
Research Article

High Performance Robust Adaptive Beamforming in the
Presence of Array Imperfections

Wenxing Li,1 Xiaojun Mao,1 Zhuqun Zhai,2 and Yingsong Li1

1College of Information and Communications Engineering, Harbin Engineering University, Harbin 150001, China
2Naval Academy of Armament, Beijing 100161, China

Correspondence should be addressed to Xiaojun Mao; wwwmaoxiaojun@126.com

Received 18 April 2016; Accepted 8 June 2016

Academic Editor: Shih Yuan Chen

Copyright © 2016 Wenxing Li et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A high performance robust beamforming scheme is proposed to combat model mismatch. Our method lies in the novel
construction of interference-plus-noise (IPN) covariance matrix. �e IPN covariance matrix consists of two parts. �e �rst part
is obtained by utilizing the Capon spectrum estimator integrated over a region separated from the direction of the desired signal
and the second part is acquired by removing the desired signal component from the sample covariance matrix. �en a weighted
summation of these two parts is utilized to reconstruct the IPN matrix. Moreover, a steering vector estimation method based on
orthogonal constraint is also proposed. In this method, the presumed steering vector is corrected via orthogonal constraint under
the condition where the estimation does not converge to any of the interference steering vectors. To further improve the proposed
method in low signal-to-noise ratio (SNR), a hybrid method is proposed by incorporating the diagonal loading method into the
IPN matrix reconstruction. Finally, various simulations are performed to demonstrate that the proposed beamformer provides
strong robustness against a variety of array mismatches.�e output signal-to-interference-plus-noise ratio (SINR) improvement of
the beamformer due to the proposed method is signi�cant.

1. Introduction

Adaptive beamforming is one of the important aspects of
array processing, which has been widely used in radar, sonar,
mobile communications, radio astronomy, and other �elds
[1–3]. Beamformers can be regarded as spatial �lters, which
can enhance the desired signal and suppress the interference
e
ectively. �e standard Capon beamformer (SCB), as one
of the well-known adaptive beamformers, has excellent res-
olution and interference rejection capability. However, the
SCB is sensitive to the model mismatches, especially, when
the signal of interest (SOI) is presented in the training data
[4–7]. In some applications like passive sonar and wireless
communications, the training data usually contains the SOI.
�us, the performance of the adaptive beamformers may
degrade signi�cantly in the presence of array imperfections.

To improve the robustness of adaptive beamformers,
many robust adaptive beamforming methods have been
developed over the past several decades [8–12]. In [8], a diag-
onal loading method is proposed to improve the robustness

of array against array steering vector (ASV) and covariance
matrix mismatches. However, it does not provide any guid-
ance to select the optimal diagonal loading factor. In [9], a
robust adaptive beamforming scheme is obtained which aims
to copewith the worst-case performance optimization, where
the array steering vector is assumed to lie in an uncertain
ellipsoidal set. It has been shown that this beamformer coping
with the worst-case belongs to a kind of diagonal loading
techniques, where the optimal diagonal loading factor can
be adjusted according to the ellipsoidal uncertainty set. �e
robustness of the worst-case beamformer has been greatly
improved compared with the simplest diagonal loading
method. However, the performance of the worst-case beam-
former is mainly determined by the uncertain parameter set,
and the uncertainty of the ASV mismatch is di�cult to be
known accurately in practice.

Robust adaptive beamforming based on steering vector
estimation has been proposed in [10]. To estimate the steering
vector, one needs to maximize the beamformer output power
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and guarantee the ASV does not converge to any interference
steering vectors or their linear combinations, which is a quad-
ratically constrained quadratic programming (QCQP) prob-
lem and can be converted to semide�nite programming
(SDP). Certainly, the global optimal solution can be found
e�ciently.

Recently, robust adaptive beamforming based on inter-
ference-plus-noise (IPN) covariance matrix reconstruction
and ASV estimation has been proposed in [11]; the IPN
covariance matrix was reconstructed by utilizing the Capon
spectrum to integrate over a region separated from the
SOI direction. �is method can achieve good performance
in the case of ASV direction error. However, this method
is ine
ective in the presence of array calibration errors,
especially in low signal-to-noise ratios (SNRs) [12, 13]. In [14],
a modi�ed method to reconstruct the IPN covariance matrix
has been given, where an annulus uncertainty set is used
to constrain the steering vectors of the interference. �en
integrate the Capon spectrumover the surface of the annulus,
by which the reconstructed IPN matrix without containing
the SOI can be obtained. Compared with method in [11],
this method can reduce the sensitivity of beamformers to
array calibration errors, but the performance improvement
is limited, especially at low SNRs.

