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Abstract: Protecting crop yields is the most important aspect of agricultural production, and one
of the important measures in preserving yields is the control of crop pests and diseases; therefore,
the identification of crop pests and diseases is of irreplaceable importance. In recent years, with the
maturity of computer vision technology, more possibilities have been provided for implementing
plant disease detection. However, although deep learning methods are widely used in various
computer vision tasks, there are still limitations and obstacles in practical applications. Traditional
deep learning-based algorithms have some drawbacks in this research area: (1) Recognition accuracy
and computational speed cannot be combined. (2) Different pest and disease features interfere with
each other and reduce the accuracy of pest and disease diagnosis. (3) Most of the existing researches
focus on the recognition efficiency and ignore the inference efficiency, which limits the practical
production application. In this study, an integrated model integrating single-stage and two-stage
target detection networks is proposed. The single-stage network is based on the YOLO network, and
its internal structure is optimized; the two-stage network is based on the Faster-RCNN, and the target
frame size is first clustered using a clustering algorithm in the candidate frame generation stage to
improve the detection of small targets. Afterwards, the two models are integrated to perform the
inference task. For training, we use transfer learning to improve the model training speed. Finally,
among the 37 pests and 8 diseases detected, this model achieves 85.2% mAP, which is much higher
than other comparative models. After that, we optimize the model for the poor detection categories
and verify the generalization performance on open source datasets. In addition, in order to quickly
apply this method to real-world scenarios, we developed an application embedded in this model for
the mobile platform and put the model into practical agricultural use.

Keywords: plant pest and disease detection; deep learning; object detection; YOLO; Faster-RCNN;
Model Ensemble

1. Introduction

From sowing, growing to harvesting, crops are often affected by a variety of factors,
including many environmental factors, such as temperature [1], moisture, soil, physical
factors [2], pests, etc. Among them, pests are a very important factor, containing many kinds
of pests (plant pathogens, pests, weeds and rodents, etc.), which affect the yield and quality
of cultivated plants and have an impact on fossil energy reserves [3–8]. Agricultural pests
are usually classified as insects and mites that cause damage to various plants, and insects
are the largest number of pests that affect crops. All kinds of plant damage caused by them
are called pests. After insects injured or exposed to pathogens, the organic content of the
plant will change [9] causing its mutation, leading to wilting and even death [10]. In recent
years, crops are always hard to escape the attack of pests.
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Globally, more than 80% of agricultural output comes from farmers, and more than
50% of the output is lost due to pests and diseases, resulting in a large-scale disruption
of food supply and large numbers of hungry people [11]. According to a study released
by the FAO in June 2021, due to the influence of climate change, plant pests that damage
important cash crops are becoming more destructive and increasingly threatening food
security and the environment. The FAO estimates that the annual loss of plant diseases
to the global economy exceeds 220 billion dollars. In addition, up to 40% of global crop
yield is lost to pests every year, resulting in at least 70 billion dollars in losses. At the
same time, it is find that climate change will increase the risk of pests transmission in
agricultural and forestry ecosystems, especially in cold Arctic, northern, temperate and
subtropical regions. Moreover, due to the warming of the climate, some pests, such as the
meadow crab moth, are already spreading further as a result of warming. Other species
such as the desert locust (the world’s most destructive migratory pest in the world) are
expected to change their migratory routes and geographical distribution due to climate
change. According to the results of a large-scale monitoring survey in China from 2019
to 2022, the occurrence of grasshoppers in China’s grasslands still has obvious regional
features. In terms of area of occurrence, the annual breeding areas in Southwest China and
South China account for more than 80% of the total area of occurrence, while the middle
and lower reaches of the Yangtze River and the transitional areas of migration such as
Jianghuai account for 10–20% of the total area of occurrence, and the key prevention areas
in the north account for less than 1% of the total area of occurrence counties, there are
1645 counties in 2019–2020, including 1541 counties in 26 provinces are involved in 2019
and 1423 counties in 27 provinces are related in 2020, accounting for 80% of the occurrence
counties in these two years. In 2021, it is expected that the meadow moths will be occur
in large numbers in southwest China, South China, middle and lower reaches of Yangtze
River and Jianghuai region, which need to be key prevention and control. During the
period of adult moth infestation in the south, when there is a suitable East Asian monsoon
or typhoon event, it can help the insects to migrate northward. Besides, Northwest China,
Yellow and Huaihua, North China and Northeast China need to strengthen prevention. It is
estimated that the national disaster area is more than 20 million mu, and the control area is
more than 30 million mu times. Therefore, it is an important task to quickly and efficiently
determine the scope of prevention. For another example, in 2021, rice planthoppers will
re-occur in a large scale in the rice areas of South China, Jiangnan and the middle and
lower reaches of the Yangtze River, and moderately occur in rice areas in other south. It
is expected that there will be 350 million mu in the whole country, and 450 million mu
will be controlled. Cnaphalocrocis medinalis, as an important agricultural pest, will have
serious disasters in rice areas in the south of the Yangtze River, the eastern of southwest
China, and the lower reaches of the Yangtze River in 2021, and moderate disasters in south
China, the western of southwest China and Jianghuai. It is expected to occur in an area
of 210 million mu nationwide and to be controlled in an area of 250 million mu. It can be
seen that the pests are characterized by rapid damage, heavy losses and great difficulties
in prevention and control, with a wide range of pest species, different forms and different
patterns of occurrence. Agricultural pests mainly affect rice, corn, wheat [12], potatoes,
soybeans, sunflowers, vegetables, fruit trees, etc. They are important food crops and food
for people’s living standards in China [13], and some of them also play an important roles
in industrial manufacturing and medical applications, Therefore, the control of agricultural
pests is of great importance [14].

