Next Abstract

High-Performance Scalable Base-4 Fast Fourier Transform Mapping

Dr. J. Greg Nash, Centar
(jgregnash@centar.net, www.centar.net)

A novel, scalable parallel FFT architecture mapping is described here that supports transform lengths which aren't powers of two or four, that provides low latency as well as high throughput, that can do both 1-D and 2-D discreet Fourier transforms (DFTs), that is ideally suited to today's complex FPGA architectures, that possesses all the regularity and design simplicity of systolic arrays and that is naturally suited to a parameterized HDL form. Its algorithmic underpinnings are based on an observation that with suitable permutations, the DFT coefficient matrix can be partitioned into regular blocks of smaller "base-4" matrices (equivalent to a decimation in time and frequency) [1]. From this new base-4 matrix DFT description we have derived a new latency and throughput optimal base-4 FFT architecture. It combines the performance of traditional radix4 "pipelined FFTs" with the design and implementation simplicity of systolic arrays, and yet is versatile.

An N point DFT is defined by

$$
\begin{equation*}
Z[k]=\sum_{n=1}^{N} X[n] e^{-j(2 \pi / N)(k-1)(n-1)} k=1,2 \ldots N \quad \text { or } \quad Z=C X \tag{1}
\end{equation*}
$$

where $X[n]$ are the time domain input values, $Z[k]$ are the frequency domain outputs and C is a coefficient matrix containing elements $W_{N}^{k n}=e^{-2 j \pi(n-1)(k-1) / N}$. In order to transform C into the desired base- $b(b=4)$ format it is necessary to find a permutation matrix P that reorders X and Z according to

$$
\begin{align*}
X_{b} & =P\left[X_{1} X_{2} X_{3} X_{4} X_{5} \ldots X_{N-3} X_{N-2} X_{N-1} X_{N}\right]^{t} \tag{2}\\
& =\left[X_{1} X_{1+N / 4} X_{1+N / 2} X_{1+3 N / 4} X_{\left.2 \ldots X_{N / 4} X_{N / 2} X_{3 N / 4} X_{N}\right]^{t}} .\right.
\end{align*}
$$

and $Z_{b}=P Z$. With this value of P, C can be transformed into $C_{b}=P C P^{t}$, so that $Z_{b}=C_{b} X_{b}$. This transformation allows C_{b} to be written as an $(N / b) \times(N / b)$ array of $b x b$ blocks, each block $C_{b}[i, j]$ specified by $C_{b}[i, j]=W_{M}[i, j]^{*} c_{D((j-1) \bmod (b))+1} C_{((i-1) \bmod (b))+1}$ where $c_{D i}=c_{i}^{t} I$ with c_{i} a b-element vector, C_{i} is a $b x b$ matrix, each row being c_{i}^{t}, and $W_{M}[i, j]$ is an element in the $(N / b) \times(N / b)$ matrix,

$$
W_{M}=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & \ldots \tag{3}\\
1 & W^{1} & W^{2} & W^{3} & \ldots \\
1 & W^{2} & W^{4} & W^{6} & \ldots \\
1 & W^{3} & W^{6} & W^{9} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

With this block reformulation it is possible to factor (1) into

$$
\begin{align*}
& Y=W_{M} \bullet C_{M 1} X \\
& Z=C_{M 2} Y^{t} \tag{4}
\end{align*}
$$

where " \bullet " in (4) corresponds to an element by element multiply [2]. In (4) $C_{M 1}$ and $C_{M 2}$ contain N / b^{2} submatrices $C_{B}=\left[c_{1}\left|c_{2}\right| \ldots \mid c_{b}\right]^{t}$ with the form $C_{M 1}=\left[C_{B}^{t}\left|C_{B}^{t}\right| \ldots\right]^{t}$ and $C_{M 2}=\left[C_{B}\left|C_{B}\right| \ldots\right]$, and Z, X have been redefined as follows:

$$
Z=\left[\begin{array}{lll}
Z_{1} & & Z_{N / 4} \tag{5}\\
Z_{1+N / 4} & \ldots & Z_{N / 2} \\
Z_{1+N / 2} & & Z_{3 N / 4} \\
Z_{1+3 N / 4} & & Z_{N}
\end{array}\right], X=\left[\begin{array}{lll}
X_{1} & & X_{N / 4} \\
X_{1+N / 4} & \ldots & X_{N / 2} \\
X_{1+N / 2} & & X_{3 N / 4} \\
X_{1+3 N / 4} & & X_{N}
\end{array}\right]
$$