In this paper, we propose a novel IPN covariance matrix
reconstructionmethod.�e estimated IPNcovariancematrix
consists of two parts. �e �rst part is obtained by utilizing
the method proposed in [11]. �e second part is obtained by
removing the SOI component from the sample covariance
matrix, where the SOI component is estimated through
eigendecomposition of the sample covariance matrix. �en
a weighted summation of two parts is used to reconstruct
the IPNmatrix, and the weighting parameter is related to the
desired signal energy compared with the interference energy.
�e detailed investigation of the parameters is also provided.
To further improve the performance of the proposed method
in low SNR, a hybrid method is proposed by using the
diagonal loading method in the IPN matrix reconstruction
to overcome overestimation of the signal subspace. In order
to estimate the actual ASV of the desired signal, the presumed
steering vector of SOI is subsequently corrected by using the
orthogonal constraint.�e estimatedASV is enforced to keep
orthogonal to the noise subspace, while avoiding convergence
to any of the interference steering vectors. �at means the
estimated ASV can only converge to the actual ASV of the
desired signal.

Simulation results show that the output signal-to-inter-
ference-plus-noise ratio (SINR) of the proposed adaptive
beamforming is closer to the optimal value than other pre-
viously developed robust beamforming methods in the pres-
ence of various array imperfections, especially when the array
calibration error exists. Performance improvement due to the
proposed method approach is signi�cant.

2. The Signal Model

We consider a uniform linear array (ULA) with � unidi-
rectional antennas with spacing �. We assume that there are

�+1 signals arriving from the directions ��, � = 0, 1, . . . ,�.
�e received data of the array X(�) can be expressed as

X (�) = AS (�) + N (�) , (1)

whereX(�) = [�1(�), �2(�), . . . , ��(�)]� is�×1 array obser-
vations data vector. � is the time index. S(�) = [	0(�), 	1(�),. . . , 	�(�)]�, and 	�(�) denotes the complex waveform of
the �th signal. Here, 	0(�) is considered as the SOI, while	�(�), 
 = 1, . . . ,�, are the interference.N(�) = [�1(�), �2(�),. . . , ��(�)]� is a vector of the additive white sensor noise,

A = [a(�0), a(�1), . . . , a(��)], where a(��) = [1, ���� , . . . ,
��(�−1)��]� represents a steering vector in the �� direction,
and � is the wave number that can be represented as � =2�� sin(��)/�.

We assume that the signal and noise are statistically
independent. �e output of the beamformer �(�) is given by

� (�) = w
	
X (�) , (2)

where w is the� × 1 optimal weight vector.
�e minimum variance distortionless response (MVDR)

beamformer is formulated as the following linearly con-
strained quadratic optimization problem:

min
w

w
	
R�+
w

subject to w
	
a0 = 1,

(3)

where a0 is the presumed ASV of the SOI, w is the optimal
weight vector, and R�+
 is the IPN covariance matrix. In
practice,R�+
 is commonly replaced by the sample covariance
matrix

R̂ = 1
�
�∑
�=1

X (�)X (�)	 , (4)

where � is the number of snapshots. �us, the optimal solu-
tion to (3) is

w = R̂
−1
a0

a
	
0 R̂
−1
a0
. (5)

�e solution (5) is commonly referred to as the sample
matrix inverse (SMI). �e output SINR of the beamformer is
de�ned as

SINR = �20 �����w	a0�����2
w	R�+
w

, (6)

where �20 is the power of the desired signal and a0 is the actual
ASV of the desired signal. �e standard MVDR beamformer
can produce sharp nulls at the direction of interference with
a good interference rejection performance and high output
SINR in the ideal case. However, in practice, the knowledge
of ASVs can be imprecise, which means the mismatch may
exist between the presumed and actual ASVs. In such a case,
the standard MVDR beamformer may attempt to suppress
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the desired signal as it was interference. �e performance of
the beamformer will degrade seriously.

