the incoming text. Instead, it

just adds every new string of characters it sees to a table of

strings. Compression occurs when a single code is output instead

of a string of characters. The code that the LZW algorithm outputs

can be of any arbitrary length, but it must have more bits in it than

a single character. The first 256 codes (when using eight bit

characters) are by default assigned to the standard character set.

The remaining codes are assigned to strings as the algorithm

proceeds. The sample program runs as shown with 12 bit codes.

This means codes 0-255 refer to individual bytes, while codes

256-4095 refer to sub strings.

LEMPEL-ZIV [1977], OR LZ-77
Lempel-Ziv [1977], or LZ-77 is an adaptive dictionary-based

compression algorithm [4]. Its main data structure is a text

window, divided into two parts. The first part is a large block of

decoded text held in a fixed-size window and the second part is a

look-ahead buffer which has characters read in from the input but

not yet encoded.

Symbols within the buffer are then compared with data in the

fixed-size window. The algorithm tries to match the contents of

the look-ahead buffer to a string in the fixed-size window.

In general, dictionary-based compression replaces phrases with

tokens. If the number of bits in the token is less than the number

of bits in the phrase, compression will occur.

 Example:-

lease.' 'Er...Kishorkolhe, ' said Kishorkolhe. ' I s

 Fixed-size window of previously Look ahead buffer

 read data (32 bytes) (16 bytes)

In the example, if any matches are found then a token is passed to

the output stream describing the match. After matching a symbol,

the data is shifted by an amount equal to the length of the symbol

represented by the previous token. Data is pushed out of the token

and new data is read into the buffer as shown below:

The three items in the token are:

(1) Length of an offset to a phrase in the fixed-size window

(2) The length of the phrase

(3) The first symbol in the look-ahead buffer that follows the

phrase.

 In the example above, the output token would be (17, 11, '.')

(phrase includes spaces). The LZ77 algorithm first emits the

token, then shifts text window over 10 characters, which is the

width of the phrase just encoded. 11 new symbols are then read

into the look-ahead buffer, and the process repeats.

.. Kishorkolhe, ' said Kishorkolhe. ' I said what's

The next token issued by the compression algorithm would

encode the symbol " ' " as (16, 1, ' '). The look-ahead buffer

shown above has no match for " I ", thus it could be encoded a

single character at a time using a phrase length of zero (0, 0, ' ').

The syntax of this token allows for phrases that have no match of

any length in the window. Therefore, this method is not efficient,

but it ensures that the algorithm can encode any message.

3.3 THE CATCH
There is a single exception case in the LZ-78 compression

algorithm that causes some trouble to the decompression side [5].

If there is a string consisting of a (STRING, CHARACTER) pair

already defined in the table, and the input stream then sees a

sequence of STRING, CHARACTER, STRING, CHARACTER,

STRING, the compression algorithm will output a code before the

decompressor gets a chance to define it. A simple example will

illustrate the point. Imagine the string JOEYN is defined in the

table as code 300. Later on, the sequence JOEYNJOEYNJOEY

occurs in the table. The compression output looks like

Input String: ...JOEYNJOEYNJOEY

Character Input New Code/String Code Output

JOEYN 300 = JOEYN 288 (JOEY)

A 301 = NA N

. . .

. . .

. . .

JOEYNJ 400 = JOEYNJ 300 (JOEYN)

JOEYNJO 401 = JOEYNJO 400 (???)

When the decompression algorithm sees this input stream, it first

decodes the code 300, and outputs the JOEYN string. After doing

the output, it will add the definition for code 399 to the table,

whatever that may be. It then reads the next input code, 400, and

finds that it is not in the table. In this case where the

decompression algorithm will encounter an undefined code.

3.4 LZW COMPRESSION ALGORITHM
Terry Welch's refinements to the algorithm were published in

1984 [5]. The modified algorithm looks for the special case of an

undefined code, and handles it. In the example, the decompression

routine sees a code of 400, which is undefined. Since it is

undefined, it translates the value of OLD_CODE, which is code

300. It then adds the CHARACTER value, which is 'J', to the

string. This results in the correct translation of code 400 to string

"JOEYNJ".

MODIFICATION
ROUTINE LZW_DECOMPRESS

Read OLD_CODE

output OLD_CODE

CHARACTER = OLD_CODE

WHILE there are still input characters DO

 Read NEW_CODE

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

32

 IF NEW_CODE is not in the translation table THEN

 STRING = get translation of OLD_CODE

 STRING = STRING+CHARACTER

 ELSE

 STRING = get translation of NEW_CODE

 END of IF

 output STRING

 CHARACTER = first character in STRING

 add OLD_CODE + CHARACTER to the translation

table

 OLD_CODE = NEW_CODE

END of WHILE

FACTORS AFFECTING THE

PERFORMANCE OF LZW
The factors that are crucial for LZW and can be used to alter the

compression ratio have been identified as the following:

1) Dynamically restructuring of the number of bits to represent

a code word depending upon its magnitude

2) Number of bits to represent a dictionary code word and in turn

the maximum size of the dictionary.