IIt is an important subject to study the effects of different degrees of disease on
crop yield loss, so as to formulate reasonable control indicators and measures and obtain
maximum economic benefits [15–18]. The yield of crops is the result of many factors, so it
is a very complicated problem to estimate the degree of yield loss caused by diseases. Most
foliar pests and diseases in crops are caused by pathogens that suck nutrients from the host,
reduce the photosynthetic leaf area and interfere with the accumulation of organic matter
and water physiology, but do not directly affect the harvested parts of the crop, such as
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fruits and ears [19–21]. Therefore, the relationship between disease severity and yield is
more complicated, and it is more difficult to determine the disease types according to the
symptoms and signs of leaves. Thus, it is important to study the effects of various pests and
diseases on crop yield loss, and to formulate reasonable control indicators and measures
more easily and quickly. In the practice of pest control, first of all, it is necessary to correctly
identify beneficial insects and pests, and to be able to make good use of beneficial insects and
control pests [22]. Secondly, we need to master the general morphological characteristics of
insects and their growth and development rules, and find out the weaknesses of insect life
to control them, so as to achieve get twice the result with half the effort. Moreover, pests
have different morphological characteristics in different growth periods, so they should be
accurately identified in different periods, such as eggs, nymphs, larvae, adults, etc.

Currently, pest identification in agricultural production relies mainly on visual and
empirical judgments by farmers or remote expert consultations [14]. However, these
methods have obvious shortcomings, such as low recognition accuracy and long cycle time.
Low recognition accuracy may directly lead to wrong control methods, which may produce
the opposite effect, while long cycle time may miss the best control period and lead to
economic losses. With the concept of precision agriculture and the application of computers
in agriculture, machine vision and deep learning are put forward. When recognizing and
detecting plant diseases and pests, the deep learning and convolutional neural net works
(CNN) have quickly become the preferred methods. Compared to the previous detection
methods which relied on the experience of farmers, this method is not only more accurate,
but also time efficient. CNN is suitable for detecting diseases since it has the ability to learn
the image features, such as pattern, color and texture. And deep learning technology made
it possible to accurately analyze disease and pest species on the plant [23]. It can effectively
help farmers improve crop quality and reduce economic losses of agricultural production.
After finding out the disease, the appropriate pesticides or various methods can be used to
shelter from the rain and wind [24].

Although deep learning methods are widely used in various computer vision tasks,
there are still limitations and obstacles in practical applications.

1. In order to increase the recognition accuracy, the computational complexity needs to
be increased, which inevitably leads to the decline in speed of detection.

2. Most existing studies focus on recognition efficiency at the expense of reasoning
efficiency, so the utility of these models in practice is unsatisfactory.

3. Data amplification is a key component of training deep learning models. Highly
accurate models require a lot of data, and the disease data for many plants are still in
a blank stage. The diversity of the datasets is limited.

4. Due to mutual interference of features between different kinds of lesion spots. Multi-
ple diseases in a plant image may reduce the accuracy of disease diagnosis.

Driven by these deficiencies, the main novelty of this work is:

1. In this paper, a high resolution dataset containing 37 pests and 8 diseases with
18,907 images was collected and produced.

2. By adding the Inception module to the YOLOv3 model and using four different sizes
of convolutional kernels (1 × 1, 3 × 3, 5 × 5, 7 × 7) to perform multi-scale feature
extraction and fusion in parallel, this paper proposes the inc-YOLO model.

3. by clustering the anchor box and increasing the anchor box types, this paper proposes
the cluster-RCNN model, and achieves a better localization effect.

4. By integrating the above two models, our method finally achieves 85.4% accuracy in
the detection of 37 pests and diseases. This method provides a feasible solution to
achieve fast and efficient pest detection.

5. In this paper, a mobile application is created based on the proposed method, will be
discussed in Section 6.3.

The rest of this paper is divided into six parts: the Section 2 describes the recent
progress of the target issue in this paper; the Sections 3 and 5 introduce the dataset and
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design details of the our model; the Section 4 shows the experimental results as well as
their analysis; the Section 6 conducts numerous experiments to verify the effectiveness of
the optimized method and the limitation of our methods; and the Section 7 summarizes
the paper.

2. Related Work

Computer vision technology has an important role to play in various industries,
and plant pest identification is no exception [25,26]. Bedi, P. and Gole, P. et al. proposed a
novel hybrid model of CAE and CNN for plant disease detection, which can be performed
automatically. This is the first time that a hybrid system based on CAE and CNN is used
for automatic detection of plant diseases. This model is mainly used to detect bacterial
spot disease on leaves of peach trees [3]. owmyalakshmi, R. et al. proposed ResNset v2
model and best weighted extreme learning machine (CNNIR-OWELM for deep convolu-
tional networks for accurate detection of initial rice plant diseases in a smart agriculture
environment [27]. Rashwan, S. A. et al. improved the detection of plant leaf diseases using
deep convolutional neural network (DCNN) model-driven computer vision algorithms.
By using MobileNetV2, a DCNN model for embedded devices, and AlexNet, a heavy
DCNN model designed for non-embedded devices, for detection, the accuracy of detection
was effectively improved [28]. Joshi, K. et al. on the other hand, used digital image pro-
cessing and machine learning algorithms to improve the process of disease detection on
various leaves. It has the advantage of requiring less time compared to other deep learning
based methods and is widely used to detect various plant and leaf diseases [29]. Latif et al.
proposed a method based on deep convolutional neural network (DCNN) transfer learning
for accurate detection and classification of rice leaf diseases, which also includes a VGG19
based transfer learning method. The proposed modified system can accurately detect
and diagnose six different categories: healthy, narrow brown spot, leaf scald, leaf blight,
brown spot and bacterial leaf blight, achieving the highest average accuracy of 96.08%.
The corresponding precision, recall, specificity and F1 scores were 0.9620, 0.9617, 0.9921
and 0.9616 [30], respectively. As shown in Figure 1, the common rice foliar pests listed by
this team are the main subjects of their experiments.

