High-Performance Replicated Distributed Objects in
Partitionable Environments *

Roy Friedman Alexey Vaysburd
Department of Computer Science
Cornell University

{roy,alexey}@cs.cornell.edu

July 16, 1997

Abstract

This paper presents an implementation of replicated distributed objects in asynchronous
environments prone to node failures and network partitions. This implementation has sev-
eral appealing properties: It guarantees that progress will be made whenever a majority of
replicas can communicate with each other; it allows minority partitions to continue provid-
ing service for idempotent requests; it offers the application the choice between optimistic
or safe message delivery. Performance measurements have shown that our implementation
incurs low latency and achieves high throughput while providing globally consistent repli-
cated state machine semantics. The paper discusses both the protocols and interfaces to
support efficient object replication at the application level.

*A preliminary version of this work was accepted to SRDS 97. This research was supported by ARPA/ONR
grant N00014-96-1-1014

1 Introduction

Object replication is one of the principal ways to provide fault-tolerance and high availability
in a distributed system. A common requirement from a replicated system is that actions of all
replicas be indistinguishable from those of a single fault-tolerant process.! The replicated state
machine approach was suggested in [18, 24] as a way to provide such a consistent behavior:
With this approach, all object replicas run identical state machines, and all communication in
the system is performed via totally ordered multicasts, where delivery of multicast messages
is implemented via invocations of appropriate methods of object replicas.

Since all replicas start in the same state, and proceed through exactly the same sequence of
multicast-message-delivery method invocations, they advance through the same sequence of
states and perform the same sequence of actions. This property ensures that actions taken by
the system as a whole appear to the outside world as if they were performed by a single object.

Implementations of replicated state machines typically differ in the assumptions they make of
the environment, and whether they are optimistic or pessimistic. Optimistic implementations,
e.g., [7, 19], tend to deliver messages fast, yielding good performance, although the local state
of individual replicas may become invalid under certain failure scenarios as a result of delivering
messages that never become “authoritative”. On the other hand, pessimistic implementations,
e.g., [2, 6, 16], deliver messages only when it is safe to do so, thereby avoiding the risk of having
to invalidate the state of a replica. This is achieved at the cost of additional communication
rounds.

Many existing implementations of replicated state machines ignore the issue of network par-
titions [8, 23]. Other implementations either have a limited support for partitions, but might
block forever even after all partitions have been reconciled [6, 7], or are pessimistic [2, 16, 22].
A proper handling of partitions is vital for applications targeted for large scale or wide-area
environments where partitions are common. However, the high communication cost associated
with pessimistic approaches may be prohibitive for many applications.

In this paper we propose an implementation of replicated distributed objects using the repli-
cated state machine paradigm. Our implementation can tolerate network partitions, and only
requires object replicas to log a single bit once, at initialization time, on stable storage. Our
implementation is modular (layered) and gives an application the freedom to choose, at run
time, and within the same framework, between stronger properties (safe message delivery) and
improved performance (optimistic delivery). Even in the safe-delivery case, the performance of
our solution is as good and in many cases better than performance of any other pessimistic im-
plementation. Modularity of our implementation allows to efficiently address orthogonal issues
such as reliability of message delivery, total ordering of messages, global consistency (primary
views), state transfer, and flow control. In particular, we provide several implementations of
certain protocol layers, with different performance characteristics and tradeoffs. Having mul-
tiple implementations of different layers and being able to interchange between them allows to

!This is similar to the serializability requirement in databases and the sequential consistency requirement in
distributed shared memories.

choose at run time the protocol configuration which best matches the requirements of a given
application, both in terms of logical properties and performance. Note that our approach al-
lows us to accurately measure the added cost of individual layers and thereby let application
developers get a realistic feeling for the cost of stronger logical properties.

As mentioned above, with our approach multiple concurrent partitions are allowed to exist in
the system. However, we guarantee that at most one of those partitions is primary. All group
members know if they are in a primary partition. Only members of the primary partition are
allowed to take actions that can change their state. Whenever two partitions remerge, they
perform a state transfer that reconciles their states, which is necessary to ensure linearizability
of the progress of the system as a whole. During state transfer, the partition with an older state
adopts the state of the more up-to-date partition. The primary partition is always guaranteed
to be the one with the most up-to-date state.

Note that as indicated in [9], we cannot guarantee that a primary partition will exist at all
times, because link failures or communication delays are possible. However, we do guarantee
that if a majority of processes do not crash, a primary partition will be restored as soon
as the network becomes stable again, and the initial state of this primary partition will be
the final state of the previous one. We follow a standard quorum-based dynamic replication
paradigm [10] requiring a message to be delivered by a majority of group members in order
to become authoritative. However, the optimistic implementation we present uses one phase
communication for delivering messages, which yields good performance.

In order to keep the discussion in this paper focused, our protocols have been implemented
in Horus [25], and therefore our discussion sometimes deals with specific details of the Horus
implementation. We also present a programming interface, available in Horus, that supports
replicated distributed objects at the application level [26]. However, the proposed protocols and
interfaces can easily be applied to any group communication system that supports partitioned
operation, including Transis [11] and Relacs [4].

The rest of this paper is organized as follows: Section 2 discusses related work. Section 3
presents basic definitions and concepts. Section 4 describes how primary views are used to
create a replicated state machine semantics in partitionable networks, and presents the pro-
tocol that we developed for this. The tradeoffs between optimistic and safe delivery and our
implementation of global safety are discussed in Section 5. Performance analysis is presented in
Section 6. An object-oriented interface supporting the replicated state machine functionality
at the application level is described in Section 7. We conclude with a discussion in Section 8.

2 Related Work

Fault-tolerant protocols for implementing replicated state machines that assume a synchronous
environment, or at least the existence of a perfect failure detector, but do not support network
partitions, have been proposed in [23]. In a recent paper, Bressoud and Schneider presented a
hardware-based implementation of a replicated state machine using off-the-shelf workstations,

called Hypervisor [8]. This solution is workable only in tightly coupled systems, and is definitely
not suitable for wide-area distributed environments. Also, Hypervisor provides replicated state
machine semantics at the granularity of machine instructions, while the granularity provided
by our solution is at the level of updates to the replicated state as defined by the application.

The ISIS toolkit [7] provides the abcast primitive and the notion of a primary partition as ab-
stractions for implementing the replicated state machine semantics in asynchronous distributed
environments. In ISIS, processes that are removed from the primary view are forced to quit
the system. Hence, network partitions may cause ISIS to lose a majority in the primary view
and thus block forever, even if these partitions later remerge. Moreover, by shutting down
processes that are removed from the primary view, ISIS does not allow minority partitions
to execute idempotent operations, even though many applications could benefit from such a
feature.

Phoenix [19] is a recent group communication system that also supports the primary partition
model. Phoenix tries to avoid the availability problems of ISIS in the following way: Whenever
a subset of the primary partition suspects that a majority of processes have failed, it suspends
the execution until it can remerge with enough members to create a primary partition. This
approach is somewhat similar to our implementation, in avoiding the permanent loss of the
primary partition. However, unlike our solution, Phoenix does not allow minority partitions
to install non-primary group views and perform idempotent actions. Also, Phoenix does not
fully address the issues involving state transfer. It is important to treat state transfer in the
context of providing a higher-level semantics, such as that of a replicated state machine, in
order to ensure it is performed in a meaningful way.

