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It is important to develop a reliable and high-throughput simulation method for predicting airflows in the installation planning
phase of windmill power plants. This study proposes a two-stage mesh generation approach to reduce the meshing cost and
introduces a hybrid parallelization scheme for atmospheric fluid simulations. The meshing approach splits mesh generation into
two stages: in the first stage, the meshing parameters that uniquely determine the mesh distribution are extracted, and in the
second stage, a mesh system is generated in parallel via an in situ approach using the parameters obtained in the initialization
phase of the simulation. The proposed two-stage approach is flexible since an arbitrary number of processes can be selected at run
time. An efficient OpenMP-MPI hybrid parallelization scheme using a middleware that provides a framework of parallel codes
based on the domain decomposition method is also developed. The preliminary results of the meshing and computing per-

formance show excellent scalability in the strong scaling test.

1. Introduction

Power generation using natural energy sources has gradually
replaced that from traditional thermal and atomic power
sources due to concerns regarding the environment and
resource sustainability. In particular, wind and solar have
potential to provide low-emission power generation. Re-
cently, large windmill power plants have achieved high ef-
ficiency in power generation. The selection of installation
sites for windmill power plants directly impacts the entire
life cycle and costs, including those of design, installation,
operation, and removal.

It is thus important to develop a method for predicting
detailed wind conditions utilizing data from observations
and simulations. Many factors affect prediction results, and
thus, numerous calculations with high-resolution meshes
are usually required to obtain reliable results of wind flow
over complex terrains. Reliable prediction of wind power
generation requires taking into account various factors,
including wind direction, turbulence, land features, atmo-
spheric stratification, and periodicity. A simulation of wind
conditions requires at least a 10-min time integration, which

is very computationally intensive. To reduce wind flow
simulation time, the speeding up and parallelization of the
simulation algorithms is essential. In addition, the cost of
mesh generation is one of the main issues in computational
fluid dynamics (CFD) because meshing is extremely de-
manding and time-consuming for operators and sometimes
requires user skill.

The present study proposes a two-stage mesh generation
approach that greatly reduces the meshing cost and in-
troduces a hybrid parallelization scheme for atmospheric
fluid simulation. The meshing approach splits mesh gen-
eration into two stages: in the first stage, the parameters that
uniquely determine the mesh distribution are extracted, and
in the second stage, a mesh system is generated in parallel via
an in situ approach based on the parameters obtained in the
initialization phase of the simulation. To facilitate the ex-
traction of meshing parameters, an easy-to-use graphical
application that allows the user to interactively explore
the optimal parameters is developed. The proposed two-
stage approach is flexible since an arbitrary number of
processes can be selected at run time. An efficient OpenMP-
MPI hybrid parallelization scheme using middleware that
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provides a framework of parallelism based on the domain
decomposition method is also developed. The preliminary
results of the meshing and computing performance show
excellent scalability.

2. Grid Generation

2.1. Grid System. Mesh generation for atmospheric fluid
simulation with a complex terrain shape must reflect the
complex configuration of the ground in the mesh system and
appropriately resolve the boundary layer. Figure 1 shows an
example of the mesh system used in the present research. A
uniform Cartesian mesh is used for the XY-plane (horizontal
direction), and a nonuniform distribution is used in the Z
(vertical) direction, similar to the sigma coordinate system
[1]. Equation (1) expresses the mapping relation between the
physical and computational coordinate spaces:

x = x(§), &=E&(x),
y=ym), eon=n), (1)
z=2z(&1,0), (=0(x,9,2)

2.2. Two-Stage Approach. Mesh generation for complex
configurations is typically conducted using commercial
software suites, e.g., [2], which have practical functions
and user-friendly graphical user interfaces (GUIs).
However, when such applications are run on commodity
desktop PCs, limited memory becomes a critical con-
straint for generating large-scale mesh systems. In addi-
tion, the file size of the generated mesh is large, making the
transfer of mesh data from a PC to computing servers
time-consuming. For fast, large-scale mesh generation,
the present study proposes a scalable, in situ two-stage
meshing approach that can avoid time-consuming file
access [3]. This approach splits mesh generation into two
stages: in the first stage, the parameters that uniquely
determine the mesh distribution are extracted using a GUI
application, and in the second stage, a mesh system is
generated in parallel using the parameters obtained in the
initialization phase of the simulation. An overview of this
procedure is illustrated in Figure 2.

