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ABSTRACT 
We describe a novel technique of SPLICE for high-
performance robust speech recognition.  It is an efficient noise 
reduction and channel distortion compensation technique that 
makes effective use of stereo training data. In this paper, we 
present a version of SPLICE using the minimum-mean- square-
error decision, and describe an extension by training clusters of 
HMMs with SPLICE processing. Comprehensive results using 
a Wall Street Journal  large vocabulary recognition task  and 
with  a wide range of noise types demonstrate superior 
performance of the SPLICE technique over that under noisy 
matched conditions (13% word error rate reduction). The new 
technique is also shown to consistently outperform the spectral-
subtraction and the fixed CDCN noise reduction techniques. It 
is currently being integrated into the Microsoft MiPad, a new 
generation PDA prototype. 

1. INTRODUCTION 

Noise robustness is critical to virtually all types of speech 
recognition applications. There are two major classes of 
approaches to noise robustness: the feature-domain approaches  
(e.g., [1]) and model-domain ones (e.g.,[1]).  Since the model-
domain approaches aim at transforming the HMM parameters so 
as to match the noisy-speech statistics, their performance is 
typically limited by that achieved under a matched noisy 
condition. In our recent work [3], we showed that such a limit 
can be beaten by a novel feature-domain approach where noise 
reduction is performed on both training and test data and noise 
adaptive training is used to cover a wide range of anticipated 
noisy environments.  

In [3], we described a novel noise-reduction algorithm named 
SPLICE (Stereo-based Piecewise LInear Compensation for 
Environments) for the first time. SPLICE was shown to be 
consistently superior to spectral subtraction, especially for 
nonstationary noises. In this paper, we will present an 
improvement of SPLICE from the previous approximate-MAP 
decision rule to the current minimum mean square error 
(MMSE) rule.  We then describe an extension of SPLICE by 
training clusters of HMMs using the SPLICE-processed training 
data.  Comprehensive results from large vocabulary speech 
recognition on the WSJ task  with  a wide range of noise types 
will be presented in this paper to demonstrate high performance 
of the above newly developed techniques. In particular, we will 
show highly reliable results of using vector quantization (VQ) 
distortion as a metric to automatically detect the noise type and 

level for test utterances. This provides a key to solving practical 
problems associated with using the SPLICE algorithms in the 
deployment of robust speech recognizers.  

2. ASSUMPTIONS, LEARNING, AND 
MMSE RULE IN SPLICE  

SPLICE assumes that the noisy speech cepstral vector, y, is 
distributed according to a mixture of Gaussians. That is, it 
partitions the acoustic space in terms of the noisy speech, in 
contrast to some earlier algorithms (such as FCDCN [1]) that 
partitioned the acoustic space in terms of the clean speech 
cepstral vector x. One main advantage of this new partitioning is 
that it obtains a more uniform and desirable division of  the 
cepstral space directly for the observable data  y. In addition, the 
cepstral enhancement algorithm becomes slightly more efficient 
in computation. In the current implementation, the parameters of 
the mixture of Gaussians for y are determined by performing 
VQ followed by training each of the means and variances in the 
mixture using the training vectors classified into the 
corresponding VQ codewords.  

SPLICE further assumes that a clean speech cepstral vector x 
and its corresponding noisy speech counterpart y are piecewise 
linearly related according to 

( )( .yx y r y y r= + ≈ + i)                                                    (1) 

where i(y) is an index, to the correction vector r, of  the mixture 
component that y belongs to.  

Given these assumptions, the cepstral enhancement algorithm 
using the MMSE rule gives: 
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The posterior probability above is computed from Bayes rule 
using the trained parameters in the mixture of Gaussians for y. 
This MMSE rule generalizes the previous approximate-MAP 
rule in [3] by providing soft weights based on codeword 
(Gaussian component in the mixture) posterior probabilities 
rather than the 0-1 hard decisions. (We have found so far that 
the two decision rules perform similarly in speech recognition 
experiments.) 



All the correction vectors, yri( ), in Eqn. (2) are learned from  
stereo recordings for both the clean and noisy speech data. 
Minimizing the weighted square error of 
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we obtain the estimate: 
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where the summation is over all frames of the stereo training 
data.  

3. CLUSTERING SPLICE-HMMS  

To handle different types of noise, Noise Adaptive Training 
(NAT) was proposed in [3]. Like multi-style training, NAT 
pools all noise data together after applying noise reduction 
algorithms such as SPLICE,  and trains a set of models that are 
robust across a wide range of noise types and levels. NAT has 
been found to work well in many cases [3]. However, when the 
characteristics of noise are very different, the performance of 
NAT often degrades. Therefore, we propose to use clustering 
techniques to increase the resolution of models. 