For base-4 designs $(b=4), c_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], c_{2}=\left[\begin{array}{r}1 \\ -j \\ -1 \\ j\end{array}\right], c_{3}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ -1\end{array}\right], c_{4}=\left[\begin{array}{r}1 \\ j \\ -1 \\ -j\end{array}\right]$

and C_{B} describes a radix-4 decimation in time butterfly.
By comparing (4) with (1), the computational advantages of the manipulation leading to the FFT algorithm form (4) for base-4 designs are readily evident. In (4) the matrix products $C_{M 1} X$ and $C_{M 2} Y^{t}$ involve only exchanges of real and imaginary parts plus additions because the elements of $C_{M 1}$ and $C_{M 2}$ contain only ± 1 or $\pm j$, whereas the product $C X$ in (1) requires complex multiplications. Also, the size of the coefficient matrix W_{M} in (4) is $(N / b) \times(N / b)$ vs. the $N \times N$ size of C in (1); consequently the number of overall direct multiplications in (4) is reduced by a factor of x16 compared to the direct form (1) on which past systolic FFT implementations are based. Note that distribution of the elements in $C_{M 1}$ and $C_{M 2}$ does not impose significant bandwidth requirements because full complex numbers are not used.

The overall processing for an M point FFT is done using the factorization $M=N_{l} N_{2}$, followed by a series of "row/column" 1-D FFTs on N_{l} and N_{2}. Each of these 1-D FFTs is performed by a secondary factorization into 2-D FFTs according to (4) and again using a "row/column" approach. The first equation in (4) is equivalent to performing a "column" FFT and the second equation is equivalent to performing a "row" FFT. In between there is a "twiddle factor" multiplication by the W^{p} in $W_{M}(3)$. Because both the row and column FFTs in the secondary factorization (4) are broken down entirely into sets of 4-point DFTs, they can be done without complex multiplications. Also, the usual matrix transpose in between column and row DFTs is not necessary.

A systolic array architecture mapping was performed using the mathematical formulation (4) as input to the mapping tool SPADE [2]. Behavioral simulations of this architecture using a register transfer level simulator verify its operation. Performance estimates of the FFT computation times are shown in Table 1 for a variety of transform sizes.

Size (points)	T (cycles/DFT)	T ($\boldsymbol{\mu s e c} / \mathbf{D F T})$	Multipliers	Adders
256	210	1.0	4	32
512	274	1.3	8	64
1024	658	3.1	8	64
2048	914	4.3	16	128
4096	2322	10.8	16	128
8192	3346	15.6	32	256

Table 1. Performance estimates and arithmetic requirements for various transform sizes (16-bits fixed point) based on a partially populated Altera Stratix EP1S60 "medium speed grade" FPGA chip. In this table "T" is the throughput. (Computational latency for each transform size above is approximately equal to the inverse of the throughput time/DFT).
Although Table 1 only shows transforms that are powers of two, the base-4 FFT lengths are not limited to powers of two or four. For example, the base-4 FFT is capable of 29 transform lengths from 256 to $65,536 \mathrm{vs}$. only 5 possible lengths for a radix-4 pipelined FFT.

The single biggest drawback to past use of systolic arrays has been the substantial arithmetic hardware that is normally required because systolic approaches use a number of complex multipliers equal to the size of the transform. Thus, a 1024point DFT would require 1024 complex multipliers, compared to the 8 multipliers shown in Table 1 for the base- 4 FFT.

