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Abstract—Silicon photonics is poised to revolutionise several 

data communication applications. The development of high 

performance optical modulators formed in silicon is essential for 

the technology to be viable. In this paper we review our recent 

work on carrier depletion silicon Mach Zehnder based optical 

modulators which have formed part of the work within the UK 

Silicon Photonics and HELIOS projects, as well as including 

some recent new data. A concept for the self-aligned formation of 

the pn junction which is flexible in the capability to produce a 

number of device configurations is presented. This process is key 

in having performance repeatability, a high production yield and 

large extinction ratios. Experimental results from devices which 

are formed though such processes are presented with operation 

up to and beyond 40Gbit/s. The potential for silicon photonics to 

fulfil longer haul applications is also explored in the analysis of 

the chirp produced from these devices and the ability to produce 

large extinction ratios at high speed. It is shown that the chirp 

produced with the modulator operated in dual drive 

configuration is negligible and that a 18dB dynamic modulation 

depth is obtainable at a data rate of 10Gbit/s. 

 
Index Terms—Silicon, Silicon Photonics, Optical Modulator, 

Mach Zehnder, Chirp. 

I. INTRODUCTION 

VER the previous decade silicon photonics has emerged 

as an attractive technology base in which to form high 

photonic components and circuits. Motivated by the prospects 

of low cost production and integration with CMOS, which can 

also offer enhanced functionality silicon photonics has 

attracted significant research effort worldwide. This has 

resulted in rapid improvements in component performance and 

integration techniques which have opened up the technology 

to a number of different applications. The silicon optical 

modulator which performs the function of writing electrical 
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data onto an optical carrier is a prime example of the 

development rate of silicon photonics. Performances have 

gone from the first proposed designs for 1GHz modulation a 

decade ago [1] to modulator at data rates in excess of 40Gbit/s 

[2,3]. Applications for silicon photonics have focused on short 

reach links with some products already emerging in the area of 

active optical cables [4]. The technology is a good match in 

this case since the cost is the key driver and performance 

requirements are much less stringent than for the long haul 

links typically associated with photonics. Longer reach 

photonics links are currently served by high performance 

components formed in more traditional photonics materials 

such as LiNbO3 or III-V compounds such as InP. The 

performance of components fabricated in such materials are 

typically far superior to those formed in silicon. However, 

with the rapid emergence of silicon photonics, performance of 

silicon devices is improving dramatically. This focus on short 

reach applications has driven attention away from the analysis 

of some of the performance requirements when transmitting 

optical data over long distances. Chirp is one characteristic 

that becomes increasingly important with the reach of the data 

link, yet to date it has received relatively little investigation in 

silicon optical modulators [5-7]. Furthermore for the short 

reach links only modest extinction ratios are required. 

Generally the modulation depth required increases with the 

length of link. Commercial LiNbO3 modulators typically have 

extinction ratios in excess of 13dB [8, 9]. To date there have 

very few demonstrations of extinction ratios in excess of 10dB 

in silicon based modulators[7, 10]. 

In this paper we provide a review of our recent work on 

carrier depletion based silicon Mach-Zehnder modulators 

(MZM) which has been performed within the UK Silicon 

Photonics (UKSP) and HELIOS projects, and we provide 

some new data that has recently been recorded. Two different 

phase modulator designs are presented, both formed using 

different variants of the self-aligned pn junction process. The 

first, formed in 220nm overlayer SOI has demonstrated 

operation up to 50Gbit/s [2] and at 40Gbit/s with a large 

extinction ratio. The second formed in 400nm overlayer SOI 

has demonstrated 40Gbit/s modulation for both TE and TM 

polarisations and has the potential for polarisation independent 

operation. The prospects for silicon optical modulator to be 

employed for longer haul application is also explored in the 

investigation of the chirp and the ability to achieve a large 

extinction ratio. We demonstrate that with dual-drive 
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operation the chirp produced is negligible. An extinction ratio 

of 18dB is also presented at a data rate of 10Gbit/s. 

