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ABSTRACT 

The advent of modern electronic world has opened up various 

fronts in multimedia interaction. They are used in various fields 

for various purposes of education, entertainment, research and 

many more. This has led to storage and retrieval of multimedia 

content regularly. But due to limitations of current technology the 

disk space and the transmission bandwidth fall behind in the race 

with the requirement of multimedia content. This imposes a need 

to compress multimedia content so that they can be easily stored 

requiring lesser space and easily transferred from one point to 

another. Some online dictionary based compression technique can 

be applied to reduce the data packet size. When the repetition rate 

of the same symbols within the data are high the compression 

techniques works very well. During the process of encoding and 

decoding, the building of online dictionary in the primary memory 

ensures the single pass over the data, and the dictionary need not 

to be transmitted over the network. Our proposed Improved 

Dictionary technique scans the data byte-wise, so that the chances 

of repetition of individual symbols are higher for text messages. 

Fixed length coding transmits fixed length codes for all dictionary 

entries.  For  bigger  messages better optimization in terms of size 

reduction can be achieved  through  variable  length  coding  with  

L-Z technique, where transmitted code length corresponding  to  

individual  dictionary  entries  will vary according to the 

requirement dynamically. 

KEY WORDS: Multimedia Compression, Lossless and lossy 

Compression, LZ-77, LZ-78, LZW   

1.  INTRODUCTION 
Many like to accumulate data and hate to throw anything away. 

No matter how big a storage device one has, sooner or later it is 

going to overflow. Data compression is useful because it delays 

this inevitability. As storage devices get bigger and cheaper, it 

becomes possible to create, store, and transmit larger and larger 

data files. In the old days of computing, most files were text or 

executable programs and were therefore small.  No one tried to 

create and process other types of data simply because there was no 

room in the computer.  In the 1970s, with the advent of 

semiconductor memories and floppy disks, still images, which 

require bigger files, became popular. These were followed by 

audio and video files, which require even bigger files. We hate to 

wait for data transfers.   When sitting at the computer, waiting for 

a Web page to come in or for a file to download, we naturally feel 

that anything longer than a few seconds is a long time to wait. 

Compressing data before it is transmitted is therefore a natural 

solution. 

    CPU speeds and storage capacities have increased dramatically 

in the last two decades, but the speed of mechanical components 

(and therefore the speed of disk in- put/output) has increased by a 

much smaller factor. Thus, it makes sense to store data in 

compressed form, even if plenty of storage space is still available 

on a disk drive. Compare the following scenarios:  (1) A large 

program resides on a disk.  It is read into memory and is executed.  

(2)  The same program is stored on the disk in compressed form. 

It is read into memory, decompressed, and executed. It may come 

as a surprise to learn that the latter case is faster in spite of the 

extra CPU work involved in decompressing the program. This is 

because of the huge disparity between the speeds of the CPU and 

the mechanical components of the disk drive. 

     A similar situation exists with regard to digital 

communications. Speeds of communications channels, both wired 

and wireless are increasing steadily but not dramatically. It 

therefore makes sense to compress data sent  on telephone lines 

between fax machines, data sent  between cellular telephones, and 

data (such as web pages and television signals) sent  to and  from 

satellites. The field of data compression is often  called source  

coding.   We imagine that the input symbols (such as bits, ASCII 

codes, bytes, audio samples, or pixel values) are emitted by a 

certain information source and have to be coded before being sent 

to their destination. The source can be memory less, or it can have 

memory. In the former case, each symbol is independent of its 

predecessors. 

Data compression is the general term for the various algorithms 

and programs developed to address this problem. A compression 

program is used to convert data from an easy-to-use format to one 

optimized for compactness. Likewise, an uncompression program 

returns the information to its original form.[1] 

2. COMPRESSION TECHNIQUES 
Compression Techniques use two algorithms namely 

Compression and Reconstructions. The compression algorithm 

that takes an input ‘X’ and generates a representation, ‘Xc’ to 

generate the reconstruction ‘Y’. It will follow convention and 

refer to both the compression and reconstruction algorithms 

together to mean the compression algorithm.       

Based on the requirements of reconstruction, data compression 

schemes can be divided into two broad classes: Loss less 

compression schemes in which is ‘Y’ identical to ‘X’, and lossy 

compression schemes, which generally provide much higher 

compression than lossless compression but allow ‘Y’  to be 

different from ‘X’ 

Table 2.1 shows two different ways that data compression 

algorithms can be categorized [2]. Methods have been classified 
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as either lossless or lossy. Compression techniques that allow this 

type of degradation are called lossy. This distinction is important 

because lossy techniques are much more effective at compression 

than lossless methods. The higher the compression ratio, the more 

noise added to the data.                  