In [5], subword-dependent speaker clustering was used to model 
speaker variation explicitly. It is different from traditional 
speaker clustering as the clustering on each subword or 
subphonetic unit could be different. This technique has been  
applied to improve the NAT model resolution in the current 
work. Since we know that the impact of noise and noise 
reduction on different phonetic units will be different, subword-
dependent clustering will be able to model noise-reduced speech 
more efficiently. 

The procedure for training subword-dependent NAT clustered 
models is as follows: 

1. Train a set of initial single Gaussian context-dependent 
model for each noise condition (type and level). 

2. For models under all noise conditions, use a bottom-up 
clustering technique to merge a pair of Gaussians  (in the 
same senone) with a minimum likelihood loss over all the 
training data; repeat until a desired number of instances of 
senones is achieved. 

3. Output the clustering information to a mapping table. The 
table contains the information of: a) how many instances 
each senone will be allocated and b) for each instance, 
which noise-conditioned data will contribute to it. 

4. Based on the clustering mapping table, context-dependent 
Gaussian mixture models are trained.  

The likelihood loss computation in the clustering step is carried 
out as follows. Assume we have two Gaussians 

1 11 ( , )G N= µ Σ with EM counts 1c and 2 22 ( , )G N= µ Σµ Σµ Σµ Σ with 

EM counts 2c , modeling the same set of data. When we merge 
these two Gaussians, the new Gaussian has the following EM 
count, mean, and variance:   
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The likelihood loss over the data due to merging 1G and 2G is: 
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For decoding with the subword-dependent clustered models, all 
instances of the subword unit is treated as parallel states in the 
topology. For example, with senone-dependent clustered models 
in our experiments here, all instances of the same senone are  
scored and the maximum likelihood is used as the score for that 
senone. Experimental results using this clustering technique will 
be presented in Section 4.4. 

4. ROBUST SPEECH  RECOGNITION 
EXPERIMENTS 

A series of large vocabulary speech recognition experiments are 
carried out to evaluate the various improved and extended 
SPLICE methods discussed above. The baseline system uses a 
version of the Microsoft continuous-density HMMs (Whisper) 
[1][3]. The system uses 6000 tied HMM states and 20 
Gaussians per state. All experiments use two-mean cepstrum 
normalization. The recognition task is 5000-word vocabulary, 
continuous speech recognition in the Wall Street Journal (WSJ) 
database. A fixed, bigram language model is used. The training 
set consists of 16,000 female sentences, and the test set of 167 
female sentences. The noise added to the clean  WSJ training 
and test speech data is collected from a number of live locations 
and sources, including restaurants, airport, lobby, noisy offices, 
cafeteria conversations (babbles), coughing, keyboard typing, 
water running, plane engine, plane cabinet, telephone dialing, 
etc. The baseline error rate under the clean acoustic environment 
is 4.87%. 

4.1 Automatic detection of noise type and level 
 In contrast to the FCDCN method  [1] where the acoustic-space 
partitioning is performed for clean speech (x) via VQ, the 
current  SPLICE method does the partitioning for noisy speech 
(y). This requires that multiple codebooks or multiple Gaussian 
mixture models be trained for noisy speech corrupted by 
separate types and levels of noise. If  the noise type and level 
can be reliably detected from the noisy data alone, then a most 
appropriate VQ codebook (or a mixture model) can be used for 
carrying out the SPLICE processing. This concept is similar to 
that of MFCDCN described in [6]. 

The simplest technique for the noise detection is to use the VQ 
distortion measure to score the noisy speech with  unknown 
noise type and level against a set of pre-trained codebooks and 
to choose the noise type and level based on the minimum VQ 
distortion. Such distortion values, with means and standard 



deviations (in parentheses) computed over 167 test sentences, 
are shown in Table 1. They encompass three types of noise 
(babble, office, and white noise) with two to three different SNR 
levels, and are randomly extracted from a much larger set of 
similar results we have obtained.  It is observed that the 
minimum VQ distortion (bold figures) is very reliable for 
discriminating different noise types. Within a noise type, 
discrimination of noise levels is also reasonably good. This 
method of using the VQ distortion metric for automatic noise 
type and level detection is much more efficient than other 
methods using a multiple-state HMM for the noise statistics [7]. 
 
