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A novel, scalable parallel FFT architecture mapping is described here that supports transform lengths which aren't 

powers of two or four, that provides low latency as well as high throughput, that can do both 1-D and 2-D discreet Fourier 
transforms (DFTs), that is ideally suited to today's complex FPGA architectures, that possesses all the regularity and design 
simplicity of systolic arrays and that is naturally suited to a parameterized HDL form.  Its algorithmic underpinnings are based 
on an observation that with suitable permutations, the DFT coefficient matrix can be partitioned into regular blocks of smaller 
"base-4" matrices (equivalent to a decimation in time and frequency) [1].  From this new base-4 matrix DFT description we 
have derived a new latency and throughput optimal base-4 FFT architecture. It combines the performance of traditional radix-
4 "pipelined FFTs" with the design and implementation simplicity of systolic arrays, and yet is versatile.  
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and bZ P Z==== .  With this value of P, C can be transformed into t
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With this block reformulation it is possible to factor (1) into 
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where " •••• " in (4) corresponds to an element by element multiply [2].   In (4) 1MC and 2MC contain 2/N b submatrices 
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and BC  describes a radix-4 decimation in time butterfly.   
By comparing (4) with (1), the computational advantages of the manipulation leading to the FFT algorithm form (4) for 

base-4 designs are readily evident.  In (4) the matrix products 1MC X  and 2
t

MC Y  involve only exchanges of real and 

imaginary parts plus additions because the elements of 1MC and 2MC contain only 1±±±± or j±±±± , whereas the product CX in (1) 

requires complex multiplications.  Also, the size of the coefficient matrix MW  in (4) is ( / ) ( / )N b N b××××  vs. the N N×××× size of 
C in (1); consequently the number of overall direct multiplications in (4) is reduced by a factor of x16 compared to the direct 
form (1) on which past systolic FFT implementations are based.  Note that distribution of the elements in 1MC and 2MC  does 
not impose significant bandwidth requirements because full complex numbers are not used.    

The overall processing for an M point FFT is done using the factorization M=N1N2 , followed by a series of 
"row/column" 1-D FFTs on N1 and  N2.  Each of these 1-D FFTs is performed by a secondary factorization into 2-D FFTs 
according to (4) and again using a "row/column" approach.  The first equation in (4) is equivalent to performing a "column" 
FFT and the second equation is equivalent to performing a "row" FFT.  In between there is a "twiddle factor" multiplication 
by the Wp in WM (3).  Because both the row and column FFTs in the secondary factorization (4) are broken down entirely into 
sets of 4-point DFTs, they can be done without complex multiplications. Also, the usual matrix transpose in between column 
and row DFTs is not necessary.  

A systolic array architecture mapping was performed using the mathematical formulation (4) as input to the mapping 
tool SPADE [2]. Behavioral simulations of this architecture using a register transfer level simulator verify its operation.  
Performance estimates of the FFT computation times are shown in Table 1 for a variety of transform sizes.    

 
Size (points) T (cycles/DFT) T (µsec/DFT) Multipliers Adders 

256 210 1.0 4 32 
512 274 1.3 8 64 
1024 658 3.1 8 64 
2048 914 4.3 16 128 
4096 2322 10.8 16 128 
8192 3346 15.6 32 256 

Table 1. Performance estimates and arithmetic requirements for various transform sizes (16-bits fixed point) based on a partially 
populated Altera Stratix EP1S60 "medium speed grade" FPGA chip.  In this table "T" is the throughput. (Computational latency for each 

transform size above is approximately equal to the inverse of the throughput time/DFT). 

Although Table 1 only shows transforms that are powers of two, the base-4 FFT lengths are not limited to powers of two or 
four.  For  example, the base-4 FFT is capable of 29 transform lengths from 256 to 65,536 vs. only 5 possible lengths for a 
radix-4 pipelined FFT. 

The single biggest drawback to past use of systolic arrays has been the substantial arithmetic hardware that is normally 
required because systolic approaches use a number of complex multipliers equal to the size of the transform.  Thus, a 1024-
point DFT would require 1024 complex multipliers, compared to the 8 multipliers shown in Table 1 for the base-4 FFT. 

