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We have applied mixed valance manganite perovskites as magnetocaloric materials in a magnetic

refrigeration device. Relying on exact control of the composition and a technique to process the

materials into single adjoined pieces, we have observed temperature spans above 9 K with two

materials. Reasonable correspondence is found between experiments and a 2D numerical model,

using the measured magnetocaloric properties of the two materials as input. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3695338]

Mixed valence manganites have recently found use in

applications due to the rich physics present in these. The

applications range from colossal magneto-resistance1 to

spintronics2 and thus these ceramic perovskite materials

have been extensively studied.3 The magnetocaloric effect,

which manifests itself as a temperature change of the mate-

rial upon a change of the applied magnetic field, is maxi-

mised close to the magnetic phase transition. Numerous

studies of the magnetocaloric properties of perovskite

ceramics have been conducted, finding a strong dependence

of both the magnetic transition temperature and the size of

the magnetocaloric effect on stoichiometry and the level and

type of various dopants.4,5 Among the most promising of

these ceramics, in view of application and device perform-

ance in the range of room temperature, are materials in the

series La2/3(Ca,Sr)1/3MnO3 (LCSM). While the adiabatic

temperature change, DTad, is in general found to be relatively

low compared to conventional metallic and intermetallic

magnetocaloric materials, such as Gd, La(Fe,Co,Si)13, or

Gd5Si2Ge2, the high specific heat gives these materials an

isothermal entropy change, Ds, which is close to that of Gd.6

We will show here how the ability of accurately tuning the

Curie temperature by doping, coupled with the advantageous

abilities of these materials to be shaped into fine structures,

leads to high performance in magnetic refrigeration devices.

This makes them promising materials for this technology,

opening up yet another application for this class of materials.

The high performance found in the experimental results is

corroborated by numerical modelling results.

In the active magnetic regenerator (AMR) cycle, a porous

magnetocaloric regenerator is alternatingly magnetised and

demagnetised, e.g., by moving in and out of the magnet field

source. After each movement, a heat transfer fluid is pushed

through the void space in the regenerator in alternating direc-

tions. Upon performing this AMR cycle, a temperature gradi-

ent will build up across the regenerator, as heat is moved from

the “cold end” to the “hot end”. The use of layered regenera-

tors consisting of materials with different magnetic transition

temperatures has been proposed and experimentally tested in

a few devices.7–9 The regenerators are constructed so that

each material along the temperature gradient is operating

close to its optimal temperature, i.e., Curie temperature. Such

a design relies heavily on the ability to tune the Curie temper-

ature as well as the ability of constructing a multiple material

regenerator in a practical way. We show how the materials se-

ries La2/3(Ca,Sr)1/3MnO3 and the processing route of tape

casting are well suited to achieve this.

Powders of the two materials La0.67Ca0.2925Sr0.0375

Mn1.05O3 and La0.67Ca0.2850Sr0.0450Mn1.05O3, referred to in

the following as LCSM-1 and LCSM-2, respectively, were

prepared by spray pyrolysis. Each of these powders was cal-

cined at 1273 K for 2 h and suspended in a slurry with an

azeotropic mixture of methylethylketone and ethanol, poly-

vinyl pyrolidone and polyvinyl butyral. Using a so-called

doctor blade to control the thickness, the slurries are applied

from a vessel onto a moving substrate. This technique is

known as tape casting and is a conventional processing route

to produce thin and flat ceramic plates.10 The recently devel-

oped technique of adjacently tape casting multiple slurries

into a single tape11 was employed to prepare tapes with adja-

cent stripes of LCSM-1 and LCSM-2. The resulting tapes

were sintered at 1473 K for 4 h to densities of 96% and 95%

of the atomic, for LCSM-1 and LSCM-2, respectively. Plate-

lets containing equal amounts of the two materials were laser

cut to the size 40 mm� 25 mm, with the boundary between

the materials in the middle of the 40 mm side. A stack of 28

such platelets with a total mass of 51.1 g was assembled

according to the method described in Ref. 12, using a laser

profilometer to quantify the quality of the stacking. An aver-

age platelet thickness of 0.30 6 0.04 mm and channel thick-

nesses of 0.39 6 0.10 mm were measured attesting to the

good quality of the stacking.

The magnetocaloric properties DTad, Ds, and specific

heat, cH, were measured as a function of temperature and

applied magnetic field on pieces of the sintered platelets of

each of the two materials using the equipment discussed in

Ref. 13. The data for the peak values and temperatures, in

good correspondence with literature values,14 are given in

Table I.
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The 28 plate stack was mounted as an active magnetic

regenerator in a magnetic refrigeration test device at the

Technical University of Denmark with a 1.1 T Halbach type

permanent magnet assembly and a heat transfer fluid of

water containing 20% commercial ethylene glycol being

moved through the channels between the plates by way of a

piston. The LCSM-2 parts of the plates are oriented toward

the hot end, while the LCSM-1 parts of the plates are ori-

ented toward the cold end. A heat exchanger in the hot reser-

voir of the device allows the hot end temperature to be

controlled. Further details of this device and the operation of

it can be found in Refs. 15 and 16 and a sketch of the device

is given in Figure 1.