Traditional "pipelined" FFTs, although computationally efficient, are difficult to map into VLSI because in general each butterfly, delay/commutator, and twiddle factor ROM has a different circuit design and/or its operation varies from stage to stage. Also, the butterflies do not usually work with 100% resource efficiency, the designs are limited to transform lengths that are powers of two or four, they are architecturally suited only for a 1-D DFT or 2-D DFT but not both, and it is difficult to build scalable designs because of their irregularity and large granularity. Finally, the latency (time to do the first DFT in a series) is low because the pipeline has to be "filled" first. Alternatively, the base-4 FFT architecture is comprised of simple, identical, small processing elements (PEs), arranged in regular arrays with each PE operating at near 100% efficiency. Performance figures in Table 1 compare very well to larger custom ASIC designs and recent FPGA implementations.
[1] C. C. W. Hui, T. J. Ding, J. V. McCanny, and R. F. Woods, "A New FFT Architecture and Chip Design for Motion Compensation based on Phase Correlation," Proc. Int. Conf. on Application Specific Systems, Architectures and Processors (ASAP 96), pp. 83-92.
[2] J. Greg Nash, "Hardware Efficient Base-4 Systolic Architecture for Computing the Discrete Fourier Transform," Proc. 2002 IEEE Workshop on Signal Processing Systems (SIPS'02), pp. 87-92.

High Performance Scalable Base-4 Fast Fourier Transform Mapping

Greg Nash
Centar

2003 High Performance Embedded Computing Workshop

www.centar.net

Outline

- Base-4 transformation for calculating DFT
- Mapping methodology
- Direct form DFT architecture
- FFT architecture
- Performance

Discreet Fourier Transform

- Mathematical form:

$$
\begin{aligned}
& Z[k]=\sum_{n=1}^{N} X[n] e^{-I(2 \pi / N)(k-1)(n-1)} k=1,2 \ldots N
\end{aligned}
$$

- Matrix form $Z=C X$: ($N=16$)
- Multiplications $=\mathbf{N}^{\mathbf{2}}$

$$
W=e^{-2 \pi I(n-1)(k-1) / N}
$$

Base-4 Matrix Equation

- Find reordering permutation \mathbf{P}

$$
X_{b=4}=P\left[\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4} \\
X_{5} \\
\vdots \\
X_{N-3} \\
X_{N-2} \\
X_{N-1} \\
X_{N}
\end{array}\right]=\left[\begin{array}{l}
X_{1} \\
X_{1+N / 4} \\
X_{1+N / 2} \\
X_{1+3 N / 4} \\
X_{2} \\
\vdots \\
X_{N / 4} \\
X_{N / 2} \\
X_{3 N / 4} \\
X_{N}
\end{array}\right], \text { and } Z_{b=4}=P Z
$$

- DFT matrix equation becomes

$$
X_{b}=C_{b} Z_{b}
$$

where

$$
C_{b}=P C P^{t}
$$

Base-4 Coefficient Matrix

$$
\begin{aligned}
& d 1=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; d 2=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -I & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & I
\end{array}\right] ; d 3=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] ; d 4=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -I & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -I
\end{array}\right]
\end{aligned}
$$

Base-4 DFT Matrix Equation (Compact Form)

