
Data Mining and Knowledge Discovery, 1, 391–417 (1997)
c© 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

High Performance OLAP and Data Mining on
Parallel Computers

SANJAY GOIL AND ALOK CHOUDHARY sgoil,choudhar@ece.nwu.edu

Department of Electrical and Computer Engineering and
Center for Parallel and Distributed Computing, Northwestern University, Evanston - IL 60201

Editors: Paul Stolorz and Ron Musick

Abstract. On-Line Analytical Processing (OLAP) techniques are increasingly being used in decision support
systems to provide analysis of data. Queries posed on such systems are quite complex and require different
views of data. Analytical models need to capture the multidimensionality of the underlying data, a task for which
multidimensional databases are well suited. Multidimensional OLAP systems store data in multidimensional
arrays on which analytical operations are performed. Knowledge discovery and data mining requires complex
operations on the underlying data which can be very expensive in terms of computation time.. High performance
parallel systems can reduce this analysis time.

Precomputed aggregate calculations in aData Cubecan provide efficient query processing for OLAP appli-
cations. In this article, we present algorithms for construction of data cubes on distributed-memory parallel
computers. Data is loaded from a relational database into a multidimensional array. We present two methods,
sort-basedandhash-basedfor loading thebasecube and compare their performances. Data cubes are used to
perform consolidation queries used inroll-up operations using dimension hierarchies. Finally, we show how data
cubes are used for data mining usingAttribute Focusingtechniques. We present results for these on the IBM-SP2
parallel machine. Results show that our algorithms and techniques for OLAP and data mining on parallel systems
are scalable to a large number of processors, providing a high performance platform for such applications.

Keywords: Data Cube, Parallel Computing, High Performance, Data mining, Attribute Focusing

1. Introduction

On-line Analytical Processing (OLAP) (Codd, 1993) systems enable analysts and managers
to gain insight into the performance of an enterprise through a wide variety of views of data
organized to reflect the multidimensional nature of the enterprise data. OLAP gives insight
into data through fast, consistent, interactive access to a wide variety of possible views of
information. In contrast to traditional databases, it answers questions like “what if ?” and
“why ?” in addition to “who ?” and “what ?”. OLAP is used to build decision support
systems which help in extracting knowledge from data.

OLAP is used to summarize, consolidate, view, apply formulae to, and synthesize data
according to multiple dimensions. Queries posed on such systems are quite complex and
require different views of data. Traditionally, a relational approach (relational OLAP) has
been taken to build such systems. Relational databases are used to build and query these
systems. A complex analytical query is cumbersome to express in SQL and it might not
be efficient to execute. More recently, multidimensional database techniques (multidi-
mensional OLAP) have been applied to decision-support applications. Data is stored in
multidimensional arrays which is a more natural way to express the multi-dimensionality
of the enterprise data and is more suited for analysis. A “cell” in multidimensional space

53

392 GOIL AND CHOUDHARY

represents a tuple, with the attributes of the tuple identifying the location of the tuple in the
multidimensional space and the measure values represent the content of the cell.

Data mining can be viewed as an automated application of algorithms to detect patterns
and extract knowledge from data (Fayyad, et al.). An algorithm that enumerates patterns
from, or fits models to, data is a data mining algorithm. Data mining is a step in the overall
concept of knowledge discovery in databases (KDD). Large data sets are analyzed for
searching patterns and discovering rules. Automated techniques of data mining can make
OLAP more useful and easier to apply in the overall scheme of decision support systems.
Data mining techniques likeAssociations, Classification, Clustering and Trend analysis
(Fayyad, et al.) can be used together with OLAP to discover knowledge from data.

An approach to data mining called Attribute Focusing targets the end-user by using al-
gorithms that lead the user through the analysis of data. Attribute Focusing has been
successfully applied in discovering interesting patterns in the NBA (Bhandari, et al., 1996)
and other applications. Earlier applications of this technique were to software process engi-
neering (Bhandari, et al., 1993). Since data cubes have aggregation values on combinations
of attributes already calculated, the computations of attribute focusing are greatly facilitated
by data cubes. We present a parallel algorithm to calculate the “interestingness” function
used in attribute focusing on the data cube.

Typically, large amounts of data are analyzed for OLAP and data mining applications.
Ad-hoc analytical queries are posed by analysts who expect the system to provide real-
time performance. Parallel computers can be used in such a scenario for a variety of
reasons. Scalable solutions can build a highly accurate data mining model quicker. Mining
large databases and constructing complex models take a large amount of computing power
which can take hours of valuable time. Scalable parallel systems can reduce this wait time
to minutes or even seconds, thus increasing productivity and better understanding of the
knowledge discovery process. The use of many processors enables the use of more memory
and a larger database can be handled in the main memory attached to the processors. We
have currently considered main-memory databases. Extensions to disks using parallel I/O
will be future work.

In this article we present scalable parallel algorithm and techniques for OLAP in multi-
dimensional databases. Parallel construction and maintenance of data cubes and their use
for OLAP queries is shown. Results show that our implementations are scalable to a large
number of processors. Consolidation queries make use of hierarchies on dimensions to
make OLAP queries possible at different levels of detail. We show the performance of
these algorithms on the OLAP Council benchmark (OLAP) which models a real OLAP
environment on a IBM SP-2 parallel machine. The IBM SP-2 is a network of RS/6000
workstations connected together on a high speed communication switch, which is fast get-
ting popular as a parallel computing platform. We show the use of data cubes to perform
data mining by using attribute focusing to find two-way associations between attributes.
These can easily be extended to n-way associations. To the best of our knowledge, this
is the first effort on high performance parallel computation of data cubes for MOLAP and
data mining using them.

The rest of the paper is organized as follows. Section 2 gives an overview of the data
cube and its operators. The model of parallel computation we have used is given in Section
3. Section 4 presents the issues in data cube construction. Section 5 presents parallel

54

PARALLEL COMPUTERS 393

data cube construction for MOLAP. Section 6 gives results for a OLAP council benchmark
suite on the IBM-SP2 parallel machine. Section 7 presents consolidation queries that use
hierarchies defined on the various dimensions. Section 8 describes data mining on data
cubes with results on the IBM-SP2. Section 9 concludes the article.

2. Data Cube

The Data cube operator was introduced recently by Gray et. al (1996)to support multiple
aggregates. Data cube computes aggregates along all possible combinations of dimensions.
This operation is useful for answering OLAP queries which use aggregation on different
combinations of attributes. Data can be organized into a data cube by calculating all
possible combinations of GROUP-BYs. For a dataset withk attributes this would lead to
2k GROUP-BY calculations. In this article we present algorithms for calculating the data
cube using multidimensional arrays on a distributed memory parallel computer.

The cube treats each of thek aggregation attributes as a dimension ink-space. An
aggregate of a particular set of attribute values is a point in this space. The set of points
form a k-dimensional cube. Aggregate functions are classified into three categories as
shown in Table 1.Distributive functions allow partitions of the input set to be aggregated
separately and later combined.Algebraic functions can be expressed in terms of other
distributive functions, e.g.average()can be expressed as the ratio ofsum()andcount().
Holistic functions, such asmedian()cannot be computed in parts and combined.