2.3. Graphical Application. In the first stage, the parameters
that uniquely determine the desired mesh system are
found. Generally, terrain data are provided from satellite
or geographic information system (GIS) services [4] and
are usually in DEM or STL format, as shown in Figure 3. In
this example, the STL format is used. A graphical appli-
cation called FXgen is used to help determine the optimal
parameters, which are used in the second stage. The es-
sential parameters that determine the mesh distribution
are the size of the computational region, the number of
points, and the mesh spacing for the two ends of the line
segments in the Z direction. These parameters can be
interactively explored via a user-friendly GUI application,
as illustrated in Figure 4. Although this process is heuristic,
it is rather quick since the interface is efficient. Users can
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FiGure 1: Cross section of the mesh system for an isolated peak
configuration. A uniform Cartesian mesh is used in the horizontal
direction, and nonuniform stretching is used in the vertical
direction.

find the optimal parameters using the interface shown in
Figure 4(b). For instance, users can specify the number of
divisions in the X and Y (horizontal) directions, and the
mesh distribution results will immediately be displayed
from the top view, as shown in Figure 5(a). To determine
the mesh distribution in the Z direction, the commonly
used Vinokur’s stretching function is used [5], where the
number of divisions in the Z direction and the mesh
spacing for the two ends of the line segments are specified.
The result is a nonuniform stretched mesh in the Z di-
rection, as depicted in Figure 5(b). Figure 5(c) shows the
mesh distribution around the surface. Although the mesh
distribution around a steep cliff is notoriously difficult to
correctly obtain in mesh generation, the mesh obtained
using the proposed method was well generated since the
region just above the surface is filled by high-resolution
fine meshes. Finally, the obtained parameters are output in
JSON format, as shown in Figure 6.

2.4. Handling of Geometry Data. In a practical simulation,
complex geometry shapes, given in file formats such as STL,
OBJ, or iGES, are often encountered. In order to handle such
geometry files in parallel, several libraries can be used. For
instance, OpenFOAM provides the distributedTriSurfaceMesh
class to load and redistribute mesh data [6], and Ray et al.
presented a parallel mesh framework called MOAB (Mesh-
Oriented dAtaBase) for building parallel mesh generators [7].
One of the present authors developed a polygon handling library
called Polylib to manage polygonal elements in parallel [8],
which provides functions such as load, save, redistribution,
manipulation, grouping, and migration.

2.5. On-the-Fly Meshing. The obtained parameters are used
to generate the same mesh generated in the first stage. In the
second stage, the entire computational domain is divided by
the number of processes in the control file or using com-
mand line arguments during the invocation of the parallel
simulation program. The domain decomposition process
is described using application programming interfaces
(APIs) provided by the CBrick library [9], which are
designed to facilitate the construction of message passing
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FXgen application

DomainInfo {

GlobalOrigin = (-2.0e + 04, -2.0 + 04, 0.0¢ + 00),
h GlobalRegion = (4.0e + 04, 4.0e + 04, 1.0e + 04)
-~ GlobalDivision = (200, 200, 200)

StartPitch = 1.0

EndPitch = 30.0

Terrain data (DEM, STL) Paramater estimation Input parameters Domain decomposition (5 x 4)

Ist stage o 2nd stage

Heuristic process Automatic process
(serial) (parallel)

F1GURE 2: Overview of two-stage meshing process. The first stage is processed serially and heuristically, and the second stage is processed in
parallel and automatically.

(a)

FIGURE 3: Basic rocket ship design. The rocket ship is propelled with three thrusters and features a single viewing window. The nose cone is
detachable upon impact. (a) Specification of a region from GIS repository. (b) Polygonized terrain data corresponding to red region in (a).
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FIGURE 4: Exploration of meshing parameters with GUT application. (a) Screenshot of FXgen application. (b) Dialogue for parameter input.
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FIGURE 5: Meshing process in FXgen. The GUI application allows the desired parameters to be explored with confirmation of the mesh
distribution. (a) Uniform mesh in the XY direction. (b) Stretched mesh in the Z direction. (c) Closeup view near the surface.