Recently, in [11], the authors proposed a robust beam-
forming technique by reconstructing the IPN covariance
matrix, which uses the following Capon spectrum as an
estimate of the spatial power spectrum over all possible direc-
tions [15]. It is well known that the Capon spatial spectrum
estimator is

�̂ (�) = 1
a	 (�) R̂−1a (�) , (7)

where a(�) is the ASV associated with direction that has the
structure de�ned by the antenna array geometry. �ere are
also other candidate spatial spectrum estimators except (7).
Using the Capon spatial spectrum, the IPN covariancematrix

R̂�+
 can be reconstructed as

R̂�+
 = ∫
Θ
�̂ (�) a (�) a	 (�) ��

= ∫
Θ

a (�) a	 (�)
a	 (�) R̂−1a (�)��,

(8)

where Θ is the complement sector of Θ in the whole spatial
domain and Θ is an angular sector in which the desired
signal may be located. It can be observed from (8) that

R̂�+
 is obtained by collecting the information of interference

and noise in the sector Θ, and the desired signal was not
included in it as long as the direction of SOI is located inΘ. �at means that the e
ect of the desired signal has been
removed from the reconstructed covariance matrix, and thus
superior performance can be provided compared with the
existing robust beamforming method in the case of ASV
errors. However, this method is based on the premise that
the precise information about the array structure is known
exactly in advance, which is almost impossible in practice.
As a consequence, the method in [11] will be ine
ective in
the presence of array calibration errors, such as the gain
and phase perturbations and antenna location error. �e
performance of this method degraded seriously in the case of
array calibration error, especially in low input SNRs [12, 13].

3. The Proposed Algorithm

In this section, we propose a novel method to reconstruct the
IPN matrix. �e estimated IPN matrix consists of two parts.

�e �rst part is R̂�+
 which is expressed as in (8). As for the
second part, the desired signal component is estimated from

the eigenvectors of the sample covariance matrix R̂, and the

desired signal can be removed from R̂. �us, the rest of the
covariance matrix can be regarded as the second part of the
estimated IPNmatrix. A weighted summation of two parts is
used to reconstruct the IPNmatrix, and theweighting param-
eter is used to re�ect the desired signal energy compared with
the interference energy. With the reconstructed IPN matrix,
the presumed ASV of the desired signal is subsequently
corrected by solving the QCQP problem.

3.1. �e Basic Proposed Beamformer. �e sample covariance

matrix R̂ de�ned by (4) can be decomposed as

R̂ = �∑
�=1
�����	� = U�Λ �U	� + U
Λ 
U	
 , (9)

where ��, 
 = 1, . . . , �, are the eigenvalues of R̂ and ��, 
 =1, . . . , �, are the corresponding eigenvectors. U� = [�1, �2,. . . , ��+1] represents the signal-plus-interference (SPI) sub-
space, which is formed by the� interference plus a SOI.U
 =[��+2, ��+3, . . . , ��] represents the noise subspace, Λ � =
diag{�1, �2 . . . , ��+1} are the eigenvalues of the SPI, andΛ 
 = diag{��+2, ��+3, . . . , ��} are the eigenvalues of noise.
Aswe know, the eigenvectors ofU� and theASVs of the SPI lie
in the same subspace.What ismore, themismatch between a0
and a0 is not too large in fact. We project the presumed ASV
of the SOI a0 onto the eigenvectors to get�(
), 
 = 1, 2, . . . , �.�(
) can be expressed as

� (
) = ������	� a0�����2 (
 = 1, 2, . . . , �) . (10)

�e projections �(
) can be arranged in descending order,
as �[�] ≥ �[�−1] ≥ ⋅ ⋅ ⋅ ≥ �[1]. Meanwhile, the correspond-
ing eigenvectors can be arranged as �[�], �[�−1], . . . , �[1],
and the corresponding eigenvectors can be arranged as�[�], �[�−1], . . . , �[1]. It is important to note that the eigenvec-
tors �[�], �[�−1], . . . , �[1] and the corresponding eigenvalues�[�], �[�−1], . . . , �[1] are the same as in (9), but they have been
reordered according to �[�] ≥ �[�−1] ≥ ⋅ ⋅ ⋅ ≥ �[1].