Table 1.Categories of aggregate functions

Category Examples

Distributive Sum(), Count(), Minimum(), Maximum()
Algebraic Average(), StandardDeviation(), MaxN()(N largest values),

MinN() (N smallest values), Centerof Mass()
Holistic Median(), MostFrequent()(i.e. Mode()), Rank()

2.1. Operations on the Data Cube

Data Cube operators generalize the histogram, cross-tabulation, roll-up, drill-down and sub-
total constructs required by financial databases. The following operations can be defined
on the data cube.

• Pivoting: This is also calledrotating and involves rotating the cube to change the
dimensional orientation of a report or page on display. It may consist of swapping
the two dimensions (row and column in a 2D-cube) or introducing another dimension
instead of some dimension already present in the cube.

• Slicing-dicing : This operation involves selecting some subset of the cube. For a fixed
attribute value in a given dimension, it reports all the values for all the other dimensions.
It can be visualized assliceof the data in a 3D-cube.

55

394 GOIL AND CHOUDHARY

• Roll-up : Some dimensions have a hierarchy defined on them. Aggregations can
be done at different levels of hierarchy. Going up the hierarchy to higher levels of
generalization is known as roll-up. For example, aggregating the dimension up the
hierarchy (day → month→ quarter..) is a roll-up operation.

• Drill-down: This operation traverses the hierarchy from lower to higher levels of
detail. Drill-down displays detail information for each aggregated point.

• Trend analysis over sequential time periods

Figure 1. Example database of sales data

Figure 1 shows a multidimensional database withproduct, date, supplierasdimensions
andsalesas ameasure. Partitioning a dataset into dimensions and measures is a design
choice. Dimensions usually have a hierarchy associated with them, which specify aggrega-
tion levels and the granularity of viewing data. For exampleday → month→ quarter →
year is a hierarchy on date.

An aggregate of an attribute is represented by introducing a new valueALL. The data
cube operator is then-dimensional generalization of the group-by operator. Consider the
following query which uses the cube operator.
SELECT Model, Year, Color, SUM(sales) AS Sales
FROM Sales
WHERE Model in ’Ford’, ’Chevy’
AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE(Model, Year, Color);

2N − 1 aggregate calculations are needed for aN -dimensional data cube. For example,
23 = 8 group-bys are calculated for the above query:{Model, Year, Color}, {Model,
Year}, {Model, Color}, {Year, Color}, {Model}, {Year}, {Color} and ALL, as shown in
Figure 2.

56

PARALLEL COMPUTERS 395

Model Year Color Sales
Chevy 1990 Red 5
Chevy 1990 Blue 87
Ford 1990 Green 64
Ford 1990 Blue 99
Ford 1991 Red 8
Ford 1991 Blue 7

Model Year Color Sales
Chevy 1990 Blue 87
Chevy 1990 Red 5
Chevy 1990 ALL 92
Chevy ALL Blue 87
Chevy ALL Red 5
Chevy ALL ALL 92
Ford 1990 Blue 99
Ford 1990 Green 64
Ford 1990 ALL 163
Ford 1991 Blue 7
Ford 1991 Red 8
Ford 1991 ALL 15
Ford ALL Blue 106
Ford ALL Green 64
Ford ALL Red 8
ALL 1990 Blue 186
ALL 1990 Green 64
ALL 1991 Blue 7
ALL 1991 Red 8
Ford ALL ALL 178
ALL 1990 ALL 255
ALL 1991 ALL 15
ALL ALL Blue 193
ALL ALL Green 64
ALL ALL Red 13
ALL ALL ALL 270

Figure 2. Data cube Illustration using a relation

2.2. OLAP Alternatives

Traditionally, OLAP systems have been build on top of a relational database system. These
are referred to as relational OLAP (ROLAP). An OLAP engine is built on top of a rela-
tional database. This generates analytical queries in SQL which may become cumbersome
for complex queries and affect performance. Relational systems have to embed a multidi-
mensional view on the underlying data. Alternatively, multidimensional OLAP (MOLAP)
systems have appeared only recently. These use multidimensional databases modeled as
multidimensional arrays for OLAP operations. An intuitive view of data provides a so-
phisticated analytical functionality and support for complex queries. Data relationships are
modeled more naturally and intuitively.

Spatial databases (Guting, 1994) represent and model geometric objects (points, lines,
polygons etc.) in multidimensional space. MOLAP data can be considered as points in the

57

396 GOIL AND CHOUDHARY

multidimensional space of attributes and benefit from some spatial database techniques. The
operations in OLAP although different from the operations, such asoverlap, containment
etc., used in spatial databases can benefit from the spatial indexing structures developed for
spatial databases.

3. Communication Costs

Distributed Memory Parallel Computers (shared-nothing machines) consist of a set of pro-
cessors (tens to a few hundred) connected through an interconnection network. The memory
is physically distributed across the processors. Interaction between processors is through
message passing. Popular interconnection topologies are 2D meshes (Paragon, Delta),
3D meshes (Cray T3D), hypercubes (nCUBE), fat tree (CM5) and multistage networks
(IBM-SP2).

Most of these machines have cut-through routed networks which will be used for modeling
the communication cost of our algorithms. For a lightly loaded network, a message of size
m traversingd hops of a cut-through (CT) routed network incurs a communication delay
given byTcomm = ts+thd+twm, wherets represents the handshaking costs,th represents
the signal propagation and switching delays andtw represents the inverse bandwidth of the
communication network. The startup timets is often large, and can be several hundred
machine cycles or more. The per-word transfer timetw is determined by the link bandwidth.
tw is often higher (an order to two orders of magnitude is typical) thantc, the time to do a
unit computation on data available in the cache.

Parallelization of applications requires distributing some or all of the data structures
among the processors. Each processor needs to access all the non-local data required for
its local computation. This generates aggregate or collective communication structures.

Several algorithms have been described in the literature for these primitives and are part
of standard textbooks (Kumar, et al., 1994). The use of collective communication provides
a level of architecture independence in the algorithm design. It also allows for precise
analysis of an algorithm by replacing the cost of the primitive for the targeted architecture.
Table 2 provides a complexity analysis of these operations on a multi-staged network.

Table 2.Running times of various parallel primitives on a multi-staged network

Primitive Running time onp processors

Broadcast O((ts + twm) log p)
Reduce O((ts + twm) log p)
Parallel Prefix O((ts + tw) log p)
Gather O(ts log p+ twmp)
All-to-All Communication O((ts + twm)p+ thp log p)

These costs are used in the analysis of the algorithms presented in the next section.

1. Broadcast. In a Broadcast operation, one processor has a message of sizem to be
broadcast to all other processors.

2. Reduce.Given a vector of sizem on each processor and a binary associative operation,
the Reduce operation computes a resultant vector of sizem and stores it on every

58

PARALLEL COMPUTERS 397

processor. Theith element of the resultant vector is the result of combining theith

element of the vectors stored on all the processors using the binary associative operation.

