

High-Performance Scalable Base-4 Fast Fourier Transform Mapping

Dr. J. Greg Nash, Centar
(jgregnash@centar.net, www.centar.net)

A novel, scalable parallel FFT architecture mapping is described here that supports transform lengths which aren't

powers of two or four, that provides low latency as well as high throughput, that can do both 1-D and 2-D discreet Fourier
transforms (DFTs), that is ideally suited to today's complex FPGA architectures, that possesses all the regularity and design
simplicity of systolic arrays and that is naturally suited to a parameterized HDL form. Its algorithmic underpinnings are based
on an observation that with suitable permutations, the DFT coefficient matrix can be partitioned into regular blocks of smaller
"base-4" matrices (equivalent to a decimation in time and frequency) [1]. From this new base-4 matrix DFT description we
have derived a new latency and throughput optimal base-4 FFT architecture. It combines the performance of traditional radix-
4 "pipelined FFTs" with the design and implementation simplicity of systolic arrays, and yet is versatile.

An N point DFT is defined by

 (2 /)(1)(1)
1

[] [] 1,2...
N j N k n

n
Z k X n e k Nπ

∑∑∑∑
− − −− − −− − −− − −

====
= == == == = or Z CX==== (1)

where X[n] are the time domain input values, Z[k] are the frequency domain outputs and C is a coefficient matrix containing

elements 2 (1)(1) /kn j n k N
NW e

π− − −− − −− − −− − −
==== . In order to transform C into the desired base-b (b=4) format it is necessary to find a

permutation matrix P that reorders X and Z according to

1 2 3 4 5 3 2 1

1 1 / 4 1 / 2 1 3 / 4 2 / 4 / 2 3 / 4

[...]
[...]

t
b N N N N

t
N N N N N N N

X P X X X X X X X X X
X X X X X X X X X

− − −− − −− − −− − −

+ + ++ + ++ + ++ + +

====
====

. (2)

and bZ P Z==== . With this value of P, C can be transformed into t
bC PCP==== , so that b b bZ C X==== . This transformation

allows Cb to be written as an (/) (/)N b N b×××× array of bxb blocks, each block [,]bC i j specified by

((1) mod()) 1 ((1) mod()) 1[,] [,]*b M D j b i bC i j W i j c C− + − +− + − +− + − +− + − +==== where t
Di ic c I==== with ic a b-element vector, iC is a bxb matrix, each

row being t
ic , and [,]MW i j is an element in the (/) (/)N b N b×××× matrix,

1 2 3

2 4 6

3 6 9

1 1 1 1
1
1
1

M

W W W
W W W W

W W W

====

    
    
    
    
    
    
        

. (3)

With this block reformulation it is possible to factor (1) into

1

2

M M
t

M

Y W C X
Z C Y

= •= •= •= •

====
 (4)

where " •••• " in (4) corresponds to an element by element multiply [2]. In (4) 1MC and 2MC contain 2/N b submatrices

[[[[]]]]1 2| | ... | t
B bC c c c==== with the form 1 | | ...

tt t
M B BC C C====     

     and [[[[]]]]2 | | ...M B BC C C==== , and Z, X have been redefined as

follows:

/ 4 / 41 1

1 / 4 1 / 4/ 2 / 2
1 / 2 1 / 23 / 4 3 / 4
1 3 / 4 1 3 / 4

,
N N

N NN N
N NN N
N NN N

Z XZ X
Z XZ XZ XZ XZ X
Z XZ X

+ ++ ++ ++ +
+ ++ ++ ++ +
+ ++ ++ ++ +

            
            = == == == =            
                        

. (5)

For base-4 designs (b=4), 1 2 3 4

1 11 1
1 1, , ,1 11 1
1 1

j jc c c c

j j

−−−−−−−−= = = == = = == = = == = = =− −− −− −− −
−−−−−−−−

                        
                        
                        

                                                

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 AUG 2004

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
High-Performance Scalable Base-4 Fast Fourier Transform Mapping

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Centar

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM001694, HPEC-6-Vol 1 ESC-TR-2003-081; High Performance Embedded Computing
(HPEC) Workshop (7th)., The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

28

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

and BC describes a radix-4 decimation in time butterfly.
By comparing (4) with (1), the computational advantages of the manipulation leading to the FFT algorithm form (4) for

base-4 designs are readily evident. In (4) the matrix products 1MC X and 2
t

MC Y involve only exchanges of real and

imaginary parts plus additions because the elements of 1MC and 2MC contain only 1±±±± or j±±±± , whereas the product CX in (1)

requires complex multiplications. Also, the size of the coefficient matrix MW in (4) is (/) (/)N b N b×××× vs. the N N×××× size of
C in (1); consequently the number of overall direct multiplications in (4) is reduced by a factor of x16 compared to the direct
form (1) on which past systolic FFT implementations are based. Note that distribution of the elements in 1MC and 2MC does
not impose significant bandwidth requirements because full complex numbers are not used.

The overall processing for an M point FFT is done using the factorization M=N1N2 , followed by a series of
"row/column" 1-D FFTs on N1 and N2. Each of these 1-D FFTs is performed by a secondary factorization into 2-D FFTs
according to (4) and again using a "row/column" approach. The first equation in (4) is equivalent to performing a "column"
FFT and the second equation is equivalent to performing a "row" FFT. In between there is a "twiddle factor" multiplication
by the Wp in WM (3). Because both the row and column FFTs in the secondary factorization (4) are broken down entirely into
sets of 4-point DFTs, they can be done without complex multiplications. Also, the usual matrix transpose in between column
and row DFTs is not necessary.