        Code 
            book 
Test data      

babble 
10 dB 

babble 
20 dB 

Office
-10 dB

Office 
0 dB 

White 
10 dB 

White
15 dB

White
20 dB

Babble 
SNR 10 dB 

0.19 
(0.02) 

0.29 
(0.03) 

1.21 
(0.06)

1.11 
(0.06) 

1.42 
(0.08) 

1.21 
(0.11)

1.11
(0.12)

Babble 
20 dB 

0.56 
(0.12) 

0.25 
(0.02) 

1.39 
(0.09)

0.99 
(0.08) 

1.60 
(0.13) 

1.36 
(0.08)

1.07
(0.08)

Office 
-10 dB 

1.13 
(0.05) 

1.16 
(0.04) 

0.15 
(0.02)

0.21 
(0.03) 

1.94 
(0.11) 

1.85 
(0.11)

1.83
(0.11)

Office 
0 dB 

1.11 
(0.05) 

0.96 
(0.04) 

0.39 
(0.04)

0.21 
(0.02) 

1.90 
(0.14) 

1.74 
(0.10)

1.56
(0.09)

White 
10 dB 

1.40 
(0.26) 

1.23 
(0.09) 

4.07 
(0.19)

3.78 
(0.18) 

0.09 
(0.07) 

0.10 
(0.07)

0.14
(0.07)

White 
15 dB 

1.28 
(0.28) 

1.16 
(0.09) 

3.63 
(0.22)

3.39 
(0.21) 

0.16 
(0.06) 

0.11 
(0.07)

0.13
(0.07)

White 
20 dB 

1.13 
(0.29) 

1.06 
(0.10) 

3.20 
(0.27)

2.97 
(0.24) 

0.42 
(0.07) 

0.20 
(0.06)

0.14
(0.06)

Table 1. VQ distortion (including standard deviation in 
parentheses) for each noisy test set against a range of 
VQ codebooks trained on a data set corrupted by three 
types of noise. 

4.2 Results for in-task SPLICE processing 
In-task SPLICE processing refers to the scenario where it is 
assumed that the noise type corrupting the test data has also 
been contained in the training set, both subject to the same 
SPLICE processing. Cross-task SPLICE processing does not 
require such an assumption. Given the highly reliable noise type 
and level detection using the VQ distortion metric already 
shown, the above “in-task” assumption should not cause serious 
difficulties in practical applications of  SPLICE.  
 
In Table 2 we list word error rates (percent accuracy WER)  for 
14 types of natural noise (column 1) with fixed SNR of 10 dB 
using three types of in-task SPLICE processing (columns 4-6): 
 
a) SPLICE test-only --- clean speech models are used to 

score SPLICE-processed test data;  
b) SPLICE-SPLICE --- both training and test data are 

subject to the same SPLICE processing; and 
c) NAT-SPLICE --- multi-style training is used to train one 

single set of HMMs using all in-task, SPLICE-processed 
training data.  

 
Note that for SPLICE-SPLICE, many sets of HMMs (one set for 
each noise condition) are needed, and for NAT-SPLICE only 
one set is needed. 

For comparison purposes, we also list in Table 2 the WERs for 
the mismatched (column 2) and noisy matched (column 3) 
conditions. While the performance obtained with SPLICE 
processing only on the test data is short of that under the noisy 
matched condition, the use of the HMMs trained with SPLICE-
processed data (SPLICE-SPLICE) significantly outperforms the 
latter. (In only one out of the 14 cases SPLICE-SPLICE is 
slightly worse.) Table 2 also shows that the use of  NAT for the 
SPLICE-processed data across all 14 noise types gives very 
small performance degradation compared with the 
corresponding SPLICE-SPLICE performance. This suggests 
that as long as a sufficiently rich set of noisy speech data are 
used for SPLICE processing and NAT training, the recognizer 
remains robust for an unknown noise and channel distortion 
environment. 
 
           Exps 
Noise 

Mis- 
match 

Noisy 
match 

SPLICE 
test-only 

SPLICE- 
SPLICE 

NAT 
SPLICE 

PhoneDial 6.99 6.46 6.68 6.17 6.13 
Keyboard 16.80 10.41 11.37 7.50 7.94 
Coughing 22.71 20.31 21.34 12.63 12.78 
Engine 30.17 9.34 19.05 9.23 10.34 
Cafeteria 12.44 6.79 9.60 6.87 7.83 
LoudRoom 31.06 9.64 15.58 8.83 9.60 
Airport 31.31 10.56 18.65 10.01 11.19 
Restaurant 12.22 7.75 9.64 7.16 7.46 
QuietRoom 14.81 7.02 10.97 6.87 8.27 
Lobby 32.50 10.75 16.51 9.79 10.52 
Water 33.79 10.08 13.70 8.46 9.25 
Talk 36.15 12.08 23.79 11.23 11.89 
PhoneDial2 6.90 6.83 6.46 5.58 6.24 
Engine2 28.77 9.71 21.16 9.64 11.34 
AVERAGE 22.62 9.84 14.61 8.57 9.34 

Table 2. Table 2: WERs (%) for 14 types of natural 
noise (SNR= 10 dB) using various types of SPLICE 
processing. 