3. Parallel Prefix. Suppose thatx0, x1, . . . , xp−1 arep data elements with processorPi
containingxi. Let⊗ be a binary associative operation. The Parallel Prefix operation
stores the value ofx0 ⊗ x1 ⊗ . . .⊗ xi on processorPi.

4. Gather. Given a vector of sizem on each processor, the Gather operation collects all
the data and stores the resulting vector of sizemp in one of the processors.

5. All-to-All Communication. In this operation each processor sends a distinct message
of sizem to every processor.

4. Data Cube Construction

Several optimizations can be done over the naive method of calculating each aggregate
separately from the initial data (Gray, et al., 1996).

1. Smallest Parent:For computing a group-by this selects the smallest of the previously
computed group-bys from which it is possible to compute the group-by. Consider a
four attribute cube (ABCD). Group-byAB can be calculated fromABCD, ABD
andABC. Clearly sizes ofABC andABD are smaller than that ofABCD and are
better candidates. The actual choice will be made by picking the smaller ofABC and
ABD.

2. Effective use of Cache:This aims at using the cache effectively by computing the
group-bys in such an order that the next group-by calculation can benefit from the
cached results of the previous calculation. This can be extended to disk based data
cubes by reducing disk I/O and caching in main memory. For example, after computing
ABC fromABCD we computeAB followed byA. In MOLAP systems the sizes of
the intermediate levels are fixed and the order can be determined easily.

3. Minimize inter-processor Communication: Communication is involved among the
processors to calculate the aggregates. The order of computation should minimize the
communication among the processors because inter-processor communication costs are
typically higher than computation costs. For example,BC → C will have a higher
communication cost to first aggregate along B and then divide C among the processors
in comparison toCD → C where a local aggregation on each processor along D will
be sufficient.

Optimizations 1 and 2 are normally considered for a uniprocessor model. Optimization
3 is an added and important consideration for a parallel implementation to reduce the
overheads from communication costs.

A lattice framework to represent the hierarchy of the group-bys was introduced in (Harinarayan, et al.).
This is an elegant model for representing the dependencies in the calculations and also to
model costs of the aggregate calculations. A scheduling algorithm can be applied to this
framework substituting the appropriate costs of computation and communication. A lattice

59

398 GOIL AND CHOUDHARY

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

ALL

Level

3

4

of GROUP-BYs

4

4

2

4

1

4

0

3

2

1

0

Figure 3. Lattice for cube operator

for the group-by calculations for a four-dimensional cube (ABCD) is shown in Figure 3.
Each node represents an aggregate and an arrow represents a possible aggregate calculation
which is also used to represent the cost of the calculation.

Calculation of the order in which the GROUP-BYs are created depends on the cost of
deriving a lower order (one with a lower number of attributes) group-by from a higher
order (also called theparent) group-by. For example, between ABD→ BD and BCD→
BD one needs to select the one with the lower cost. Cost estimation of the aggregation
operations can be done by establishing a cost model. This is described later in the section
on aggregation.

We assume that the total available memory on the processors is large enough to hold the
datasets in memory. This is a reasonable assumption since most parallel machines these
days have 128-256 MB main memory per node. With 16 nodes we can handle databases
of size 2GB and larger datasets can be handled by increasing the number of processors.
Hence, it is important to develop scalable algorithms to handle larger databases. In this
article we develop in-memory algorithms to calculate the data cube. External algorithms
are also being explored as part of this research.

5. Parallel Data Cube Construction for MOLAP

We assume that data is provided as a set of tuples stored in a file and the number of distinct
elements are given for each attribute. For illustration purposes, letA,B,C andD be
the attributes in a dataset withDa, Db, Dc andDd as the number of their distinct values,
respectively. We assume that the number of distinct values in each dimension is known.
However, the values are determined from the database by the algorithm. Without loss of
generality, letDa ≥ Db ≥ Dc ≥ Dd. If this is not the case, it can be made true by a simple
renaming of the attributes. Letp be the number of processors, numberedP0 . . . Pp−1, and
N be the number of tuples.

Figure 4 shows the various steps in the data cube construction algorithm. Each step is
explained in the next few subsections.

60

PARALLEL COMPUTERS 399

1. Partition tuples between processors. (Partitioning)

2. Load tuples into multidimensional array. (Loading)

3. Generate schedule for order of group-by calculations.

4. Perform aggregation calculations. (Aggregation)

5. Redistribute/Assign sub-cubes to processors for query processing.

6. Definelocal anddistributedhierarchies on all dimensions.

Figure 4. Parallel data cube construction and operations

First, the tuples are partitioned onp processors in a partitioning step. Thepartitioning
phase is followed by aloadingphase in which a multidimensional array is loaded on each
processor from the tuples acquired after the partitioning phase. This creates thebase cube.
Loading can either be done by a hash-based method or a sort-based method. We have
implemented both and have compared their scalability properties. This is followed by a
aggregationphase which calculates the various aggregate sub-cubes. We describe each
phase in the next few subsections.

5.1. Partitioning

A sample based partitioning algorithm is used to partition the tuples among the processors.
AttributeA is used in this partitioning. This is done to ensure the partitioning of data at
the coarsest grain possible. This dividesA nearly equally onto the processors and also
establishes an order onA. If Ax ∈ Pi andAy ∈ Pj thenAx ≤ Ay for i < j. In fact, in the
partitioning scheme used here, tuples end up being sorted locally on each processor.

5.2. Loading

Once tuples are partitioned on processors, they are loaded into a multidimensional array
(md-array). The size of the md-array in each dimension is the same as the number of unique
values for the attribute represented in that dimension. A tuple is represented as a cell in the
md-array indexed by the values of each of the attributes. Hence, eachmeasureneeds to be
loaded in the md-array from the tuples. We describe two methods to perform this task, a
hash based method and a sort-based method.

5.2.1. Hash-based methodFigure 5 describes the hash-based cube loading algorithm.
Each attribute is hashed to get a hash table of unique values for it. A sort on the attribute’s
hash table will index the dimension of the base cube corresponding to that attribute. These
hash tables are then probed to fill in the measure values in the base cube. Hashing techniques
are known to provide good performance on the average, though it heavily depends on the
choice of a good hash function.

61

400 GOIL AND CHOUDHARY

k - number of attributes(dimensions)

1. For each tuple, hash each of the attributes into a separate hash table, one for each
attribute.k hash tables are created as a result of this. (hash phase)

2. Compress and sort each hash table.

3. Update the index of the hash table with its order in the corresponding sorted list.

4. Pick up each tuple and probe the hash tables for each of its attributes to obtain the
indices in each dimension. (probe phase)

5. Update the cell at the index in the md-array with the measure values of the tuple.

Figure 5. Hash-basedAlgorithm for multidimensional data cube Loading

5.2.2. Sort-based methodSort-based method provides regularity of access over the
sorted hash tables since the attributes probing them are sorted, unlike the hash-based method,
where accesses in the hash table have no order. The sorted hash-tables are scanned only in
one direction for all the tuples which have the same value for all the attributes in dimensions
which come earlier, i.e have more unique values, since the order in which the attributes are
sorted is with respect to their number of unique values. For example, for two consecutive
records(a1, b1, c1, d1) and(a1, b1, c1, d4), hash table forD is scanned from the current
position to get the index. However, for(a1, b1, c1, d4) and(a1, b2, c1, d1), hash tables for
bothC andD need to be scanned from the beginning.