Pessimistic implementations of global total ordering that can tolerate network partitions have
been proposed in [1, 2, 16, 22]. Being pessimistic, they require more communication rounds
to perform an operation.? Also, these solutions require all messages to be logged on stable
storage, which adds a substantial overhead. Our implementation only requires logging of a
single bit, which is performed by every process only once at initialization. As a tradeoff, with
our approach the state of a member is lost in a crash failure and can only be recovered by
means of state transfer from surviving members. Consequently, our protocols will block if a
majority of processes in the group crash simultaneously, whereas the implementation in [16]
can sustain any number of crashes (assuming that failed processes are eventually restarted).
Also, the protocols in [16] can make progress even if a majority view can never be formed
due to link failures, which makes that approach suitable for WAN environments with very
low quality of communication. However, many important distributed applications (such as
replicated databases) have rather demanding performance requirements that render message
logging impractical. Those applications are usually deployed in environments with higher
quality of communication links, where a majority of processes will be connected most of the
time. Qur protocols are best suited for use in such high-performance systems, running over

2Note that [2] claims to deliver messages as soon as they arrive from the transport layer, without end-to-end
acknowledgments, but it assumes that the transport layer provides total safe (uniform) delivery, which requires
at least 2 communication rounds at the transport level.

partitionable yet reasonable-quality networks.

Consul [20] is another implementation of a replicated state machine that is also designed to
be highly modular, in the framework of the z-kernel [14]. Consul, however, does not handle
network partitions, and require processes to periodically log their state on stable storage.

Atomic transactions also implement a replicated state machine. However, most implementa-
tions of atomic transactions either cannot recover from network partitions, or are pessimistic
and thus incur high overhead [6, 17].

In summary, we have mentioned several implementations that provide some of the following
properties: being modular, allowing the application to choose at run time between optimistic
and pessimistic delivery, being able to handle network partitions, not requiring logging of the
state on stable storage, and providing good performance. Our solution is novel in being the
first one to combine all of these properties.

3 Basic Definitions and Building Blocks

3.1 Replicated State Machine

We assume an asynchronous system with general omission failures. The system consists of a
group of application processes, each running a deterministic state machine [18], and commu-
nicating by sending messages to each other. An application process’ state machine is specified
by a set of its internal configurations, or states, and a set of transitions between states. Fach
application process in the group runs the same state machine, starting in the same initial state.
All state transitions are triggered by incoming (delivered) messages. An application process
may produce some deterministic output associated with a transition, such as sending messages
or doing some externally observable actions. Thus, any two application processes that have
delivered the same sequence of messages will be in the same state.

3.2 System Architecture

Our implementation assumes a layered architecture, such as the one presented by Horus [25].
It is designed to reside on top of a system which provides totally ordered broadcast in a par-
titionable virtually synchronous environment [12, 21], and below the application level. (See
illustration in Figure 1.) In the specific example of Horus, totally ordered broadcast is imple-
mented as a separate layer on top of the partitionable virtual synchrony layer. However, this
separation is not necessary for our implementation.

3.3 Partitionable Virtual Synchrony

There are several variants of partitionable virtually synchronous models. These include, e.g.,
strong virtual synchrony [12], extended virtual synchrony [21], and a few variations of partial

Application Layer

Safe Delivery Layer

Primary Views Layer

Total Ordering

Partitionable Virtual Synchrony

Figure 1: A Layered Protocol Architecture

view synchrony [5]. The exact differences between these models is beyond the scope of this
paper. Instead, here we only outline those properties which are common to all these models,
and happen to be useful for our implementation of replicated state machines.

In partitionable virtual synchrony models, each process has a view of the group (list of “ac-
cessible” members) at any time, while allowing multiple concurrent views to be installed at
different processes. Most partitionable virtually synchronous models can be implemented in
a non blocking way, i.e., the implementation guarantees that a new view will eventually be
presented to the application. These implementations, however, may leave the group without a
globally consistent state.® In this paper we discuss how to guarantee global consistency based
on such models.

A view is typically installed in two phases. In the first phase, a process proposes the view by
sending a view message to a set of processes. In the second phase, when a process receives a view
message, it may decide to accept it (i.e. commit to the new view locally). The partitionable
virtual synchrony layer guarantees the following properties regarding installation of new views:

Property 3.3.1 (Validity) If a process accepts a view, then this view was proposed by some
process.

FBabaoglu et al showed that every implementation of strong partial view synchrony may block [5]. However,
this result is based on the fact that strong partial view synchrony does not allow concurrent overlapping views.
Other definitions of partitionable virtual synchrony (including ours) do not require this property, and therefore
can be implemented in a non-blocking way.

Property 3.3.2 (Self-Inclusion) If a process proposes or accepts a view, it is included in it.
Property 3.3.3 (View Causality) View messages are delivered in causal order.

Property 3.3.4 (Agreement on View Ordering) If two processesp and q both accept views
Vi and Vy, then p and q accept Vi and Vs in the same order.

Property 3.3.5 (Agreement on Successors) If Vi and V, are two consecutive views ac-

cepted by a process, then Vi and V3 are consecutive al any process that accepts both Vi and
Vs.

In addition, the partitionable virtual synchrony layer provides an agreement on sets of messages
delivered by processes between view changes. It is assumed that all messages are multicast to
the entire current view of the sender:

Property 3.3.6 (View Atomicity) If Vi and V, are two consecutive views accepted by p
and q, then p and q deliver the same set of messages after accepting V1 and before accepting
Vs.

3.4 Maintaining Coherence within a View

The total ordering layer (Figure 1) guarantees that all processes in a view deliver messages in
the same order. More formally, it guarantees the following property:

Property 3.4.1 (Strong Prefix) Suppose both p and q accept a view V. Let S, and S, be
the sequences of messages delivered by p and q in V. Then either S, is a prefix of Sy, or S, is

a prefix of S,.

In a system with a partitionable virtual synchrony model, there are scenarios in which a message
may need to be dropped to prevent a violation of the strong prefix property (Property 3.4.1).

The following Active Replication property is a key property in providing the replicated state
machine semantics:

Property 3.4.2 (Active Replication)

o If V1 and V, are two consecutive views accepted by p and ¢, and p and q are in the same
state when they accept Vi, then (1) p and q are in the same state when they accept Vs,
and (2) p and q produce the same output (including the sequence of externally observable
actions) after accepting Vi and before accepting V;.

o Suppose p and q accept a view V in the same state. Let O, and O, be the output produced
by p and q in V (including the sequences of externally observable actions). Then either
O, is a prefiz of O,, or vice versa.

Property 3.4.2 provides the replicated state machine semantics for processes in a view between
two consecutive view changes. However, since processes from different views do not commu-
nicate with each other or otherwise coordinate their actions, it is possible that concurrent
non-communicating views of the same group will be in mutually inconsistent states. Thus,
although each particular view may satisfy Property 3.4.2, and thereby be internally coherent,
there will be no consistent global state among all views. As a result of inconsistencies between
views, the entire system will not have the semantics of a replicated state machine.

The primary views approach allows to maintain global consistency of the group state and
provide the replicated state machine semantics for the entire system. We describe our imple-
mentation of primary views in the following section.

4 Primary Views That Can Tolerate Partitions

In this section, we discuss the properties of primary views and their relation to the replicated
state machine semantics, and describe our implementation of primary views in Horus. We
assume a group has a fixed size known to members at the initialization time.

4.1 Replicated-State Properties of Primary Views

Primary views are a subset of views installed in the system during an execution; a primary
view must include a majority of group members. This requirement naturally imposes a linear
ordering: The order of two primary views V; and V3 is the order in which they were accepted
by a process in their (necessarily non-empty) intersection. By Property 3.3.4, provided by the
membership layer, this definition does not depend on the choice of a process in Vi [V5.