Sharma, A. et al. Plant leaf disease detection using transfer learning was improved
in JPEG compressed domain. To improve the classification efficiency, the JPEG com-
pressed stream consisting of DCT coefficients is fed directly into the neural network [31].
Mohameth, F. et al. combined smartphone and computer vision to make disease diagnosis
through smartphone assistance a reality. By training several deep learning architecture
models, the performance of some models reached more than 99.53%. At the same time, mi-
gration learning and deep feature extraction were applied to evaluate the CNN architecture
and all the obtained features were also classified by SVM and KNN, and the results showed
that SVM is an excellent classifier for leaf disease detection [32]. Hussain, S. A. et al. used
image processing to extract features from images of plant leaves, classify the images by
graphical user interface (GUI) to determine the detected diseases and calculate the affected
areas, show the percentage of disease detection, using algorithms of K-means clustering
and support vector machines, for comparing and detecting the percentage of diseases.
The results were analyzed by mean, entropy, variance, kurtosis, skewness, contrast, and ho-
mogeneity. This model monitors the status and updates the information in the Internet of
Things (IOT), thus enabling effective management of plant disease detection [33]. Kirati-
ratanapruk, Kantip et al. studied six varieties of major rice diseases rice blast, bacterial leaf
blight, brown spot, narrow brown spot, bacterial leaf stripe and rice dwarf virus disease.
Preprocessing models such as Faster R-CNN, RetinaNet, YOLOv3 and Mask RCNN were
used and their detection performance was compared. The experimental results showed
that YOLOv3 provided the best performance in detecting and classifying rice leaf diseases
with an average precision (mAP) of 79.19%. The accuracy of Mask R-CNN, Faster R-CNN
and RetinaNet was mixed with 75.92%, 70.96%, 36.11% [34]. Pan, S. Q. et al. pre-trained the
model Google Net based on DCNN, and develop loss functions for deep facial recognition
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tasks, such as Arc Face, Cos Face and A-Softmax, were applied to detect NCLB. The re-
sults obtained that the pre-trained Google Net architecture with Softmax loss function can
achieve excellent accuracy of 99.94% on NCLB diagnosis. The analysis was implemented in
Python through two deep learning frameworks Pytorch and Keras. They explored the intel-
ligent recognition techniques for NCLB and effectively diagnosed NCLB [35] from images
of corn. Ssh, A et al. used diseased tomato leaf samples for their study. Firstly, histogram
equalization was used to improve the quality of tomato samples, then K-means clustering
was introduced to divide the data space into Voronoi cells, then contour tracing was used
to extract edges, and then support vector machine (SVM), convolutional neural network
(CNN), and K-nearest neighbor (K-NN) were used to classify the features. The accuracy of
SVM is 88%, K-NN is 97%, and CNN is 99.6% [36], obviously, K-NN works best, CNN is
similar to it, and SVM has a big difference with the first two.

Figure 1. The three main diseases mentioned in [30]. (A) is Bacterial Leaf Blight. It is a disease that
occurs in rice and is caused by the bacterium Leucaena leucocephala. The disease affects leaves and
can also infect leaf sheaths. It is a phytosanitary target in China. (B) is Brown Spot.It is a fungal
disease caused mainly by the fungus Bacillus subtilis. (C) is Leaf Blast. Rice blast occurs throughout
the rice reproductive period and can be classified into seedling blast, leaf blast, node blast, spike blast
and grain blast depending on the period and location of damage. Leaf plague can occur throughout
the entire reproductive period, and the damage is heavier from tillering to nodulation. Leaf plague
directly affects the normal growth of rice, and in severe cases, the plant will die, leading to a reduction
in rice production or even a crop failure.

In other aspects of pest identification, there are also many discoveries and advances.
Oppenheim, D. et al. were the first to pioneer the implementation of deep convolutional
networks for disease identification in potato tubers. The model was trained in different
training-test partitions, tested on image datasets taken with standard low-cost RGB (red,
green, blue) sensors, and showed high accuracy [37]. Ramaprasad, R. et al. firstly proposed
a new set of baselines for classifying images into diseases. Secondly, a stacked combination
for multiple disease classification (SEMFD-Net) was proposed, which is an ensemble
model by stacking baseline models and using feedforward neural networks as meta-learner,
with significantly optimized performance, better than the original level [38]. Detection of
plant diseases with the help of threshold segmentation and random forest classification in
the investigation by Kailasam, Swathi et al. This work developed a different approach for
early stage crops and implemented a new disease finding system with 97.8% recognition
accuracy and 99.3% true optimism and achieved a peak signal to noise ratio (PSNR) of
59.823, a structural similarity index measure (SSIM) of 0.99894, a machine squared error
(MSE) value of 0.00812, with very good results and achieved some degree of innovation
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and improvement [39]. An automated system for plant disease detection using machine
learning methods has been proposed by previous authors. Since most of the existing ML
techniques for plant disease identification are based on handcrafted features, they rarely
deal with large amounts of input data, and in which AlexNet and VGG19 CNN are the
basis for pre-training, it is possible to obtain feature extraction for a given data with fine-
tuned details. After convolutional neural network feature extraction, it selects the best
subset of features by correlation coefficients and feeds them into classifiers, including K-
nearest neighbors, support vector machines, probabilistic neural networks, fuzzy logic and
artificial neural networks. The method proposed by Muhammad et al. was improved by
augmentation steps and achieved an average accuracy of over 96% on their own collected
dataset [40]. Sharma, P. et al. built a new model that more than doubled the performance
of the S-CNN model trained using segmented images compared to the F-CNN model
trained using complete images, and achieved an accuracy of 98.6% with 10 disease classes.
Meanwhile, they verified that the confidence level of self-classification of the S-CNN model
is a significant improvement over the F-CNN model by using tomato plants and target spot
disease types as examples [41]. Roy, A. M. et al. proposed a high-performance real-time fine-
grained object detection framework that addresses several common problems in plant pest
and disease monitoring such as dense distribution, irregular morphology, multi-scale object
classes, and texture similarity. The model is an improved version of the You Only Look
Once (YOLOv4) algorithm, with a modified network structure incorporating DenseNet
optimized feature transfer and reuse in the backbone, and two new residual blocks in the
backbone and neck to enhance feature extraction and reduce computational cost. The Spatial
Pyramid Pool (SPP) enhances the perceptual field, and the modified Path Aggregation
Network (PANet) preserves fine-grained local information and improves feature fusion.
The Hard-Swish function is also used as the primary activation, which effectively improves
the accuracy of the model. At a detection rate of 70.19 FPS, the proposed model obtained
an accuracy of 90.33%, an F1 score of 93.64%, and a mean average precision (mAP) value of
96.29% [42].