- Form for $\mathbf{N}=16$

$$
\begin{gathered}
Y=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & W & W^{2} & W^{3} \\
1 & W^{2} & W^{4} & W^{6} \\
1 & W^{3} & W^{6} & W^{9}
\end{array}\right] \cdot\left(\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -I & 1 & I \\
1 & -1 & 1 & -1 \\
1 & I & 1 & -\boldsymbol{I}
\end{array}\right]\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
x_{5} & x_{6} & x_{7} & x_{8} \\
x_{9} & x_{10} & x_{11} & x_{12} \\
x_{13} & x_{14} & x_{15} & x_{16}
\end{array}\right]\right) \\
{\left[\begin{array}{cccc}
z_{1} & z_{2} & z_{3} & z_{4} \\
z_{5} & z_{6} & z_{7} & z_{8} \\
z_{9} & z_{10} & z_{11} & z_{12} \\
z_{13} & z_{14} & z_{15} & z_{16}
\end{array}\right]=\left[\begin{array}{rrrrr}
1 & 1 & 1 & 1 \\
1 & -I & 1 & I \\
1 & -1 & 1 & -1 \\
1 & I & 1 & -I
\end{array}\right] Y^{\boldsymbol{t}}}
\end{gathered}
$$

- General Form

$$
\begin{aligned}
& Y=W_{M}^{t} \cdot C_{M 1} X_{b} \\
& Z_{b}=C_{M 2} Y^{t}
\end{aligned}
$$

$$
\boldsymbol{Z}_{\boldsymbol{b}}=\left[\begin{array}{lll}
\boldsymbol{Z}_{1} & & \boldsymbol{Z}_{N / 4} \\
\boldsymbol{Z}_{1+N / 4} & \ldots & \boldsymbol{Z}_{N / 2} \\
\boldsymbol{Z}_{1+N / 2} & & \boldsymbol{Z}_{3 N / 4} \\
\boldsymbol{Z}_{1+3 N / 4} & & \boldsymbol{Z}_{N}
\end{array}\right], \quad \boldsymbol{X}_{\boldsymbol{b}}=\left[\begin{array}{lll}
\boldsymbol{X}_{1} & & \boldsymbol{X}_{N / 4} \\
\boldsymbol{X}_{1+N / 4} & \ldots & \boldsymbol{X}_{N / 2} \\
\boldsymbol{X}_{1+N / 2} & & \boldsymbol{X}_{3 N / 4} \\
\boldsymbol{X}_{1+3 N / 4} & & \boldsymbol{X}_{N}
\end{array}\right]
$$

Base-4 DFT Equation Characteristics

- Coefficient matrices represent series of 4-point transforms:

$$
\left.\begin{array}{ll}
C_{M 1} & =\left[C_{B}^{t}\left|C_{B}^{t}\right| \ldots\right]^{t} \\
C_{M 2} & =\left[C_{B}\left|C_{B}\right| \ldots \cdot\right.
\end{array}\right] \quad \text { where } \quad C_{B}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -I & -1 & I \\
1 & -1 & 1 & -1 \\
1 & I & -1 & I
\end{array}\right] .
$$

\Rightarrow Takes advantage of reduced arithmetic with radix $r=4$ butterfly, but transform length not limited to $N=r^{m}$
\Rightarrow Transform length must be divisible by 16

- $C_{M 1}$ and $C_{M 2}$ contain only elements from the set $\{1,-1,-I, I\}$
$\Rightarrow C_{M 1} X$ and $C_{M 2} Y^{t}$ only involve complex additions
- Twiddle factor matrix W_{M} is of size $N / 4 \times N / 4$ rather than $N \times N$
$\Rightarrow x 16$ fewer multiplies than original DFT equation $(Z=C X)$

Systolic Array Example: Matrix Multiply

- Algorithm:

$$
c[i, j]=\sum_{k=1}^{N} d[i, k]^{*} e[k, j] \quad \text { for } \quad 1 \leq i, j, k \leq N
$$

- Space-time mapping: computations at $\{i, j, k\}$ "mapped" to indices \{time, x,y\}

"Space-Time" View

Systolic Array: Each intersection point corresponds to a "processing element" (PE) that receives data from its neighbors, does a multiply-add, and passes the result to adjacent PEs, once per time cycle.