5.3. Aggregation

An example of a base cube is shown in Figure 6 withp = 4, Da = 8, Db = 4, Dc = 2, Dd =
2. Hence each processor hasDap portion of A. We illustrate the costs of calculating the
various GROUP-BYs from the base cube for a three attribute (or 3D) cube in Table 3. Let
top be the cost of an addition,tcopy the cost of a copying a byte. Communication is modeled
by collective communication operations as described in the previous section. These costs
are then used by a scheduling algorithm, which generates a schedule for calculating the
various group-bys.

Some calculations arelocal and some arenon-localand need multiple processors to ex-
change data leading to communication among processors. An example of a local aggregate
calculation, ABCD→ ABD, is shown in Figure 7. Even with local calculations the costs
can differ depending on how the calculation is made. CalculatingAC fromABC requires
summing on theB dimension and calculatingAC fromACD requires aggregation onD.
Depending on how the multidimensional array is stored these costs could be different since
the stride of the access can affect the cache performance. From the cost calculations shown
in Table 3, we see that the cost of calculating aggregates from a parent are lower if the
order of the attributes in the aggregate is a prefix of the parent. Calculating ABC→ AB
→ A is a local calculation on each node. Each cube is distributed across the processors
since dimensionA is distributed. The intermediate cubes, resulting from aggregation of
parent cubes are also distributed among the processors. This results in good load balancing

62

PARALLEL COMPUTERS 401

among the processors. Calculations involving multiple cubes can also be distributed across
processors as a result of this. The first attribute in the aggregate cube is always distributed
among processors. As a result, A is distributed in ABCD, ABC, AB and A, B is distributed
in BCD, BC and B, and C is distributed in CD and C and D is distributed. Figure 6 shows
A as distributed in ABCD.

Table 3.Calculation of GROUP-BYs for a three attribute data cube (Da ×Db ×Dc), onp processors

Source Target Cost

ABC→ AB (Da
p
DbDc))top

AC (Da
p
DbDc)top

BC (Da
p
DbDc)top + (DbDc)treduce + (

Db
p
Dc)tcopy

AB→ A (Da
p
Db)top

B (Da
p
Db)top +Dbtreduce +

Db
p
tcopy

AC→ A (Da
p
Dc)top

C (Da
p
Dc)top +Dctreduce + Dc

p
tcopy

BC→ B (
Db
p
Dc)top

C (
Db
p
Dc)top +Dctreduce + Dc

p
tcopy

A→ ALL Datop
B→ ALL Dbtop
C→ ALL Dctop

b2

b3

b4

b1

d2

P0 P1 P2 P3

d1

c1

c2

1 2 3 4 5 6 7 8

b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

c1

c2

c1

c2

c1

c2

c1

c2
b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

c1

c2

c1

c2 c2

c1

A: 1,2,3,4,5,6,7,8

B: b1,b2,b3,b4

C: c1,c2

D: d1,d2

Figure 6. Basecube for 4 attributes on 4 processors

63

402 GOIL AND CHOUDHARY

b2

b3

b4

b1

A: 1,2

B: b1,b2,b3,b4

C: c1,c2

D: d1,d2

c1

c2

1 2

b1

b2

b3

b4

P0

d2
d1

c1

c2
b1

b2

b3

b4

d1

d2

ABCD

ABD

op

op

1 2

Figure 7. Localaggregation calculation, ABCD→ ABD on processor P0

Figures 8 and 9 illustrate a global aggregate calculation ofABCD → BCD. First a
local aggregation is done along dimensionA (Figure 8). This is followed by aReduce
operation on BCD (Figure 9). Each processor then keeps the corresponding portion of
BCD, distributing B evenly among processors.

b1

ABCD BCD

P0 P1 P2 P3

d1

c1

c2

1 2 3 4 5 6 7 8

b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

c1

c2

c1

c2

c1

c2

c1

c2
b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

c1

c2

c1

c2 c2

c1

A: 1,2,3,4,5,6,7,8

B: b1,b2,b3,b4

C: c1,c2

D: d1,d2

d2

Local Op

Figure 8. Globalaggregation calculation, local phase, ABCD→ BCD

Clearly, as can be observed from the aggregation calculations shown in the table above,
there are multiple ways of calculating a GROUPBY. For calculating the aggregate at a
level where aggregates can be calculated from multiple parents, we need to pick up an

64

PARALLEL COMPUTERS 403

BCD

A: 1,2,3,4,5,6,7,8

B: b1,b2,b3,b4

C: c1,c2

D: d1,d2

ABCD BCD

P2P1P0 P3

Reduce Operation

c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

Sum(A)
c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

Sum(A)
c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

Sum(A)
c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

Sum(A)
c1

c2

b4

b3

b2

b1

d2

d1 d1

d2 d2

d1 d1

d2 d2

d1

GlobalSum(A)

Figure 9. Globalaggregation calculation, global phase, ABCD→ BCD

assignment such that the cost is minimized. In (Sarawagi, Agrawal and Gupta, 1996), this
is solved by posing it as a graph problem and using minimum cost matching in a bipartite
graph. We have augmented it by our cost model and the optimizations needed. Again, refer
to Figure 3. Suppose we want to calculate aggregates at a levelk from the parent at level
k + 1. A bipartite graphG((V = X ∪ Y), E) is defined as follows. A group of nodesX
is the nodes at levelk. Clearly|X| = 2k. Another group of nodes|Y | is the nodes at level
k + 1 and|Y | = 2k+1. The edges connecting the nodes at levelk andk + 1 belong toE.
The edge weights are the costs of calculating the particular aggregate at levelk from the
parent at levelk + 1. Costs described in Table 3 are used here. A node at levelk + 1 can

possibly calculate

(
k + 1
k

)
aggregates at levelk. Hence the nodes are replicated these

many times at levelk + 1 and these are added toY . We seek a match between nodes from
levelk + 1 and levelk which minimizes the total edge costs. Figure 10 shows an example
of calculating level 2 from level 3 of the lattice of Figure 3. This is done for each level
and the resulting order of calculations at each level is picked up. This creates a directed
acyclic graph which is then traversed, from the base cube as the root, to each child in a
depth first search manner, calculating each aggregation. This results in preserving all of the
three optimizations for multiple group-bys described in an earlier section.

6. Results

We have implemented the algorithms presented in the previous section using ’C’ and mes-
sage passing using the Message Passing Interface (MPI) on the IBM SP-2 parallel machine.
Each node of the SP-2 is a RS/6000 processor, with 128MB memory. The interconnection
network is a multistage network connected through a high speed switch. The use of C and
MPI makes the programs portable across a wide variety of parallel platforms with little
effort.