3. Materials
3.1. Dataset Analysis

The images were collected from the Science Park of the West Campus of China Agri-
cultural University and the Bayannur Botanical Garden of Inner Mongolia Autonomous
Region, China, and included images of foliage with pests and diseases grown under natural
conditions, as well as images from the Internet. The image acquisition equipment was
Canon 5D, and the resolution was 4096 × 2160, and the acquisition time was from 2020.2
to 2022.3. The resolution we use in training the model varies depending on the model,
as shown in Table 1.

Table 1. Comparisons of different detection networks’ performance (in %).

Model Input Size Precision Recall mAP FPS

MobileNet 416 × 416 58.3 55.2 56.7 34
Faster-RCNN 416 × 416 60.7 59.3 60.3 7
SSD [43] 300 × 300 63.8 59.3 58.7 24
RefineDet [44] 300 × 300 67.8 62.1 65.9 15
EfficientDet [45] 416 × 416 72.1 69.2 69.7 7
YOLO v3 608 × 608 79.7 79.4 79.5 28
YOLO v5 [46] 608 × 608 81.0 78.6 80.7 33

Our Methods

Inc-YOLO 608 × 608 79.3 80.8 79.5 26
Cluster-RCNN 416 × 416 82.7 83.0 82.5 18
Model Ensemble 608 × 608 85.2 84.8 85.0 23

There are 37 pest and disease categories: Anoplophora chinensis (adult), Micromelalopha
troglodyta Graeser (adult), Apriona germari Hope (larva), Erthesinafullo (Thunberg, larva),
Sericinus montelus Gray (egg),Cnidocampaflavescens (Walker, cocoon), Erthesinafullo (Thun-
berg, adult), Clostera anachoreta (larva), Erthesinafullo (Thunberg, larva), Sericinus montelus
Gray (larva), Hyphantria cunea (pupa), Apriona germari Hope (adult), Psilogramma menephron
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(pupa), Plagiodera versicolora (larva), Sericinus montelus Gray (adult), Plagiodera versicolora
(egg), Anoplophora chinensis (larva), Parasa consocia (larva), Cnidocampa flavescens(Walker,
adult), Clostera anachoreta (egg), Plagiodera versicolora (adult), Hyphantria cunea (larva),
Cnidocampa flavescens (Walker, larva), Psilogramma menephron (larva), Monochamus alternatus
(adult), Hyphantria cunea (adult), Drosicha corpulenta (Kuwana, adult), Clostera anachoreta
(adult), Psilogramma menephron (adult), Drosicha corpulenta (Kuwana, larva), Parasa consocia
(adult), Spilarctia subcarnea (Walker, adult), Micromelalopha troglodyta (Graeser, larva),
Spilarctia subcarnea (Walker, larva), Hyphantria cunea (egg), Erthesina fullo (Thunberg, egg),
Monochamus alternatus (larva). Distribution and presentation of pest datasets are shown in
Table 2 and Figure 2.

Figure 2. Illustration of different species of pest data sets. (A,C) are Cnidocampaflavescens (Walker,
larva). (F,I) are Cnidocampaflavescens (Walker, adult). (B) is Erthesinafullo (Thunberg, egg). (D,G) are
Drosicha corpulenta(Kuwana, adult). (H) is Drosicha corpulenta (Kuwana, larva). (E) is Parasa conso-
cia (larva).

The disease dataset used in this paper includes images collected from the West Cam-
pus of China Agricultural University, Haidian District, Beijing, China, and from Wayi
Community, Sudulun Town, Ullat Qianqi, Bayannur City, Inner Mongolia, and some web
images. It contains 6 species with 8 diseases, such as peach bacterial spot, pepper bacterial
spot, potato early blight, potato late blight, squash powdery mildew, strawberry leaf scorch,
tomato curl virus, tomato mosaic virus.The dataset contains 7199 images, as shown in
Table 3 and Figure 3.
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Table 2. Distribution of different species of pest data sets.

Pest Egg Larva Cocoon Pupa Adult

Anoplophora chinensis - 276 - - 758
Micromelalopha troglodyta Graeser - 398 - - 322
Apriona germari Hope - 371 - - 385
Erthesinafullo (Thunberg) 338 419 - - 247
Sericinus montelus Gray 244 367 - - 295
Cnidocampaflavescens (Walker) - 472 43 - 392
Clostera anachoreta 62 288 - - 387
Hyphantria cunea 264 343 - 276 38
Psilogramma menephron - 34 - 355 459
Plagiodera versicolora 501 521 - - 298
Parasa consocia - 534 - - 45
Monochamus alternatus - 58 - - 442
Drosicha corpulenta (Kuwana) - 487 - - 72
Spilarctia subcarnea (Walker) - 492 - - 425

Table 3. Distribution of disease data sets.

Species Numbers Numbers

Peach 378 (bacterial spot) -
Pepper 896 (bacterial spot) -
Potato 952 (early blight) 977 (late blight)
Squash 914 (powdery mildew) -
Strawberry 1253 (leaf scorch) -
Tomato 965 (curl virus) 864 (mosaic virus)

From Tables 2 and 3, we can see that the dataset used in this paper is unbalanced,
with Psilogramma menephron (larva) and peach bacterial spot being very low in the pest and
disease datasets, which causes the model to fail to learn the features of these subclasses
effectively. Because of their low frequency, the loss function cannot be effectively penalized.
Therefore, this dataset is preprocessed in this paper.

3.2. Dataset Pro-Processing

In order to improve the detection accuracy of the model for different lighting, de-
vices and environments, various pre-processing operations are performed on the dataset.
The ImageNet dataset is also used to help the model training by migration learning. In this
paper, the dataset is divided in the ratio of 7:3, in which 70% of the data are used to train
the model and 30% are used for model testing.