As well known, the maximum of the projections �[�] is
obtained when �� is the eigenvector corresponding to the SOI
[12]. �at means the eigenvector corresponding to the SOI is
determined according to the projections�(
), 
 = 1, 2, . . . , �.
It is easy to see that �[�] is the eigenvector of SOI and �[�] is
the corresponding eigenvalue.We remove �[�] and �[�] from
R̂ and obtain U�+
 = [�[�−1], �[�−2], . . . , �[1]]. �en, we have

R�+
 = U�+
U
	
�+
. (11)

Since the SOI component has been removed from R̂, R�+

can be regarded as a IPN matrix. We now propose a new
method to estimate the IPN matrix by using the weighted
combination as follows:

R̃�+
 = �R̂�+
 +  (1 − �)R�+
, (12)

where � = �[�]/(�[1] + �[2] + ⋅ ⋅ ⋅ + �[�−1] + �[�]) and  =�[1] + �[2] + ⋅ ⋅ ⋅ + �[�−1]. We can see that the parameter� ∈ [0, 1], which can re�ect the SOI energy compared with
the interference energy. �e parameter � is used to adjust

the proportion of R̂�+
 and R�+
 according to the input SNR.

When the input SNR is high, � is close to 1, and R̃�+
 is mainly

composed of R̂�+
. When the input SNR is low, � is close to 0,

and R̃�+
 is mainly composed of R�+
.
Since the actual steering vector of the desired signal is dif-

�cult to obtain in practical applications and the mismatches
between the presumed and actual ASVs cause signi�cant
performance degradation, here, we propose a new ASV



4 International Journal of Antennas and Propagation

estimation method based on the orthogonal constraint. As
we all know, the actual ASVs of the signal and interference
should be orthogonal to the noise subspace, whichmeans that
we can obtain accurate ASV of the desired signal by using
orthogonal constraint under the conditionwhere the estimate
does not converge to any of the interference steering vectors.
Taking into consideration themismatch norm constraint, the
problem of estimating the ASV of the desired signal based
on orthogonal constraint can be formulated according to the
following optimization problem:

min
ã0

ã
	
0 U
U

	

 ã0 (13)

subject to ã
	
0 C̃ã0 ≤ Δ 0 (14)

""""ã0 − a0
""""2 ≤ #, (15)

where ã0 is the corrected ASV, C̃ = ∫Θ a(�)a	(�)��, Δ 0 =
max�∈Θa(�)C̃a	(�), ‖ ∙ ‖ denotes the Euclidean norm, and #
is the norm bound of the mismatches.�e objective function
(13) keeps the estimated ã0 within the signal or interference
limits, while the constraints (14) and (15) can guarantee that ã0
does not converge to any of the interference steering vectors.
�us, the accurate ASV of the desired signal can be obtained.

�is optimization problem can be e�ciently solved by
convex optimization toolbox [16]. Finally, with the corrected

ASV ã0 and estimated IPN matrix R̃�+
, the proposed beam-
former weighting vector can be calculated as

w̃ = R̃
−1
�+
ã0

ã
	
0 R̃
−1
�+
ã0

. (16)

3.2. �e Improvement of Basic Beamformer. As we all know,
the signal and noise subspaces of the eigencomposition
cannot be accurately separated in practice, especially when
the SNR is low. As a result, the performance of the basic
proposed beamformer is not so good when SNR ≤ −10 dB
due to the overestimation of signal subspace, which is an
inherent shortcoming of the subspace decomposition. How-
ever, the LSMI, worst-case, and SDP-RAB perform almost
equivalently when SNR ≤ −10 dB. �at is to say, we prefer
to use LSMImethod in low SNR due to its low computational
complexity and good performance.

We can use the parameter ' to re�ect the input SNR
directly, which can be expressed as

' = 10 log(�[�]�[1] ) . (17)

As we all know, if the input SNR is very small, ' < 0,
whereas, in high SNR situations, the large value of ' can be
achieved. Here, we give an example to discuss the relationship
between ' and the input SNR.

We consider a ULA of � = 10 antennas spaced at a half
wavelength distance. Additive noise is modeled as inde-
pendent complex Gaussian noise with zero mean and unit
variance. Two independent interference vectors are from
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Figure 1: Values of ' versus the SNRs.

the directions of 30∘ and 50∘, respectively. �e interference-
to-noise ratios (INRs) of the interference are 20 dB unless
otherwise is speci�ed. �e sample covariance matrix is
collected based on� = 50data snapshots.�eSOI is assumed
from the direction of 3∘. �e possible angular sector of the

SOI is set to Θ = [−5∘, 11∘], so the complement sector is Θ =[−90∘, −5∘)∪(11∘, 90∘] and the parameter # = 1.�edi
erence
between the presumed and actual positions of each antenna
element is modeled as a uniform random variable distributed
in the interval [−0.075�, 0.075�], where � represents the
wavelength. �e actual DOA of SOI is 5∘, which means the
DOA mismatch is 2∘. Figure 1 shows the values of ' versus
input SNRs.