65

404 GOIL AND CHOUDHARY

Figure 10.A minimum cost matching for calculation of Level 2 aggregates from Level 3

6.1. Data sets

We have used the OLAP Council benchmark (OLAP) which simulates a realistic On-Line
Analytical Processing business situation. The data sets have attributes taken from the
following set of attributes: Product (9000), Customer (900), Time (24), Channel (9) and
Scenario (2). The values in brackets following each attribute are the number of unique
values for that attribute. These are taken to be the size of the dimensions in the resulting
multi-dimensional arrays in the sub-cubes of the data cube. For the History Sales data,
we have picked out 1000, 101, 100 and 10 distinct values for its 4 attributes from the
benchmark data and generated the records by picking out each attribute randomly from the
set of distinct values for that attribute. Product, Customer and Channel are character strings
with 12 characters each. Time is an integer depicting year and month (e.g. 199704 is April
1997) and Scenario is a 6 character string showing if it is an “Actual” or a “Budget” value.
Themeasurestored in each cell of the array is afloat value depicting the sales figure for the
particular combination of the attributes. This can potentially contain many more values.
We have used theSum()function to compute the aggregates in the results presented here.
The characteristics of the data sets are summarized in Tables 4 and 5.

Table 4.OLAP benchmark data sets used for data cube construction

Data Set Dimensions Number of Records

Shipping Cost Customer, Time, Scenario 27,000
Production Cost Product, Time, Scenario 270,000
Current Sales Product, Customer, Channel 81,000 and 608,866
Budget Product, Customer, Time 951,720
History Sales Product, Customer, Time, Channel 1,010,000

66

PARALLEL COMPUTERS 405

Table 5.Dimensions of OLAP benchmark data sets

Data Set Base cube dimensions Data size

Shipping Cost 900× 24× 2 1MB
Production Cost 9000× 24× 2 10MB
Current Sales 9000× 900× 9 320MB
Budget 9000× 900× 12 420MB
History Sales 1000× 101× 100× 10 500MB

6.2. Data cube Construction

We present results for the different phases of data cube construction for all the data sets
described above. Figure 11 shows the performance of hash-based and sort-based methods
for the Shipping Cost data with 27000 records. We observe that the algorithm scales well
for this small data size. Each individual component scales well also. The two methods take
almost the same time for the data cube construction.

Figure 11.Various phases of cube construction using (a) hash-based (b) sort-based method for Shipping Cost data
(N = 27000 records,p = 4, 8 and 16 and data size = 1MB)

Production Cost data contains 270,000 records and the performance of the two methods
on this data set is shown in Figure 12. Again, as we increase the number of processor,
each of the component in the construction algorithm scales well resulting in good overall
scalability for both methods.

Figure 13 shows the performance of hash-based and sort-based methods for the Current
Sales data with 81000 records. This data has a density of 0.11%.

The aggregation time is the main component in the total time because of the large cube size
for this data set. Figure 14 shows the performance of hash-based and sort-based methods
for the Current Sales data with 608,866 records. This data has a density of 0.84%. All the
individual components have increased except the aggregation component. The number of
tuples has increased in this data set which affects the components till the loading phase.
Aggregation times are dependent on the cube size, which has not changed.

67

406 GOIL AND CHOUDHARY

Figure 12. Various phases of cube construction using (a) hash-based (b) sort-based method for Production Cost
data (N= 270,000 records,p = 4, 8 and 16 and data size = 10MB)

4 8 16
Processors

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

T
im

e
 (

se
c)

hash-based
Current Sales (Customer, Product, Channel)

Partition
Hash
Load
Aggregate
Total

4 8 16
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
T

im
e

 (
se

c)

sort-based
Current Sales (Customer, Product, Channel)

Partition
Sort
Hash
Load
Aggregate
Total

Figure 13.Various phases of cube construction using (a) hash-based (b) sort-based method for Current Sale data
(N = 81,000 records,p = 4, 8 and 16 and data size = 320MB)

Figure 15 gives the performance on Budget data with nearly a million records for 8, 16,
32, 64 and 128 processors. It can be observed that for large data sets the methods perform
well as we increase the number of processors.

Figure 16 gives the performance on History Sales data containing 4 attributes (4 dimen-
sional base cube) with more than a million records for 8, 16, 32 and 64 processors. The
density of the cube is 1%. The hash-based method performs better than the sort-based
method for this case. The addition of a dimension increases the stride factor for accesses
for the sort-based loading algorithm, deteriorating the cache performance. The hash-based
method has no particular order of reference in the multidimensional array and benefits from
a better cache performance. It can be observed that for large data each component in cube
construction scales well as we increase the number of processors.

68

PARALLEL COMPUTERS 407

4 8 16
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

T
im

e
 (

se
c)

hash-based
(Customer, Product, Channel)

Partition
Hash
Load
Aggregate
Total

4 8 16
Processors

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0

T
im

e
 (

se
c)

sort-based
(Customer, Product, Channel)

Partition
Sort
Hash
Load
Aggregate
Total

Figure 14.Various phases of cube construction using (a) hash-based (b) sort-based method for Current Sale data
(N = 608,866 records,p = 4, 8 and 16 and datasize = 320MB)

8 16 32 64 128
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

T
im

e
 (

se
c)

Budget (Product, Customer, Time)

Partition
Hash
Load
Aggregate
Total

8 16 32 64 128
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0
T

im
e

 (
se

c)

Budget (Product, Customer, Time)

Partition
Sort
Hash
Load
Aggregate
Total

Figure 15.Various phases of cube construction using (a) hash-based (b) sort-based method for Budget data (N =
951,720 records,p = 8, 16, 32, 64 and 128 and data size = 420MB)

Next, we compare the effect of density of the data sets on the data cube construction
algorithm. The size of the multi-dimensional array is determined by the number of unique
values in each of the dimensions. Hence the aggregation costs, which use the multi-
dimensional array are not affected by the change in density as can be seen from Figure 17
and Figure 18. The other phases of the data cube construction deal with the tuples and the
number of tuples increase as the density of the data set increases. The costs for partition,
sort, hash and the load phases increase because the number of tuples on each processor
increases. The scalability for both densities, and both hash-based and sort-based methods
is good as observed from the figures.