3) Static or dynamic nature of the dictionary.

SIZE OF THE DICTIONARY - MAXIMUM
The maximum size of the dictionary plays an important role in the

sense that the larger the size the greater number of bits will be

required to represent a single character or a code word. That is, if

the size of the file, which needs to be compressed were small.

Thus the large size of the dictionary will not be optimally used

and will end in the increased size of the compressed file. Thus the

dictionary size should be based on the size of the file that needs to

be compressed.

RESTRUCTURING OF BITS

DYNAMICALLY
Dynamic restructuring of the number of bits to represent the code

word would enable us to save those extra bits that need not be

used by the code word which lies in the range that can be

represented using the lesser number of bits.

The standard LZW uses a fixed number of bits to represent each

code thus if the size of the dictionary is 4096, then it will use 12-

bits (log2 4096) for each code even if the code is 268(say) which

can be represented by 9-bits. Thus dynamic restructuring of the

number of bits helps us to save this loss.

DYNAMIC NATURE OF DICTIONARY
Dynamic nature of dictionary can be employed, which will be

based on the feedback from the compression algorithm. The

feedback parameter will be the current compression ratio relative

to the threshold. In the dynamic dictionary the compression ratio

will be the continuously matched against a threshold and if the

ratio goes beyond what is specified in the threshold, the dictionary

is flushed at that moment itself and a new one is created from the

remaining inputs.

Thus if dynamic nature is employed the additional factors that

need to be analyzed for their effect on the LZW are:

• The threshold value

• The compression check period.

It is not necessary that a higher threshold will result in higher

compression always. It all depends on the contents of the file that

is to be compressed. At times it might happen that if a very large

threshold value is specified, the dictionary would be frequently

flushed (since the compression ratio doesn’t match) and this

frequent flushing may result in a compression ratio which would

be smaller than the optimum which could have been achieved

using a lower threshold value. Like the threshold value the

compression check period also plays an important role. The check

period implies the duration of characters after which the current

compression ratio is matched against the threshold value.

3.5 LEMPEL-ZIV-WELCH'S ENCODING

FOR STRING ‘ABBABABC’

 Table 3.1

S

N

CHA

R

STRI

NG+

CHA

R

IN

TAB

LE

OU

TP

UT

ADD

TO

TABL

E

NE

W

ST

RI

NG

COMM

ENTS

1

2

3

4

5

A

B

C

R

X

 1=A

2=B

3=C

4=R

5=X

 The first

five

entries

are

A,B,C,R

,X

6 A A A First

characte

r no

actions

7 B AB NO A

(1)

6=AB B

8 B BB NO A

(2)

7=BB B

9 A BA NO B

(2)

8=BA A

10 B AB YES

(6)

 AB First

match

found

11 A ABA NO AB

(6)

9=AB

A

A

12 B AB YES

(6)

 AB Another

match

found

13 C ABC NO AB

(6)

10=AB

C

C

14 EOF C C

(3)

 End of

file

Table 3.1 shows representation of the working of LZW algorithm.

According to the conventional approach the number of bits used

to represent the code depends on the magnitude of the index of

the dictionary i.e. if its follow the conventional approach then it

shall be using 4-bit code word to represent the output of the 11th

entry (since it depends on the magnitude of the index) but here the

output code word has the magnitude 6, which requires only 3-bits

to be represented. Thus applying dynamic restructuring based on

the magnitude of output the results are more optimized.

In the example by the conventional approach the total number of

bits used for output of the entries starting from the 8th entry is

4*5=20. But contrary to this approach uses 3*5=15, thus saving 5

bits.

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

33

DYNAMIC FEEDBACK
The standard LZW uses a single dictionary, i.e. the dictionary is

only created once, if it gets filled then no more patterns can be

formed and hence the only replaceable patterns are the ones which

exist in the dictionary. Its means that once the dictionary is full

the input read is compared to the patterns within the dictionary if

matched they are replaced by the appropriate code word otherwise

the characters are outputted as such. This approach followed by

the standard LZW at times leads to reduction in the compression

ratio.

 -

 Fig 3.1 Dynamic Feedback

 To overcome the above stated drawback we suggest dynamic

feedback to the algorithm. The feedback is in the sense that we

keep monitoring the compression ratio at suitable intervals, after

each such interval the compression ratio is compared against a

threshold value, if the compression ratio is below the threshold

the dictionary is flushed out and a new one is created which helps

us to improve the compression ratio. This process of feedback is

schematically depicted in figure 3.1. It is only a schematic

representation and cannot be directly viewed as an algorithm to be

implemented.

