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Abstract—Multi-field packet classification is a network kernel
function where packets are classified and routed based on a pre-
defined rule set. Recently, there has been a new trend in exploring
Graphics Processing Unit (GPU) for network applications. These
applications typically do not perform floating point operations
and it is challenging to obtain speedup. This paper presents
a high-performance packet classifier on GPU. We investigate
GPU’s characteristics in parallelism and memory accessing, and
implement our packet classifier using Compute Unified Device
Architecture (CUDA). The basic operations of our design are
binary range-tree search and bitwise AND operation. We optimize
our design by storing the range-trees using compact arrays
without explicit pointers in shared memory. We evaluate the
performance with respect to throughput and processing latency.
Experimental results show that our approach scales well across
a range of rule set sizes from 512 to 4096. When the size of
rule set is 512, our design can achieve the throughput of 85
million packets per second and the average processing latency
of 4.9 µs per packet. Compared with the implementation on the
state-of-the-art multi-core platform, our design demonstrates 1.9x
improvement with respect to throughput.

Index Terms — GPU, CUDA, High-Performance, Packet
Classification

I. INTRODUCTION

Packet classification is a network kernel function performed
by Internet routers. It enables various network services such
as network security, Quality of Service (QoS) routing and
resource reservation. During packet classification, incoming
packets are classified against a set of predefined rules (rule
set) and routed to a specific port according to the classification
result. In traditional network applications, each predefined rule
considers 5 header fields [1]: source/destination IP addresses,
source/destination port numbers and transport layer protocol.
In Software Defined Networking (SDN) [2], which is proposed
as the next generation of network, up to 40 header fields [3] are
considered in each rule. As the Internet traffic grows rapidly,
high-performance packet classifiers are essential in order to
handle the high data rates and volume of traffic in the network.

Both hardware and software platforms are harnessed in
the literature to implement packet classifier. Ternary Content
Addressable Memories (TCAMs) [4] are widely used because
they can handle ternary match and provide high throughput.
However, TCAMs are quite expensive and require a lot of
power due to the massively parallel exhaustive search [5].
Field Programmable Gate Array (FPGA) technology is also
an attractive option for implementing packet classifier [6] due
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to its reconfigurability and massive parallelism. But the FPGA-
based packet classifiers suffer the constraint of the limited on-
chip resources, and will undergo long processing latency when
using external memory. Software-based routers have also been
investigated in the community because of the extensibility and
customizability [7], [8]. However, the throughput of the packet
classifiers on the multi-core platforms is not promising.

A new trend in high-performance computing is to perform
general purpose computing with GPUs. CUDA is a program-
ming model which harnesses the power of GPU. It has been
used to show dramatic speedup for floating point intensive
applications [9]. Several recent works have also explored the
CUDA platform to implement networking functions such as IP
lookup [10], [11] to achieve improvement in throughput. State-
of-the-art GPUs have 2880 CUDA cores while supporting
30720 threads [12]. Moreover, there are several types of mem-
ory with various features available on GPUs. However, how to
efficiently use the powerful parallelism and the various types
of memory for online algorithms such as packet classification
still poses great challenges.

In this paper, we exploit the desirable features of GPU
for designing a high-performance packet classifier. The main
contributions of the work are summarized below:

• We exploit the massive parallel processing capabilities
of GPU and propose a high-performance GPU-based
packet classifier.

• We use compact arrays without explicit pointers to
store range-trees which results in efficient tree-search
on GPU.

• We fully exploit the limited on-chip shared memory
to achieve high performance. We also apply optimiza-
tions to minimize the shared memory bank conflicts.

• When the size of rule set is 512, our design can
achieve the throughput of 85 millions packets per
second (MPPS).

• For a thorough evaluation of our design, we conduct
experiments using various sizes of rule sets. The
performance of the best case and the worst case is
studied as well.