We can observe from Figure 1 that the trend of ' agrees
well with the input SINR when the input SNR > −10 dB.
�e relationship between ' and SNR is almost linear. We
can see that the parameter ' can re�ect the change of input
SNR accurately as long as SNR is large enough. �at means�[�] and �[�] are the actual eigenvalue and eigenvector of the
desired signal, respectively. Certainly, the rest of the sample

covariance matrix U�+
 can be estimated as the IPN matrix.
When SNR < −10 dB, ' failed to re�ect the input SNR due to
the overestimation of signal subspace. Luckily, the traditional
diagonal loading method can achieve the same performance
as other methods in low SNRs. �us, the basic proposed IPN
reconstruction method can be extended as

R̃�+
 = {{{
�R̂�+
 +  (1 − �)R�+
 ' ≥ 0
R̂ + ;I ' < 0, (18)

where I is an identity matrix and ; is the diagonal loading

factor. Since R̂ + ;I is only used in low SNRs, we can set ;
as twice the noise power to obtain good performance. �e
improved proposed method can overcome the problem of
performance degradation in low SNRs. Figure 2 shows the
output SINRs versus input SNRs.
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Figure 2: Output SINR of beamformers versus input SNR for the
case of perturbations in antenna array geometry.

We can see that the improved reconstruction method
outperforms the original method signi�cantly in low SNRs,
which can get the high output SINR performance in both of
them at low and high SNR.

�e main computational complexity of the proposed
method is the IPN matrix reconstruction problem and the
QCQP problem.�e computational complexity of the former

is ?(@�2), where @ is the number of sampling points in Θ
during the reconstruction of covariance matrix. Generally,@ ≫ �. �e latter can be e�ciently obtained using interior

point methods, which has complexity of ?(�3.5). Conse-
quently, the overall complexity of our beamformer is?(@�2).
�e LSMI algorithm has a complexity of ?(�3). �e worst-
case beamforming and the beamformer of [10] (semide�nite
programming robust adaptive beamforming (SDP-RAB))

have at least the complexity of ?(�3.5). Generally speaking,
the proposed method has the same complexity with the
beamformer of [11] and beamformer of [14] but it can provide
signi�cantly more robust performance.

4. Simulation Results

In this section, the basic simulation conditions are the same
as above unless otherwise is speci�ed. �e proposed beam-
former is investigated and compared with the diagonally
loaded SMI (LSMI) [8], worst-case beamformer [9], the SDP-
RAB, and the beamformer of [11]. �e optimal parameterB = 0.3� is used for the worst-case beamformer, while the
diagonal loading factor of LSMI is selected as twice the noise
power. In all simulations, 200 Monte Carlo runs are used to
obtain each simulated point. CVX so�ware was used to solve
these convex optimization problems.
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Figure 3: Output SINR versus the input SNR in the case of look
direction mismatch.

Simulation Example 1 (signal look direction mismatch). In
this example, the performance of the proposed beamformer
against the random desired signal direction error is inves-
tigated. We assume that the random DOA estimation mis-
match of the SOI is uniformly distributed in [−4∘, 4∘] for
each simulation run. �at is to say, the DOA of the signal is
uniformly distributed in [−1∘, 7∘]. Here, the random DOAs
of the desired signal change from run to run but remain �xed
from snapshot to snapshot.

Figure 3 displays the mean output SINR of the tested
methods versus the SNR for � = 30. We can �nd that
the LSMI, worst-case, and SDP-RAB su
er a signi�cant per-
formance degradation in high SNR due to the presence of
desired signal component. It can be clearly seen that the pro-
posed beamformer outperforms the other beamformers. �e
performance of the proposed beamformers is always close
to the optimal SINR in a large range from−20 to 30 dB. In par-
ticular, it can be observed that the output SINR of proposed
beamformer is about 1.1 dB higher than beamformer of [11] at
SNR = 10, and the deviation from the optimal is only 0.3 dB.
In low SNR, the performance of the proposed beamformer is
the almost the same as the LSMI due to the same covariance
matrix.