       

Table 2.1 

 
                              

Lossless compression ratios are generally in the range of 2:1 to 

8:1.  

Lossy compression, works on the assumption that the data 

doesn't have to be stored perfectly. Much information can be 

simply thrown away from images, video data, and audio data, and 

the when uncompressed; the data will still be of acceptable 

quality.  

2.1 RUN LENGTH EN CODING 
"Run length encoding (RLE)" is the simplest techniques of data 

compression [3]&[4], It’s also known as "run length limiting 

(RLL)". Let a text file in which the same characters are often 

repeated, one after another. This redundancy provides an 

opportunity for compressing the file. Compression software can 

scan through the file, find these redundant strings of characters, 

and then store them using an escape character (ASCII 27), 

followed by the character and a binary count of the number of 

times it is repeated. For example, the 50 character sequence:  

 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXabcs… 

       can be converted to: <ESC>X<31>abcs… 

It eliminates 28 characters, compressing the text by more than a 

factor of two. The compression software must be smart enough 

not to compress strings of two or three repeated characters, since 

for three characters run length encoding would have no 

advantage, and for two it would actually increase the size of the 

output file.  

      In this scheme have two potential problems. First, an escape 

character may actually occur in the file. Then it uses two escape 

characters to represent it, which can, once again, actually make 

the output file bigger if the uncompressed input file includes lots 

of escape characters.  

 The second problem is that a single byte cannot specify run 

lengths greater than 256. This difficulty can be dealt with by using 

multiple escape sequences to compress one very long string.  

 Run length encoding is really not very useful for compressing 

text files, a typical text file doesn't have a lot of long, repetitive 

character strings. It is very useful for compressing bytes of a 

monochrome image file, which normally consists of solid black 

picture bits, or "pixels", in a sea of white pixels, or the reverse. It 

can also be used effectively with colour graphics files that consist 

of large simple blocks of a single colour. 

 

 

2.2 HUFFMAN CODING 
"Huffman coding" is a more sophisticated and efficient lossless 

compression technique [3],[4]&[1], in which the characters in a 

data file are converted to a binary code, where the most common 

characters in the file have the shortest binary codes, and the least 

common have the longest. 

The Huffman [6] code is a Variable Length Code (VLC), which 

means that symbols may be mapped into code words with 

different number of bits. The idea with Huffman encoding is that 

symbols that occur more frequently are coded with shorter code 

words. This means that the probability of the occurrence of each 

symbol must be known. The Huffman code is constructed by 

building a tree called Huffman tree, where each symbol 

corresponds to a leaf in the Huffman tree. The two symbols with 

lowest probability are combined into a new node in the tree. The 

probability of this node is the sum of the probability of two 

merged symbols. The two branches from the new node are 

assigned with 0 and 1 respectively. The procedure of combining 

two leaves and/or nodes with lowest probability is then repeated 

until the root node is reached. The probability of the root node is 

1 because it is the sum of the probabilities for all symbols. The 

code word for each symbol is obtained from the Huffman tree. 

3.   DICTIONARY BASED CODING 

3.1 L-Z-W CODING 
LZ-77 is an example of “substitutional coding". Lempel and Ziv 

came up with an improved scheme in 1978, appropriately named 

"LZ-78", and it was refined by a Mr. Terry Welch in 1984, 

making it "LZW". LZ-77 uses pointers to previous words or parts 

of words in a file to obtain compression. LZW takes that scheme 

one step further, actually constructing a "dictionary" of words or 

parts of words in a message, and then using pointers to the words 

in the dictionary [3].  

Let’s the example messages are:-  

               how_many_cans_can_a_canner_can   

The LZW algorithm stores strings in a "dictionary" with entries 

for 4,096 variable-length strings. The first 255 entries are used to 

contain the values for individual bytes, so the actual first string 

index is 256. As the string is compressed, the dictionary is built 

up to contain every possible string combination that can be 

obtained from the message, starting with two characters, then 

three characters, and so on.  