The rest of the paper is organized as follows: Section
II introduces the background and related work. Section III
presents the details of the algorithms. Section IV contains the
experimental results. Section V concludes the paper.
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TABLE I: Example of a rule set

Rule ID SA DA SP DP Protocol Priority Action

1 175.77.88.155/32 192.0.0.0/8 0-65536 0-1000 0x06 1 Action 1
2 11.77.88.2/32 180.0.96.12/32 16-16 0-65536 0x00 2 Action 2
3 192.168.0.26/32 125.199.2.72/32 10-65536 200-300 0x11 3 Action 3
4 10.0.11.0/20 137.135.88.159/32 0-1000 20-22 0x06 4 Action 4
5 100.19.0.0/16 17.35.0.0/16 1000-1000 1020-1020 0x3f 5 Action 5

II. BACKGROUND AND RELATED WORK

A. 5-field Packet Classification

In packet classification, an IP packet is classified based
on 5 fields in the packet header: 32-bit source/destination IP
addresses (denoted as SA/DA), 16-bit source/destination port
numbers (denoted as SP/DP) and 8-bit transport layer protocol.
Routers perform packet classification based on a predefined
rule set. [1] studies the real-life firewall rule sets from several
Internet Service Providers (ISPs) and finds that 0.7% of the
rule sets contain more than 1000 rules while nearly 99% of
the rule sets contain less than 500 rules.

Each rule has its own matching information of the five
fields, a priority and an action to be taken if matched. Different
fields require different types of matches: SA and DA require
prefix match; SP and DP require range match; protocol field
requires exact match. A packet matches a rule only when the
five header fields are all matched. If a packet matches multiple
rules, the action associated with the highest prioritized one will
be taken. We show an example of a rule set in TABLE I.

B. CUDA Programming Model

In this section, we briefly introduce the key features of
CUDA programming model and GPU. Additional details can
be found in [13].

A CUDA program contains host function and kernel func-
tion. The kernel function is called by the CPU but executed
by a number of threads on GPU. A certain number of threads
(upto 1024 threads) are grouped into a thread block and several
thread blocks form a grid. All the threads in the grid will
execute the invoked kernel function. Inside a thread block,
each group of 32 threads shares the same program counter
and executes the same instruction on different data in every
clock cycle (SIMT execution fashion). The group of 32 threads
forms a warp, which is the basic execution unit on GPU.

A GPU device is composed of several streaming multi-
processors (SMX). Threads inside the same thread block will
reside in the same SMX. In Kepler [12], each SMX has 192
processing units. Each processing unit is called a CUDA core.
Every SMX features four warp schedulers to allow four warps
to be executed concurrently. When threads in a warp encounter
long latency operations, warp scheduler will switch to another
warp which is ready to be executed. On GPU, switching
between threads introduces little overhead. Thus, maximizing
the number of warps in a SMX helps to hide the latency of long
operations and increase throughput. If threads in a warp take
different branches of a program (eg. if, else), divergence among
thread execution will lead to a waste of hardware resources.
The reason is that all possible program execution paths have to

be traversed by each thread; threads not satisfying the current
execution condition will become idle.

CUDA platform provides various types of memory. Global
memory is the largest off-chip memory on GPU and can be
accessed by every thread. Access latency to global memory is
over hundreds of cycles. Constant memory and texture memory
are two small pieces of memory and can be cached by on-chip
read-only cache of each SMX. In Kepler, accesses to global
memory go through a two-level cache hierarchy, L1 cache and
L2 cache. L2 cache is shared by all SMXs and L1 cache is
private to each SMX. L1 cache is on-chip memory and can be
configured as 16 KB (by default) or 48 KB per SMX. Shared
memory is also on-chip memory and private to each thread
block. L1 cache and shared memory share a 64 KB memory
segment per SMX. Access to shared memory may take from
1 to 321 clock cycles. Registers are the fastest memory. There
are 65536 32-bit registers per SMX [12]. Registers allocated
to a thread can not be shared with other threads.

C. Related Work

Most of the packet classification algorithms on general pur-
pose processors fall into three categories: decision-tree-based,
hash-based and decomposition-based algorithms. Decision-
tree-based algorithms such as [14] employ several heuristics
to cut the rule set space into smaller sub-regions in a multi-
dimensional space. Each node in the decision-tree represents a
sub-region. The idea of hash-based algorithms [15] is grouping
the rules into a set of tuple spaces and each tuple is maintained
as a hash table. The classification of an incoming packet can
be performed in parallel over all tuples by searching each hash
table. Decomposition-based approaches first search each field
individually and then merge the intermediate results of each
field. For example, [16] uses bit vectors (BV) to represent the
intermediate results. Each bit corresponds to a rule and will
be set to “1” if the input matches the corresponding rule.