  Traditional "pipelined" FFTs, although computationally efficient, are difficult to map into VLSI because in general 
each butterfly, delay/commutator, and twiddle factor ROM has a different circuit design and/or its operation varies from stage 
to stage. Also, the butterflies do not usually work with 100% resource efficiency, the designs are limited to transform lengths 
that are powers of two or four, they are architecturally suited only for a 1-D DFT or 2-D DFT but not both, and it is difficult 
to build scalable designs because of their irregularity and large granularity.  Finally, the latency (time to do the first DFT in a 
series) is low because the pipeline has to be "filled" first.  Alternatively, the base-4 FFT architecture is comprised of simple, 
identical, small processing elements (PEs), arranged in regular arrays with each PE operating at near 100% efficiency.  
Performance figures in Table 1 compare very well to larger custom ASIC designs and recent FPGA implementations. 

  
[1] C. C. W. Hui, T. J. Ding, J. V. McCanny, and R. F. Woods, "A New FFT Architecture and Chip Design for Motion 

Compensation based on Phase Correlation," Proc. Int. Conf. on Application Specific Systems, Architectures and 
Processors (ASAP 96), pp. 83-92. 

[2] J. Greg Nash, "Hardware Efficient Base-4 Systolic Architecture for Computing the Discrete Fourier Transform," Proc. 
2002 IEEE Workshop on Signal Processing Systems (SIPS'02), pp. 87-92. 



High Performance Scalable Base-4 Fast Fourier
Transform Mapping

Greg Nash
Centar

2003 High Performance Embedded Computing Workshop

www.centar.net



Outline

• Base-4 transformation for calculating DFT

• Mapping methodology

• Direct form DFT architecture

• FFT architecture

• Performance



Discreet Fourier Transform 

• Mathematical form:

• Matrix form Z=CX:
(N=16)

• Multiplications = N 2
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Base-4 Matrix Equation
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Base-4 Coefficient Matrix
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Base-4 DFT Matrix Equation
(Compact Form)

1 2 3 42 3
5 6 7 82 4 6
9 10 11 12
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13 14 15 16
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•

• Form for N=16

• General Form
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Base-4 DFT Equation Characteristics

• Coefficient matrices represent series of 4-point transforms:

⇒ Takes advantage of reduced arithmetic with radix r = 4 butterfly, but 
transform length not limited to N = r m

⇒ Transform length must be divisible by 16

• CM 1 and CM 2 contain only elements from the set 
⇒ CM 1 X and CM 2Yt only involve complex additions

• Twiddle factor matrix WM is of size N/4 x N/4 rather than N x N
⇒ x16 fewer multiplies than original DFT equation (Z=CX)

1 | | ...
tt t

M B BC C C =   

[ ]2 | | ...M B BC C C=
1 1 1 1
1 1
1 1 1 1
1 1

B
I IC
I I

 
− − = − − − 

where

{1, -1, - , }I I



Systolic Array Example: Matrix Multiply

Project 
along
time axis

d

e

c

1
[ , ] [ , ]* [ , ] 1 , ,

N

k
c i j d i k e k j for i j k N

=

= ≤ ≤∑
• Algorithm:

• Space-time mapping: computations at {i,j,k} “mapped” to indices 
{time,x,y}  

Systolic Array: Each intersection point corresponds
to a “processing element” (PE) that receives data
from its neighbors, does a multiply-add, and passes 
the result to adjacent PEs, once per time cycle. 

“Space-Time” View



Find Systolic Architecture Using SPADE
†

1
2

t
M Mt
M

Y W C X
Z C Y
= ⋅
=

Mathematical
Algorithm

Simulator,
Graphical
Outputs

for j to N/4 do
for k to N/4 do

Y[j,k]:=WM[j,k]*add(CM1[j,i]*X[i,k],i=1..4);
od;
for k to 4 do

Z[k,j] := add(CM2[k,i]*Y[j,i],i=1..N/4);
od

od;

Input
Code

Automatic
Search for Space-Time

Transformations, T

Architectural 
Constraints

Objective FunctionsVariable position,
area, regularity, bandwidth

†Symbolic Parallel Algorithm Development Environment
{ }, , , 1, 2,

time i
x T j
y k

X Y Z CM CM WM

v
v

v

   
=   

      