We assume that whenever processes from two separate views merge to form a joint view,
processes from one of these views adopt the state and message history of processes from the
other view. In particular, if one of these views is the most recent primary view, then its state
will prevail. This is called state transfer.

We say that a process accepts a message either if it actually delivers the message, in which
case we say that it ezplicitly accepts the message, or if the message is included in the history
adopted by this process as a result of a state transfer, in which case we say that the process
implicitly accepts the message. Messages which are accepted (explicitly or implicitly) by a
majority of processes are called authoritative. These messages will be included in histories of
all subsequent primary views, and actions initiated by delivery of such messages will have a
permanent effect.

Recall that when a process p adopts the state of a process ¢, it also adopts ¢’s history. Thus,
the order in which p accepts messages is the same as the order in which ¢ accepts them. In
particular, there is a naturally defined linear ordering of authoritative messages. The order of
two authoritative messages, my and mg, is the order in which they were accepted by a process
that accepted both of them (such a process necessarily exists). This order is the same for any
process that accepts both mq and m..

Properties 3.4.1 and 3.3.6 guarantee that processes that have the same state at the beginning of
a view will continue to have identical states when they both accept the same new view. Also,
by the assumption that processes from one view adopt the state of processes from another
(more up-to-date) view when views are merged, all processes that accept a primary view are
in the same state when the view is installed. This state is called the accepting state of the
primary view. Thus, all processes in a primary view start in the same state and deliver the
same sequence of messages, and therefore execute the same sequence of actions and produce
the same output, as provided by Property 3.4.2. In particular, all processes that deliver an
authoritative message are in the same state when this message is delivered, known as the
accepting state of the message. Also, all these processes produce the same output following the
delivery of this message and advance to the same new state.

A state of a process is an authoritative state if it is an accepting state of a primary view or
an accepting state of an authoritative message. Note that authoritative states of a group are
linearly ordered. Thus, the restriction of an execution of the group to authoritative states
and authoritative messages is linearizable: It can be represented by a sequence of events, just
as an execution of a single process. We define the group’s state history as the sequence of
authoritative states accepted through an execution of the group. Correspondingly, the group’s
message history is the sequence of authoritative messages delivered through an execution.

We are ready to formulate the following property:

Property 4.1.1 (Replicated State Machine) Suppose M = (mg,...,my) is the group
message history and S = (So,...,S;) is the group state history of a primary-view ezecu-
tion of a group of processes, each running the same state machine X. Then a single process
running N with M as its message history will pass through the same sequence of states, 5.

4.2 Implementing Primary Views

The main goals of our protocols are to merge concurrent views (partitions), to form larger
views, notify a primary view that it is primary, and do state transfer so that the initial state of
every newly formed primary view is the last authoritative state of the previous primary view.

We assume that each member maintains a state version number, which obeys the following
properties: (a) whenever two members hold the same state version number, then their state
is the same, and (b) a state version number Ny of a process p is larger than a state version
number Ny of another process ¢ if the state of p is more advanced than the state of q. We
discuss how state version numbers are maintained shortly.

l-am-alive

P view
view \
view

state transfer

transfer done

rimary view
view

primary view

e R B

state transfer

Figure 2: Merge Protocol and State Transfer

A time-space diagram of the view merge/state transfer protocol is shown in Figure 2. In order
to merge views, an I-am-alive message is broadcast periodically by each view. In order to
reduce the number of messages in the system, each view has a contact member; the contact is
the only member that sends I-am-alive messages.

When the contact r of a certain view V receives an I-am-alive message, it replies by sending
a merge_request to the contact ¢ of the view W that sent the I-am-alive message. (Other
members of V ignore I-am-alive messages.) The merge request message includes all mem-
bers of W. When ¢ receives this merge request message, then if ¢’s view is not already
merging with another view, and if the state version number of r is smaller than the state
version number of ¢, then a new view U, which is a union of both V" and W, can be created.

In order to install U, ¢ proposes U to all members of U, including itself, by sending a view
message to them, which specifies the last authoritative state of W. When the proposed mem-
bers of U accept it, they install this view by delivering a view event to the application. At this

< U |>

Figure 3: An example. In this scenario, both V and U may be primary, even though when U
is installed, its initial state does not reflect the last authoritative state of V. To disallow this,
we introduce the incarnation bit.

point, some members of U may need to do a state transfer in order to reconcile their state with
the state of more advanced members. After completing the state transfer, a member sends an
xfer_done message to ¢. When ¢ receives xfer_done messages from all processes that need to
do state transfer, it reinstalls U as a primary view U/.

A complication to this scheme comes from the fact that failed processes may eventually restart
and will need to be brought back into the system in a safe way. It is assumed that processes
do not log their state on a stable storage, so a reincarnation of a failed process starts up in
an initial state. Now, consider the following scenario, as depicted in Figure 3, in which there
are 3 processes in the system, p, ¢, and r, in which p and ¢ initially form a primary view V.
Following this, ¢ crashes and then recovers, but does not retain its previous state. If ¢ becomes
connected with r, but not with p, then ¢ and » may form a primary view U. However, the initial
state of this view is “older” than the last authoritative state of the previous primary view. In
particular, it may happen that authoritative messages delivered in the previous primary view
are not reflected in the state of the newly formed primary view.

To overcome this problem, each group member uses a recovery bit, which is logged on non-
volatile storage. The recovery bit is initially set to zero, and is set to one after the process
delivers its first view. This allows the process to determine at the initialization time whether
it was restarted after a crash, or if this is an initial incarnation. A reincarnation of a process
is called a zombie until it becomes a member of a primary view. When computing whether a
view has a majority of group members towards deciding if the view is primary or not, zombie
processes do not count.

We now discuss how to maintain correct state version numbers. A version number has two
fields, which are a primary view sequence number and a message sequence number. The
primary view sequence number is the ID number of the last primary view that the process was

10

a member of. The message sequence number is the number of messages delivered to this process
by totally ordered broadcasts during that primary view. Recall that since primary views must
include a majority of the processes, every newly formed primary view must include at least one
member of the previous primary view. The contact that proposes the view sets the sequence
number of the new primary view to a value higher than the maximum sequence number of
all previously installed primary views. Hence, for any two version numbers Ny = (v1,71) and
Ny = (v2,n2), we define Ny < Ny if v1 < vg, or v1 = vy and ny < ng. Naturally, Ny = Ny if
v1 = v9 and ny = na.

Note that this scheme guarantees that if state version numbers of two processes p and ¢ are
the same, then their states are identical, and if the state of p is more advanced than the state
of ¢, then the state version number of p is larger than the state version number of ¢, as needed.

A pseudocode description of the protocol appears in Appendix A.

5 Globally Consistent Replication

5.1 Authoritative Agents

In this section we discuss global consistency from an application’s point of view. The Repli-
cated State Machine Property (introduced in section 4) guarantees that messages accepted by
majorities of group members are delivered to all members in the same order — regardless of
group partitions/merges and member crashes/recoveries. However, there is a practical issue of
determining when and whether a message has become authoritative, i.e., accepted by a ma-
jority of group members and therefore safe to act upon. In particular, the entity responsible
for issuing authoritative actions needs to collect message stability information and has to defer
actions until corresponding messages become acknowledged by a majority of group members.
We call such an entity an authoritative agent.

There are at least two ways to implement globally consistent replicated state machine seman-
tics, depending on whether the authoritative agents are members or clients of the group. In
the following sections we discuss the globally safe implementation, where group members are
the authoritative agents, and the optimistic implementation, in which group clients are the au-
thoritative agents. We will consider a distributed database system as an example application.
In this setting, each group member holds a database replica maintaining a local copy of the
global state.