II. MODULATOR DESIGNS AND SELF-ALIGNED FABRICATION 

The majority of optical modulators formed in silicon are 

based upon the plasma dispersion effect where a change in the 

densities of free electrons and holes causes a change in the 

materials refractive index [11, 12]. The depletion of these 

carriers from a pn junction positioned such that it interacts 

with the propagating light is an approach that balances 

fabrication complexity, performance and CMOS 

compatibility. This technique had resulted in some of the most 

successful devices demonstrated in recent years and is the 

approach that has been followed in this work. 

The position of the pn junction is critical to the device 

performance with the resultant overlap of the depletion region 

with the optical mode governing the phase efficiency and 

having an effect on the optical loss. A concept that we have 

developed within our work is the ability to accurately position 

the junction using a self-aligned fabrication process. Using 

this approach we can reduce performance variations caused by 

process tolerances. This has several benefits. Firstly device 

yield will be increased which will in turn allow for the chip 

cost to be kept low. Furthermore, costs can also be reduced 

since older generation fabrication tools with lower alignment 

accuracy can be used. Secondly when the phase modulator is 

used in a Mach-Zehnder Interferometer (MZI) structure it will 

allow the losses in the two arms to be balanced with greater 

accuracy providing a larger extinction ratio. Finally, with dual 

drive operation the matched phase modulation performance in 

either arm will allow for the chirp of the device to be 

minimised. 

 

 
The basic concept of the self- aligned process is shown in 

figure 1. The active region is first doped p type by implanting 

boron ions though a window defined by photolithography. A 

silicon dioxide layer is then deposited and patterned with the 

waveguide design. This patterned layer is then used firstly as a 

hard mask through which to etch the optical waveguides. After 

etching the waveguides the hard mask is retained and used in 

combination with a photoresist layer to guide a phosphorus 

implant. Since either the hard mask or photoresist alone are 

designed to be sufficiently thick to block the implanted 

phosphorus ions the edge of the photoresist window can be 

positioned anywhere on the waveguide and the junction will 

always reside at the waveguide edge. A low alignment 

accuracy is therefore required (±200nm). The remainder of the 

device features are formed using CMOS compatible process 

steps.  A cross-sectional diagram of the resultant device 

formed with this basic process is shown in figure 2.  

 

  
As can be seen in figure 2, the pn junction is positioned in line 

with the edge of the waveguide. This not the natural position 

for the junction since it does not coincide with the core of the 

optical mode. In order to achieve efficient modulation with 

such a configuration the doping concentrations should be 

arranged such that the depletion extends mainly into the 

waveguide during reverse bias conditions. This can be 

achieved by having a larger n type concentration than p type. 

In the first variant of our design the p type density is 3e17.cm
-3

 

and the n type 1.5e18.cm
-3

.  

The waveguide dimensions are 220nm height, 400nm width 

and 100nm slab height. The separations between the highly 

doped regions and the waveguide edge are 500nm (n+) and 

450nm (p+). Holes are etched through a 1 micrometer thick 

silicon dioxide top cladding layer down to the highly doped 

regions in order to form ohmic contacts to the device 

electrodes. Coplanar waveguide electrode are used to drive the 

device at high speed. An electrode thickness of 1.3um has 

been selected to allow for a large electrode bandwidth. The 

phase modulators are inserted into MZI’s to convert the phase 

modulation into intensity modulation. Low loss multimode 

interference structures (MMI’s) with accurate splitting ratio 

are used to split and combine the light from the MZI arms 

[14]. To simplify the characterisation the MZI have been 

configured to be asymmetric where one arm is 180um longer 

than the other. This gives a periodic spectral response as 

shown in figure 3, which are the results taken from a MZI with 

3.5mm phase shifters. To allow dual drive operation and to 

balance the losses identical phase modulators are put in both 

MZI arms. When a reverse bias is applied to one of the arms 

the phase shift produced shifts the spectral response as shown 

in figure 3. The shift in the response relative to the free 

spectral range (FSR) can be used to accurately calculate the 

phase shift. Figure 3 demonstrates a passive extinction ratio of 

  
 

  
Fig.1. Diagram showing the self-aligned formation of the pn junction. Firstly 

the active region is doped p type (top left). A silicon dioxide layer is the 

deposited and patterned with the waveguide design (top right). This patterned 

silicon dioxide layer is then used as a hard mask through which to etch the 

waveguides (bottom left). Finally the silicon dioxide hard mask is used 

together with a photoresist window to define the phosphorus implantation 

region [13]. 