3.2.1. Overlapping Optimization

In order to improve the accuracy of detection by allowing the model to learn more
detailed features with overlapping, the dataset is classified and labeled as follows:

1. No overlapping, with complete features, as shown in Figure 4A;
2. Objects are dense, and there is overlapping, as shown in Figure 4C,D;

By labeling the data sets with overlapping, the model learns the overlapped features
and effectively improves the detection accuracy of images with a large number of over-
lapped cases without affecting the detection of normal data sets thus achieving better
disease detection results.
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Figure 3. Illustration of disease data sets. (A) is peach bacterial spot, (B) is pepper bacterial spot,
(C) is potato early blight, (D) is potato late blight, (E) is squash powdery mildew, (F) is strawberry
leaf scorch, (G) is tomato curl virus, (H) is tomato mosaic virus.

Figure 4. Detection results for different density scenarios on our method. (A–D) indicates the objects
to be recognized from sparse to dense.
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3.2.2. Dataset Enhancement

The recognition of pests and diseases is highly dependent on the shooting environment,
such as lighting and angle. Image quality affects recognition accuracy, and in order to make
the model have stronger generalization ability, data enhancement techniques are used to
perform operations such as random brightness increase and decrease, random rotation and
mirror flip on existing images. When randomly increasing or decreasing the luminosity,
the Equation is followed:

Output = α × Input + β (1)

In Equation (1) α stands for contrast, β stands for brightness. After the image has been
randomly photoluminance incremented or decremented, the image is normalized to be-
tween [−1, 1], followed by a random rotation of the rotation center point by a certain angle,
and then a mirror flip. All these enhancement operations are performed automatically
during training and the effect of various enhancement methods is shown in Figure 5.

Figure 5. Illustration of different enhancement methods. (A) is the original image, (B) is vertical
flipping, (C) is horizontal flipping, (D) is 90 degree rotation, (E) is hue adjustment, (F) is saturation
adjustment, (G,H) are brightness adjustment.

4. Results

In this section, the model introduced in Section 5 was implemented for object detection.
We trained the datasets with three input sizes, 300 × 300, 416 × 416, and 608 × 608, which
are the suggested input resolutions for the models.

4.1. Validation Results

MobileNet’s mAP, the pre-training parameters obtained by employing COCO and
PVD, is 56.7%, which is the worst performance among all models. But it is the fastest among
the seven models with FPS of 34%, although it is not the lowest resolution. The speed of
SSD and RefineDet, which are the lowest resolution, are in the middle level, with 24% and
15% respectively, between which SSD is about 1.6 times faster than RefineDet. Meanwhile,
SSD’s P, R and mAP are 63.8%, 59.3% and 58.7% respectively, while RefineDet’s P, R
and mAP are 67.8%, 62.1% and 65.9% respectively, all in the middle level among the
seven models.

YOLO v5’s P, R and mAP are the best in the YOLO series, i.e., YOLOv3 and YOLOv5
comparisons, reaching 81.0%, 78.6%, 80.7% to be exact. At the same time, this performance
exceeds any of the other seven comparable models with a significant advantage, especially
compared to MobileNet with a difference of about 23–25%, which is a significant enhance-
ment. The model most similar to YOLO v5 is EfficientDet with 72.1%, 69.2% and 69.7%
for P, R and mAP, respectively. However, its inference speed is 7%, which is significantly
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lower than that of YOLO v5, reaching only 21% of the latter. This may be due to the
stronger performance of the attention extraction module in YOLO v5. The same speed of
7% as EfficientDet is also Faster-RCNN, whose P, R and mAP are 60.7%, 59.3% and 60.3%
respectively, and its performance is only superior to MobileNet among the seven models,
but the difference in speed is larger.

For the parameters in the backbone of the model in this paper, we chose pre-training
parameters obtained based on ImageNet. In addition, its Presicion, Recall and mAP outper-
form other comparable models, with the highest being the ensembled model with 85.2%,
84.8% and 85.0% for P, R and mAP, respectively. However, our model has no advantage
in inference speed (the best Inc-YOLO and YOLO v5 in terms of speed only reach 79% of
YOLO v5 at the same resolution), which may be due to the parallel network in the inception
structure. Cluster-RCNN has an intermediate performance among our three models, but is
the slowest, which is due to its two-stage network structure and clustering algorithm.

4.2. Detection Results

As shown in the Figure 3 in Section 3.1, we focus on the results of pest detection
in this section since the disease images only need to perform the classification task and
not the detection task. For further comparison, we extracted some images from the test
set. The reason for using these images for this presentation is that these images show as
many detection scenarios as possible in the dataset. Figures 6 and 7 depict the detection
results. The green boxes denotes the ground truth and the red boxes denote the predicted
bounding boxes.

It can be witnessed that SSD performs very poorly in these images, while EfficientDet
and YOLO series perform relatively well and detect lesions accurately. However, when the
detected objects are too tiny, all models’ performance decreases, and part of models even
have some unlabeled detected objects. This situation is probably related to the attention
extraction module in these networks.

As described in Section 3.2.1, in a real scene, the performance of the model may be
affected when there are multiple objects to be recognized in a single image. Therefore,
in this section, we focus on the recognition effect of the model in different density scenes.
The recognition results are shown in Figure 4.

From Figure 4, we can see that our model performs well in different density scenarios,
even when detecting moderately dense objects. Although there is still room for improve-
ment, it has outperformed other models. On the one hand, we augment the image before
it is fed into the backbone. On the other hand, before generating the anchors, we use
clustering methods to cluster them so that the generated anchor size matches the target
size as much as possible.

4.3. Test on Other Dataset

In order to investigate whether the proposed method is widely applicable, in this
subsection, we use the open source dataset proposed by [47] to test and compare the results
with the model proposed by [47], as shown in Table 4.

Table 4. Model robustness validation experiments.