Figure 4 displays the mean output SINR against the
number of snapshots for the �xed input SNR = 10 dB. We can
observe that the proposed beamformer enjoys higher output
SINR compared with other beamformers when the number
of snapshots is larger than 20. �e inaccurate estimation of

the SOI component in R̂ is the main reason why the pro-
posed beamformer su
ers performance degradation when
the number of snapshots is very small. Generally speaking,
the number of snapshots is larger than 20 in most of the
practical applications.
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Figure 4: Output SINR versus the number of snapshots in the case
of look direction mismatch.

Simulation Example 2 (desired ASV mismatch due to wave-
front distortion). In this simulation, we consider that the
desired signal ASV is distorted by the e
ects of wave prop-
agation in an inhomogeneous medium which is used in [10].
In particular, the independent-increment phase distortions
are accumulated from the components of the presumed ASV.
Assume that the phase increments are �xed in each simu-
lation runs and are independently chosen from a Gaussian
random generator with zero mean and standard deviation
0.04. Figure 5 shows the output SINR of the beamformers
versus input SNR for� = 30. Figure 6 shows the output SINR
of the beamformers versus the number of snapshots for �xed
input SNR = 10 dB.

It can be observed from these �gures that the output SINR
of LSMI decreased sharply with an increment of the input
SNR. �e proposed beamformer enjoys best performance
compared to other beamformers in the case of wavefront
distortion in thewhole SNR range. In particular, the deviation
from the optimal is only 0.3 dB when SNR = 10 dB. As
described above, the performance of the proposed method
degraded in small number of snapshots due to the inaccurate
estimation of the SOI component.

Simulation Example 3 (desired ASV mismatch due to coher-
ent local scattering). In this simulation, we consider that the
desired ASV is distorted by local scattering e
ects.�e actual
ASV is formed by several signal paths, which can be modeled
as

a = a0 +
�∑
�=1

exp (EF�) a (��) , (19)

where a0 denotes the direct path and H represent the number
of coherently scattered paths.�e 
th path a(��) is modeled as
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Figure 5: Output SINRs versus input SNR in the case of wavefront
distortion.
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Figure 6: Output SINRs versus the number of snapshots in the case
of wavefront distortion.

a plane wave which is incident on the array at the direction
of ��. �e parameter F� represents the path phases that are
independently and uniformly drawn from the interval [0, 2�]
in each simulation run. In this paper, we set H = 4. �� comes
from a uniform random generator withmean 3∘ and standard
deviation 1∘. Other simulation parameters are the same as
simulation experiment 2.

Figure 7 shows the output SINR of the beamformers
versus input SNR for � = 30. It can be seen from Figure 7
that the proposed beamformer enjoys highest output SINR
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Figure 7:Output SINRof beamformers versus input SNR in the case
of coherent local scattering.
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Figure 8: Output SINR versus the number of snapshots in the case
of coherent local scattering.

performance compared with other beamformers, which is
almost always close to the optimal value across a wide range
of SNRs. As it can be observed from the �gure, the output
SINR of the proposed beamformer exceeds beamformer of
[11] 1.3 dB when the input SNR is 10 dB. Figure 8 corresponds
to the output SINR performance versus the number of the
snapshots with input SNR = 10 dB. It can be observed that
the performance of the proposed beamformer signi�cantly
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Figure 9: Output SINR of beamformers versus input SNR for the
case of perturbations in antenna array geometry.

outperforms other beamformers except when the number of
the snapshots is smaller than 20.

Simulation Example 4 (e
ect of the error in the knowledge of
the antenna array geometry). In this simulation, we study the
e
ect of the error in the knowledge of antenna array geometry
on the performance of the tested beamformer.�e di
erence
between the presumed and actual positions of each antenna
element is modeled as a uniform random variable distributed
in the interval [−0.075�, 0.075�], where � represents the
wavelength. �e actual DOA of SOI is 5∘, which means the
DOA mismatch is 2∘.

Figure 9 shows the output SINR of the beamformers
versus input SNR for� = 50. It can be seen fromFigure 9 that
beamformer of [11] su
ers serious performance degradation
in low input SNR due to the inaccurate estimation of the
IPN covariance matrix. �at means it is ine
ective in the
presence of array calibration error. In low SNRs, the IPN

matrix R̃�+
 in our proposed beamformer ismainly composed

of R�+
, and R�+
 is more accurate than R̂�+
. As a result, the
proposed beamformer can provide a signi�cant output SINR
improvement over the beamformer of [11]. When the SNRs

are high, the IPN matrix R̃�+
 is mainly composed of R̂�+
,
and thus the performance of the proposed beamformer is
close to the beamformer of [11]. In general, we can observe
from Figure 9 that our beamformer achieves almost the best
performance when the SNR varies from −20 dB to 30 dB.
�at means the proposed beamformer can provide strong
robustness in the presence of the array calibration errors. At
SNR= 10 dB, the output SINR versus the number of snapshots
is shown in Figure 10. We can notice that the proposed
beamformer still outperforms the other beamformers, only
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Figure 10: Output SINR versus the number of snapshots for the case
of perturbations in antenna array geometry.

in the case when the number of the snapshots is smaller than
30.