 Dictionary contains the following strings:     

 256 -> ho 263 -> y_ 270 -> _a 

257 -> ow 264 -> _c 271 -> a_ 

258 -> w_ 265 -> ca 272 -> _can 

259 -> _m 266 -> ans  273 -> nn 

260 -> ma 267 -> s_ 274 -> ne 

261 -> an 268 -> _ca 275 -> er 

262 -> ny 269 -> an_ 276 -> r_ 

The compressed output for example looks like this 

how_many_c<261>s<264><261>_a<268>nner<272> 
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3.2 L-Z-W DATA COMPRESSION 

LZW Fundamentals 
The original Lempel Ziv approach to data compression was first 

published in 1977. Terry Welch's refinements to the algorithm 

were published in 1984. The algorithm is surprisingly simple. 

LZW compression replaces strings of characters with single 

codes. It does not do any analysis of the incoming text. Instead, it 

just adds every new string of characters it sees to a table of 

strings. Compression occurs when a single code is output instead 

of a string of characters. The code that the LZW algorithm outputs 

can be of any arbitrary length, but it must have more bits in it than 

a single character. The first 256 codes (when using eight bit 

characters) are by default assigned to the standard character set. 

The remaining codes are assigned to strings as the algorithm 

proceeds. The sample program runs as shown with 12 bit codes. 

This means codes 0-255 refer to individual bytes, while codes 

256-4095 refer to sub strings. 

LEMPEL-ZIV [1977], OR LZ-77 
Lempel-Ziv [1977], or LZ-77 is an adaptive dictionary-based 

compression algorithm [4]. Its main data structure is a text 

window, divided into two parts. The first part is a large block of 

decoded text held in a fixed-size window and the second part is a 

look-ahead buffer which has characters read in from the input but 

not yet encoded.   

Symbols within the buffer are then compared with data in the 

fixed-size window. The algorithm tries to match the contents of 

the look-ahead buffer to a string in the fixed-size window.  

In general, dictionary-based compression replaces phrases with 

tokens. If the number of bits in the token is less than the number 

of bits in the phrase, compression will occur. 

 Example:-  

lease.' 'Er...Kishorkolhe, ' said Kishorkolhe. ' I s  

 Fixed-size window of previously             Look ahead buffer               

 read data (32 bytes)        (16 bytes) 

In the example, if any matches are found then a token is passed to 

the output stream describing the match. After matching a symbol, 

the data is shifted by an amount equal to the length of the symbol 

represented by the previous token. Data is pushed out of the token 

and new data is read into the buffer as shown below:  

The three items in the token are:   

(1) Length of an offset to a phrase in the fixed-size window   

(2)  The length of the phrase  

(3) The first symbol in the look-ahead buffer that follows the 

phrase.  

    In the example above, the output token would be (17, 11, '.') 

(phrase includes spaces). The LZ77 algorithm first emits the 

token, then shifts text window over 10 characters, which is the 

width of the phrase just encoded. 11 new symbols are then read 

into the look-ahead buffer, and the process repeats. 

.. Kishorkolhe, ' said Kishorkolhe. ' I said what's  

The next token issued by the compression algorithm would 

encode the symbol   " ' " as (16, 1, ' '). The look-ahead buffer 

shown above has no match for " I ", thus it could be encoded a 

single character at a time using a phrase length of zero (0, 0, ' '). 

The syntax of this token allows for phrases that have no match of 

any length in the window. Therefore, this method is not efficient, 

but it ensures that the algorithm can encode any message. 

3.3 THE CATCH 
There is a single exception case in the LZ-78 compression 

algorithm that causes some trouble to the decompression side [5]. 

If there is a string consisting of a (STRING, CHARACTER) pair 

already defined in the table, and the input stream then sees a 

sequence of STRING, CHARACTER, STRING, CHARACTER, 

STRING, the compression algorithm will output a code before the 

decompressor gets a chance to define it. A simple example will 

illustrate the point. Imagine the string JOEYN is defined in the 

table as code 300. Later on, the sequence JOEYNJOEYNJOEY 

occurs in the table. The compression output looks like   

Input String: ...JOEYNJOEYNJOEY 

Character Input New Code/String Code Output 

JOEYN 300 = JOEYN 288 (JOEY) 

A 301 = NA N 

. . . 

. . . 

. . . 

JOEYNJ 400 = JOEYNJ 300 (JOEYN) 

JOEYNJO 401 = JOEYNJO 400 (???) 

When the decompression algorithm sees this input stream, it first 

decodes the code 300, and outputs the JOEYN string. After doing 

the output, it will add the definition for code 399 to the table, 

whatever that may be. It then reads the next input code, 400, and 

finds that it is not in the table. In this case where the 

decompression algorithm will encounter an undefined code. 