The utilization, /, of the AMR is conventionally defined

as the ratio between the thermal mass of fluid pushed through

the regenerator and the thermal mass of the regenerator

/ ¼ mf cf

MscH;s
; (1)

where mf is the mass of the fluid pushed through in one direc-

tion, cf is the specific heat of the fluid, Ms is the mass of the

solid regenerator, and cH,s is the specific heat of the regenera-

tor. As the regenerator consists of equal amounts of two

materials, each with a temperature dependent specific heat,

the value chosen for cH,s is the average of the peak values of

the two materials, i.e., 765 J kg�1 K�1. Experiments were

performed with the LCSM regenerator varying the mass flow

rate, the utilization, and the hot end temperature. During

operation, a steady state temperature span is reached

between the set hot end temperature and the cold end tem-

perature. Figure 2(a) shows the temperature spans achieved

as a function of hot end temperature and utilization, keeping

the fluid flow rate at a constant value of 1.32 gs�1. The high-

est temperature span of 9.3 K was reached at a hot end tem-

perature of 283.8 K and a utilization of 0.4, which results in

a cycle time of 8.9 s. This is an exceptionally high span,

more than 7.5 times the average maximum DTad of the two

materials. For comparison, the highest temperature span

obtained in this device with of the benchmark magneto-

caloric material Gd was 10.2 K,16 albeit with somewhat

thicker flat plates of 0.9 mm. It is also seen that the tempera-

ture span decreases either side of the optimum utilization of

0.4, in good correspondence with previously obtained

results.16 Doubling the mass flow rate while maintaining /
results in a lowering of the maximum temperature span to a

value of 8.1 K, again at an optimum utilization of 0.4 and a

optimum hot end temperature of 283.9 K. This is due to a

reduction in the number of transfer units (NTU) with an

increase of the mass flow rate, leading to a reduced tempera-

ture span.17

A numerical 2D model of the AMR cycle has recently

been developed.18 Using only the measured properties of the

LCSM plates and physical properties of the heat transfer

fluid, the no-load temperature span has been modelled as

shown in Fig. 2(b). Comparing the curves in Fig. 2, it is evi-

dent that the trend and peak temperatures are the same, albeit

with the predicted temperature span being a little higher and

TABLE I. Measured magnetocaloric properties of the two materials. DTad

and Ds are reported upon magnetisation in an applied field of l0 H¼ 1 T

while cH is at zero applied field.

Properties Peak temperature Peak value

LCSM-1

DTad 277 K 1.30 K

Ds 275 K 3.7 J kg�1 K�1

cH (H¼ 0) 273 K 780 J kg�1 K�1

LCSM-2

DTad 282 K 1.17 K

Ds 282 K 3.5 J kg�1 K�1

cH (H¼ 0) 278 K 750 J kg�1 K�1

FIG. 1. Sketch of the experimental setup showing the different components.

FIG. 2. (Color online) Temperature spans obtained at a mass flow rate of

1.32 gs�1. (a) gives experimental results and (b) gives the predictions of the

numerical model. The lines are guides to the eye.
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the peak broader than the measured. Such a reduction in the

experiment may be caused by a number of factors not

accounted for in the model including thermal losses to the

ambient, the effect of magnetostatic demagnetisation, and

the variation of the plate spacing in the stack. Each of these

factors has previously been shown to reduce the regenerator

performance. Taking this into account, the correspondence

seems reasonable.

Directly below the cold end of the regenerator, there is a

small electrical heater. Applying power to this simulates the

presence of a cooling load in the refrigeration device allow-

ing the cooling curve to be mapped out. The cooling curves

have been recorded for different utilizations and hot end tem-

peratures keeping the mass flow rate at a constant value.

Depending on the device performance, there will be a varia-

tion in the heat transfer between the heat exchanger and the

hot end of the device. This results in a slight variation

(�0.2 K) in the actual hot end temperature at a fixed set-

point temperature, so for comparison rounded values of the

hot end temperature are reported.

The best performance is observed at a mass flow rate of

2.63 gs�1 and Figure 3 shows the results, with the cooling

power normalised to the mass of the regenerator for conven-

ience. At zero load, the highest span is, as discussed above,

at a utilization of 0.4 and a hot end of 284 K. As expected,

the span is reduced as the load increases. This decrease is

close to linear for single material regenerators8,17 and for

two material regenerators with a close spacing of Curie tem-

peratures.9 An increase in the maximum cooling power is

observed when the utilization is increased to 0.5, due to the

increased thermal capacity of the fluid being pushed through

the regenerator. Also, the lower span at high cooling power

favours the lower hot end temperature of 281 K as this brings

the temperature span closer to the range where both LCSM

materials operate best. Figure 3 also gives the results from

the numerical model. Again, the trends are observed to be

the same with regards to the order and crossing of the lines.

As expected, the model over predicts the temperature span,

but surprisingly the experimental zero span cooling powers

are slightly above the predicted values. This may be caused

by dissipation of some of the heater power through the walls

of the device rather than into the regenerator. The extrapo-

lated maximum zero-span cooling power of about 35 W kg�1

in the experiment is significantly larger than the highest

measured value of 16 W kg�1 for Gd plates in the same de-

vice in similar conditions.19 Due to the lower parasitic loss

of larger devices and the faster operation possible when

using packed bed regenerators, significantly higher values

are reported for such devices8,9 but at the cost of a signifi-

cantly higher pumping pressure.

In conclusion, the results clearly show the potential

value of the mixed valence manganese ceramics as magneto-

caloric materials for application in devices. The strength of

the materials lies in the ability to accurately tune the Curie

temperature and process the materials into thin plates with

adjacent regions of different Curie temperatures. Future

regenerators will be constructed of numerous adjacent mate-

rials, leading to further improvements of the performance.

The relatively low cost of materials and especially the proc-

essing route, compared to conventional materials and proc-

essing routes, reduces the price which is otherwise a major

obstacle in the way of magnetocaloric applications.
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FIG. 3. (Color online) Cooling curves obtained at a mass flow rate of 2.63

gs�1 for both experiments and model predictions. Each curve is indexed by

the hot end temperature and the utilization. The lines are guides to the eye.
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