Simulation Example 5 (mismatch due to arbitrary ASV
errors). In this simulation, we investigate the performance
of the proposed beamformer when arbitrary ASV errors are
considered. Here, the ASV mismatch is comprehensive and
arbitrary-type, which may be caused by direction errors,
calibration errors, gain and phase perturbations, and so on.
�e actual ASVs of are modeled as

a (�) = a (�) + ê, (20)

where a(�) is presumed to be ASVs and ê is a zero mean
complex random vector with the variance �2� . In this simu-
lation example, all the array imperfections are generated as

Gaussian variables with the given variance; �2� = 0.2.
�e output SINR of the beamformers versus input SNR

for � = 50 is displayed in Figure 11. We can notice that the
proposed beamformer enjoys an obvious performance
improvement compared to the tested beamformers. �at
means the proposed beamformer is e
ective against the
arbitrary ASV errors. In particular, the output SINR of the
proposed beamformer exceeds the beamformer of [14]
2.4 dB at SNR = 5 dB. �e output SINR versus the number
of snapshots for SNR = 10 dB is shown in Figure 12. We can
notice that the proposed beamformer still outperforms the
other beamformers, only in the case when the number of the
snapshots is smaller than 30.

In general, fewer snapshots mean worse performance for
certain beamformer, and some algorithms may outperform
the proposed method with a small number of snapshots.
We can �nd that the proposed beamformers enjoy the best
performance � ≥ 30. Summarizing, if the errors are only
on the ASV associated with the desired signal, meanwhile
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Figure 11: Output SINR of beamformers versus input SNR with
arbitrary ASV error.
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Figure 12: Output SINR of beamformers versus snapshots with
arbitrary ASV error.

the number of snapshots is very small (� ≤ 30); we may
prefer to use the beamformer of [11]. Otherwise, the proposed
beamformer is suggested; in particular, the array structure
information is imprecise.

5. The Analysis of the Parameters � and 
�e main idea of the proposed method is to estimate the
IPN matrix by using a weighted summation of two parts
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Figure 13: Output SINR versus the input SNR with di
erent recon-
structed IPN matrixes.

(R̂�+
 and R�+
), and the key point is to design proper param-
eters.We can see that parameters � and  are all related to the
eigenvalues. �us, it is a user parameter-free method. In this
section, an analysis of the parameters � and  as well as some
related simulation results is given.

First, we investigate the performance of R̂�+
 and R�+
,
respectively. It is worth noting that a very small positive

number is added to the diagonal ofR�+
 to guarantee thatR�+

is positive de�nite.

In this section, we consider the e
ect of the error in the
knowledge of antenna array geometry on the performance
of the beamformers. �e basic simulation conditions are the
same as the simulation experiment 4 unless otherwise is
speci�ed. �e INR of the interference is 20 dB unless other-
wise is speci�ed.

Figure 13 shows the output SINRs versus input SNRs with
di
erent reconstructed IPN matrixes. It can be seen from
Figure 13 that R̂�+
 su
ers serious performance degradation
in low input SNRs and enjoys good performance in high

input SNRs, while R�+
 is the opposite. Naturally, it is easy
to image that good performance can be obtained by using

R̂�+
 in high SNR, while using R�+
 in low SNR, respectively.

�e di�culty is how to choose the proper proportion of R�+

and R̂�+
 according to di
erent input SNRs. As we know,
the eigenvalues (��, 
 = 1, . . . , �) of the sample covariance

matrix R̂ can re�ect the power of signals and noise. However,
we can �nd the eigenvalue corresponding to the SOI (�[�])
according to the projections �(
), 
 = 1, 2, . . . , �, which
means we can use � = �[�]/(�[1]+�[2]+⋅ ⋅ ⋅+�[�−1]+�[�]) to
re�ect the input SNR indirectly. When the input SNR is high,� is close to 1 and 1 − � is close to 0. When the input SNR is
low, � is close to 0 and 1 − � is close to 1.
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Figure 14 displays the values of� and 1−� versus the input
SNRs. It can be seen fromFigure 14 that our assumption about� is right, so we try to reconstruct the IPN matrix by using

R̃�+
 = �R̂�+
 + (1 − �)R�+
. (21)

�is is the initial idea. We need to investigate the recon-
struction method through the same simulation experiment,
and the simulation results were shown in Figure 15.