 
Fig. 2. Cross sectional diagram of the phase modulator formed with this 
simple self-aligned process [13]. 
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around 30dB and a DC extinction ratio in excess of 25dB 

when 6V is applied to one arm. The modulation efficiency is 

measured to be approximately 2.7V.cm. Phase modulation 

efficiencies as low as 2.3V.cm have been demonstrated with 

slightly different doping configurations (spectral response 

shown in figure 13). The optical loss of the phase modulator 

relative to a waveguide of the same length is ~15dB. This 

comprises a phase modulator loss of 4dB/mm and an MMI 

loss of 0.5dB. 

 
The phase modulator loss results mainly from the proximity 

of the p+ and n+ regions to the waveguide. Our analysis 

suggests that these have diffused closer to the waveguide than 

targeted during fabrication. A loss of approximately 

1.6dB/mm was expected from simulation. High speed 

performance has been analysed by applying a 40Gbit/s 

electrical PRBS data stream amplified to 6.5V peak to peak to 

the device with the optical output eye diagram monitored. The 

PRBS signal was generated using a Centellax TG1P4A source 

and amplified to 6.5V peak to peak using a Centellax 

OA4MVM3 amplifier. High speed ground-signal ground 

(GSG) probes were used to both launch the signal on the chip 

and to apply the 50Ω termination at the end of the electrode. 	
  

 

 
Figure 4 shows the optical output eye diagram from the 

MZI obtained using an Agilent 86100C digital 

communications analyser (DCA) with 86116C Opt 40 optical 

head. An extinction ratio of 10dB is obtained at the quadrature 

operating point. If the device was driven in dual drive 

configuration with 2V peak to peak inputs (Similar to using a 

4V peak to peak input in single drive configuration) an 

extinction ratio of approximately 7dB would be expected [13] 

demonstrating the potential for the modulators use in low 

drive voltage applications. A MZI with 1mm phase shifters 

has also been tested at 50Gbit/s [2]. After accounting for 

EDFA noise an extinction ratio of 3dB is obtained. The device 

is operated at a point with slightly more loss than at quadrature 

resulting in a loss of approximately 7.4dB. The optical loss of 

the device can be improved simply by increasing the 

separation of the highly doped regions from the waveguide. 

This has been demonstrated in a separate fabrication run of the 

same device. The separation between the n+ and p+ regions 

and the waveguide in this case was increased to 600nm and 

500nm respectively. This resulted in a loss of just 1.1dB 

respectively. Note that a slightly different doping recipe was 

used for the waveguide which resulted in a phase efficiency if 

2.9V.cm. The separations of the highly doped regions from the 

waveguide are normally selected to trade-off device speed and 

loss. Using a greater separation from the waveguide decreases 

interaction with the optical mode and therefore reduces optical 

loss. An increased access resistance to the devices also results 

which causes a reduction in the intrinsic bandwidth. Although 

the separations have been increased high speed operation at 

20Gbit/s and 30Gbit/s has been demonstrated as shown in 

figure 5.  

 

 
In this case the device speed is limited not by the 

semiconductor section of the device but by the electrodes 

  

 
Fig. 3.  Spectral response of the asymmetric MZI with 3.5mm phase shifters  

with different DC bias voltages applied to the phase modulator in one of the 
MZI arms. 

 
Fig. 4.  40Gbit/s operation of the MZI with 3.5mm phase shifters. The device 
is operated at quadrature with a 6.5V peak to peak drive voltage [13]. 

 
 

 
Fig. 5.  Operation of the phase modulator with larger separation between the 

waveguide and the highly doped regions at data rates of 20Gbit/s (top) and 

30Gbit/s (bottom). 
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which were fabricated in much thinner metal (580nm) than 

used previously. 