Find Systolic Architecture Using SPADE

tSymbolic Parallel Algorithm Development Environment

SPADE Functionality

- SPADE accepts input statements of the affine form

$$
\begin{aligned}
& x\left(A_{x} I+a_{x}\right) \text { depends on } y\left(B_{y} I+b_{y}\right) \quad \text { for all } I \in V(I) \\
& \quad \text { e.g., } x(2 i, j+1) \equiv x\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
i \\
j
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
\end{aligned}
$$

- Where $A_{x}, B_{y} / a_{x}, b_{y}$ are integer matrices/vectors, S is the dimension of the algorithm space and the "depends on" includes commutative and associative operators: min, max, Σ, Π
- SPADE finds latency optimal systolic designs subject to constraints imposed by scheduling, localization, reindexing, and allocation
- Secondary objective functions used to select architectures are minimum area, maximum regularity and minimum network bandwidth

Systolic Array Designs: Minimum Area

- Latency (cycles) $=\mathbf{N} / \mathbf{2}+8$
- Six unique designs
- Throughput (cycles/block) = N/4 + 6
- W_{M} mapped to same space-time location as Y
- IM1 and IM2 variables (SPADE created) perform matrix multiply/adds

Systolic Array Designs: Maximum Regularity

- Two unique designs found
- Throughput and latency optimal
- Latency (cycles) $=\mathbf{N} / 2+8$
- Throughput (cycles/block) = N/4 +1
- W_{M} mapped to same space-time position as Y

variable	T	t
Y	$\left[\begin{array}{cc}1 & 1 \\ 0 & 0 \\ -1 & 0\end{array}\right]$	[500 0]
IM1	$\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right]$	[050]
CM1	$\left[\begin{array}{rrr}1 & 1 \\ 0 & -1 \\ -1 & 0\end{array}\right]$	[050]
X	$\left[\begin{array}{cc}1 & 1 \\ -1 & 0 \\ 0 & 0\end{array}\right]$	[050]
Z	$\left[\begin{array}{rr}-1 & 1 \\ 1 & 0 \\ 0 & -1\end{array}\right]$	[19-5 0]
IM2	$\left[\begin{array}{rrrr}1 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right]$	[10-5 0]
CM2	$\left[\begin{array}{cc}-1 & 1 \\ 1 & 0 \\ 0 & 0\end{array}\right]$	[10-5 0]

Systolic Arrays ($\mathrm{N}=32$)

$$
\begin{aligned}
& \boldsymbol{Y}=W_{M}^{t} \cdot C_{M 1} X_{b} \\
& \boldsymbol{Z}_{b}=\boldsymbol{C}_{\boldsymbol{M} \mathbf{2}} \boldsymbol{Y}^{\boldsymbol{t}}
\end{aligned}
$$

Space-time view (N=32)

Systolic Architecture to Array Design

Systolic Architecture (N=32)

Array Design ($\mathrm{N}=32$)

\square Processing Element 1: 2 registers, 1 adder
\square Multiplier
Processing Element 2: 2 registers, 1 adder
$\uparrow \rightarrow$ Data flow bus

Altera Stratix FPGA: DFT Mapping

1D FFT via Factorization

- Factor $N=N_{1}{ }^{*} N_{2}$
- Creat a 2-D matrix with N_{1} rows by N_{2} columns, (assume $N_{1}>N_{2}$),
- Do $N_{2} 1$-D "column" DFTs followed by N_{1} "row" DFTs:

$$
\begin{aligned}
& \boldsymbol{Y}=\boldsymbol{W}_{\mathrm{N} 1} * \boldsymbol{X} \\
& \boldsymbol{Y}^{\prime}=\boldsymbol{W}_{\mathrm{N}} \cdot \boldsymbol{Y} \\
& \boldsymbol{Z}=\boldsymbol{Y}^{\prime} * \boldsymbol{W}_{\mathrm{N} 2}
\end{aligned}
$$