3.4 LZW COMPRESSION ALGORITHM 
Terry Welch's refinements to the algorithm were published in 

1984 [5]. The modified algorithm looks for the special case of an 

undefined code, and handles it. In the example, the decompression 

routine sees a code of 400, which is undefined. Since it is 

undefined, it translates the value of OLD_CODE, which is code 

300. It then adds the CHARACTER value, which is 'J', to the 

string. This results in the correct translation of code 400 to string 

"JOEYNJ". 

MODIFICATION 
ROUTINE LZW_DECOMPRESS  

Read OLD_CODE 

output OLD_CODE 

CHARACTER = OLD_CODE 

WHILE there are still input characters DO 

    Read NEW_CODE 
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    IF NEW_CODE is not in the translation table THEN 

        STRING = get translation of OLD_CODE 

        STRING = STRING+CHARACTER 

    ELSE 

        STRING = get translation of NEW_CODE 

    END of IF 

    output STRING 

    CHARACTER = first character in STRING 

    add OLD_CODE + CHARACTER to the translation 

table 

    OLD_CODE = NEW_CODE 

END of WHILE 

FACTORS AFFECTING THE 

PERFORMANCE OF LZW 
The factors that are crucial for LZW and can be used to alter the 

compression ratio have been identified as the following: 

1)  Dynamically restructuring of the number of bits to    represent 

a code word depending upon its magnitude 

2) Number of bits to represent a dictionary code word and in turn 

the maximum size of the dictionary. 

3)  Static or dynamic nature of the dictionary. 

SIZE OF THE DICTIONARY - MAXIMUM 
The maximum size of the dictionary plays an important role in the 

sense that the larger the size the greater number of bits will be 

required to represent a single character or a code word. That is, if 

the size of the file, which needs to be compressed were small. 

Thus the large size of the dictionary will not be optimally used 

and will end in the increased size of the compressed file. Thus the 

dictionary size should be based on the size of the file that needs to 

be compressed. 

RESTRUCTURING OF BITS 

DYNAMICALLY 
Dynamic restructuring of the number of bits to represent the code 

word would enable us to save those extra bits that need not be 

used by the code word which lies in the range that can be 

represented using the lesser number of bits. 

The standard LZW uses a fixed number of bits to represent each 

code thus if the size of the dictionary is 4096, then it will use 12-

bits (log2 4096) for each code even if the code is 268(say) which 

can be represented by 9-bits. Thus dynamic restructuring of the 

number of bits helps us to save this loss. 

DYNAMIC NATURE OF DICTIONARY 
Dynamic nature of dictionary can be employed, which will be 

based on the feedback from the compression algorithm. The 

feedback parameter will be the current compression ratio relative 

to the threshold. In the dynamic dictionary the compression ratio 

will be the continuously matched against a threshold and if the 

ratio goes beyond what is specified in the threshold, the dictionary 

is flushed at that moment itself and a new one is created from the 

remaining inputs. 

Thus if dynamic nature is employed the additional factors that 

need to be analyzed for their effect on the LZW are: 

•   The threshold value 

•   The compression check period. 

It is not necessary that a higher threshold will result in higher 

compression always. It all depends on the contents of the file that 

is to be compressed. At times it might happen that if a very large 

threshold value is specified, the dictionary would be frequently 

flushed (since the compression ratio doesn’t match) and this 

frequent flushing may result in a compression ratio which would 

be smaller than the optimum which could have been achieved 

using a lower threshold value. Like the threshold value the 

compression check period also plays an important role. The check 

period implies the duration of characters after which the current 

compression ratio is matched against the threshold value. 

3.5 LEMPEL-ZIV-WELCH'S ENCODING 

FOR STRING ‘ABBABABC’ 

        Table 3.1 

S

N 

CHA

R 

STRI

NG+

CHA

R 

IN 

TAB

LE 

OU

TP

UT 

ADD 

TO 

TABL

E 

NE

W 

ST

RI

NG  

COMM

ENTS 

1 

2 

3 

4 

5 

A 

B 

C 

R 

X 

   1=A 

2=B 

3=C 

4=R 

5=X 

 The first 

five 

entries 

are 

A,B,C,R

,X 

6 A A    A First 

characte

r no 

actions 

7 B AB NO A 

(1) 

6=AB B  

8 B BB NO A 

(2) 

7=BB B  

9 A BA NO B 

(2) 

8=BA A  

10 B AB YES 

(6) 

  AB First 

match 

found 

11 A ABA NO AB 

(6) 

9=AB

A 

A  

12 B AB YES 

(6) 

  AB Another 

match 

found 

13 C ABC NO AB 

(6) 

10=AB

C 

C  

14 EOF C  C 

(3) 

  End of 

file 

Table 3.1 shows representation of the working of LZW algorithm. 