Although the phase modulation efficiency produced is 

respectable compared with the state of the art our analysis 

suggests that for similar optical losses the modulation 

efficiency can be increased by moving the junction slightly 

inside the waveguide. This can be achieved with the self-

aligned junction formation retained by using angled 

implantations as shown in figure 6. By controlling the angle, 

energy and dose of the phosphorus implant it is possible to 

position the pn junction at whatever position required. Other 

techniques such as plasma immersion or dopant diffusion can 

also be employed to a similar affect.  

 

  
This concept can be expanded further to produce a wide 

variety of junction positions and shapes to tailor device 

performance as required. For example another phase shifter 

design investigated targeted polarisation independent 

operation. The phase efficiency for both TE and TM 

polarisations therefore must be the same. To achieve this a 

junction design with the flexibility to tailor the overlap of the 

depletion regions with the TE and TM modes was required. 

The design selected was a wrap-around junction as shown in 

figure 7.  

 

 
This design is formed with a series of self-aligned angled 

and vertical implants on either side of the waveguide to 

position the pn junction as required. The phase modulator in 

this case is formed in 400nm thick overlayer SOI to allow the 

formation of waveguide which support both polarisations. The 

waveguide height is therefore 400nm, the width 410nm and 

the slab height 100nm. The doping concentrations of the p and 

n type regions are designed to be approximately 1e18.cm
-3

 

whilst the doping concentrations of the highly doped regions 

are around 1e20.cm
-3

. The phase modulators are inserted into 

asymmetric MZI with 80um arm length difference. Compact 

start couplers are used in this case to split and combine the 

light to and from the two MZI arms. The high speed operation 

of the device has been tested in a similar fashion as described 

for the previous device except that both polarisations are 

examined in this case. Open eye diagrams are obtained from 

the device at 10Gbit/s and 40Gbit/s (40Gbit/s eye diagrams 

shown in figure 8. At 10Gbit/s an extinction ratio of 

approximately 7.3dB is obtained for both polarisations [15]. 

At 40Gbit/s the extinction ratio drops slightly to 6.5dB but 

again is almost identical for both polarisations demonstrating 

the prospects for polarisation independent operation. An on 

chip insertion loss of ~25dB is obtained which comprises a 

device loss of ~15dB and the selection of a non-quadrature 

operating point which results in a further ~10dB of loss. 

 

 

III. CHIRP ANALYSIS 

When transmitting data at high symbol rates over distances 

of tens of kilometres one important consideration is the chirp 

produced by the modulator. Chirp in optical intensity 

modulators is caused when the output phase of the light 

relative to the input phase changes with time. This causes a 

 
Fig. 6.  Diagram showing how the pn junction can be positioned inside the 

waveguide using the same self-aligned process concept by using an angled 

phosphorus implant. 

 
Fig. 7.  Cross sectional diagram of the phase modulator design with wrap-

around pn junction. The device is formed by a series of angled and straight 
self-aligned implants. 

 
 

 
Fig. 8.  Operation of the phase modulator with wrap around pn junction 

modulator at 40Gbit/s for TE polarisation (top) and TM polarisation 

(bottom). An almost identical extinction ratio of ~6.5dB is obtained in each 

case [15].  
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slight excursion of the carrier wavelength during switching 