Comparing the sort-based methods and the hash-based methods, we observe that the
hash-based method performs slightly better for 3D cubes but a lot better for the 4D case.
We have used a multi-dimensional array and the outermost dimension of the array (the one

69

408 GOIL AND CHOUDHARY

8 16 32 64
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

T
im

e
 (

se
c)

HistSale(Product, Customer, Time, Channel)

Partition
Hash
Load
Aggregate
Total

8 16 32 64
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

T
im

e
 (

se
c)

HistSale(Product, Customer, Time, Channel)

Partition
Sort
Hash
Load
Aggregate
Total

Figure 16.Various phases of cube construction using (a) hash-based (b) sort-based method for History Sales data
(N = 1,010,000 records,p = 8, 16, 32 and 64 and data size = 500MB)

Partition Hash Load Aggregate Total
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

T
im

e
 (

s
e

c
)

Current Sales, P = 4
(Customer, Product, Channel)

density = 0.11%
density = 0.84 %

Partition Hash Load Aggregate Total
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

T
im

e
 (

s
e

c
)

Current Sales, P = 8
(Customer, Product, Channel)

density = 0.11%
density = 0.84 %

Partition Hash Load Aggregate Total
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 (

s
e

c
)

Current Sales, P = 16
(Customer, Product, Channel)

density = 0.11%
density = 0.84 %

Figure 17.Comparison of cube construction components for two different densities for the hash based method

changing the slowest) does not match the inner-most sorted dimension. The inner-most
dimension is used for the attribute with the largest number of unique values to make the
aggregate calculations efficient. The sort-based loading algorithm starts with the inner-most
attribute in the sorted order which is also the smallest dimension. This also happens to be
the outermost dimension of the array having the maximum stride. This is done to make
the accesses during the aggregate calculation regular in the largest dimension, which is
the innermost dimension. Chunking of arrays (Sarawagi and Stonebraker, 1994) can make
the memory accesses for the sort-based method more regular since it does not favor any
particular dimension for contiguous storage.

70

PARALLEL COMPUTERS 409

Partition Sort Hash Load Aggregate Total
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0

T
im

e
 (

s
e

c
)

Current Sales, P = 4
(Customer, Product, Channel)

density = 0.11%
density = 0.84 %

Partition Sort Hash Load Aggregate Total
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

T
im

e
 (

s
e

c
)

Current Sales, P = 8
(Customer, Product, Channel)

density = 0.11%
density = 0.84 %

Partition Sort Hash Load Aggregate Total
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
im

e
 (

s
e

c
)

Current Sales, P = 16
(Customer, Product, Channel)

density = 0.11%
density = 0.84 %

Figure 18.Comparison of cube construction components for two different densities for the sort based method

7. Aggregate Query Processing

Most data dimensions have hierarchies defined on them. Typical OLAP queries probe
summaries of data at different levels of the hierarchy. Consolidation is a widely used
method to provide roll-up and drill-down functions in OLAP systems. Each dimension in
a cube can potentially have a hierarchy defined on it. This hierarchy can be applied to all
the sub-cubes of the data cube. We discuss each of these in the following subsections.

7.1. Hierarchies

Figure 19 shows an example of a hierarchy for a 3D base cube with (Location, Time,
Person) as the attributes (dimensions). Assume that hierarchies (City, Quarter, Group) are
defined on these dimensions. Each dimension represents an attribute and each value in
that dimension is a distinct value for that attribute. A hierarchy describing the grouping
of some of the attribute values is defined in adimension hierarchy. A hierarchy can have
several levels. Figure 19 defines a first level hierarchy on each dimension. The distributed
dimension can have its hierarchy distributed over a processor boundary. A global index
of the hierarchy is maintained at each processor. For example, cities inC3 are distributed
acrossP0 andP1 in the figure, containing the indices for (a7, a8, a9). A consolidation
operation would need a inter-processor communication if the consolidated value ofC3 is
required. Hierarchy at higher levels can be defined similarly. Support for roll up operations
using consolidation can then be provided along each dimension. Drill downs can use them
to index into the appropriate dimension index to provide a higher level of detail.

A hierarchy is defined over a dimension in the base cube. Hence the sub-cubes of the
data cube can use the same hierarchy, since the dimensions in the sub-cubes are a subset of
the dimensions in the base cube. Additionally, more dimensions can get distributed over
the processors, and a distributed hierarchy needs to be maintained for these dimensions as
well. In our example, in the cube (Time, Person) a 2D cube calculated from (Location,
Time, Person), Time is a distributed dimension on which a distributed hierarchy needs to

71

410 GOIL AND CHOUDHARY

a a a a a

Person

a a a

b
b
b
b
b

b

b

b

1

2

3

4

5

6

7

8

c
c

c
c

c

1

2

3

4

5

a
1

a a a a a a a
2 3 4 5 6 7 8

b
b
b
b
b

b

b

b

1

2

3

4

5

6

7

8

c
c

c
c

c

1

2

3

4

5

9 10 11 12 13 15 16 17

P0 P1

G1

G2

G1

G2

C3 C4 C5C1 C2

Q1

Q2

Q3

Q1

Q2

Q3

Location

Time

Figure 19.An example hierarchy defined on the dimensions for a two processor case

be maintained. As a result, each dimension has two hierarchies for it, onelocal and one
distributed. Queries will choose the appropriate hierarchies when performing operations
on these cubes.

7.2. Consolidation

Consolidation provides an aggregate for the hierarchies defined on a dimension. For ex-
ample, if it is desired to report the value for groupG1 for a cityC1 in the quarterQ1, then
the corresponding values are aggregated by using thedimension hierarchydefined in the
previous section. Some consolidation operations arelocal, as in they can be performed at
a single processor, likeC4 in the figure. However, some operations arenon-local, like the
values for cityC3 in any quarter will need the aggregates values from both the processors
as shown in Figure 20.

7.3. Results

We again use the OLAP council benchmarks described earlier and define some sample
hierarchies on each dimension. Table 6 defines a sample hierarchy for the first two levels.
For our experiments we have divided the size of a dimension equally among the number
of groups defined for the hierarchy at that level. The allocation of actual attribute values
to the groups at a higher level is contiguous for these experiments. However, these can be
arbitrarily assigned, if desired.

Figure shows the times for performing consolidation operation using the hierarchies
on the dimensions. For Current Sales we have used the level 1 hierarchy on Product and
Customer. For History Sales data, the hierarchy is used for all the dimensions, i.e. Product,
Customer, Time and Channel. The figure for Budget also includes hierarchies along all
dimensions, Product, Customer and Time. We see good scaling properties for each data set
as the number of processors is increased.

72

PARALLEL COMPUTERS 411

local

P0 P1

C1 C2 C3 C4 C5

Q1

Q3

Q2

G2

G1

G2

G1

Q3

Q2

Q1

C3

Location

Time

Person

non-local

Figure 20.Consolidation for a level 1 hierarchy defined on the cube in Figure 19

Table 6.Sample level 1 and level 2 number of groups for hierarchies defined on the dimensions for the data sets

Dimension Hierarchy

Level 1 Level 2

Customer 9 4
Product 8 3
Channel 4 2
Time 8 2

Comparing the consolidation time for Current Sales and Budget, we observe that the time
for Budget data is lower even though their base cubes are similar in size. The presence
of a hierarchy along the Time dimension, which is the outermost dimension in the multi-
dimensional array, improves the cache performance. Chunks of sized 12

8 e ×
900
9 ×

9000
8 ,

from outermost to innermost dimension, are consolidated for Budget, whereas chunks of
size9 × 900

9 ×
9000

8 are consolidated for Current Sales. However, both scale well as the
number of processors is increased.