5.2 The Optimistic Approach

Our implementation as described so far supports the optimistic approach. In systems where
group members are not acting as authoritative agents, a member can deliver a message as soon
as it has been received, without waiting for acknowledgements from a majority. With this
“optimistic” approach, it is possible that a delivered message will never become authoritative

11

(delivered by a majority), and therefore the local state might need to be rolled back. Thus, in
order to issue an authoritative action based on the global state, a client has to collect replies
from a majority of group members so that it knows the state has become authoritative and
will never be rolled back.

The optimistic model is suitable for systems where writes dominate reads, for example on-line
billing systems used by telephone companies. In a typical application of this type, the state
of a group replica is kept in memory and local updates do not involve any disk writes, which
allows to sustain thousands of updates per second. Also, the current global state is periodically
dumped to disk. The disk images of all dumped local states are then compared to each other in
order to reconstruct the authoritative state of the system. However, this work is done off-line
and therefore does not affect the performance of the entire system. Note that in this example,
on-line updates made by individual group members can be rolled back, and clients (off-line
processing applications) act as authoritative agents.

5.3 The Global Safety Approach

In systems where each database replica acts as an authoritative agent doing updates to the
local state, an update is made only when it is authoritative. This guarantee simplifies the
implementation of database clients: It suffices to query just one group member (database
replica) to learn about the authoritative state of the group.

The requirement that authoritative actions will never need to be rolled back implies that a
member can deliver a message to the application, possibly triggering an authoritative action,
only after the message has been acknowledged by a majority of group members and thus is
known to be authoritative. This imposes an additional load on group members including
buffering of messages and propagation of message stability information.

The global safety model is appropriate for systems where read operations dominate state up-
dates, so that the additional price paid by group members for safe (majority-acknowledged)
message delivery is justified. Typical transactional database systems are a good example of
applications with the majority of operations being reads.

5.4 Implementing Global Safety

We have implemented global safety with an additional protocol layer that is placed on top
of the primary-views layer in a protocol stack. During normal operation, the global-safety
layer buffers incoming messages until they become majority-stable, and hence authoritative,
at which point it delivers the messages to the application. Also, in order to ensure consistent
state transfers, this layer maintains the version number of the current authoritative prefiz, which
consists of messages delivered to the application, and the non-authoritative suffiz, consisting
of buffered messages waiting for acknowledgements from a majority. During a state transfer,
the authoritative prefix of a group member will never be rolled back; it will either grow or

12

stay the same. However, the suffix of non-authoritative messages buffered at the global-safety
layer may need to be rolled back or overwritten with a suffix of messages with a higher version
number.

It is a responsibility of the global-safety layer to determine the direction in which a state transfer
should proceed for both the authoritative prefix and the non-authoritative suffix, and to notify
the application accordingly. The application layer is then responsible for transferring the
authoritative part of the state, whereas the global-safety layer transfers the non-authoritative
suffix.

Together with the primary-views, total ordering, and virtual synchrony layers, the global-safety
layer provides the following property:

Property 5.4.1 (Global Ordering) Let S, and S, be the sequences of messages delivered
by group members p and q at arbitrary points in their execution. Then either S, is a prefir of
Sq, or S, is a prefiz of S).

While Global Ordering is a safety property, progress is guaranteed as long as a majority of
group members do not fail and whenever a majority can communicate with each other.

A pseudocode description of this protocol appears in Appendix B.

6 Performance Analysis

6.1 Preface

The protocol layers discussed in this paper have been implemented in the Horus system de-
veloped at Cornell [25]. Recall that Horus supports a layered architecture in which simple
protocols are stacked on top of each other to obtain the desired functionality, as illustrated in
Figure 1. In particular, an optimistic replicated state machine can be formed by running a
total ordering layer with primary views virtual synchrony layers, while a globally safe imple-
mentation can be obtained by adding the global-safety layer to the above.

Both the optimistic and the globally safe approaches require a total ordering layer, and hence
their performance heavily depends on the total ordering protocol that is used in their imple-
mentation. As it is impossible to experiment with all existing total ordering protocols, we
have chosen for this study two protocols that, based on previous work [13], were expected to
yield good performance. These protocols are the dynamic sequencer protocol and the rotating
token protocol, both employing message packing techniques for improved performance [13].4

*In our framework, all that is required in order to utilize a new total ordering protocol is to replace the
total ordering layer, while the rest of code remains the same. Thus, in the event that a superior total ordering
protocol is found, it is fairly easy to incorporate it into the system, and benefit from its improved performance.

13

‘ Stack name ‘ Properties

PVSYNC Primary views virtual synchrony
DYNSEQ:PVSYNC Optimistic delivery using sequencer-based total ordering
TOKEN:PVSYNC Optimistic delivery using token-based total ordering

SAFE:DYNSEQ:PVSYNC | Globally safe delivery using sequencer-based total ordering
SAFE:TOKEN:PVSYNC | Globally safe delivery using token-based total ordering

Figure 4: Properties provided by various stacks

In the dynamic sequencer protocol, one process is designated to be the sequencer; all messages
are send point-to-point to the sequencer, who then forwards them to the entire group. In the
rotating token protocol, a token is constantly rotating in the group, and a process must wait for
the token in order to send messages. These protocols are described in great detail in [3, 13, 15].

We have measured latency and throughput for group sizes ranging from two to five mem-
bers with the following protocol stacks providing primary views: (1) primary views virtual
synchrony (abbreviated PVSYNC); (2) dynamic sequencer based total ordering protocol [15]
over the primary views virtual synchrony stack (abbreviated DYNSEQ:PVSYNC); (3) rotating
token based total ordering protocol [3] over the primary views virtual synchrony stack (abbrevi-
ated TOKEN:PVSYNC); (4) Global-safety layer over the dynamic sequencer based total order-
ing layer and the primary views virtual synchrony stack (abbreviated SAFE:DYNSEQ:PVSYNC);
(5) Global-safety layer over the token based total ordering layer and the primary views virtual
synchrony stack (abbreviated SAFE:TOKEN:PVSYNC). (See Figure 4). Options 2 and 3 cor-
responds to the optimistic approach, while Options 4 and 5 corresponds to the globally safe
delivery approach. The difference between Option 2 (Option 4) and Option 3 (Option 5) is in
the total ordering protocol being used, as discussed above.

6.2 Methodology

The performance tests were run using five Sparc 10s and Sparc 20s connected by a 10Mbps
Ethernet. The following methodology was employed in those tests: For latency and throughput
measurements, all group members were sending multicasts messages in rounds, each member
sending one message in a round in latency tests and 100 messages in a round in throughput
tests. After a group member received all messages sent by all members in a round, it im-
mediately proceeded to the next round. Upon completion of the test (typically 100 rounds),
the average throughput for the test and duration of a round (the mean) was computed. The
tests were run multiple times, and medians of aggregate results were computed for each com-
bination of test parameters. The test results turned out to be quite stable, so that best-case
performance is close to median numbers.

