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Supplementary Figures
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Figure S1. SEM images of the (a),(b) Rh and (c),(d) Rh,P thin films. (¢) XRD pattern

of Rh,P thin film.
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Figure S2. XPS spectra for RhyP thin films.* (a) Phosphorus 2s, 129.2 ¢V (Rh,P),
132.7 eV (P oxide). (b) Phosphorus 2p, 187.2 eV (Rhy,P), 190.2 eV (P oxide). (c)
Rhodium 3d, 306.7 eV (pure Rh), 311.7 eV (Rh,P). (d) Rhodium 3p, 3p1/2, 520.7 eV
(RhyP), 3p3/2, 496.2 eV (pure Rh). (*NIST X-ray Photoelectron Spectroscopy
Database, NIST Standard  Reference Database 20, Version 4.1

https://srdata.nist.eov/xps/)
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Figure S3. Characterizations of Rh NCs and Rh,P NCs. (a-c) TEM images of
as-synthesized Rh NCs (scale bar, 20 nm), Rh NCs supported on Vulcan XC-72
carbon (scale bar, 50 nm) and size distribution of Rh NCs, respectively. (d-f) TEM
images of as-synthesized Rh,P NCs, Rh,P NCs supported on Vulcan XC-72 carbon

and size distribution of Rh,P NCs, respectively. Scale bar equals 50 nm.
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Figure S4. XRD pattern of Rh NCs. XRD pattern of Rh NCs (up) and metallic Rh

(bottom, JCPDS: 05-0685).
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Figure S5. (a) TEM image of as-synthesized Pt nancubes. Scale bar equals 20 nm. (b)
TEM image of Pt nanocubes loaded on Vulcan XC-72 carbon after annealing at
185 °C in air. Scale bar equals 50 nm. (c) Histogram of particle size distribution

counted from 100 particles. Average particle edge length is 7.0 nm + 0.6 nm.
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Figure S6. Nyquist plots of comparing catalysts. Nyquist plots under n = 3.8 mV.
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Figure S7. Hydrogen evolution reaction properties in alkaline media (0.1 M KOH). (a)
Cyclic voltammograms of Rh,P/C and Pt/C. (b) Polarization curves for Pt/C (3.7
ugp/em?), RhoP/C (3.7 pgrn/cm?) and Rh/C (13.3 pggry/cm?) recorded at 20 mV/s and
(c) Corresponding overpotentials at 5.0 mA/cm® current density. (d)
Chronopotentiometry of the RhyP/C and Pt/C recorded at -1.72 mA/mgpet current

density. The potentials were converted to RHE and corrected for iR drop.
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Figure S8. Durability performance of the Rh,P catalyst. (a) Chronoamperometry for
Rh,P/C under overpotential 1 = 109 mV for 36,000 s, showing electrochemical
durability under acidic conditions (0.5 M H,SO,). (b) Low-magnification (scale bar,
40 nm) and (c) high-magnification (scale bar, 10 nm) TEM images of Rh,P/C after

electrolysis for 36,000 s.
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Figure S9. Rh,P/C OER stability under potential cycling. (a) Polarization curves for
Rh,P/C recorded at 20 mV/s, 1600 rpm, 0.1 M perchloric acid. (b) Total mass of Rh
(nanograms) in the electrolyte from ICP analysis. The potential cycling was between

1.23 V and 1.78 V, at the scan rate of 50 mV/s.
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Figure S10. Optimized structures of H adsorption with different coverage on

Rh-terminated surface.
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Figure S11. Calculated electron localization function (ELF) of the Rh,P (200) surface.