4. FLOWCHARTS

4.1 COMPRESSION
Figure 4.1 shows a flowchart for LZW compression [2]. Table 4.1

provides the step-by-step details for an example input file

consisting of 45 bytes, the ASCII text string:

the/rain/in/Spain/falls/mainly/on/the/plain. When the LZW

algorithm reads the character "a" from the input file, it reads the

value: 01100001 (97 expressed in 8 bits), where 97 is "a" in

ASCII. When it writes the character "a" to the encoded file, we

mean it writes: 000001100001 (97 expressed in 12 bits).

 The variable, CHAR, is a single byte. The variable, STRING, is

a variable length sequence of bytes. Data are read from the input

file (box 1 & 2) as single bytes, and written to the compressed file

(box4) as 12 bit codes.

 The compression algorithm uses two variables: CHAR and

STRING. The variable, CHAR, holds a single character, i.e., a

single byte value between 0 and 255. The variable, STRING, is a

variable length string, i.e., a group of one or more characters, with

each character being a single byte. In box1 of Fig. 4.1, the

program starts by taking the first byte from the input file, and

placing it in the variable, STRING. This is followed by the

algorithm looping for each additional byte in the input file,

controlled in the flow diagram by box 8. Each time a byte is read

from the input file (box2), it is stored in the variable, CHAR. The

data table is then searched to determine if the concatenation of the

two variables, STRING+CHAR, has already been assigned a code

(box3).

 Fig. 4.1 LZW compression flowcharts

If a match in the code table is not found, three actions are taken,

as shown in boxes 4, 5 & 6. In box4, the 12-bit code

corresponding to the contents of the variable, STRING, is written

to the compressed file. In box 5, a new code is created in the table

for the concatenation of STRING+CHAR. In box 6, the variable,

STRING, takes the value of the variable, CHAR.

 When a match in the code table is found (box3), the

concatenation of STRING+CHAR is stored in the variable,

STRING, without any other action-taking place (box 7). That is, if

a matching sequence is found, no action should be taken before

determining if there is a longer matching sequence. The sequence:

STRING+CHAR= in, is identified as already having a code in the

table. The next character from the input file, /, is added to the

sequence, and the code table is searched for: in/. Since this longer
sequence is not in the table, the program adds it to the table,

outputs the code for the shorter sequence that is in the table and

starts over searching for sequences beginning with the character, /.

This flow of events is continued until there are no more characters

in the input file. The program is wrapped up with the code

LZW

Threshold value

If result is

negative Compression Ratio +

Coded Output

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

34

corresponding to the current value of STRING being written to

the compressed file as illustrated in box9 of Fig. 4.1.

4.2 DECOMPRESSION
A flowchart of the LZW decompression algorithm is shown in

Fig. 4.2. Each code is read from the compressed file and

compared to the code table to provide the translation [2]. The

code table is updated so that it continually matches the one used

during the compression. However, there is a small complication in

the decompression routine. There are certain combinations of data

that result in the decompression algorithm receiving a code that

does not yet exist in its code table. This contingency is handled in

boxes 4, 5 & 6.

Fig 4.2 LZW Decompression flowchart

The variables, OCODE and NCODE (old code and new code),

hold the 12 bit codes from the compressed file, CHAR holds a

single byte, and STRING holds a string of bytes.

5. EXPERIMENTAL RESULTS
It is somewhat difficult to characterize the results of any data

compression technique. The level of compression achieved varies

quite a bit depending on several factors. LZW compression excels

when confronted with data streams that have any type of repeated

strings. Because of this, it does extremely well when compressing

English text. Compression levels of 50% or better should be

expected. Likewise, compressing saved screens and displays will

generally show very good results.

Trying to compress binary data files is a little more risky.

Depending on the data, compression may or may not yield good

results. In some cases, data files will compress even more than

text. A little bit of experimentation will usually give you a feel for

whether your data will compress well or not.

COMPRESSION RESULT - Table 5.1

SN Files

Start

ing

Size

(kb)

Comp

ressed

Size

(kb)

Compressi

on

Ratio (%)

1 AFMD01.txt 118 64 45.7

2 BGNE02.txt 138 77 44.2

3 RMDAQ44.txt 76 44 42.1

4 TREWA22.txt 34 18 47.0

5 Cricket.bmp 729 7 99.0

6 Nero.bmp 668 336 49.7

7 Que.bmp 351 177 49.5

8 Game02.bmp 331 119 64.0

9 Exe1.exe 544 471 13.4

10 Exe2.exe 536 485 09.5

11 Exe3.exe 535 377 29.5

12 Exe4.exe 529 453 14.3

13 Gimme.dll 4493 3739 16.7

14 Mps.dll 3404 3289 03.3

15 Scanres.dll 6264 6256 00.1

16 Comsvcs.dll 1223 1201 01.7

0

1000

2000

3000

4000

5000

6000

7000

Starting
Size(kb)