between the 1 and 0 states. This acts on the chromatic 

dispersion of the fibre causing a spreading or a compression of 

the pulse in time. The effect scales with propagation distance 

and therefore at certain distance pulses begin to overlap and 

the data becomes unresolvable unless a dispersion 

compensator is employed. In single-drive MZI devices, chirp 

is a common feature since as the relative phase of the active 

arm is varied with time to change the interference condition 

the relative phase of the resultant output will also change with 

time. In devices based upon the Pockels effect, chirp can 

theoretically be avoided by driving both arms of the MZI with 

complementary signals (commonly referred to as dual-drive or 

push-pull operation). In this case, provided that the optical  

power from each arm remains equal and the changing phase 

from either arm is equal but opposite, the output phase can be 

kept constant. In practice this should mean that the MZI 

splitters/combiners should provide precise 3dB behaviour, the 

optical losses in either arm are equal, the magnitude and 

timing of the drive signals to each arm are the same and the 

phase modulators in either arm are identical. A deviation from 

any of these conditions will cause some degree of chirp. As 

discussed above high speed optical modulators which are 

formed in silicon are most commonly based upon the plasma 

dispersion effect which relates changes in the free electron and 

hole densities to changes in refractive index and absorption 

coefficient. It is this unavoidable modulation of the material’s 

absorption during modulation of the phase that causes a time 

dependant difference in the loss in either arm which is not 

equal because the carrier density in the two arms is 

instantaneously different causing differential absorption, and 

hence instantaneous imbalance. This problem is specific to all 

devices based upon this effect including plasma dispersion 

based silicon devices.  

 
To analyse whether the degree of chirp produced by this 

cause is significant enough to prevent the consideration of 

silicon optical modulators for longer haul applications from 

the stand point of chirp a theoretical and experimental analysis 

has been performed on the device shown in figure 2. Analysis 

is performed for both single and dual drive operations. In the 

experimental analysis high speed ground-signal-ground-

signal-ground (GSGSG) probes are used to apply the data 

signal to the device and to connect the DC block and 50Ω 

termination to the device. In single-drive operation (only one 

arm of the MZI is driven) a single output Centellax 

OA4MVM3 amplifier is used to boost the data signal up to 

6.5V peak to peak. In dual-drive operation SAGE Laboritories 

OPS002 RF phase shifters are used to shift the timing of the 

complementary signals to the two arms to ensure that they are 

accurately aligned in time. A Centellax OA4SMM4 dual 

amplifier is then used to provide two complementary outputs 

of 3V peak to peak. A bias tee is used to apply a DC level to 

the signal to ensure that the device operates only in the 

depletion regime. In the dual-drive case the same DC level is 

applied to both arms. 

In order to create an accurate model, the ratio of effective 

refractive index change Δneff to absorption coefficient change 

Δα in the experimental device must be measured. To measure 

the change in phase with voltage, one arm of the asymmetric 

MZM was grounded and a DC voltage applied to the other. 

The spectral shift of the MZM’s response was then measured 

with different voltage levels and converted to phase shift as 

described previously. Due to the self-aligned process used to 

fabricate the device, variations in performance between the 

two MZI arms due to misalignment are eliminated. 

Experimental measurements have confirmed that a near 

identical phase shift was observed from the two MZM arms as 

shown in figure 9.  

To measure the change in absorption coefficient the same DC 

level was applied to both MZI arms simultaneously and the 

shift in the power level of the MZI response was observed for 

different bias voltages. Any significant mismatch in the phase 

shifting performance of the modulators would produce a phase 

shift at the output of the MZI. The blue line in figure 9 

indicates any phase shift difference is negligible. The change 

in effective refractive index and absorption coefficient with 

voltage is shown fig. 10. This relationship is used to calculate 

the effective changes in electron and hole densities during 

modulation which are then used in the chirp model.  

 
 

 

 
Fig. 9.  Phase shift produced with different dc bias voltages for MZI arm 1 

(black line), MZI arm 2 (red line), and the residual phase shift from when 
both MZI arms have the same DC voltage applied (blue line).  

 
Fig. 10.  Relationship of effective refractive index change and absorption 

change with different reverse bias voltages. 
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The high speed response of the device and drive circuitry is 

also important as it defines the rate at which the output phase 

changes during modulation. Optical eye diagrams were 

obtained from which the rise and fall times of 20ps (single 

drive) and 24ps (dual drive) were measured. These figures 

were also taken into account in the device model. A data rate 

of 20Gbit/s is used in order to capture a good number of data 

points per transition on the optical modulation analyser used 

for the chirp measurements that will be described below.  