DomainInfo {

EndPitch
}

3.000000e+01

GlobalOrigin = (-2.000000e+04, -2.000000e+04, 0.000000e+00)
GlobalRegion = (4.000000e+04, 4.000000e+04, 1.000000e+04)
GlobalDivision = (200, 200, 200)

GlobalDivision = ( 1, 1, 1)

StartPitch = 1.000000e+00

FIGURE 6: Extracted mesh parameters. GlobalOrigin and GlobalRegion give information on the computational region, GlobalDivision is the
number of divisions in the X, Y, and Z directions, and StartPitch and EndPitch represent the spacings of the two ends of line segments,

respectively.

interface (MPI) applications and the optimization of their
performance. A domain decomposition pattern is auto-
matically calculated by the algorithm. By applying the same
algorithm for mesh generation in both stages, the desired
meshes can be generated using the same parameters. The
proposed two-stage approach is flexible since an arbitrary
number of processes can be selected at run time, thanks to
on-the-fly meshing. A more detailed description can be
found elsewhere [3].

3. Parallel Application

In this section, the performance enhancement for the wind
simulator RIAM-COMPACT [10] is described.

3.1.  Governing Equation and  Solution  Method.
RIAM-COMPACT can be used for large-scale simulations of
turbulence to predict the local wind flow over complex
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terrains. It uses collocated grids in the boundary-fitted
coordinate system. Equations (2) and (3) show the non-
dimensional governing equations of the flow, the filtered
continuity equation for incompressible fluid, and the filtered
Navier-Stokes equations, respectively.
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where u; is the velocity component, and p, v, v,, and §;;
denote the pressure, fluid viscosity, eddy viscosity of the
Smagorinsky model, and strain tensor, respectively. Note
that the prime symbol indicates dimensional values.

3.2, Parallel Mesh  Generation at Initialization.
RIAM-COMPACT is parallelized using OpenMP and MPIL.
Figure 7 presents pseudocode of the initialization phase of
the simulation, including domain decomposition, polygonal
data loading/distribution, and mesh generation. Object D is
an instance of the CBrick class, which provides APIs for
domain management. Note that the argument “XY” of the
method findOptimalDivision() sets the division of the do-
main to be only on the XY-plane. This is done because the
stretching function is applied to the Z direction, and thus
domain decomposition must be avoided in the Z direction.
Object PL shows the use of polygon management class
MPIPolylib to load the STL file at rank 0 and to distribute the
partitioned polygon data to other ranks. Inside the for loop,
object sf calculates the coordinate values at a given line
segment in the Z direction and stores the values in the work
array zx. The calculated coordinate values in array zx are
copied to array Z. The object’s method sf- > distribution(zx)
means that the mesh distribution of a line segment between
pos_z and max_z is calculated using Vinokur’s stretching
function, where the spacings of the two ends are ds_st and
ds_ed, respectively, and the number of divisions is NK. For
performance, the outer for loop is parallelized using
OpenMP and the function Zcopy() is vectorized.

3.3. Parallelization. RIAM-COMPACT is written in For-
tran90 and C/C++. Fortran90 is used for the main algo-
rithms, and C/C++ is used for the main function, allocating
memory, utilities, and bridging other C++ class libraries. For
MPI-based parallelization, the APIs provided by the MPI
library are used to describe the parallel code. For frequently
used communication patterns, such as Allreduce and

neighbor (point-to-point) communications, the CBrick li-
brary provides convenient APIs. OpenMP is used for
threading do/for loops.

3.4. Performance Monitoring. It is very useful to assess the
performance of applications in the production run and the
tuning phase, which include various computing platforms.
The performance monitoring library called PMIib [11] was
used here to measure the parallel performance of RIAM-
COMPACT at run time. PMIib provides simple APIs for
instrumenting code and creating useful reports. Figure 8
shows pseudocode of instrumentation using PMIib. In this
example, the user function mykernel() is being measured by
calling the PM.start() and PM.stop() methods just before and
after the mykernel() call. Figure 9 shows a report in simple
format. A detailed report includes the performance of each
process.

4. Related Work

In order to construct a high-throughput simulation
method for atmospheric fluid flow, an efficient meshing
method and scalable parallelization for kernel codes are
essential. The literature on mesh generation was reviewed.
Various mesh implementations have been proposed, such
as a partitioning-based unstructured mesh [12], an octree
or hierarchical Cartesian mesh with a space-filling curve
[13], and a structured mesh with simple domain de-
composition [14]. These methods are categorized as in situ
meshing approaches, i.e., the mesh is automatically gen-
erated in the initialization phase of the CFD simulation.
Among them, the Cartesian-based approach is probably
the fastest and most powerful for meshing complex
configurations. However, a naive implementation of this
approach can have some difficulty creating smooth meshes
that appropriately resolve the boundary layer near the
surface just above the ground level. To overcome this
problem, Yamazaki et al. used a Cartesian mesh with
block-structured mesh refinement to concentrate the mesh
around the surface, and introduced the cut-cell technique
to generate a terrain-following mesh. Their method cap-
tures the boundary layer, but its scalability was only
confirmed up to 16 threads [15].