Model Pretrained mAP

MobileNet COCO 32.8 [47]
MobileNet COCO + PVD 22.4 [47]
Faster-RCNN iNaturalist 36.1 [47]
Faster-RCNN COCO 38.9 [47]

Our Methods

Inc-YOLO COCO 47.1
Cluster-RCNN iNaturalist 52.3
Model Ensemble - 54.8
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Figure 6. The detection results of other models. (A) is the groundtruth; (B) is the MobileNet; (C) is
the Faster-RCNN; (D) is the SSD; (E) is the RefineDet; (F) is the EfficientDet; (G) is the YOLOv3; (H) is
the YOLOv5.

Figure 7. The detection results of our model. (A) is the groundtruth; (B) is the inc-YOLO; (C) is the
cluster-RCNN; (D) is the ensembled model.
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5. Methods

In order to balance performance and speed, this paper proposes an integration scheme
that integrates two target detection networks in single and double phases.

5.1. Inc-YOLO
5.1.1. YOLO v3

YOLOv3 [48], as a representative algorithm of one-stage target detection algorithm,
performs feature extraction on the detection image and predicts target bounding box and
target class probability directly from the detection image, which has obvious speed ad-
vantage and can quickly perform disease detection. YOLOv3 uses Darknet-53 constructed
by residual network as a feature extraction network, and performs high and low layer
feature fusion by convolution and upsampling operations, and performs feature fusion
and independent prediction on three feature maps thus improving detection accuracy.
However, the deepening of the number of layers of the feature network makes it difficult to
extract feature information from small-sized targets, and also lacks diverse sensory fields
for each size of the feature map. Therefore, the speed advantage also leads to its weakness
in detecting small-sized and easily clustered objects, which is especially obvious in target
detection, similar target detection, and occlusion situation detection.

5.1.2. Inception Model

In contrast, GoogLeNet [49] reduces the computational parameters of the network
model by increasing the network width and using multiple Inception modules to obtain
good feature extraction results. The Inception module shown in Figure 8 has multiple
branches of convolution operation, which performs multiple convolution or pooling opera-
tions on the input image at different scales in parallel, and fuses the results of all branches
to improve the scalability of the model while extracting both sparse and dense features of
the image to achieve better results.

Figure 8. Original inception module.

5.1.3. Proposed Model

Based on the above discussion, this paper proposes a structure similar to Inception,
as shown in Figure 9, to retain more feature information by multi-scale feature extraction
and then fusion. Four convolutional kernels of different sizes, 1 × 1, 3 × 3, 5 × 5 and 7 × 7,
are used to extract features from the same input in parallel, and finally the results of these
parallel feature extraction are fused and fed into the next layer of the network. The smaller
convolutions can extract local features, and the larger convolutions can learn the global
features. The convolution kernels of 5 × 5 and 7 × 7 are selected to cover the feature
maps of different sizes in YOLOv3 to ensure that the target information on the feature
maps is obtained. The 1 × 1 convolution can reduce the model parameters, and adding
1 × 1 convolution before 7 × 7 convolution (with 128 channels) to adjust the number of
channels can reduce the parameters by 75%. The maximum pooling operation preserves
the maximum value in the region to provide transfer flip invariance, extracting the main
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features of the image while making the feature map compressed to a smaller size, reducing
the complexity of the model feature computation.

Figure 9. Modified inception module (A) and module (B).

The structure of inc-YOLO model proposed in this paper is shown in Figure 10,
by adding module a and module b in Figure 9 to YOLOv3 before feature fusion, so that the
low and high level feature maps are first connected to the Inception module before fusion,
and the same layer of feature maps are connected after the multi-scale feature extraction.

Figure 10. Structure of our inc-YOLO. This model incorporates the original Darknet and Inception
structure including Inception A and Inception B in Figure 9.

The multi-scale feature extraction is performed, and the multi-scale feature fusion
results are obtained before the connection is made to obtain richer feature information.
The size of the low-level feature map is 52× 52× 256, which is connected to the a module for
feature extraction by four branches with the ratio of 1:1:1:1, while the size of the high-level
feature map is 13 × 13 × 1024, which retains relatively limited detailed feature information
after Darknet multi-layer convolution. The Inception b module performs multiscale feature
fusion from three branches, and the ratio of branch channels is 2:1:1. Since the low-level
feature map has more fine-grained feature information than the high-level feature map,
more diverse features can be obtained through multiscale feature extraction, and more
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meaningful features can be retained for small objects and occluded parts, which effectively
improves the detection of small objects and occluded objects. The effect of the multi-scale
feature extraction can be improved. Therefore, the number of channels in the high and low
layer fusion retains the ratio of 1:2 in the original YOLOv3 in order to retain more feature
information in the low layer feature map and improve the detection accuracy of natural
environment including the heavily occluded data set.

5.2. Cluster-RCNN

The Faster R-CNN [50] divides the detection process into two parts: the generation of
candidate frames that may contain objects and the correction of the candidate frames for
classification, which has high detection accuracy and better detection effect for small-scale
targets with complex features such as pests and diseases. The RPN network outputs about
2000 proposals containing foreground and background probabilities and border adjustment
parameters, while the ROI pooling layer receives both the original feature map and multiple
proposals from the RPN network, and unifies the scale output for final target classification
and position adjustment. regression adjustment.

Faster R-CNN proposes an RPN network for candidate box selection to significantly
reduce the candidate box extraction time by setting K initial detection boxes through the
Anchor box mechanism, and using a sliding window of 3 × 3 on the input feature map
to generate K candidate boxes. The sliding window of 3 × 3 is used to scan the input
feature map, and K candidate boxes are generated at each time with the center of the sliding
window as the center, and the IoU of the box with the true label ground truth is used to
determine whether the box contains the target to be detected, and then the position of the
candidate box is adjusted to get the initial candidate box, which makes the candidate box
generation speed reach milliseconds.