- If $N_{1} \approx N_{2}$ then (linear) array size can be reduced from $\mathrm{O}\left(N_{1} N_{2}\right)$ to $O\left(N_{1}\right)$ with minimal effect on throughput:
- Cycles for $N / 4$ array (no factorization) $=N / 4+1$
- Cycles for $N_{1} / 4$ array $=N_{1}\left(N_{1} / 4+1\right)+N_{1}\left(N_{1} / 4+1\right)+$ twiddle mult $\approx N / 2$
- Can do 2-D DFT by not performing twiddle multiplication W_{N}
- Use base-4 DFT mapping to do all row/column DFTs

Base-4 Factorization Architecture

- $N=1024$ points
- $N=N_{1} * N_{2}$
- $N_{1}=N_{2}=32$
- Uses both of the two optimal systolic designs
- Twiddle multiplications not shown
- Throughput/latency optimal except for interstage delay

Two DFT Architectures Combined

- Shown for $\boldsymbol{N}=1024$ points
- $N=N_{1}{ }^{*} N_{2}$
- $N_{1}=N_{2}=32$
- $M=512$ bits (16 bit word)
$\square \quad$ Processing Element 1: 2 registers, 1 adder
[] Memory
\square Multiplier
\square Processing Element 2: 2 registers, 1 adder
$\downarrow \leftrightarrow$ Local data flow bus

$1^{\text {st }}$ to $2^{\text {nd }}$ Stage Data Formatting Problem (32 Point DFT)

- DFT data positions of $1^{\text {st }}$ stage output sequences

$\left[\begin{array}{cccc}1 & 9 & 17 & 25 \\ 2 & 10 & 18 & 26 \\ 3 & 11 & 19 & 27 \\ 4 & 12 & 20 & 28 \\ 5 & 13 & 21 & 29 \\ 6 & 14 & 22 & 30 \\ 7 & 15 & 23 & 31 \\ 8 & 16 & 24 & 32\end{array}\right]\left[\begin{array}{cccc}1 & 9 & 17 & 25 \\ 2 & 10 & 18 & 26 \\ 3 & 11 & 19 & 27 \\ 4 & 12 & 20 & 28 \\ 5 & 13 & 21 & 29 \\ 6 & 14 & 22 & 30 \\ 7 & 15 & 23 & 31 \\ 8 & 16 & 24 & 32\end{array}\right] \quad \cdots=\left[\begin{array}{cccc}1 & 9 & 17 & 25 \\ 2 & 10 & 18 & 26 \\ 3 & 11 & 19 & 27 \\ 4 & 12 & 20 & 28 \\ 5 & 13 & 21 & 29 \\ 6 & 14 & 22 & 30 \\ 7 & 15 & 23 & 31 \\ 8 & 16 & 24 & 32\end{array}\right]$
- Desired data positions for input sequences to $2^{\text {nd }}$ stage

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2 \\
2 & 2 & 2 & 2
\end{array}\right] \cdots\left[\begin{array}{llll}
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32 \\
32 & 32 & 32 & 32
\end{array}\right]
$$

Interstage Data Formatting via "On-the-Fly" Permutations

- New code with matrix rotation steps

```
for n to N
        for j to N/4 do
            for k to N/4 do
                Y[j,k] := WM[j,k]*add(CM1[j,i]*X[i,k],i=1..b) od;
                for k to b do
                Z[k,j] := add(CM2[k,i]*Y[j,i],i=1..N/4) od;
                WM := matrix_rotate(WM,"up");
                CM1 := matrix__rotate(CM1,"down");
                if n mod(b)=0 then CM2 := matrix_rotate(CM2,"down") fi;
    od;
od;
```