There are not many efforts in developing packet classi-
fier on GPU. [17] proposes an approach which exhaustively
compares the packet against all matching conditions to mini-
mize the divergence overhead. However, [17] is based on the
assumption that the set of unique criteria is small for large
rule set. [18] implements a decomposition-based approach
and a decision-tree-based approach on GPU. The design is
optimized by exploring a variety of memory architectures of
CUDA. It achieves 10x improvement against the CPU-based
implementation but does not discuss the throughput or latency
in details. A hash-based algorithm is adopted in [19]. The
implementation delivers the throughput of 10.7 MPPS and 4.8
MPPS with rule numbers of 500 and 2000, respectively.

1The variation of latency is due to shared memory bank conflict
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Fig. 1: Algorithm Overview

III. ALGORITHM

A. Algorithm Overview

We use K threads to classify each incoming packet.
Assume there are N rules in the rule set and they are
ordered by priority. Each thread is responsible for examining
the packet against N

K
rules. After examination, each thread

produces a local immediate classification result, which can
be an exact rule index or no match. In the next step, a final
classification result can be reported by identifying the highest
prioritized matching rule among the K immediate results in
logK steps. In summary, the kernel function to classify each
packet involves 2 phases:

• Phase 1: each thread examines N
K

rules and produces
a local classification result.

• Phase 2: the rule with the highest priority among the
K local results is identified in logK steps.

The overview of this algorithm is depicted in Fig. 1.

B. Tree Search & Bit Vector Based Algorithm

To identify the local result of each thread in Phase 1,
we adopt a range-tree search and bit vector (BV) based
algorithm proposed in [8]. The algorithm is a decomposition-
based approach and the major steps are summarized below:

• Pre-process rules to construct a binary range-tree for
each individual field. Every leaf node is assigned with
BVs, which can infer which rules are matched when
reaching the leaf node.

• Each thread performs binary range-tree search sequen-
tially field by field. After 5 tree searches, 5 BVs are
produced.

• Merge the 5 BVs by bitwise AND operation to obtain
a final BV. Identify the first non-zero bit of the final

BV and the corresponding rule is the local classifica-
tion result. If the final BV is 0, it indicates there is no
matching.

The pre-processing step is completed by host function. In
this step, N rules are first partitioned into N

K
groups. For each

group, five trees are constructed for the five fields. For SA/DA
field, prefixes are first translated into a set of ranges and further
“flattened” to produce a set of non-intersecting sub-ranges. The
range-tree is constructed by the sub-range boundaries and each
leaf node corresponds to two sub-ranges. For SP/DP field, the
construction of the range-trees is similar to SA/DA field, but
prefix-to-range conversion is not required. For protocol field,
all the unique values are extracted and mapped to a binary
search tree.

The tree search step and merging BV step happen in Phase
1 for each thread. Fig. 2 illustrates the steps. Since every
thread takes the same execution path, the latency of Phase
1 is determined by the “slowest” thread during each tree
search. The “slowest” thread occurs when it has the largest
tree to traverse. The computation complexity is O(logN

K
) for

range-tree/tree search, O(N
K

) for merging BVs, and O(N
K

) for
identifying the first non-zero bit of BV.

C. Tree Search on GPU

Classic tree implementation uses pointers to connect nodes
with their children. Traversing such trees is not efficient on
GPU because it leads to additional memory accesses and
divergence overheads. Also, pointers require additional space.
This is problematic given the limited on-chip memory. For
time and space efficient tree-search, we implement a range-
tree in the form of an array. To hold a p-level tree, the size
of the array is set to 2p − 1. The root of the tree is located at
array[0]. For the node at array[i] (0 ≤ i < 2p−1), its left child
node is located at array[2i + 1] while its right child node is
located at array[2i+ 2]. This particular arrangement makes it
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easy to move from a node to its children: multiply the node’s
index by 2 and add 1 to go left or add 2 to go right.