∈



SPADE Functionality

( ) ( ) ( )
2 0 0. ., (2 , 1) ( )0 1 1

x x y yx A I a depends on y B I b for all I V I
ie g x i j x j

+ + ∈
     + ≡ +          

• SPADE accepts input statements of the affine form

– Where Ax,By/ax,by are integer matrices/vectors, S is the dimension of 
the algorithm space and the “depends on” includes commutative and 
associative operators: min, max, Σ, Π

• SPADE finds latency optimal systolic designs subject to constraints 
imposed by scheduling, localization, reindexing, and allocation

• Secondary objective functions used to select architectures are 
minimum area, maximum regularity and minimum network bandwidth



Systolic Array Designs: Minimum Area

Y

X

Z

CM1

IM2

IM1

CM2

CM2

Space-Time Views (N=64)

Example Systolic Array Views (N=64)

X

Y

Z

CM1

X1

2

= ⋅
=

b

b

t
M M

t
M

Y W C X
Z C Y

Multipliers  Adders 

N/4=16

4

• Latency (cycles) = N/2 + 8
• Six unique designs
• Throughput (cycles/block) = N/4 + 6
• WM mapped to same space-time location as Y
• IM1 and IM2 variables (SPADE created) perform matrix 

multiply/adds



Systolic Array Designs: Maximum Regularity

Space-time view (N=32)

Adders AddersMultipliers

Systolic Arrays (N=32)

X

Z

CM2

Y

IM1

CM2

X

Z

Y

CM1

CM2

Z

CM1

X

Y

CM2

Transformations

CM1

1

2

= ⋅
=

b

b

t
M M

t
M

Y W C X
Z C Y

 variable T t 
 

Y 
 

1 1
0 0
1 0

 
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IM1 

 
1 1 1
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0 1 0

 
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CM1 

 
1 1
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1 0

 
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X 

 
1 1
1 0
0 0

 
− 
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Z 

 
1 1
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0 1
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 
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CM2 

 
1 1
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0 0

− 
 
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[10 –5 0] 

Z

N/4 = 8

4
• Two unique designs found
• Throughput and latency optimal
• Latency (cycles) = N/2 + 8
• Throughput (cycles/block) = N/4 +1
• WM mapped to same space-time position 

as Y



Systolic Architecture to Array Design

Systolic Architecture (N=32) Array Design (N=32)

Input Data (X) Coefficients (CM2)

Multiplier

Processing Element 2:   2 registers, 1 adder

Data flow bus

Processing Element 1:   2 registers, 1 adder

Y ZCM1

X CM2

⇒



Altera Stratix FPGA: DFT Mapping

Systolic DFT 
Array



1D FFT via Factorization

• Factor N = N1 * N2

• Creat a 2-D matrix with N1 rows by N2 columns, (assume N1 > N2),
• Do N2 1-D “column” DFTs followed by N1 “row” DFTs:

• If N1 ≈ N2 then (linear) array size can be reduced from O( N1 N2 ) to 
O(N1) with minimal effect on throughput:

– Cycles for N/4 array (no factorization) = N/4 + 1
– Cycles for N1 /4 array = N1 (N1 /4 + 1) + N1 (N1 /4 + 1) + twiddle mult ≈ N/2

• Can do 2-D DFT by not performing twiddle multiplication WN

• Use base-4 DFT mapping to do all row/column DFTs

N1

N

N2

*

*

Y W X
Y W Y
Z Y W

=
′ = •

′=



Base-4 Factorization Architecture 

• N = 1024 points
• N = N1 * N2

• N1 = N2 = 32
• Uses both of the 

two optimal 
systolic designs

• Twiddle 
multiplications not 
shown

• Throughput/latency 
optimal except for 
interstage delay

X

Z

Y

CM1

CM2

CM1

X

Y

CM2

Z

DFT Output

2 “column” 
DFTs

2 “row” 
DFTs

Z

X

X

CM2

Z

Z

CM1

CM1

Y

Two Space-Time Views
(only two of N1 iterations shown)

DFT Input



Two DFT Architectures Combined

• Shown for N = 1024 points

• N = N1 * N2

• N1 = N2 = 32

• M = 512 bits (16 bit word)

Input Data (X)
(N words)

Coefficients
(CM2)

Output Data (Z)
(N Words)