According to the conventional approach the number of bits used 

to represent the code depends on the magnitude of the index of 

the dictionary i.e. if its follow the conventional approach then it 

shall be using 4-bit code word to represent the output of the 11th 

entry (since it depends on the magnitude of the index) but here the 

output code word has the magnitude 6, which requires only 3-bits 

to be represented. Thus applying dynamic restructuring based on 

the magnitude of output the results are more optimized. 

In the example by the conventional approach the total number of 

bits used for output of the entries starting from the 8th entry is 

4*5=20. But contrary to this approach uses 3*5=15, thus saving 5 

bits. 
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DYNAMIC FEEDBACK 
The standard LZW uses a single dictionary, i.e. the dictionary is 

only created once, if it gets filled then no more patterns can be 

formed and hence the only replaceable patterns are the ones which 

exist in the dictionary. Its means that once the dictionary is full 

the input read is compared to the patterns within the dictionary if 

matched they are replaced by the appropriate code word otherwise 

the characters are outputted as such. This approach followed by 

the standard LZW at times leads to reduction in the compression 

ratio. 

 

 

                                                                             

                         

                         -          

                                   

          

 

   

 

 

                        Fig 3.1 Dynamic Feedback 

    To overcome the above stated drawback we suggest dynamic 

feedback to the algorithm. The feedback is in the sense that we 

keep monitoring the compression ratio at suitable intervals, after 

each such interval the compression ratio is compared against a 

threshold value, if the compression ratio is below the threshold 

the dictionary is flushed out and a new one is created which helps 

us to improve the compression ratio. This process of feedback is 

schematically depicted in figure 3.1. It is only a schematic 

representation and cannot be directly viewed as an algorithm to be 

implemented. 

4.   FLOWCHARTS 

4.1 COMPRESSION 
Figure 4.1 shows a flowchart for LZW compression [2]. Table 4.1 

provides the step-by-step details for an example input file 

consisting of 45 bytes, the ASCII text string: 

the/rain/in/Spain/falls/mainly/on/the/plain. When the LZW 

algorithm reads the character "a" from the input file, it reads the 

value: 01100001 (97 expressed in 8 bits), where 97 is "a" in 

ASCII. When it writes the character "a" to the encoded file, we 

mean it writes: 000001100001 (97 expressed in 12 bits). 

    The variable, CHAR, is a single byte. The variable, STRING, is 

a variable length sequence of bytes. Data are read from the input 

file (box 1 & 2) as single bytes, and written to the compressed file 

(box4) as 12 bit codes. 

    The compression algorithm uses two variables: CHAR and 

STRING. The variable, CHAR, holds a single character, i.e., a 

single byte value between 0 and 255. The variable, STRING, is a 

variable length string, i.e., a group of one or more characters, with 

each character being a single byte. In box1 of Fig. 4.1, the 

program starts by taking the first byte from the input file, and 

placing it in the variable, STRING. This is followed by the 

algorithm looping for each additional byte in the input file, 

controlled in the flow diagram by box 8. Each time a byte is read 

from the input file (box2), it is stored in the variable, CHAR. The 

data table is then searched to determine if the concatenation of the 

two variables, STRING+CHAR, has already been assigned a code 

(box3).  

 

                 Fig. 4.1  LZW compression flowcharts 

 

If a match in the code table is not found, three actions are taken, 

as shown in boxes 4, 5 & 6. In box4, the 12-bit code 

corresponding to the contents of the variable, STRING, is written 

to the compressed file. In box 5, a new code is created in the table 

for the concatenation of STRING+CHAR. In box 6, the variable, 

STRING, takes the value of the variable, CHAR.  

    When a match in the code table is found (box3), the 

concatenation of STRING+CHAR is stored in the variable, 

STRING, without any other action-taking place (box 7). That is, if 

a matching sequence is found, no action should be taken before 

determining if there is a longer matching sequence. The sequence: 

STRING+CHAR= in, is identified as already having a code in the 

table. The next character from the input file, /, is added to the 

sequence, and the code table is searched for: in/. Since this longer 
sequence is not in the table, the program adds it to the table, 

outputs the code for the shorter sequence that is in the table and 

starts over searching for sequences beginning with the character, /. 