Compressed
Size(kb)

 Files->

Fig. 5.1 Graph – Compression (Ref Table 5.1)

6. FUTURE SCOPE
We have developed this as a utility, which performs some of the

most elementary task like compressing the given file whether it is

text file, image file, sound file or executable file and this file can

International Journal of Computer Applications (0975 – 8887)

Volume 10– No.1, November 2010

35

again decompressed in an original form without any loss. Thus we

have developed a comprehensive toolbox, which can be used to

perform suitable compression and decompression. Data

compression is one such field where this toolbox can prove to be

of immense help since it can execute in a few steps. LZW

algorithm for data compression being a wide field which is rapidly

finding use in many applied fields and technologies, providing

tools for some of the most elementary and cumbersome operation

which is a major step towards the future technology.

7. CONCLUSION
This paper includes a complete and comprehensive study of all

aspects of LZW algorithm. Our study goes from the most basic

concepts like what were the limitations of LZ77, LZ78 and LZW

algorithm and how modified LZW algorithm overcame those

limitations. We have improved the basic LZW algorithm by

increasing the size of dictionary. As it possible to store more and

longer phrases to compress better. Moving to larger code size

actually retards the compression when the file size to be

compressed is small. Since phrases are initially found and added

to the dictionary at the same pace, whether the code is nine bits or

fifteen bits long, the nine bit actually produce a smaller file.

Another enhancement is the flush code. This tells the

decompressor to throw away all phrases currently in the dictionary

and to start over a blank state in order to increase the degrading

compression ratio. Typically, you can expect LZW to compress

text, executable code, and similar data files to about one-half their

original size. LZW also performs well when presented with

extremely redundant data files, such as tabulated numbers,

computer source code, and acquired signals.

8 REFERENCES
[1] Data Compression by Debra A. Lelewer and Daniel S.

 Hirschberg, http://www.ics.uci.edu

[2] Steven W. Smith, The Scientist and Engineer's Guide to

 Digital Signal Processing, http://www.dspguide.com

[3] [1.0] Introduction / Lossless Data Compression. (v1.1.1 /

chapter 1 of 3 / 01 apr 05 / greg goebel / public domain),

http://www.vectorsite.net

[4] Mark Nelson, Interactive Data Compression Tutor & The data

compression book - -2nd Ed. by M&T books, http://

www.eee.bham. ac.uk

[5] LZW Data Compression by Mark Nelson, Dr. Dobb's Journal

October, 1989.

[6] D. A. Huffman, ``A Method for the Construction of Minimum

Redundancy Codes,'' Proceedings of the IRE, Vol. 40, pp.

1098--1101, 1952

[7] Jeffrey N. Ladino,”Data Compression Algorithms”,

 http://www.faqs.org/faqs/compression-faq/part2/section-

1.html

 [8] Article-Compressing and Decompressing Data using Java by

Qusay H. Mahmoud with contributions from Konstantin

Kladko February 2002

 [9] The Data Compression Book, 2nd edition by Mark Nelson

and Jean-loup Gailly, M&T Books, New York, NY 1995

,ISBN 1-55851-434-1.

 [10] T. A. Welch, ``A Technique for High-Performance Data

Compression,'' Computer, pp. 8--18, 1984.

[11] J. Ziv and A. Lempel, ``Compression of Individual Sequences

Via Variable-Rate Coding,'' IEEE Transactions on

Information Theory, Vol. 24, pp. 530--536, 1978.

[12] J. Ziv and A. Lempel, ``A Universal Algorithm for Sequential

Data Compression,'' IEEE Transactions on Information

Theory, Vol. 23, pp. 337--342, 1977.

[13] K. Sayood, "Introduction to Data Compression".

[14] G. Held and T. R. Marshall, "Data and Image Compression:

Tools and Techniques".

[15] D. Hankerson, P. D. Johnson, and G. A. Harris, "Introduction

to Information Theory and Data Compression“.

[16] Storer, James A., Data Compression: Methods and Theory,

Computer Science Press, Rockville, MD, 1988

[17] Soumit Chowdhury, Amit Chowdhury, S. R. Bhadra

Chaudhuri, C.T. Bhunia “Data Transmission using Online

Dynami Dictionary Based Compression Technique of Fixed

and Variable Length Coding” published at International

Conference on Computer Science and Information

Technology, 2008.

[18] P.G.Howard and J.C.Vitter, “Arithmetic Coding for Data

Compression,” Proceedings of the IEEE, vol. 82, no.6, 1994,

pp.857-865