The default size of 9 Anchor boxes used in the original Faster R-CNN does not meet
the detection requirements of the dataset in this paper. In this paper, we want to propose
a network model for detecting dozens of pests and diseases with different feature sizes.
Therefore, the K-means algorithm is used to cluster the anchor sizes for pest detection,
and the distance measure used is:

In this paper, the range of K values is [2, 20], and the relationship between K values
and mIoU is obtained by K-means clustering of the pest data set, as shown in Figure 11.
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Figure 11. The relationship between the number of clusters K and model performance
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It can be seen that the IOU curve starts to level off when K is taken as 18. Therefore,
for the characteristics of the pest data set in this paper, a small size anchor box is added to
the original size, and the final size and aspect ratio are [64, 128, 256, 512] and [ 1

2 , 1, 2] respec-
tively, and the RPN network generates 18 anchor boxes of different sizes and proportions
according to the center point each time sliding to roughly cover more pests and diseases,
so as to improve the detection accuracy of pests and diseases.

5.3. Transfer Learning

In order to make the model converge faster and have stronger generalization ability,
this paper chooses to use migration learning technique. The selection of a suitable pre-
training model is the key to the success of migration learning, and the most important
point is that the dataset of the pre-training model has some correlation and similarity with
the dataset of this experiment. In this paper, we use the weight files after pre-training on
ImageNet, a huge natural image database with more than 15 million images and more
than 20,000 categories. Migrating its weights will be of great help to the model training in
this experiment.

In the model improvement, fine-tuning strategy is used, the main idea of which is
to adjust one or more layers of the pre-trained model to fit the target task. This experi-
ment retains the convolutional layer weights of the ResNet model. This is because the
convolutional layer parameters are used to extract Generic features of the image, which are
very helpful for the task of this experiment. The specific changes to the other layers are
as follows:

1. Fill the image with “0” values in the form of 2 × 2 around the image before it is input
to the model to better extract the image edge information and control the feature
map size.

2. Migration of the convolutional weights from the pre-trained model to the convolu-
tional layer of the model, allowing the weights to be updated simultaneously with
the training

3. Add 1 average pooling layer after the convolution layer with a pooling window of
2 × 2. Calculate the average of the image feature matrix 2 × 2 region, which helps to
preserve more detailed information of the image.

4. then uses the Flatten layer to convert the input of the multidimensional matrix into a
one-dimensional matrix to speed up the computation.

5. After the flatten layer, there are 2 fully connected layers with 1 batch normlalization
layer between them, which can speed up the training and improve the accuracy at the
same time. The first fully-connected layer has an output dimension of 1024 and uses
ReLU as the activation function.

5.4. Experiments Metircs
5.4.1. Precision and Recall

Since some indicators are statistical indicators, let’s review the relevant statistics first.
There are two kinds of mistakes we make when doing hypothesis testing:

1. The original hypothesis is correct, and judge it to be wrong.
2. The original hypothesis is wrong, and judge it to be correct.

These two types of errors are the first type of error and the second type of error,
respectively, as shown in Table 5.

Table 5. Matrix of classification metrics.

Label/Prediction Positive Negative

Positive TP FP
Neagtive FN TN
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TP denotes the number of samples that are positive but predicted to be positive, FP
denotes the number of samples that are negative but predicted to be positive, FN denotes
the number of samples that are positive but predicted to be negative, and TN denotes the
number of samples that are negative but predicted to be negative.

The Precision is the probability of detecting the correct target among all detected targets,
as shown in Equation (2).

Precision =
TP

TP + FP
(2)

Precision is defined in terms of the predicted outcome. Note that Precision and Accu-
racy are not the same, as accuracy is for all samples, while Precision is only for the fraction
of samples detected (including false positives).

Recall =
TP

TP + FN
(3)

Recall is the probability that all positive samples are correctly identified, as shown
in Equation (3). Recall is from the perspective of the sample. Recall is also known as the
check-all rate.

5.4.2. Average Precision

Check accuracy and check completeness are contradictory measures; in general, when
check accuracy is high, check completeness tends to be low; and when check completeness
is high, check accuracy tends to be low. If we want as many good melons to be selected
as possible, we can increase the number of melons to be selected. If all the melons are
selected, then all the good melons will be selected, but the accuracy rate will be lower.
Usually, only in some simple tasks, it is possible to make both the check-all rate and the
check-accuracy rate high. Therefore, in order to measure the performance of the model
more comprehensively, AP is proposed. AP represents the average value of the detector in
each Recall case, and from a discrete perspective AP can be expressed as follows:

AP =
∑ Pri

∑ r
(4)

where Pr denotes the P value corresponding to r− i on the PR curve, and ∑ r = 1. Obviously,
AP is specific to a category, and mAP averages AP over the dimensions of the category,
as shown in Equation (5).

mAP =
∑k

i=1(APi)

k
(5)

Thus the performance of the multi-classifier can be evaluated. mAP must be of size in
the interval [0, 1], the larger the better.

5.4.3. Frames Per Second

FPS refers to the number of Frames Per Second, which is a measure of the amount
of information used to save and display dynamic video. The more frames per second,
the smoother the action displayed will be. In a deep learning model for object detection,
FPS is used to represent the inference speed of the model.

5.5. Platform and Parameters

A personal computer (CPU: Intel(R) i9-10900KF; GPU: NVIDIA RTX 3080 10 GB;
Memory: 16 GB; OS: Ubuntu 18.04, 64 bits) is used to carry out the entire model training
and validation process. The Adam optimizer with an initial learning rate, a0 = 1e−4 is
selected in this paper.
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6. Discussion
6.1. Analysis of the Effect of Sub-Class Detection

To further improve the detection effect of this model, we show the results of the model
for each subclass in this section, as shown in Table 6.

From the above table, we can see that there are several characteristics of the detection
accuracy for different subclasses:

1. In most cases, the detection performance increases as the growth stage of the pest
changes, with the highest detection accuracy for adults.

2. There are significant differences in the detection performance of different stages,
among which the detection accuracy of egg stage is the lowest.

3. The subclasses with low number of training sets generally have low detection results.

6.2. Weak Class Detection Improvement

By observing the results of the model for each pest, as discussed in Section 6.1, we
can find that the best detection effect is for the Anoplophora chinensis (adult) and the worst
detection effect is for the Clostera anachoreta (egg). The main reasons for this analysis are:

1. The Anoplophora chinensis (adult) are more obvious and less affected by the quality of
the image.

2. The number of training set of Clostera anachoreta (egg) is small, which contains only
about 62 images. And the number of number of training set of Anoplophora chinensis
(adult) is about 758.