Another issue of meshing is the automatic generation of
a mesh system with complex terrain geometry for atmo-
spheric simulation. Gargallo-Peir¢ et al. proposed an au-
tomatic procedure for generating hybrid meshes to
simulate turbulent flows for wind farms [16]. They de-
veloped a mesh system that captures the topographic
features of the ground and turbine area. Their mesh gen-
eration process is separated in two steps: in the first step, a
background mesh is generated; in the second step, the mesh
system around the turbine is inserted. They generated a
mesh system for a wind farm with an element count on the
order of 10 million in about 300 seconds using a meshing
application on a PC.

Evetts reported that the Glyph script helps to automate
specific meshing processes for wind farms [17]. The Glyph
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int G_size[3]; // Number of division for each direction (global)
float G_region[3]; // Length of the entire computational region

int size[3]; // Number of division (local)

float pitch[3]; // Mesh width for each direction

float origin[3]; // Original points

int gc; // Size of guide cell

int numProc; // Number of processes

int myRank; // Rank number of each subdomain

load_parameters("filename_of_control_parameter");

// Domain Decomposition

CBrick D;

D.setSubDomain(G_size, gc, numProc, myRank);
D.findOptimalDivision("XY");
D.createRankTable();

allocateArray();

// Polygon management

MPIPolylib* PL = MPIPolylib::get_instance();
PL->init_parallel_info(origin, size, gc, pitch);
PL->load_only_in_rank@( "filename_of_STL" );
PL->distribute_from_ranko();

int NI = size[@], NJ = size[1], NK = size[2];

float max_z = origin[2] + G_region[2];

float dz_st = spacing_at_start_of_line_segment;
float dz_ed = spacing_at_end_of_line_segment;
float* zx = Alloc_Real_S3D(NK);

// Intersection, Stretching
#pragma omp parallel for collapse(2)
for( int j=0; j<NJ; j++ ) {
for( int i=0; i<NI; i++ ) {
float pos_x = origin[0] + i * pitch[0];
float pos_y = origin[1] + j * pitch[1];
float pos_z = calc_intersection();

Stretch* sf = new Stretch( NK, pos_z, max_z, dz_st, dz_ed );
if( !sf->distribution(zx) ) printf("## ERROR\n");

delete sf;

// copy from zx to Z(i,j,*), this function is vectorized
Zcopy(Z, i, j, zx);

FIGURE 7: Pseudocode of the initialization phase of RIAM-COMPACT.

script has the following steps: import terrain, refine the area
of interest, create a surface mesh, create a volume mesh,
smooth and analyze the volume mesh, and export the file to a

CFD solver. The script can make a grid system in a few
minutes. This procedure is similar to our approach but it
generates a grid file.
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#include <PerfMonitor.h>
using namespace pm_lib;
PerfMonitor PM;

int main(int argc, char *argv[]1) {
PM.initialize();
PM.setProperties("specified_label", PM.CALC);
PM.start("specified_label");
mykernel();
PM.stop ("specified_label");
PM.print(stdout);
PM.printDetail(stdout);
return 0;

FIGURE 8: Example of instrumentation using PMIib.

# PMlib Basic Report

Parallel Mode: FlatMPI (8192 processes)

Timing Statistics Report from PMlib version 5.8.5
Linked PMlib supports: MPI, no-OpenMP, no-HWPC, no-OTF

Total time (PMlib enabled elapsed time) = 2.752032e+01 [sec]

Section | call | accumulated time[sec] | user defined argument values
Label | | avr avrl[%] sdv avr/call | user.value sdv user.perf
———————————————————— B S S e e e e e
File_Output 1 5.258e+00 19.11 8.27e+00 5.258e+00 0.000e+00 0.00e+00  0.00 Mflops
Comm_Res_Poisson 1901  5.079e+00 18.46 8.01e-01 2.672e-03 4.983e+08 0.00e+00 98.12 MB/sec
Poisson_2_SOR_MAF 1901 4.993e+00 18.14 3.66e-01 2.627e-03 3.422e+10 1.95e+09 6.85 Gflops
Grid_gen 1 2.063e-01 0.75 4.33e-03 2.063e-01 0.000e+00 0.00e+00 0.00 Mflops
———————————————————— B S S e e e e e
Sections per process 1.079e+01 -Exclusive COMM sections- 1.422e+09 131.81 MB/sec
Sections per process 1.100e+01 -Exclusive CALC sections- 3.637e+10 3.31 Gflops
———————————————————— B S S e e e e e
Sections total job 1.079e+01 -Exclusive COMM sections- 1.165e+13 1.08 TB/sec
Sections total job 1.100e+01 -Exclusive CALC sections- 2.980e+14 27.10 Tflops

FIGURE 9: Example report generated by PMIib.