However, performing a tree search on such a tree structure
requires it to be a perfect binary tree [20]. In a perfect
binary tree, all the leaf nodes have the same depth. The tree
constructed in [8] will have leaf nodes differed by 1 level
when it is not a perfect tree. To convert the range-tree into a
perfect binary tree, for any non-leaf node which is not fully
filled, we duplicate it to the missing child’s location in the
array. The BVs of leaf nodes are calculated based on the
perfect binary tree. Note that this conversion will not impair
the performance. This is due to that the “slowest” thread
determines the processing latency and the length of the longest
execution path does not change. Fig. 3 shows an example2 in
which the two ranges of five rules are first translated into an
normal range-tree, then converted into a perfect range-tree and
finally stored in an array.
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Fig. 3: Translate ranges into a perfect range-tree

2The bit vector in each blue box is the BV associated with the leaf node

Algorithm 1 illustrates how to perform a tree search using
such a range-tree. The ID returned by this algorithm can be
used to determine the result BV. Note that searching values
which are beyond the tree will also return an ID, but the
corresponding BV only contains 0.

Algorithm 1 Binary Tree Search

Let Tree[ ] denote the array storing the tree
Let ArraySize denote the size of Tree[ ]
Range Tree Search(input)

1: ID = 0;
2: while ID < ArraySize do
3: if input < Tree[ID] then
4: ID = ID ∗ 2 + 1
5: else
6: ID = ID ∗ 2 + 2
7: end if
8: end while
9: return ID;

D. Identify Global Result

In Phase 2, a global result is identified among K local
results in logK steps. The operations in Algorithm3 2 are
executed by each thread during Phase 2. The global result will
be finally found in the first thread of the warp. Fig. 4 shows
the process when K = 4;

Algorithm 2 Identify Global Result

Let Local[ ] denote the array of local results
Let T id denote the thread index in the thread block
Identify Global Result()

1: for i = 0; i < logK; i++ do
2: if T id%2i+1 = 0 then
3: Local[T id] = min(Local[T id], Local[T id+ 2i])
4: end if
5: end for

65536 12 24 42 

Note: 65536 infers no match 

Thread 0 Thread 1 Thread 2 Thread 3 

Step 1 12 24 

Step 2 12 

Fig. 4: Identify global result when K=4

E. Mapping to Hardware

Since each local result produced in Phase 1 should be
accessible by other threads and be accessed for multiple times
in Phase 2, the local results are stored in an array using shared
memory. All the perfect range-trees and their associated BVs
are pre-constructed by CPU and transferred to GPU via PCIe.
When the rule set is small, the range-trees and BVs can be fit in
the shared memory for fast access; when the shared memory is

3In Phase 1, if a thread does not find any match, its local result will be set
to a large number beyond any possible rule index.



not sufficient to hold all the range-trees and BVs, only certain
upper levels of the range-trees are stored in shared memory
and the rest of data will be stored in the global memory. The
shared memory is configured as 48 KB per SMX by default.
To keep more data of the range-trees and BVs in the shared
memory of each thread block, there is only 1 thread block per
SMX. Each thread block contains 1024 threads.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

Our implementation is based on CUDA 5.0. The target plat-
form contains a dual 8-core Intel E5-2665 processor running
at 2.4 GHz. One NVIDIA K20 Kepler GPU running at 705.5
MHz is installed as the accelerator. The target platform has 13
streaming multi-processors (SMX) with 2496 CUDA cores in
total and is equipped with 5GB GDDR5.

We generate synthetic rule sets and packet traces using
the same methodology as [8]. Overall throughput and the
processing latency per packet are the main metrics when we
evaluate the performance. We define the overall throughput as
the number of packets that can be classified by the classifier per
second (MPPS). The processing latency per packet is defined
as the average latency for classifying a packet. We assume
the packets to be classified are initially stored in the global
memory.

B. Data Layout

We use a warp (K=32) to classify each incoming packet
and there are 32 warps in each SMX. If K is smaller,
the memory consumption for BVs and the latency for the
bitwise AND operations will increase. If K is larger than
32, modifying the shared variables in Phase 2 across different
warps requires synchronization. The synchronization among
warps will lead to significant overhead.