We can clearly see from Figure 15 that performance of the
reconstructionmethod of (21) is not good enough.�e reason
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is thatR�+
 almost does notwork in low SNR.We also can �nd

that R̂�+
 canworkwell in high SNR.�us, we should increase

the proportional coe�cient of R�+
; hence, the IPN matrix is
expressed as

R̃�+
 = �R̂�+
 +  (1 − �)R�+
, (22)

where  is a positive number.  = 100.0,  = 1000.0,  =5000.0,  = 10000.0, and  = 20000.0 are used in the sim-
ulations. We investigate the reconstruction method through
the same experiment as simulation experiment 4, and the
results were shown in Figure 16.

It can be seen from Figure 16 that the performance is
not so good in low SNR when  is too small ( = 100.0, = 1000.0). We also can �nd that the output SINR decreased
signi�cantly at SNR = 20 dBwhen  is too large ( = 10000.0, = 20000.0). Obviously,  = 5000.0 enjoys the best per-
formance. We also �nd that the higher interference power is,
the larger  is needed, which can be observed from Figures 17
and 18.

Figure 17 shows the output SINRs versus input SNRs with
di
erent  for INR = 30 dB, and Figure 18 shows the output
SINRs versus input SNRswith di
erent for INR=40 dB.We
can see from Figures 17 and 18 that the optimal value of  is = 10000.0when the INR is 30 dB, and the optimal value of
is = 20000.0when the INR is 40 dB.�ismeans the optimal
value of  is positive to the interference power. It is because
the higher INR is, the smaller � is, so the larger proportional

coe�cient of R�+
 is needed. �is fact motivates us to design using the interference power. As we know, the eigenvalue of
the interference can be used to re�ect the interference power,
and thus the value �[1]+�[2]+⋅ ⋅ ⋅+�[�−1] can re�ect the power
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Figure 17: Output SINR versus the input SNR with di
erent 
(INR = 30 dB).
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of the interference (the power of the noise is small usually).
We set the design parameter  as

 = �[1] + �[2] + ⋅ ⋅ ⋅ + �[�−1]. (23)

It is worth noting thatR�+
 is the correlationmatrix of the
vectors which corresponds to the interference and noise. By
taking the eigenvalues into consideration to design  shown
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Figure 20: Output SINR versus the input SNR (INR = 30 dB).

in (23), the reconstructed IPN matrix will be more accurate.
Figure 19 shows  versus SNRs with various INRs.

We can observe from Figure 19 that the values of  are
almost the same in di
erent SNRs with the �xed INR. �e
values of  is positive to the INRs, which is consistent with
our assumption. What is more, we can �nd that  = 3500
when INR = 20 dB and  = 12000 when INR = 30 dB, which
are consistent with the simulation results demonstrated in
Figures 17 and 18.

E
ectiveness of our designed method is veri�ed on the
basis of the same simulation experiments. Figure 20 shows the
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Figure 21: Output SINR versus the input SNR (INR = 40 dB).

output SINRs versus input SNR for INR=30 dB, andFigure 21
shows the output SINRs versus input SNRs for INR = 40 dB.

We can see from Figures 20 and 21 that design parameters� and  can obtain good performance in di
erent situations.
�at means our method to design � and  is correct and
e
ective. In addition, to �nd a better approach to combine
the two parts is also an interesting problem, which is an open
topic for the people who are interested.

6. Conclusion

In order to further improve the robustness of adaptive beam-
former, a high performance robust adaptive beamformer in
the presence of various kinds of array imperfections was
proposed and its performance was veri�ed in detail. �e
proposed beamformer was realized via a modi�ed method to
reconstruct the IPN covariance matrix. �e IPN covariance
matrix comes from a weighted summation of two estimated
covariance matrices and the proportion of the two estimated
covariance matrices can be adjusted adaptively according to
the input SNR and interference power.�e simulation results
demonstrate that the proposed beamformer can provide a
superior performance against unknown arbitrary-type mis-
matches in a very large range of SNR.
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