For these 14 types of noise, we also evaluated a spectral 
subtraction (SS) technique, with its implementation described in 
[3], in place of SPLICE in an otherwise identical manner. For 
both the SS-test-only and SS-SS scenarios, the SS are shown to 
produce significantly more errors than its SPLICE counterpart. 
Similar comparisons were made between SPLICE and FCDCN 
(described in [2] where acoustic partitioning was performed in 
the space of clean speech). The WER for SPLICE-SPLICE is 
14.5% lower than that for the FCDCN-FCDCN scenario. 

4.3 Results for cross-task SPLICE processing 
Despite the practical value of the SPLICE technique provided 
by the success of in-task NAT and by high accuracy of noise 
type detection, a most rigorous test of the SPLICE strength is to 
perform cross-task experiments where the noise types in the 
training set are disjoint from those used to corrupt the test set. 



We designed such experiments where the first eight types of 
noise in Table 2 plus five additional types (synthetic white 
noise, office computer noise, babble sound, and roller coaster 
noise, which were described in [3]) were used to corrupt the 
training data. The remaining six types of noise in Table 2 were 
used to corrupt the test data. The WERs in the cross-task NAT-
SPLICE experiments are listed in column 3 of Table 3, in 
comparison with the corresponding  in-task WERs in column 2. 
Rather small performance degradation is observed going from 
in-task testing to cross-task testing. This demonstrates a highly 
desirable property of the SPLICE technique. 

Table 3. WER comparisons for (A) in-task and cross-
task (columns 2 & 3) noise adaptive training using 
SPLICE   processing; and (B) one-cluster versus two-
cluster HMMs (columns 3 & 4) both with the same 
SPLICE processing. 

4.4 Results for clustered HMMs with SPLICE 
processing 
The experimental results for the clustering technique described 
in Section 3 are shown in the last column of Table 3. The 
number of clusters in the experiment is two. An average of 5% 
error rate reduction is achieved going from one cluster (NAT, 
column 2) to two clusters. The cross-task clustered models 
provide a performance close to the in-task non-clustered 
counterpart. The price paid for the 5% performance 
improvement is twice of the memory storage for the HMMs and 
slightly higher cost in decoding. 

5. DISCUSSION AND CONCLUSION 

This paper describes our continuing work on noise robust 
speech recognition for the purpose of deploying the recognizers 
in realistic acoustic environments. The results reported in this 
paper have demonstrated that our new feature-domain 
processing technique of SPLICE has beaten the performance 
limit set by the conventional wisdom --- that is, “the best option 
when dealing with noisy speech would be to retrain the system 
so as to create  the matched noisy condition”.  Our SPLICE 
experiments have produced an average of 19% lower WER than 
this “limit”. In addition to the performance gain, our SPLICE 
technique is shown to be “practical” (via the use of the 
automatic noise type detection and of NAT). In contrast, the 

matched noisy condition retraining is unattainable in practice 
because the noise properties are typically unknown in advance. 

As mentioned, one key issue for practical deployment of 
SPLICE is the choice of an appropriate VQ codebook for the 
SPLICE processing.  The results shown in Section 4.1 for 
automatic noise type detection resolved this issue. While these 
results were obtained at the sentence level, an on-line version 
[4] showed similarly good results. Further, while all the results 
reported in this paper were obtained from the noisy speech data 
created by adding natural noise into the clean speech waves, use 
of live recorded noisy speech in our MiPad device have also 
produced similarly good results (for details see [4]). 

The SPLICE technique presented in this paper is expected to 
revive a class of stereo-based techniques [2] for robust speech 
recognition, which have been put into dormancy for many years. 
Two critical innovations responsible for this potential revival 
are the ideas of modeling residual noise from noise reduction 
and of noise adaptive training, both of which were presented in 
[3] recently. 

While analyzing why the SPLICE technique has been able to 
consistently produce superior performance over that under the 
matched noisy condition, we observed that the MFCC 
distributions in the HMMs trained using the SPLICE-processed 
data are often  significantly more separated across confusable 
phone classes than distributions trained with (matched) noisy 
data. This suggests that by explicitly forcing phonetic 
discrimination in training the HMMs jointly with training the 
SPLICE parameters, we can further enhance the phonetic 
discriminative power of our  robust recognizer and hence its 
performance under adverse acoustic environments.  
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         Exps   
Noise 
Type 

In-task 
NAT- 

SPLICE 

Cross-task 
NAT-

SPLICE 

Cross-task 
Cluster- 
SPLICE 

QuietRoom 8.27 8.60 9.05 

Lobby 10.52 11.30 10.34 

Water 9.25 9.27 9.05 

Talk 11.89 14.00 12.56 

PhoneDial2 6.24 5.98 6.35 

Engine2 11.34 12.22 10.93 

AVE. 9.59 10.23 9.71 