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

Multiplier

Processing Element 2:   2 registers, 1 adder

Local data flow bus

Processing Element 1:   2 registers, 1 adder

M Memory



1st to 2nd Stage Data Formatting Problem
(32 Point DFT)

• DFT data positions of 1st stage output sequences

• Desired data positions for input sequences to 2nd stage
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Interstage Data Formatting via “On-the-Fly” 
Permutations

• New code with matrix rotation steps

• New DFT first stage output sequences

for n to N 
  for  j to N/4 do  
    for k to N/4 do  
         Y[j,k] := WM[j,k]*add(CM1[j,i]*X[i,k],i=1..b) od; 

    for k to b do  
       Z[k,j] := add(CM2[k,i]*Y[j,i],i=1..N/4) od; 

          WM := matrix_rotate(WM,"up"); 
          CM1 := matrix_rotate(CM1,"down"); 
          if n mod(b)=0 then CM2 := matrix_rotate(CM2,"down") fi; 
  od; 
od; 
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1-D DFT Performance Estimates

FFT 
Size 

Throughput 
(cycles/DFT)

Throughput 
(µsec/DFT) Multipliers Adders

256 210 1.0 4 32 
512 274 1.3 8 64 
1024 671 3.1 8 64 
2048 914 4.3 16 128 
4096 2322 10.8 16 128 
8192 3346 15.6 32 256 

 

Based on:

• Register transfer level behavioral simulation of 1024 point DFT

• Partially populated layout

• Timing analysis using Altera Stratix EP1S60 FPGA chip

• 16 bit fixed-point word length



Latency

• Base-4 FFT pipeline depth is nominally N1 /4+ 9 << N

• Latency (cycles) ≅ 1/Throughput (cycles-1) when complete X 
available

Coefficients (CM2)

Output Data (Z)

N1 /4

9

longest path (red)



Partitioning to Scale Computations to Application

• Use an array “section” to perform 
partially processed result

• Partial results accumulated at output

• Memory needed scales with partition size

Input Data (X) Coefficients (CM2)

Output Data (Z)

Input Data (X) Coefficients (CM2)

+ + + +

Output Data (Z)

⇒

Fully Parallel Array Partitioned Array



Non-Square 2-D Inputs (N1 ≠ N2)

• Example: 512-point FFT (N1 = 32, N2 = 16)
• On-the-fly permutations for correct 

data placement

Input Data (X)
16 32-point DFTs

Coefficients
(CM2)

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

N1/4

Coefficients
(CM2)

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

Output Data (Z)
(16 16-point DFTs)

Output Data (Z)
(16 16-point DFTs)

N2/4

N2/4

Rows: Compute 2 sets of 16 16-point DFTsColumns: Compute 16 32-point DFTs 



Example Resource Usage†: 1024 Point DFT

† Altera Stratix EP1S60F1508C6 FPGA chip (16 bit fixed point)

 

 
Resource 

 
Logic 
Cells 

 
Flip 

flops 

 
M512 

 
M4K 

 
DSP 

Blocks

 
Global 
Clocks

 
 
Usage 

14717 9200 64 32 8 1 

 
 
Percent 
Resources 

26 15 11 11 44 17 

 

 



Base-4 DFT Architecture Summary 

• High performance 1-D and 2-D DFTs
• Based on latency and throughput optimal parallel circuits
• Transform size not restricted to N = rm

• Latency    1/throughput when entire input block available
• Architecture is scaleable and easily parameterized
• Design is simple, regular, local and synchronous
• Fast convolutions naturally supported
• Natural partitioning strategies exist
• Pseudo-linear architecture good fit to latest generation of 

FPGA chips

≈



More Information at www.centar.net

• “Automatic Generation of Systolic Array Designs For
Reconfigurable Computing” , Proc. Engineering of 
Reconfigurable Systems and Algorithms (ERSA '02), 
International Multiconference in Computer Science, Las 
Vegas, Nevada, June 24, 2002.
– General description of SPADE
– Faddeev algorithm (Find CX+D, given AX=B, X is 

unknown)

• Constraint Directed CAD Tool For Automatic Latency-Optimal 
Implementations, SPIE ITCom 2002, Boston, Massachussetts, 
July 29-August 2, 2002.
– Use of constraints as a filter of systolic designs
– 2-D Discreet Fourier transforms using base-4 architecture
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