6.3 Results

14

Round latency (msg size = 10 bytes)
0.07 T T T

— PVSYNC

0.06L |~ — DYNSEQ:PVSYNC
TOKEN:PVSYNC

~ - SAFE:DYNSEQ:PVSYNC

0.05F | x SAFE:TOKEN:PVSYNC]

0.04- 4

Latency (sec)
o
o
w
T
\
\
\
Il

Group size

Figure 5: Latency per round vs. group size

Figure 5 shows the measured latency as a function of the group size, while Figure 6 shows the
measured throughput per member (upper graph), and the aggregate throughput for the whole
group (bottom graph). As can be seen from these graphs, the round latency of PVSYNC,
DYNSEQ:PVSYNC, and TOKEN:PVSYNC protocol stacks increases linearly with the group
size, ranging from 1.6 to 5.9 ms for the PVSYNC stack, 2.6 to 12.2 ms for the DYNSEQ:PVSYNC
stack, and 4.7 to 13.3 ms for the TOKEN:PVSYNC stack. From this we can deduce that total
ordering adds about a factor of two to the latency of unordered communication. Also, when
safe delivery is not required, the sequencer based protocol is slightly faster than the token
based protocol for small groups, but as the groups sizes grows, the token based protocol be-
comes better. This can be explained by the inherent flow control mechanism of token based
protocols: Since processes wait for the token to send messages, there are fewer collisions, and
hence we get better performance.

This phenomenon is becoming even more acute when globally-safe message delivery is re-
quired. Here too, the sequencer based protocol is slightly faster than the token based one
for small groups (4.5 ms vs. 4.9 ms), but becomes much slower for larger groups (48.8
for sequencer vs. 22.3 ms for token). The graphs for both SAFE:TOKEN:PVSYNC and
SAFE:DYNSEQ:PVSYNC show a peculiar “step” between group sizes three and four. This
can be explained by the fact that in order to deliver a message safely, a process must wait for
acknowledgments from a majority of group members. Thus, when going from three to four
members, it becomes necessary to wait for two acknowledgements instead of only one. Such

15

x 10

Throughput per group member (msg size = 10 bytes)

Throughput (mcasts/mbr/sec)

o o o - b

» o o - [N »
T

o
o

— PVSYNC
- — DYNSEQ:PVSYNC
TOKEN:PVSYNC

— - SAFE:DYNSEQ:PVSYNC
* SAFE:TOKEN:PVSYNC

x 10*

Group size

Aggregate throughput for the group (msg size = 10 bytes)
T

~
T

N
T

Throughput (mcasts/sec)
w
>
Il

— PVSYNC
- — DYNSEQ:PVSYNC
TOKEN:PVSYNC

— - SAFE:DYNSEQ:PVSYNC
* SAFE:TOKEN:PVSYNC

Figure 6: Throughput measurements. The top graph depicts throughput

Group size

the bottom graph depicts aggregate throughput for the whole group.

per member, while

an increase in the number of required acknowledgements does not happen when switching the

16

group size from four to five members, since three members are enough to form a majority in
five-member and four-member groups alike.

The best throughput numbers were obtained with the PVSYNC stack (ranging from 14,666 to
5918 messages per member per second, depending on size of the group). When safe delivery
is not required, the dynamic sequencer-based total ordering has consistently outperformed the
rotating token protocol (numbers ranging from 6683 to 2915 messages per member per second
with the DYNSEQ:PVSYNC stack and 3865 to 1776 messages per member per second with
the TOKEN:PVSYNC stack). However, adding the global-safety layer changes the picture:
The throughput of the SAFE:TOKEN:PVSYNC stack is higher than the throughput of the
SAFE:DYNSEQ:PVSYNC stack for all group sizes (5787 — 2110 vs. 4909 — 1271 messages per
member per second respectively).

It appears that the added cost of safe delivery does not significantly affect throughput numbers.
This is reasonable considering the fact that the added latency involved with safe delivery is
caused mainly by the need to wait for acknowledgements, and not by doing significantly more
work. Thus, safe delivery only shifts the delivery time, but does not hurt the capacity of the
system.

Furthermore, the throughput of SAFE:TOKEN:PVSYNC is surprisingly higher than the through-
put of the smaller TOKEN:PVSYNC protocol stack, which shows that the choice of a total-
ordering protocol and flow control policies has a bigger impact on performance than the over-
head added by an additional layer. Recall that in our implementation messages are packed.
Thus, delaying messages by the global-safety layer allows us to pack more messages in each
send operation, which effectively increases the throughput of the TOKEN:PVSYNC protocol
stack (although the latency naturally decreases). In our implementation of the rotating token
protocol, the token keeps cycling among the group members. Once a member receives the
token, it immediately throws it to the next member, like a hot potato. This policy aims at
decreasing latency when sending messages: Since with this protocol a member can only send a
message when it has the token, the faster the token rotates around the group, the shorter will
be the average delay before a pending message can be actually sent. However, the continuous
rotation of the token adds an additional load on machines and the network and increases the
time spent in sendto system calls, which in the end results in decreased throughput. Adding
an additional layer (global-safety layer in our case) introduces an additional delay before for-
warding the token, which positively affects throughput. Of course, the same effect could be
achieved by the rotating token layer itself, by introducing an artificial delay (say, 1ms) before
forwarding the token to the next group member. This would also increase throughput at the
cost of increased latency.

The aggregate throughput numbers (the number of multicasts sent by all group members in a
second) indicate the total capacity of the system, and in many settings, this is the important
figure. For example, consider a bank in which ATM machines are connected to a distributed
servers system, such that each ATM is connected to one server. In this case, the aggregate
throughput indicates the total number of client’s requests that the system can handle. The
aggregate throughput achieved in our tests appears to be quite stable as the group size is

17

increasing. In particular, with the SAFE:TOKEN:PVSYNC stack, a group of five members
can sustain 10,550 authoritative (globally ordered and safe) multicasts per second. Recall that
each authoritative message can be thought of as a single object transaction. (In the example
of a banking system, this can be a deposit, a withdrawal, or an account status inquiry.) Also,
with optimistic delivery, our system maintains a throughput of over 14,000 messages per second
even with five members.

We did not use IP multicast for performance tests reported in this section (group multicasts are
simulated with unicasts). We expect to see still better numbers when measuring performance
with [IPMC.

7 An Application Interface for Replicated Objects

In this section we describe an interface for distributed objects [26] that brings the replicated
state machine functionality to the application layer. The interface is a part of Horus Object
Tools which have been implemented over the Horus system at Cornell [25]. We discuss the
functionality of our interface and give a usage example based on a simple replicated-value
object application.

Replicated objects are implemented with the ObjectReplica class shown in Figure 7. Using
standard terminology, we say that object replicas are members of the corresponding object
group.® External clients can access a replicated-object group through the Client class defined
in Figure 8.

7.1 Object Group Membership

An object replica can join its group with the join downcall method. Parameters to join
specify the maximum group size and whether communication in the group is to be optimistic
or globally safe. The latter option determines whether the SAFE layer is going to be included in
the underlying protocol stack. An object can leave its group with the leave downcall method.
An object is notified of membership changes in the group with view_Callback methods invoked
by Horus. By default view_Callback is defined as a no-op function (to be overloaded in
subclasses of ObjectReplica). The view callback specifies the current membership in the
group (as a list of object ID’s) and whether the view is primary. An object is allowed to
initiate update operations that can potentially modify the replicated state of the group only
if the current view is primary. Recall that the current view of an object is the last group view
delivered to it with an invocation of the view_Callback method.

5Tnessential details of C++ syntax and the class definition are left out.