3. The object scale of Clostera anachoreta (egg) is too small, although the anchor box is
improved to improve the detection accuracy, the detection accuracy is still slightly
lower than that of other diseases with larger scale.

Table 6. mAP of each subclass in pest dataset.

Pest Egg Larva Cocoon Pupa Adult

Anoplophora chinensis - 79.1 - - 89.6
Micromelalopha troglodyta Graeser - 83.4 - - 89.4
Apriona germari Hope - 79.9 - - 87.7
Erthesinafullo (Thunberg) 77.1 82.3 - - 88.9
Sericinus montelus Gray 78.3 85.1 - - 86.4
Cnidocampaflavescens (Walker) - 85.9 85.5 - 85.8
Clostera anachoreta 69.6 82.5 - - 88.2
Hyphantria cunea 77.8 83.7 - 86.7 86.1
Psilogramma menephron - 86.2 - 85.9 87.6
Plagiodera versicolora 78.5 84.7 - - 85.4
Parasa consocia - 83.8 - - 87.3
Monochamus alternatus - 84.2 - - 89.2
Drosicha corpulenta (Kuwana) - 83.1 - - 85.1
Spilarctia subcarnea (Walker) - 85.4 - - 84.5

Based on the above findings, we have made two improvements:

1. Clustering more appropriate anchor box according to the small size of the bounding boxes.
2. Use some dataset enhancement methods for the problem of unbalanced dataset.

In this paper, we test each improvement point according to the principle of variable
control experiment, and the comparison test results are shown in Table 7.

The mAP of all testset and Clostera anachoreta (egg) before improvement were 85.0%
and 69.6%, respectively. When only anchor was improved, the mAP of testset and Clostera
anachoreta (egg) improved by 0.2% and 4.7% percentage points, respectively. The mAP of
small-scale objects improved significantly. When only data augmentation is performed,
the mAP of Clostera anachoreta (egg) improved by 8.9% percentage points. Thus, all the
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improvement methods proposed in this paper have improved the mAP of pest detection to
different degrees.

Table 7. mAP of weak subclass and all testset with / without improvement.

Method Clostera anachoreta (Egg) All Testset

baseline 69.6 85.0
Appropriate anchor 74.3 85.2
Data Augmentation 78.5 85.0
Both 81.4 85.2

6.3. Application

In order to apply the proposed method to a real agricultural scenario, we developed
an application based on the Android and iOS platform using Wechat development SDK,
as shown in Figure 12. We also validated it on the wheat blast dataset.

Figure 12. Screenshot of the application detection, top is the original image in different resolutions,
bottom is the screenshot of the detection result. (A–D) shows the detection results for different
densities and resolutions of the original image.

From the above figure, we can see that even intensive recognition tasks, such as
Figure 12A,C,D, can be detected very well on the mobile side. Moreover, the figure shows
that even images of different sizes, i.e., different resolutions, can still be detected well,
such as Figure 12B,D. The screenshot shows the iPhone 14 Pro detection, and since our
application is based on wechat, it can also be run on Android. In order to ensure that the
model can run smoothly with mobile, we pruned the model appropriately. The pruned
model can reach 13.7 FPS on Huawei Mate 20 Pro, and the mAP can reach 67.4%. This
result can already help users to make preliminary judgments on pests and diseases.

6.4. Limits and Feature Works

The proposed method improves the pest detection accuracy, but there is still room for
improving the average detection accuracy due to the large number of pest species, the small
size and variable shape of some pests, or the similarity of features such as color and texture,
and the large number of pest images with natural backgrounds that are not of interest to
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the detection errors. At the same time, by combining the advantages of each model and
dividing the detection steps, the proposed method improves the accuracy of the model but
also decreases the detection speed. These will be the focus of the next research in this paper.

7. Conclusions

Protecting crop yields is the most important aspect of agricultural production, and one
of the important measures in preserving yields is the control of crop pests and diseases.
Therefore, the identification of crop pests and diseases is of irreplaceable importance.
In recent years, with the maturity of computer vision technology, more possibilities have
been provided for implementing plant disease detection.

However, although deep learning methods are widely used in various computer vision
tasks, there are still limitations and obstacles in practical applications. Traditional deep
learning-based algorithms have some drawbacks in this research area: (1) Recognition
accuracy and computational speed cannot be combined. (2) Different pest and disease
features interfere with each other and reduce the accuracy of pest and disease diagnosis.
(3) Most of the existing researches focus on the recognition efficiency and ignore the
inference efficiency, which limits the practical production application.

Based on the above problems, in this study, an integrated model integrating single-
stage and two-stage target detection networks is proposed. The single-stage network is
based on the YOLO network, and its internal structure is optimized; the two-stage network
is based on the Faster-RCNN, and the target frame size is first clustered using a clustering
algorithm in the candidate frame generation stage to improve the detection of small targets.
Afterwards, the two models are integrated to perform the inference task.

For training, we use transfer learning to improve the model training speed. Finally,
among the 37 pests and 8 diseases detected, this model achieves 85.2% mAP, which is much
higher than other comparative models. After that, we optimize the model for the poor
detection categories and verify the generalization performance on open source datasets.
In addition, in order to quickly apply this method to real-world scenarios, we developed
an application embedded in this model for the mobile platform and put the model into
practical agricultural use. The main contributions of this paper include:

1. By adding the Inception module to the YOLOv3 model and using four different sizes
of convolutional kernels (1 × 1, 3 × 3, 5 × 5, 7 × 7) to perform multi-scale feature
extraction and fusion in parallel, this paper proposes the inc-YOLO model;

2. by clustering the anchor box and increasing the anchor box types, this paper proposes
the cluster-RCNN model, and achieves a better localization effect;

3. By integrating the above two models, our method finally achieves 85.2% accuracy in
the detection of 37 pests and 8 diseases. This method provides a feasible solution to
achieve fast and efficient pest and disease detection based on mobile platform.
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