5. Simulation Results

5.1. Evaluation Environment. The supercomputer ITO at
Kyushu University [18] was used to evaluate the perfor-
mance of the mesh generation process and computing
process. The specifications of ITO subsystem A are shown in
Table 1. The evaluation was carried out for Flat-MPI mode
and hybrid parallel (OpenMP + MPI) mode using up to 256
nodes, i.e., 8,192 processes for Flat-MPI mode and 512
processes for hybrid mode.

The computation time was measured for 20 steps of
time integration from a given initial condition, and the
performance was measured using the function provided by
PMlib.

TaBLE 1: Specifications of ITO subsystem A.

Architecture Intel Skylake-SP

CPU and clock Intel Xeon Gold 6154 processor, 3.0 GHz
Number of nodes 2,000
CPUs per node 2
Cores per CPU 18
Memory per node 192GB
Compilers Fujitsu compilers for C/C++ and Fortran

5.2. Performance of Flat-MPI Mode. Figure 10 shows the
performance results for Flat-MPI mode. The generated mesh
size was 2001 x 721 x 721 (approximately 1 billion points),
and the required memory for meshing was 66 GB. In this
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FIGURE 10: Performance of grid generation and fluid calculation for Flat-MPI mode.

case, the number of processes ranged from 2 to 8192. The
obtained meshing performance was excellent with 512
processes but became worse with over 1024 processes. The
main reason for this performance degradation is load im-
balance, as the given mesh size is not an aliquot part, es-
pecially with over 512 processes. The performance of the
fluid calculation exhibits the same behaviour. As shown in
Figure 10, the cost of meshing is two orders of magnitude
lower than that of the fluid calculation.

5.3. Performance of Hybrid Mode. Figure 11 shows the
performance results for the hybrid parallel mode. The
generated mesh size was 4001 x 721 x 721 (approximately 2
billion points), and the required memory for meshing was
132 GB. The performance was measured for up to 512
processes, with 18 threads used per process. The perfor-
mance of the fluid calculation was excellent compared to
that for the Flat-MPI mode because the degree of freedom
to divide the domain in the X direction was higher and thus
load balancing improved. Although meshing performance
dropped for the case with over 128 processes, the ratio of
meshing time to flow calculation time was under 0.01;
meshing was thus a negligible part of the entire compu-
tation time. Note that since the time integration was only
20 steps for this test case, the meshing time in a practical
case that requires many time steps for integration can be
ignored.

5.4. Computed Flow Field. Figure 12 shows that the fine
mesh surrounding the surface was sufficient to correctly
capture the boundary layer. This confirms that the structure
of the flow separation at the ridge is well reproduced.

6. Conclusions

A two-stage in situ mesh generation approach was proposed
for reducing the computational cost of the meshing process

Computation time (sec)
- —_
= =)

— N

—_
(=]
=]

H
<

10 10
Number of processes

—— Ideal
—e— Fluid calculation

—— Ideal
-A- Grid generation

FI1GURE 11: Performance of grid generation and fluid calculation for
hybrid mode.

for large-scale parallel atmospheric fluid simulation with
complex terrain. The proposed mesh generation process has
two steps: in the first step, the parameters that uniquely
determine the mesh distribution are extracted using a
heuristic approach; in the second step, a mesh is auto-
matically generated by a parallel meshing algorithm based
on the obtained parameters in the initialization phase of the
simulation. The proposed two-stage approach is flexible
since an arbitrary number of processes can be selected at run
time, thanks to the in situ meshing.

An efficient implementation of RIAM-COMPACT
using OpenMP-MPI hybrid parallelization was also de-
veloped. RIAM-COMPACT was constructed using mid-
dleware that provides a framework of parallel codes based
on the domain decomposition method. The prelimi-
nary performance results for the meshing and computing
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Step = 48200

Figure 12: Computed vector field at the center line of the isolated peak example (Figure 1). The size of the mesh system was set to
801 x 181 x 181, and the Reynolds number based on the height of the peak was 10%,

performance show excellent scalability on the super-
computer ITO.
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