The calculated ELF value ranges from 0.0 (blue) to 1.0 (red).
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Figure S12. XPS spectra for Rh,P/C. XPS spectra in the (a) Rh(3d) regions and (b)

P(2p) region of AA washed Rh,P/C.
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Figure S13. Gibbs free energy profiles. The calculated Gibbs free energy profiles of

the intermediate states in OER on Rh,P (200)-defect surface.
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(d)

Figure S14. Optimized structures of the intermediate states in OER on Rh,P
(200)-defect surface. (a) Optimized structures of the Rh,P (200) surface with defect.
(b-h) Optimized structures of the intermediate states in OER on Rh,P (200)-defect

surface.
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Figure S15. Gibbs free energy profiles. The calculated Gibbs free energies (eV)

profiles of the intermediate states in OER on Rh,P (200) surface.
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Figure S16. Optimized structures of the intermediate states in OER on Rh,P (200)
surface. (a) and (d) are the top view and side view of the *OH; (b) and (e) are the top

view and side view of the *O; (c) and (f) are the top view and side view of the *OOH.
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Figure S17. Binding sites of H atom. The binding sites for H adsorption on the top

view of (a) P-terminated and (b) Rh-terminated Rh,P (200) surfaces.
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Supplementary Tables

Table S1. ICP-AES analysis.

Materials Rh (upg/mL) P (pg/mL) Rh/P (mmol/mmol)

Rh,P NCs/C (not treated by
136.7 24.9 1.65
AA)

Rh,P NCs'/C 132.9 18.6 2.15

'The materials were washed with AA by using method described in experimental

section.
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Table S2. Calculated adsorption energies and Gibbs free energies of H

adsorption on Rh,P (200) surfaces.

n P—-terminated Rh—-terminated
coverage AEy (eV) AG°y (eV) AEy (eV) AG%y (eV)
1/4 ML -0.08 0.15 -0.58 -0.51
2/4 ML -0.25 0.00 -0.66 -0.51
3/4 ML -0.05 0.18 -0.84 -0.66

4/4 ML -0.06 0.17 -0.90 -0.75
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Table S3. Calculated Free Energies of Reaction Steps in OER on Rh,P

(200)-defect Surface.

steps AE Ao skAH™ AZPE -TAS™ -elU  AG
H,0 —»*OH+e+H" 0.29 -0.06 -0.08 047 -174 -1.12
H,0 —*OH+e+H" 0.50 -0.06 -0.06 047 -1.74  -0.89
*OH —*O+e+H" 1.52 0.04 017  -02  -1.74  -0.55
*OH —*O+e+H" 1.67 0.04 0.18 -02 -1.74 -041
H,0+*O —»*OOH+e+H"  1.52 -0.06 0.06 047 -1.74 013
H,0+*O —»*OOH+e+H"  1.87 -0.06 -0.08 047 -1.74 047
*OOH — Oy+te+H" 1.61 0.13 021 -083 -1.74 -1.03
*OOH — Oyte+H" 1.95 0.13 0.19 083 -1.74  -0.68

a. Ag_,sxkAH denotes the correction of AH from 0K to 298K.
These data were cited from D.R. Stull, H. Propher, JANAF Thermochemical Tables, U. S.
National Bureau of Standards, Washington, DC, 1971.

c. The value of TAS (H,0) includes the correction of AG (H,0) from gas to liquid.
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Table S4. Calculated Free Energies of Reaction Steps in OER on Rh,P (200)
Surface.

steps AE  AvwxAH AZPE -TAS -eU  AG
H,0 —*OH +e+H" 036  -0.06 0.09 047 -1.74 -1.78
*OH — O*+e+H" 0.39 0.04 0.13  -02  -1.74  -1.64
H,0+*0 —»*00H+e+H'  3.14 -0.06 0.10 047 -1.74 171

*OOH — Oyte+H" 3.46 0.14 -0.19  -0.83 -1.74  -0.33
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Table S5. Calculated binding energies (eV) of one H atom on Rh,P (200) surfaces

Binding energy (eV)
Binding site
P-terminated Rh-terminated
top (T) -0.07 -0.21
bridge (B) 0.63 -b
hollow1 (H1) 0.78* -c
hollow?2 (H2) 0.78" -0.58

a For P-terminated Rh,P (200) surface, hollow] and hollow?2 site are the same

b The adsorption on the bridge site is unstable and the H atom moves to the hollow2
site

¢ The adsorption on the hollow1 site is unstable and the H atom moves to the hollow?2
site
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