On the target platform, shared memory is divided into 32
equally-sized memory banks [13]. Each bank is 4-byte wide
and can only serve one operation per clock cycle. If two
addresses of the memory request fall in the same memory
bank, a bank conflict occurs and the access has to be serialized.
In a warp, each thread classifies packets based on the trees
constructed by N

32
rules. We optimize the shared memory data

layout by arranging the trees required by the same thread in the
same memory bank, and the trees needed by different threads
in distinct memory banks. By this data layout, the chance of
shared memory bank conflicts is minimized and we observe a
3.7x faster speed for shared memory accesses.

C. Throughput and Latency

For evaluation, we vary the number of rules (N ) from 512
to 4096. Fig. 5 and Fig. 6 show the throughput and processing
latency under various sizes of rule sets, respectively. When
N is 512 or 1024, all the trees and BVs can be fit in shared
memory. When N is 2048, trees are stored in shared memory
while BVs are stored in global memory. When N is 4096, parts
(upper levels) of trees are stored in shared memory while the
rest and all BVs are stored in global memory.

We observe that the throughput shows a dropping trend
as the rule set becomes larger. The deterioration is due to:
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(1) each thread needs to go through larger trees; (2) each BV
in the bitwise AND operation becomes longer; (3) when the
shared memory can not hold all the trees and BVs, each thread
needs to access the global memory in Phase 1. We also observe
that the processing latency for Phase 1 increases as the rule
set becomes larger, but the processing latency of Phase 2 is
constantly 0.3 µs per packet.

D. Performance of Best and Worst Case

For a more thorough analysis of our design, we study
the performance of the best case and the worst case. The
systematized rule set has a lot of duplicate values in each field.
The methodology to construct the range-trees is based on the
unique values of each field. Thus the memory requirement and
the size of each tree are dependent on the number of the unique
values in each field. We define the best case as that all the five
trees of each thread have only 1 level. In this scenario, all
the range-tree/tree searches can be completed in one step. We
define the worst case as that all the five trees of each thread are
as large as possible. In this scenario, each value is a unique
value of the field. If there are N

32
rules, the number of tree

levels will be log( N
32

)+1. The performance of the best case
and the worst case is shown in Fig. 7 and Fig. 8, respectively.

When using the systematized rule set, the throughput can
attain at least 68% of the performance of the best case. Even in
the worst scenario, our design can still achieve the throughput
of over 30 MPPS for the rule set with 4096 rules.

E. Comparison with implementation on Multi-core

In this section, we compare the performance of our GPU-
based design with the multi-core-based design in [8]. Both de-
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signs harness the decomposition-based approach using range-
tree search and BV. The synthesized rule sets used for evalua-
tion are also the same. The comparison results are summarized
in TABLE II.

TABLE II: Comparison Summary

No. of rules 1024 2048 4096

Throughput (MPPS)
This paper 69.1 58.5 44.1

[8] 36.5 30.3 26.5

Latency (µs)
This paper 6.0 7.1 9.4

[8] 0.13 0.15 0.18

It can be observed that our design achieves 1.9x improve-
ment in throughput compared with [8]. However, the average
processing latency for each packet is much longer than [8].
The longer latency on GPU is mainly due to:(1) the clock rate
of GPU is slower than that of CPU; (2) in [8], five fields are
searched in parallel while our approach performs sequential
tree searches; (3) since there are 4 warp schedulers per SMX,
only four warps (128 threads) per SMX are allowed to be
executed concurrently.

V. CONCLUSION

In this work, we proposed a BV and range-tree based
approach for packet classification on the modern GPU plat-
form. We fully exploited the limited on-chip shared memory
to achieve high-performance. Optimizations were applied to
minimize the shared memory bank conflicts. We conducted

comprehensive experiments by varying the number of rules
from 512 to 4096. Experimental results showed that when the
rule set size was 512, our design achieved the throughput of 85
MPPS and the processing latency of 4.9 µs per packet. Com-
pared with the state-of-the-art multi-core implementation, our
design demonstrated at least 1.9x improvement in throughput.

In the future, we plan to develop the hash-based packet
classification algorithms on GPU. We will also explore other
networking applications such as OpenFlow packet classifica-
tion [3] on GPU.
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