To analyse the degree of chirp produced, a computer model 

representing the silicon modulator has been developed. An 

input non return to zero (NRZ) PRBS data stream at 20Gbit/s 

is defined with the same rise and fall times as those produced 

experimentally. In order to isolate the cause of chirp specific 

to silicon optical modulators, the computer model assumes 

equal power splitting, equal arm losses and in the dual drive 

(a)                      (b) 

 

 

(c)                   (d) 

 

 

(e)                     (f) 

 
Fig. 11. Simulation data. Optical electric field amplitude in each MZI arm against time for single drive operation (a) and dual drive operation (b). Phase of 

the light in each arm and at the modulator output relative to the input against time for single drive operation (c) and dual drive operation (d). Modulator 

output intensity and frequency shift against time for single drive (e) and for dual drive (f). 
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case equal but opposite phase changes in either arm. These 

assumptions are not invalid. A passive extinction ratio of 

around 30dB has been demonstrated from the MZI as shown 

in figure 3. This indicates a well-balanced optical power at the 

output of either arm. Furthermore the negligible difference has 

been observed in the performance of the phase modulators in 

either arm (figure 9). The DC characteristics which describe 

the ratio of refractive index change to absorption change in the 

experimental case have been put into the model to correctly 

represent the silicon modulator. The degree of modulation 

applied in the simulation is used to match experimental 

extinction ratio. The top two plots of figure 11 show how the 

electric field amplitude of the optical wave at the output of 

either arm of the MZI changes during modulation for the 

single drive and dual drive cases respectively. The output 

phase of the modulator will tend toward the phase of the arm 

with the greater optical power. Since the ratio of the electric 

field amplitude from each arm is changing with time due to 

the time dependent losses, it is not possible to keep a constant 

output phase even if the phase change in each arm is equal and 

opposite. This is demonstrated in the middle two plots of 

figure 11 showing the phase from each of the MZI arms and 

the MZI output phase relative to the input phase with time. It 

can be seen in both the single drive and dual drive cases that 

the output phase relative to the input phase is not constant with 

time. In reality this means that the phase of the light is 

changing faster or slower than in the unmodulated case which 

therefore causes a shift of the carrier frequency. Finally this 

frequency shifting resultant from the change in relative phase 

is shown against time in both cases together with the MZI 

output intensity in the bottom two plots of figure 11. In the 

dual drive case the peak frequency shift is around 0.5GHz 

whereas for the single drive case the frequency shift is in 

excess of 7.5GHz. The effective chirp parameter as used in [6] 

can be misleading for this type of modulator since 

theoretically it will be ~zero when the device is operated with 

the “1” level at the maximum of the MZI response, with 

precise splitting and with equal (but opposite) modulation in 

either arm. In this case the relative output phase at the “1” 

level and at quadrature is approximately equal. There will 

however be movement of the relative output phase outside of 

these two states causing some degree of frequency chirping as 

demonstrated in figure 11. However, to allow comparison with 

[6], the effective chirp parameter has been calculated in the 

same way to be -1.7 for the single drive case and near zero for 

dual drive case. To experimentally analyse the modulator for 

chirp and to verify the theoretical model the output signal 

from the modulator was characterised using an optical 

modulation analyser (OMA, Agilent N4391A), in conjunction 

with an 80GSa/s real-time oscilloscope (Agilent DSO-X 

93204A). An OMA is capable of analysing a complex signal 

and offering constellation analysis. The experimental setup 

and conditions are described in [16]. The wavelength used 

during these measurements was 1549.4nm at which the 

modulator operates at quadrature.  Figure 12 shows the 

experimental constellations of the modulation for both modes 

of operation. The simulated constellation from the modulator 

model is also overlaid. The minimum has been set to (0,0) and 

maximum normalised to position (1,0) on the constellation in 

both experimental and simulated data to allow for ease of 

comparison. Due to a poor signal-to-noise ratio at the output 

of the EDFA the transitions between the 1 and 0 levels appear 

blurred in the measured constellation diagram. 