This flow of events is continued until there are no more characters 

in the input file. The program is wrapped up with the code 

LZW 

Threshold value 

If result is 

negative Compression Ratio +  

Coded Output 
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corresponding to the current value of STRING being written to 

the compressed file as illustrated in box9 of Fig. 4.1. 

4.2 DECOMPRESSION 
A flowchart of the LZW decompression algorithm is shown in 

Fig. 4.2. Each code is read from the compressed file and 

compared to the code table to provide the translation [2]. The 

code table is updated so that it continually matches the one used 

during the compression. However, there is a small complication in 

the decompression routine. There are certain combinations of data 

that result in the decompression algorithm receiving a code that 

does not yet exist in its code table. This contingency is handled in 

boxes 4, 5 & 6. 

 

Fig 4.2 LZW Decompression flowchart 

The variables, OCODE and NCODE (old code and new code), 

hold the 12 bit codes from the compressed file, CHAR holds a 

single byte, and STRING holds a string of bytes. 

5. EXPERIMENTAL RESULTS 
It is somewhat difficult to characterize the results of any data 

compression technique. The level of compression achieved varies 

quite a bit depending on several factors. LZW compression excels 

when confronted with data streams that have any type of repeated 

strings. Because of this, it does extremely well when compressing 

English text. Compression levels of 50% or better should be 

expected. Likewise, compressing saved screens and displays will 

generally show very good results.  

Trying to compress binary data files is a little more risky. 

Depending on the data, compression may or may not yield good 

results. In some cases, data files will compress even more than 

text. A little bit of experimentation will usually give you a feel for 

whether your data will compress well or not.  

COMPRESSION RESULT - Table 5.1    

SN Files 

Start

ing 

Size 

(kb) 

Comp

ressed 

Size 

(kb) 

Compressi

on 

Ratio (%) 

1 AFMD01.txt 118 64 45.7 

2 BGNE02.txt 138 77 44.2 

3 RMDAQ44.txt 76 44 42.1 

4 TREWA22.txt 34 18 47.0 

5 Cricket.bmp 729 7 99.0 

6 Nero.bmp 668 336 49.7 

7 Que.bmp 351 177 49.5 

8 Game02.bmp 331 119 64.0 

9 Exe1.exe 544 471 13.4 

10 Exe2.exe 536 485 09.5 

11 Exe3.exe 535 377 29.5 

12 Exe4.exe 529 453 14.3 

13 Gimme.dll 4493 3739 16.7 

14 Mps.dll 3404 3289 03.3 

15 Scanres.dll 6264 6256 00.1 

16 Comsvcs.dll 1223 1201 01.7 

  

0

1000

2000

3000

4000

5000

6000

7000

Starting 
Size(kb)

Compressed 
Size(kb)

  Files-> 

Fig. 5.1 Graph – Compression (Ref Table 5.1) 

6.   FUTURE SCOPE 
We have developed this as a utility, which performs some of the 

most elementary task like compressing the given file whether it is 

text file, image file, sound file or executable file and this file can 
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again decompressed in an original form without any loss. Thus we 

have developed a comprehensive toolbox, which can be used to 

perform suitable compression and decompression. Data 

compression is one such field where this toolbox can prove to be 

of immense help since it can execute in a few steps. LZW 

algorithm for data compression being a wide field which is rapidly 

finding use in many applied fields and technologies, providing 

tools for some of the most elementary and cumbersome operation 

which is a major step towards the future technology. 

7.   CONCLUSION 
This paper includes a complete and comprehensive study of all 

aspects of LZW algorithm. Our study goes from the most basic 

concepts like what were the limitations of LZ77, LZ78 and LZW 

algorithm and how modified LZW algorithm overcame those 

limitations. We have improved the basic LZW algorithm by 

increasing the size of dictionary. As it possible to store more and 

longer phrases to compress better. Moving to larger code size 

actually retards the compression when the file size to be 

compressed is small. Since phrases are initially found and added 

to the dictionary at the same pace, whether the code is nine bits or 

fifteen bits long, the nine bit actually produce a smaller file. 

Another enhancement is the flush code. This tells the 

decompressor to throw away all phrases currently in the dictionary 

and to start over a blank state in order to increase the degrading 

compression ratio. Typically, you can expect LZW to compress 

text, executable code, and similar data files to about one-half their 

original size. LZW also performs well when presented with 

extremely redundant data files, such as tabulated numbers, 

computer source code, and acquired signals. 
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