8. Data Mining on Data Cubes

Data mining techniques are used to discover patterns and relationships from data which can
enhance our understanding of the underlying domain. A data mining tool can be understood
along the following components :data, what is analyzed ;statistics, the kind of patterns
that are searched for by the tool;filtering, how many of those patterns are to be presented
to the user and the selection of those patterns;visualization, the visual representation used
to present the patterns to the user;interpretation, what should the user think about when
studying the pattern;exploration, in what order should the patterns be considered by the
user;process support, how does one support data mining as a process as opposed to an
exercise done only once.

73

412 GOIL AND CHOUDHARY

4 8 16 32
Processors

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5

T
im

e
 (

s
e

c
)

CurrSale
Consolidation Query

8 16 32
Processors

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14
0.15

T
im

e
 (

s
e

c
)

HistSale
Consolidation Query

8 16 32 64
Processors

0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

1.12

1.25

T
im

e
 (

s
e

c
)

Budget
Consolidation Query

Figure 21.Time for consolidation query using the hierarchies defined in Table 6 for Current Sales, History Sales
and Budget datasets

Attribute focusing(AF) is a data mining method that has most of these but in particular
relies on exploration and interpretation (Bhandari, et al., 1996).This makes it an intelligent
data analysis tool. AF calculates associations between attributes by using the notion of
percentages and sub-populations.

Attribute focusing compares an overall distribution of an attribute with the distribution of
the focus attribute for various subsets of data. If a certain subset of data has a characteris-
tically different distribution for the focus attribute, then that combination of attributes are
marked as interesting.

An event,E is a stringEn = x1, x2, x3, . . . xn; in whichxj is a possible value for some
attribute andxk is a value for a different attribute of the underlying data.

E is interesting to thatxj ’s occurrence depends on the otherxi’s occurrence. The “inter-
estingness” measure is the sizeIj(E) of the difference between:
(a) the probability ofE among all such events in the data set and,
(b) the probability thatx1, x2, x3, . . . xj−1, xj+1, . . . xn andxj occurred independently.
The condition of interestingness can then be defined asIj(E) > δ, whereδ is some fixed
threshold.

Another condition of interestingness, in attribute focusing depends on finding the opti-
mal number of attribute values,n formally described asIj(En) > Ij(En−1); Ij(En) ≥
Ij(En+1); whereEn = x1, x2, x3, . . . , xn. AF seeks to eliminate all but the most interest-
ing events by keepingE only if the number of attribute values,n, is just right. Eliminate
one or morexi’s andIj decreases, include one ore more newxi’s to the string andIj gets
no larger. The convergence ton removes patterns likeEn−1 andEn+1 which are less
interesting thanEn and have information already contained byEn. Hence, as a result of
this the user does not have to drill down or roll up from a highlighted pattern, since the
event descriptions returned are at their most interesting level.

74

PARALLEL COMPUTERS 413

8.1. Attribute Focusing on data cubes

In this section we present an algorithm to compute the first measure of interestingness of
the attribute focusing method using data cubes. Figure 22 shows the algorithm.

1. Replicate each single attribute sub-cubes on all processors using aGather followed
by aBroadcast.
2. Perform aReduceoperation of ALL (0D cube) followed by aBroadcast to get the

correct value of ALL on all processors.

3. Take the ratio of each element of the AB sub-cube and ALL to getP (AB). Similarly
calculateP (A) andP (B) using the replicated sub-cubes A and B.

4. For each elementi in AB calculate|P (AB) − P (A)P (B)|, and compare it with a
thresholdδ, setting AB[i] to 1 if it is greater, else set it to 0.

Figure 22.Calculating interestingness between attributes A and B on data cubes

Consider a 3 attribute data cube with attributes A, B and C, definingE3 = ABC. For
showing 2-way associations, we will calculate the interestingness function between A and
B, A and C and finally between B and C. When calculating associations between A and B, the
probability ofE, denoted byP (AB) is the ratio of the aggregation values in the sub-cube AB
and ALL. Similarly the independent probability ofA, P (A) is obtained from the values in
the sub-cube A, dividing them by ALL.P (B) is similarly calculated from B. The calculation
|P (AB)−P (A)P (B)| > δ, for some thresholdδ, is performed in parallel. Since the cubes
AB and A are distributed along the A dimension no replication of A is needed. However,
since B is distributed in sub-cube B, and B is local on each processor in AB, B needs to
be replicated on all processors. AB and A cubes are distributed, but B is replicated on
all processors. Figure 23 shows a sample calculation of P(AB), P(A) and P(B) on three
processors. A sample calculation is, highlighted in the figure,|0.03−0.22×0.08| = 0.0124
which is greater thanδ value of 0.01, and the corresponding attribute values are associated
within that threshold.

8.2. Results

We have used a few data sets from the OLAP council benchmark. In particular, Current
Sales (3D), Budget(3D) and History Sales (4D)(as described in previous sections).

We perform 2-way association calculations by performing attribute focusing for all com-
binations of two attributes. For example, for a 3D cube, ABC, interestingness measure will
be calculated between A and B, A and C and between B and C. Typically, a few differentδ
values are used for analysis of data, to vary the degree of association between the attributes.
We run each calculation for 20 differentδ values, ranging from 0.001 to 0.02 in steps of
0.01. Figure 24 shows the time for these calculations on Current Sales data on 4, 8, 16
and 32 processors. We observe good speedups as the number of processors is increased.
Also, communication time increases as the number of processors is increased. Replication

75

414 GOIL AND CHOUDHARY

AB AB

A A A

AB

0.17 0.19 0.08 0.10 0.17 0.05

P2

0.09

B

0.34

0.19

0.22

0.25

B

0.34

0.19

0.22

0.25

B

0.34

0.19

0.22

0.25

0.05

0.03

0.05

0.04

0.08

0.03

0.07

0.02

0.02

0.03

0.01

0.01

0.03

0.02

0.01

0.04

0.06

0.04

0.03

0.04 0.02

0.01

0.04

0.02

0.01

0.02

0.01

0.01

0.11 0.04

0.01

0.01

0.01

0.01

0.08

0.01

0.01

0.01

P0 P1

Figure 23.Use of aggregate sub-cubes AB, A and B for calculating “interestingness” on three processors

of the 1D cubes involve communication, and with larger number of processors, the terms
involving p in the complexity of the collective communication operations (refer to Table 2)
increase. However, since communication time is marginal compared to computation times,
the increase does not affect the overall scalability.

4 8 16 32
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

12.0

T
im

e
 (

se
c)

CurrSale
Attribute Focusing

4 8 16 32
Processors

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

T
im

e
 (

m
se

c)

CurrSale
Communication time for AF

Figure 24. Time for (a) attribute focusing time for 20 differentδ values for Current Sales data, (b) associated
communication cost (in milliseconds) on 4, 8, 16 and 32 processors

Figure 25 shows the attribute focusing calculation time for the History Sales data. The
associated communication time is slightly higher in this case since 4 1D arrays are replicated,
instead of 3 in the 3D case. The communication time (which is shown in milliseconds) is
still atleast an order of magnitude smaller than the computation time. The size of the cubes
is smaller than the Current Sales data and hence the magnitudes of time are much smaller.
Hence, the speedups are more modest as we increase the number of processors.