18

class ObjectReplica {
// Object group membership
join(Bool optimistic, int maxGroupSize) ;
leave();
view Callback(ObjectIDList members, Bool primary);

// Commaunication within the object group

multicast(Message msg) ;

multicast.Callback(ObjectID origin, Message msg, Bool safe);
safe_Callback(ObjectID origin, int nsafe);

// Interaction with clients of the object group
replyToClient(ClientID client, Message reply);
clientRequest_Callback(ClientID client, Message request);

// State transfer

stateTransfer Callback(XferID id);

stateTransferDone (XferID id);

requestState (XferID id, Message request);

stateRequest Callback(ObjectID origin, XferID id, Message request);
sendState(ObjectID dest, XferID id, Message state);

rcvState Callback(ObjectID origin, XferID id, Message state);
stateTransferTerminated Callback(XferID id);

Figure 7: Implementation of Replicated Objects with the ObjectReplica class

7.2 Communication within an Object Group

Communication within a group is performed via multicast messages. The multicast downcall
method is used to send a message. When an object receives a message, themulticast_Callback
method is invoked by Horus. By default, multicast_Callback is defined as a no-op function,
however it can be overloaded in a subclass of ObjectReplica to implement application-specific
functionality. Parameters to multicast _Callback specify whether the message is globally safe.
If the group has been configured for the globally-safe execution mode, messages will always be
delivered only when they become safe. Otherwise the safe_Callback method will be used to
notify objects when delivered messages become globally safe. Parameters to safe_Callback
specify how many messages received from the given member of the object group (in the current
view) have become authoritative and therefore can be acted upon.

7.3 Communication between Clients and Replicated Objects

Clients can access an object group with the sendRequest method. Following a call to sendRequest,
the clientRequest_Callback method is invoked at one of the object replicas. The replica that
received the request may send a reply to the client with the replyToClient downcall method.
In some applications/execution modes it may be necessary to relay a client request to all object

19

class Client {
// Commaunication with the object group
sendRequest (Message request);
rcvReply Callback(ObjectID origin, Message reply);

Figure 8: Implementation of clients with the Client class

replicas (which can be done with the multicast method). After an object makes a call to
replyToClient, the rcvReply_Callback method will be invoked at the corresponding client.
If the application is running in the optimistic mode, the client may need to collect replies from
a majority of object replicas before the reply becomes authoritative.

7.4 State Transfer

Horus invokes the stateTransfer_Callback method in order to notify objects that a state
transfer is being (re)started; the callback specifies the ID of the current state transfer trans-
action. An object replica can request the state (or a portion thereof) with the requestState
method. Following a call to requestState, the stateRequest_Callback method is invoked at
an object replica with the up-to-date state. An object can send the state (or a portion of it) with
the sendState method. A call to sendState results in an invocation of the rcvState_Callback
method at the destination object. Parameters to rcvState_Callback include the reply mes-
sage which can be used to bring the state of the object replica up-to-date. After an object
completes state transfer, it invokes the stateTransferDone method to notify Horus. If state
transfer has to be terminated (due to network partitions or process crashes), the object is
notified with the stateTransferTerminated Callback method invoked by Horus.

7.5 Example: Simple Replicated-Data Application

In this section we demonstrate how to apply our interfaces in a simple application using
replicated data. Each object maintains a replica of the global state contained in the integer
state. Clients can request read and update operations to be performed on state. We assume
that the application in our example will be running in the globally safe mode. Therefore, when
an object receives a read request from a client, it can reply immediately with the local value
of state, and the value in the reply is guaranteed to be a valid state of the group. When an
object receives an update request from a client, it relays it to other replicas. When an object
replica receives a relayed update request, it modifies its local copy of state correspondingly.
Implementation of object replicas is shown in Figure 9. The client code is shown in Figure 10°.

%Tnessential details of C++ syntax and class definitions are omitted.

20

typedef enum { READ, UPDATE } request_type;

class MyObjectReplica: ObjectReplica {
// Initialize the state.
MyObjectReplica() {
state = O;

// Got a relayed update request. Modify the state accordingly.
multicastCallback(ObjectID origin, Message msg, Bool safe) {
msg >> state;

// Got a client request.
clientRequest_Callback(ClientID client, Message request) {
int requestType;
request >> requestType;
switch (requestType) {
case READ:
// Send reply to the client.
Message reply;
reply << state;
replyToClient(client, reply);
break;
case UPDATE:
// Relay request to all replicas.
multicast(request);
break;

}

// Start state transfer.
stateTransfer Callback(XferID id) {
Message request;
requestState(id, request);
¥
// Got a state request.
stateRequest Callback(ObjectID origin, XferID id, Message request) {
Message statelsg;
statellsg << state;
sendState(origin, id, stateMsg);

// Received the state.

rcvState Callback(ObjectID origin, XferID id, Message stateMsg) {
statellsg >> state;
stateTransferDone(id);

}

int state;

Figure 9: Example of a Simple Replicated-Data Application — Implementation of Replicated
Objects

8 Discussion

We have developed a modular implementation of replicated distributed objects based on the
replicated state machine paradigm that can operate over partitionable networks. Qur imple-

21

class MyClient: Client {
// Send a read request. Block until reply arrives. (Not reentrant).
int read() {
Message request;
request << READ;
sendRequest(request);
cv.wait();
return state;

// Send an update request
update(int newState) {
Message request;
request << UPDATE << newState;
sendRequest(request);

// Received a reply to a read request

rcvReply Callback(ObjectID origin, Message reply) {
reply >> state;
cv.signal();

}

ConditionVariable cv;

int state;

Figure 10: Example of a Simple Replicated-Data Application — Implementation of Clients

mentation has three appealing properties: First, it allows minority partitions to install views
and continue to provide idempotent services. Second, even if the system’s ability to make
progress is suspended for a while due to loss of connectivity, the system will once again be able
to make progress, without any outside intervention, as soon as a majority of members become
connected again. Third, it offers the application the option of using both optimistic and safe
delivery. In the optimistic case, messages are delivered with one phase communication, and is
therefore very fast. However, even in the case of pessimistic (safe) delivery, we have achieved
better performance than other implementations known to us, especially in terms of through-
put. Qur solution also deals explicitly with maintaining global consistency. In particular, it
addresses the issues of doing state transfer in a way that maintains the semantics of replicated
state machines, and does safe recovery of processes after crashes.

Our work assumes that the number of members in the group is fixed. Such an assumption is also
made by the Phoenix system [19], and is quite reasonable for most practical applications. This
assumption is reasonable since the replicated state machine model is usually used to implement
reliable/highly-available servers, whose number is normally fixed and known in advance. It is
possible, however, to slightly modify our protocol to allow dynamic changes to the group size,
under certain assumptions. The details of this solution will be described in a follow-up paper.
Another approach would be to follow the ISIS implementation [7], which also allows dynamic
group sizes. With the ISIS approach, a view would need to have a majority of members of the

22

previous primary view, rather than a majority of all group members, in order to be installed
as primary. The drawback of this solution, however, is that a single failure could cause the
system to block forever, e.g., if a member of a primary view with only two members crashes.

We have also presented a programming interface supporting replicated distributed object func-
tionality at the application level. The interface provides integrated support for group com-
munication, state transfer, and primary views and can be exploited in distributed CSCW or
client/server applications using either the globally-safe or the optimistic execution models.

The protocols for primary views and global safety and the interface to replicated distributed
objects described in this paper have been implemented as part of the Horus group communi-
cation system. To get more information about Horus, or how to obtain it, you may visit the
Horus home page at

http://www.cs.cornell.edu/Info/Projects/Horus.

Acknowledgments: We would like to thank Ken Birman and Robbert van Renesse for many
helpful comments and discussions.

23

References

[1]

[2]

[3]

[10]

[11]

[12]

[13]

Y. Amir. Replication Using Group Communication QOver a Partitioned Network. PhD
thesis, Institute of Computer Science, the Hebrew University of Jerusalem, 1995.

Y. Amir, D. Dolev, P. M. Melliar-Smith, and L. E. Moser. Robust and Efficient Replication
Using Group Communication. Technical Report CS94-20, Institute of Computer Science,
the Hebrew University of Jerusalem, Jerusalem, Israel, 1994.