- New DFT first stage output sequences

$$
\left[\begin{array}{rrrl}
1 & 9 & 17 & 25 \\
2 & 10 & 18 & 26 \\
3 & 11 & 19 & 27 \\
4 & 12 & 20 & 28 \\
5 & 13 & 21 & 29 \\
6 & 14 & 22 & 30 \\
7 & 15 & 23 & 31 \\
8 & 16 & 24 & 32
\end{array}\right]\left[\begin{array}{rrrr}
2 & 10 & 18 & 26 \\
3 & 11 & 19 & 27 \\
4 & 12 & 20 & 28 \\
5 & 13 & 21 & 29 \\
6 & 14 & 22 & 30 \\
7 & 15 & 23 & 31 \\
8 & 16 & 24 & 32 \\
1 & 9 & 17 & 25
\end{array}\right]\left[\begin{array}{rrrr}
3 & 11 & 19 & 27 \\
4 & 12 & 20 & 28 \\
5 & 13 & 21 & 29 \\
6 & 14 & 22 & 30 \\
7 & 15 & 23 & 31 \\
8 & 16 & 24 & 32 \\
1 & 9 & 17 & 25 \\
2 & 10 & 18 & 26
\end{array}\right] \quad \cdots\left[\begin{array}{cccc}
25 & 1 & 9 & 17 \\
26 & 2 & 10 & 18 \\
27 & 3 & 11 & 19 \\
28 & 4 & 12 & 20 \\
29 & 5 & 13 & 21 \\
30 & 6 & 14 & 22 \\
31 & 7 & 15 & 23 \\
32 & 8 & 16 & 24
\end{array}\right]
$$

1-D DFT Performance Estimates

FFT Size	Throughput (cycles/DFT)	Throughput $(\mu \mathrm{sec} / \mathrm{DFT})$	Multipliers	Adders
256	210	1.0	4	32
512	274	1.3	8	64
1024	671	3.1	8	64
2048	914	4.3	16	128
4096	2322	10.8	16	128
8192	3346	15.6	32	256

Based on:

- Register transfer level behavioral simulation of 1024 point DFT
- Partially populated layout
- Timing analysis using Altera Stratix EP1S60 FPGA chip
- 16 bit fixed-point word length

Latency

- Base-4 FFT pipeline depth is nominally $N_{1} / 4+9 \ll N$

- Latency (cycles) $\cong 1 /$ Throughput $^{\left(\text {cycles }^{-1}\right)}$ when complete X available

Partitioning to Scale Computations to Application

- Use an array "section" to perform partially processed result

Fully Parallel Array

- Partial results accumulated at output
- Memory needed scales with partition size

Partitioned Array

Non-Square 2-D Inputs $\left(N_{1} \neq N_{2}\right)$

- Example: 512-point FFT $\left(N_{1}=32, N_{2}=16\right)$
- On-the-fly permutations for correct data placement

Columns: Compute 16 32-point DFTs

Rows: Compute 2 sets of 16 16-point DFTs

Example Resource Usaget: 1024 Point DFT

Resource	Logic Cells	Flip flops	M512	M4K	DSP Blocks	Global Clocks
Usage	14717	9200	64	32	8	1
Percent Resources	26	15	11	11	44	17

${ }^{\dagger}$ Altera Stratix EP1S60F1508C6 FPGA chip (16 bit fixed point)

Base-4 DFT Architecture Summary

- High performance 1-D and 2-D DFTs
- Based on latency and throughput optimal parallel circuits
- Transform size not restricted to $N=\boldsymbol{r}^{m}$
- Latency $\approx 1 /$ throughput when entire input block available
- Architecture is scaleable and easily parameterized
- Design is simple, regular, local and synchronous
- Fast convolutions naturally supported
- Natural partitioning strategies exist
- Pseudo-linear architecture good fit to latest generation of FPGA chips
- "Automatic Generation of Systolic Array Designs For Reconfigurable Computing", Proc. Engineering of Reconfigurable Systems and Algorithms (ERSA '02), International Multiconference in Computer Science, Las Vegas, Nevada, June 24, 2002.
- General description of SPADE
- Faddeev algorithm (Find $C X+D$, given $A X=B, X$ is unknown)
- Constraint Directed CAD Tool For Automatic Latency-Optimal Implementations, SPIE ITCom 2002, Boston, Massachussetts, July 29-August 2, 2002.
- Use of constraints as a filter of systolic designs
- 2-D Discreet Fourier transforms using base-4 architecture