 
The constellation plots display both the phase and 

normalised amplitude of the modulator output in vector 

format. The x-axis represents the in-phase component (output 

light in-phase with input light) and the y-axis represents the 

quadrature component (output light π/2 out of phase from the 

input light). A straight transition between the 0 and 1 levels 

indicates that the output phase is not changing during 

modulation and therefore that there is zero chirp. In the dual 

drive case the transition between the 1 and 0 levels is nearly 

straight confirming a low level of chirp. In the single drive 

case a curved transition is observed. This indicates a chirped 

output since significant deviation of the output phase is 

occurring during modulation, as predicted by the theoretical 

model. It can be seen that in both modes of operation there is a 

good agreement between the measured and modelled data. 

Using the theoretical level of chirp predicted in the model we 

are able to predict its impact on the long haul transmission of 

data. Our calculations show that the pulses formed in the dual 

drive case propagate similarly to totally unchirped pulses, 

confirming that the chirp under this driving configuration is 

negligible. This is consistent with the findings of others 

 
 

Fig. 12 Experimental (red points) and theoretical (black line) constellation 

diagrams measured with OMA for single drive operation (top) and dual drive 

operation (bottom). 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

8 

analysis [7]. Chirp is also present in the output of typical ring 

resonator based optical modulators due to the non-constant 

phase response of the ring around its resonance at which it is 

operated for intensity modulation. It has been proposed that 

more complex structures can be used to eliminate chirp [17] 

and that in certain modes of operation negative chirp can be 

engineered to facilitate propagation over longer distances of 

fibre [18]. 

IV. LARGE DYNAMIC EXTINCTION RATIO 

To demonstrate the ability of a silicon optical modulator to 

produce a large dynamic extinction ratio as also required for 

longer haul applications a MZM with 3.5mm long phase 

modulators of efficiency ~2.3V.cm were employed. With this 

efficiency, phase modulator length and a 6.5V peak to peak 

drive voltage a full pi phase shift is achievable. The spectral 

response of the MZI at different DC voltages is shown in 

figure.13.  

  
During high speed experiments a 5V DC bias was used 

together with the 6.5V drive which gives a voltage swing from 

1.75V to 6.25V. Over this range of voltages at a wavelength 

around 1541.5nm a DC modulation depth in excess of 30dB is 

achievable. 

 

  
A 10Gbit/s PRBS data stream was produced using a 

Centellax TG2P1A source and amplified to 6.5V peak to peak 

using a Centellax OA4MVM3 amplifier. This was applied to 

the device using GSG probes. The output light from the device 

was amplified using an Alnair Labs LNA 150 EDFA. The 

light was then filtered to attenuate to some extent the noise 

from surrounding wavelengths which is produced by the 

EDFA and then passed to an Agilent 86100C digital 

communications analyser with 86116C Opt 40 optical head. 

The resultant eye diagram is shown in figure 14. When 

residual EDFA noise of 190uW is subtracted from the 1 and 0 

levels an extinction ratio of approximately 18dB results. 

SUMMARY 

Different variants of high performance silicon optical 

modulators built by self-aligned processes have been 

presented. A MZM based in 220nm thick overlayer SOI has 

demonstrated operation up to 50Gbit/s and at 40Gbit/s with an 

extinction ratio of 10dB and optical loss of 15dB. It has been 

shown that the optical loss of the phase modulator in this case 

can be decreased from 4dB/mm to 1.1dB/mm by slightly 

increasing the separation of the highly doped regions from the 

waveguide. The chirp produced when the device is driven in 

both single and dual drive configuration has been analysed. It 

has been shown that the chirp produced is negligible when the 

device is operated in the dual drive configuration. Also 

presented is a higher efficiency version of the device operating 

at 10Gbit/s with a dynamic extinction ratio of ~18dB. This 

data demonstrates that silicon modulators can satisfy some of 

the specifications required for long haul communications, and 

that they have the potential for further optimisation to produce 

low cost alternatives to current devices. Finally a second 

MZM modulator fabricated in 400nm thick overlayer SOI has 

demonstrated 40Gbit/s operation for both TE and TM 

polarisations showing the potential for a polarisation 

independent device. 
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