Y. Amir, L. E. Moser, P. M. Melliar-Smith, D.A. Agarwal, and P. Ciarfella. Fast Message
Ordering and Membership Using a Logical Token-Passing Ring. In Proc. of the 13th
International Conference on Distributed Computing Systems, pages 551-560, May 1993.

0. Babaoglu, R. Davoli, L. Giachini, and M. Baker. Relacs: A Communication Infrastruc-
ture for Constructing Reliable Applications in Large-Scale Distributed Systems. Techni-
cal Report UBLCS—-94-15, Department of Computer Science, University of Bologna, June
1994. Revised January 1995.

0. Babaoglu, R. Davoli, L. Giachini, and P. Sabattini. The Inherent Cost of Strong-
Partial View-Synchronous Communication. Technical Report UBLCS-95-11, Department
of Computer Science, University of Bologna, April 1995.

P. Bernstein, V. Hadzilacos, and H. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, Reading, MA, 1987.

K. Birman and T. Joseph. Reliable Communication in the Presence of Failures. ACM
Transactions on Computer Systems, 5(1):47-76, February 1987.

T. Bressoud and F. Schneider. Hypervisor-base Fault Tolerance. In Proc. of the 15th
ACM Symposium on Operating Systems Principles, pages 1-11, December 1995.

T. Chandra, V. Hadzilacos, S. Toueg, and B. Charron-Bost. On the Impossibility of
Group Membership. In Proc. of the 15th ACM Symposium of Principles of Distributed
Computing, pages 322-330, May 1996.

F. Cristian. Understanding Fault-Tolerant Distributed Systems. Communications of the
ACM, 34(2):56-78, February 1991.

D. Dolev and D. Malki. The Transis Approach to High Availability Cluster Communica-
tion. Communications of the ACM, 39(4):64-70, April 1996.

R. Friedman and R. van Renesse. Strong and Weak Virtual Synchrony in Horus. In Proc.
of the 15th Symposium on Reliable Distributed Systems, pages 140-149, October 1996.

R. Friedman and R. van Renesse. Packing Messages as a Tool for Boosting the Performance
of Total Ordering Protocols. In Proc. of the Sizth IFEF International Symposium on High
Performance Distributed Computing, 1997. To appear.

24

[14] N. C. Hutchinson and L. L. Peterson. The z-kernel: An Architecture for Implementing
Network Protocols. [IEEE Transactions on Software Engineering, 17(1):64-76, January
1991.

[15] F. Kaashoek, A. Tanenbaum, S. Hummel, and H. Bal. An Efficient Reliable Broadcast
Protocol. Operating Systems Review, 23(4):5-19, October 1989.

[16] 1. Keidar. A Highly Available Paradigm for Consistent Object Replication. Master’s
thesis, Institute of Computer Science, the Hebrew University of Jerusalem, 1994.

[17] I. Keidar and D. Dolev. Increasing the Resilience of Atomic Commit, at No Additional
Cost. In Proc. of ACM Symposium on Principles of Database Systems, pages 245254,
May 1995.

[18] L. Lamport. Time, Clocks and the Ordering of Event in a Distributed System. Commu-
nications of the ACM, 21(7):558-565, 1978.

[19] C. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix: A Tollkit for Building
Fault-Tolerant Distributed Application in Large Scale. Technical report, Department
d’Informatique, Ecole Polytechnique Federale de Lausanne, July 1995.

[20] S. Mishra, L. Peterson, and R. Schlichting. Consul: A Communication Substrate for
Fault-Tolerant Distributed Programs. Distributed Systems Engineering Journal, 1(2):87—
103, December 1993.

[21] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agarwal. Extended Virtual Syn-
chrony. In Proc. of the 14 International Conference on distributed Computing Systems,
June 1994.

[22] L. E. Moser, P. M. Melliar-Smith, and V. Agrawala. Asynchronous Fault-Tolerant Total
Ordering Algorithm. STAM Journal of Computing, 22(4):727-750, August 1993.

[23] F. Schneider. Paradigms for Distributed Programs. In Distributed Systems — Methods
and Tools for Specification, pages 343-430. Lecture Notes in Computer Science, Vol. 190,
Springer-Verlag, New-York, NY, 1985.

[24] Fred B. Schneider. The state machine approach: a tutorial. Technical Report TR 86-800,
Department of Computer Science, Cornell University, December 1986. Revised June 1987.

[25] R. van Renesse, K. Birman, and S. Maffeis. Horus: A flexible Group Communication
System. Communications of the ACM, 39(4):76-83, April 1996.

[26] Alexey Vaysburd. The Horus Object Tools.
http://www.cs.cornell.edu/Info/Projects/HORUS/HOT /hot.html.

25

A

Pseudocode of the Primary View Protocol

The pseudocode we give in this section assumes the existence of a total ordering layer and a

partitionable virtual synchrony layer, as discussed in Section 3. These layers are responsible for

installing views which obey the properties of partitionable virtual synchrony, and for delivering

messages in total ordering. Thus, the code we present here only deals with the problem of
merging partitions in a consistent way, providing hooks for the application for doing state
transfer, and declaring when a view is primary.

We assume that the interface between the primary views layer and the lower layers include the

following downcalls and upcalls:

while

propose view (new_view) — this downcall requests the partitionable virtual synchrony
layer to install a new view with parameters specified in the new_view argument.

broadcast (msg-type, msg) — this downcall requests the lower layers to broadcast a
message msg of type msg-type to all view members.

send [to_member| (msg-type, msg) — his downcall requests the lower layers to send a
message msg of type msg-type to the group member specified in the to_member argu-
ment.

received msg-type (arg_list) — this upcall delivers to the primary views layer that a
message of type msg-type with arguments (arg_list). The types of messages we are using
are I-am-alive, merge request, cast, and xfer_done.

received view (new_view) — this upcall delivers to the primary views layer a new view
new_view.

the interface between the application and the primary views layer include:

send msg-type (msg) — this downcall is used by the application to request that a message
msg of type msg-type be broadcast to the sender’s current view. The types of messages
we use are cast (for messages containing application data), and xfer-done (for messages
that are sent to notify view members of the completion of a state transfer).

deliver (view, new_view) — an upcall to deliver a new view (specified in the new_view
argument) to the application.

deliver (msg-type, msg) — an upcall to deliver a message msg of type msg-type to the
application.

(In practice, the above interfaces may include more downcalls and upcalls, but here we only

list those that are used by our code.) Each process maintains the following data structures
used by the primary-views protocol:

26

o local_endpoint is a record that contains the globally unique ID of the local process, its
incarnation, the current state version, and the zombie flag.

The incarnation number specifies how many times the process has been (re)started.
Whenever a process is brought back after a crash, its incarnation number increases by
one.

The state version number is used to keep track of the process’ progress, as described
earlier. When a process is initialized, its current primary-view sequence number and
message sequence number are both set to 0, which corresponds to the initial state.

The zombie flag is initially set if the process is restarting after a crash. As discussed
earlier, zombie processes do not count when determining whether a view has a majority
of group members.

e groupis arecord that contains the current state of the process, the total number of members
(which is fixed for the entire execution of the group), and the i_am_contact flag.

The state is set to merging when the process is participating in an ongoing view merge;
otherwise it is set to normal. A process starts in a normal state.

The i_am_contact flag is set if the process is responsible for conducting merges on behalf
of its view. Initially, the process is the contact of its singleton view.

e local_view is a record that contains the current state version of the local process, the
current list of members (the group view), and the primary flag.