76

PARALLEL COMPUTERS 415

4 8 16 32
Processors

0.00

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20
T

im
e

 (
se

c)

HistSale
Attribute Focusing

8 16 32
Processors

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

T
im

e
 (

m
se

c)

HistSale
Communication Time for AF

Figure 25.Time for (a) attribute focusing for 20 differentδ values for History Sales data, (b) associated commu-
nication cost (in milliseconds) on 8, 16 and 32 processors

Figure 26 shows the speedups we observe for the Budget data for attribute focusing
calculations. The communication costs are similar to the ones observed in the Current
Sales data since they involve similar sized arrays.

8 16 32 64
Processors

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

T
im

e
 (

se
c)

Budget
Attribute Focusing Time

8 16 32 64
Processors

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0

T
im

e
 (

m
se

c)

Budget
Communication Time for AF

Figure 26.Time for (a) attribute focusing for 20 differentδ values for Budget data, (b) associated communication
cost (in milliseconds) on 8, 16, 32 and 64 processors

9. Conclusions

On-Line Analytical Processing is fast gaining importance for business data analysis us-
ing large amounts of data. High performance computing is required to provide efficient
analytical query processing in OLAP systems. Aggregations are an important function of
OLAP queries and can benefit from the data cube operator introduced in (Gray, et al., 1996).
Multidimensional databases have recently gained importance since they model the multi-

77

416 GOIL AND CHOUDHARY

dimensionality of data intuitively and are easy to visualize. They provide support for
complex analytical queries and are amenable to parallelization. Most data to be analyzed
comes from relational data warehouses. Hence multidimensional databases need to inter-
face with relational systems. In this article, we presented algorithms and techniques for
constructing multidimensional data cubes on distributed memory parallel computers and
perform OLAP and data mining operations on them. The two methods for base cube load-
ing, sort-based and hash-based, perform equally well on small data sets but the hash-based
method is better for larger data sets and with increase in number of dimensions. We would
expect the sort-based method to outperform the hash-based method for large amounts of
data due to the regularity of accesses that cube loading from sorted data provides. The
mismatch in the order of the dimensions when using a multidimensional array does not
make the memory usage of the sort-method very efficient. Sort-based method is expected
to be better for external memory algorithms because it will result in reduced disk I/O over
the hash-based method. Since OLAP operations frequently require information at varying
degree of detail, we have developed methods to perform consolidation queries by defining
levels of hierarchies on each dimension. Our results show that these techniques are scalable
for a large number of processors. Finally, we have shown a implementation of scalable data
mining algorithm using attribute focusing. Our techniques are platform independent and
are portable across a wide variety of parallel platforms without much effort.

10. Acknowledgments

This work was supported in part by NSF Young Investigator Award CCR-9357840 and NSF
CCR-9509143. We would like to thank Inderpal Bhandari of IBM T.J Watson Research
Center for discussions and helpful comments.

References

Bhandari I., Halliday M., Tarver E., Brown D., Chaar J. and Chillarege R., “A case study of software process
improvement during development”, IEEE Transactions on Software Engineering, 19(12), December 1993, pp.
1157-1170.

Bhandari I., “Attribute Focusing: Data mining for the layman”, Research Report RC 20136, IBM T.J Watson
Research Center.

Bhandari I., Colet E., et al., “Advanced Scout: Data Mining and Knowledge Discovery in NBA Data”, Research
Report RC 20443, IBM T.J Watson Research Center, 1996.

Codd E. F., “Providing OLAP to user-analysts : An IT mandate”, Technical Report, E.F. Codd and Associates,
1993.

Fayyad U.M, Piatesky-Shapiro G., Smyth P. and Uthurusamy R., “From data mining to knowledge discovery: An
overview”, Advances in data mining and knowledge discovery, MIT Press, pp. 1-34.

Goil S. and Choudhary A., “Parallel Data Cube Construction for High Performance On-Line Analytical Process-
ing”, To appear in the 4th International Conference on High Performance Computing, Bangalore, India.

Gray J., Bosworth A., Layman A and Pirahesh H., “Data Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals”, Proc. International Conference on Data Engineering, 1996.

Guting A., “An Introduction to Spatial Databases”, VLDB Journal, 3, 1994, pp. 357-399.
Harinarayan V., Rajaraman A. and Ullman J. D., “Implementing Data Cubes Efficiently”, Proc. SIGMOD’96.
Kumar V., Grama A., Gupta A. and Karypis G., “Introduction to Parallel Computing: Design and Analysis of

Algorithms”, Benjamin Cummings Publishing Company, California, 1994.
“OLAP Council Benchmark” available from http://www.olapcouncil.org

78

PARALLEL COMPUTERS 417

Sarawagi S., Agrawal R., and Gupta A., “On Computing the Data Cube”, Research Report 10026, IBM Almaden
Research Center, San Jose, California, 1996.

S. Sarawagi and M. Stonebraker, “Efficient Organization of Large Multidimensional Arrays”, Proc. of the Eleventh
International Conference on Data Engineering, Houston, February 1994.

Zhao Y., Tufte K. and Naughton J., “On the Performance of an Array-Based ADT for OLAP Workloads”, Technical
Report, University of Wisconsin, Madison, May 1996.

Sanjay Goil received his BTech in computer science from Birla Institute of Technology and Science,
Pilani, India in 1990 and an MS in computer science from Syracuse University in 1995. From 1991
to 1993, he was a research associate in the Networked computing department at Bell Laboratories.
Currently, he is a Ph.D. student in the Computer Engineering department and the Center for Paral-
lel and Distributed Computing at Northwestern University. His research interests are in the area of
parallel and distributed computing, parallel algorithms and high performance I/O for large databases
and data mining.

Alok N. Choudhary received his Ph.D. from University of Illinois, Urbana-Champaign, in Electrical
and Computer Engineering, in 1989, M.S. from University of Massachusetts, Amherst, in 1986
and B.E. (Hons.) from Birla Institute of Technology and Science, Pilani, India in 1982. He has
been an associate professor in the Electrical and Computer Engineering Department at Northwestern
University since September, 1996. From 1989 to 1996 he was on the faculty at Syracuse University.
He received the National Science Foundation’s Young Investigator Award in 1993 (1993-1999). He
has also receive an IEEE Engineering Foundation award, an IBM Faculty Development award and an
Intel Research Council award. His research interests are in all aspects of high-performance computing
and its applications in databases, decision support systems, multimedia, science and engineering. He
has published extensively in various journals and conferences. He has also written a book and several
book chapters. He is an editor of the Journal of Parallel and Distributed Computing and has served as
a guest editor for IEEE Computer and IEEE Parallel and Distributed Technology. He is a member of
the IEEE Computer Society and the ACM. He has also been a visiting researcher at Intel and IBM.

79