The list of members initially contains the local endpoint only. The primary flag is set if
the current view is primary. It will be initially set if the process is not a zombie and it
is the only member in the group.

The initialization procedure is shown in full detail in Figure 11. The pseudocode description
is given is Figures 12 and 13.7

B Pseudocode of the Global Safety Protocol

As discussed before, the Global Safety layer is placed on top of the primary views layer, and
delivers messages only after they were acknowledged by a majority of group members. In
particular, during view changes it propagates messages that were not seen by all members of
the group to the new members.

The pseudocode description of this protocol is divided into a procedural part that appears in
Figure 15, and an event driven part in Figure 15. Fach process holds the following variables:

e my_id holding the id of the local process.

"The actual implementation includes a few optimizations on this code, which were removed from this de-
scription for the sake of clarity of presentation.

27

initialize:
if (local_endpoint.incarnation = 1) then
local_endpoint.zombie := false
else
local_endpoint.zombie := true

endif

if (not local_endpoint.zombie and group.total nmembers = 1) then
local_view.primary := true

else
local_view.primary := false

endif

local_view.state_version.prim_view_seqno := 0
local_view.state_version.msg_seqno := 0
local_endpoint.state_version := local_view.state_version
local_view.members := {local_endpoint}

deliver (view, local_view)
group.state := normal
group.i_.am_contact := true

Figure 11: The Primary Views layer: Process Initialization

o local_view holding the view of the local process.

e newunacked is a boolean variable that indicates whether the process received any mes-
sages and has not acknowledged them. It allows a single ack messages to acknowledge
several broadcast messages, and therefore reduces the number of messages generated by
the protocol.

e non-auth-seqno is an integer that counts the sequence numbers of unauthoritative mes-
sages received by the process, while delivered is an integer counter for the messages that
were delivered to the process.

e non-authoritative holds the set of non-authoritative messages received by the process.
These messages are kept so they can be sent to processes that have not received them,
when these processes will eventually reconnect with the primary view. In order to detect
which processes have acknowledged each message, each element of these sets includes
the following fields: msg - the message itself, seqno - the value of non-auth-seqno that
corresponds to this messages, and acked - the list of processes that acknowledged this
messages.

Most of the code is obvious from the discussion in Section 4. Upon receiving a message in a
primary partition mode, a process buffers this message in the non-authoritative list, and then

28

every Aj time units:
if (group.i_am_contact and group.state = normal) then
broadcast (I-am-alive, local_endpoint, local_view.state_version)

endif

received I-am-alive (contact, state_version):
if (group.state = normal and local_view.state_version < state_version) then
send [contacl] (merge_request, local_view);
group.state := merging

endif

received merge_request (merging_view):
if (group.state = normal and
merging_view.state_version < local_view.state_version)
then
new_view.members := local_view.members U merging_view.members

if (#{m € new_view.members | m.zombie = false} > group.totalnmembers / 2 and
local_view.state_version = merging_view.state_version)

then
new_view.primary := lrue

else
new_view.primary := false

endif

if (new_view.primary) then
for all m € new_view.members do
m.zombie := false

done
new_view.state_version.prim_view_seqno := local_view.state_version.prim_view_seqno + 1
new_view.state_version.msg_seqno := 0
else
new_view.state_version := local_view.state_version
endif

propose view (new_view);
group.state := merging

endif

Figure 12: The Primary Views layer implementation

needs to acknowledge the receipt of the message. However, to save on the number of mes-
sages, the acknowledgment is not sent immediately. Instead, the receiver increments a counter
non-auth-seqno for each message received, and then periodically sends an acknowledgment that
contains the current value of non-auth-seqno.

Whenever a process receives an acknowledgment with counter segno, it checks which messages

29

received view (new_view):
local_view := new_view
if (rank of local_endpoint in local_view.members is 0) then
group.i_am_contact := true
else
group.i_am_contact :== false
endif
if (local_view.primary or
#{m € local_view.members | m.zombie = false} < group.total_nmembers / 2)
then
group.state := normal
endif

deliver (view, local_view)

send cast (msg):
broadcast (cast, msg)

received cast (msg):
if (local_view.primary) then
local_view.state_version.msg_seqno := local_view.state_version.msg_seqno + 1
endif
deliver (cast, msg)

send xfer_done (mbr):
broadcast (xfer_done, mbr)

received xfer_done (mbr):
local_view.members[mbr].state_version := local_view.state_version
if ((V m € local_view.members:
m.state_version = local_view.state_version) and
(#{m € local_view.members | m.zombie = false} > group.total nmembers / 2) and
not local_view.primary and group.i_am_contact)
then
new_view.members := local_view.members
new_view.primary := true
for all m € new_view.members do
m.zombie := false
done
new_view.state_version.prim_view_seqno :=
local_view.state_version.prim_view_seqno + 1;
new_view.state_version.msg_seqno := 0
propose view (new_view)

endif

Figure 13: The Primary Views layer implementation (continued)

that have smaller sequence number in non-authoritative are now acknowledged by a majority.
These messages are then delivered to the application in an authoritative mode, and are removed

30

initialize:
newunacked := false
no-auth-seqno := 0
delivered := 0
non-authoritative :==
authoritative :== 0

message_acked:
foreach m in non-authoritative that was acked by a majority do
if m.seqno > delivered then
deliver (auth-cast, m.msg)
delivered := delivered + 1
endif
remove m from non-authoritative
add m to authoritative
done
foreach m in authoritative that was acked by all members do
remove m from authoritative
done

Figure 14: Procedural code for The Global Safety layer

from the non-authoritative list.

In order to guarantee correct state transfer, the non-authoritative and non-auth-seqno list has
to be sent to the new members of each primary view. Since the code in Appendix A guarantees
that the first member in each view is a member of the most advanced view, this member sends
his data to all new members. New members that receive the xfer message adopt it into their
state. In particular, they acknowledge all messages in the newly adopted non-auth-seqno list,
and mark themselves as processes that acknowledged them. Each of these messages that has
been majority acknowledged is then delivered locally as authoritative.

Messages that are delivered but were not acknowledged by all members are buffered in the
authoritative list until all acknowledgements for them are received. In our real implementation,
this option can be turned off, at which point the application is responsible for that part of the
state transfer. The rational behind this is that the application can usually do more efficient
state transfer, since it knows the contents of messages. However, for the sake of completeness
we included in the code presented here an explicit handling of authoritative but unstable
messages.

31

every Az time units:
if newunacked then
newunacked := false
broadcast (ack, seqno)
endif

received view (new_view):
local_view := new_view
if (not new_view.primary) and I appear first in the view then
send (xfer, non-authoritative, authoritative, non-auth-seqno) to all new members
endif

deliver (view, new_view)

received xfer (non-auth, auth, non-seqno):
newunacked := true
non-authoritative := non-auth
authoritative := auth
no-auth-seqno := non-seqno
foreach m in non-authoritative do

m.acked := m.acked U {my_id}

done
call message_acked

send cast (msg):
broadcast (cast, msg)

received cast (msg):
if local_view.primary then
newunacked := true
non-auth-seqno := non-auth-seqno + 1
m.msg := msg
m.seqno := non-auth-seqno
m.acked := {my_id}
add m to non-authoritative
else
deliver (non-auth-cast, msg)
endif

received ack (seqno) from j:
foreach m in non-authoritative for which m.seqno < seqno do
m.acked := m.acked U {j}
done
call message_acked

send xfer_done (mbr):
broadcast (xfer_done, mbr).

Figure 15: Event driven code for the Global Safety layer

32