A systolic array architecture mapping was performed using the mathematical formulation (4) as input to the mapping
tool SPADE [2]. Behavioral simulations of this architecture using a register transfer level simulator verify its operation.
Performance estimates of the FFT computation times are shown in Table 1 for a variety of transform sizes.

Size (points) T (cycles/DFT) T (µsec/DFT) Multipliers Adders

256 210 1.0 4 32
512 274 1.3 8 64
1024 658 3.1 8 64
2048 914 4.3 16 128
4096 2322 10.8 16 128
8192 3346 15.6 32 256

Table 1. Performance estimates and arithmetic requirements for various transform sizes (16-bits fixed point) based on a partially
populated Altera Stratix EP1S60 "medium speed grade" FPGA chip. In this table "T" is the throughput. (Computational latency for each

transform size above is approximately equal to the inverse of the throughput time/DFT).

Although Table 1 only shows transforms that are powers of two, the base-4 FFT lengths are not limited to powers of two or
four. For example, the base-4 FFT is capable of 29 transform lengths from 256 to 65,536 vs. only 5 possible lengths for a
radix-4 pipelined FFT.

The single biggest drawback to past use of systolic arrays has been the substantial arithmetic hardware that is normally
required because systolic approaches use a number of complex multipliers equal to the size of the transform. Thus, a 1024-
point DFT would require 1024 complex multipliers, compared to the 8 multipliers shown in Table 1 for the base-4 FFT.

 Traditional "pipelined" FFTs, although computationally efficient, are difficult to map into VLSI because in general
each butterfly, delay/commutator, and twiddle factor ROM has a different circuit design and/or its operation varies from stage
to stage. Also, the butterflies do not usually work with 100% resource efficiency, the designs are limited to transform lengths
that are powers of two or four, they are architecturally suited only for a 1-D DFT or 2-D DFT but not both, and it is difficult
to build scalable designs because of their irregularity and large granularity. Finally, the latency (time to do the first DFT in a
series) is low because the pipeline has to be "filled" first. Alternatively, the base-4 FFT architecture is comprised of simple,
identical, small processing elements (PEs), arranged in regular arrays with each PE operating at near 100% efficiency.
Performance figures in Table 1 compare very well to larger custom ASIC designs and recent FPGA implementations.

[1] C. C. W. Hui, T. J. Ding, J. V. McCanny, and R. F. Woods, "A New FFT Architecture and Chip Design for Motion

Compensation based on Phase Correlation," Proc. Int. Conf. on Application Specific Systems, Architectures and
Processors (ASAP 96), pp. 83-92.

[2] J. Greg Nash, "Hardware Efficient Base-4 Systolic Architecture for Computing the Discrete Fourier Transform," Proc.
2002 IEEE Workshop on Signal Processing Systems (SIPS'02), pp. 87-92.

High Performance Scalable Base-4 Fast Fourier
Transform Mapping

Greg Nash
Centar

2003 High Performance Embedded Computing Workshop

www.centar.net

Outline

• Base-4 transformation for calculating DFT

• Mapping methodology

• Direct form DFT architecture

• FFT architecture

• Performance

Discreet Fourier Transform

• Mathematical form:

• Matrix form Z=CX:
(N=16)

• Multiplications = N 2

(2 /)(1)(1)

1
[] [] 1, 2...

I N k nN

n
Z k X n e k N

π− − −

=
∑= =



































































































































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 W W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15

1 W2 W4 W6 W8 W10 W12 W14 1 W2 W4 W6 W8 W10 W12 W14

1 W3 W6 W9 W12 W15 W2 W5 W8 W11 W14 W W4 W7 W10 W13

1 W4 W8 W12 1 W4 W8 W12 1 W4 W8 W12 1 W4 W8 W12

1 W5 W10 W15 W4 W9 W14 W3 W8 W13 W2 W7 W12 W W6 W11

1 W6 W12 W2 W8 W14 W4 W10 1 W6 W12 W2 W8 W14 W4 W10

1 W7 W14 W5 W12 W3 W10 W W8 W15 W6 W13 W4 W11 W2 W9

1 W8 1 W8 1 W8 1 W8 1 W8 1 W8 1 W8 1 W8

1 W9 W2 W11 W4 W13 W6 W15 W8 W W10 W3 W12 W5 W14 W7

1 W10 W4 W14 W8 W2 W12 W6 1 W10 W4 W14 W8 W2 W12 W6

1 W11 W6 W W12 W7 W2 W13 W8 W3 W14 W9 W4 W15 W10 W5

1 W12 W8 W4 1 W12 W8 W4 1 W12 W8 W4 1 W12 W8 W4

1 W13 W10 W7 W4 W W14 W11 W8 W5 W2 W15 W12 W9 W6 W3

1 W14 W12 W10 W8 W6 W4 W2 1 W14 W12 W10 W8 W6 W4 W2

1 W15 W14 W13 W12 W11 W10 W9 W8 W7 W6 W5 W4 W3 W2 W

Z = X

2 (1)(1) /− − −= I n k NW e π

Base-4 Matrix Equation

1 1
2 1 / 4
3 1 / 2
4 1 3 / 4
5 2

4 4

3 / 4
2 / 2
1 3 / 4

,

N
N

N

b b

N N
N N
N N

N N

X X
X X
X X
X X
X X

X P and Z P Z

X X
X X
X X
X X

+
+
+

= =

−
−
−

   
   
   
   
   
   = = =   
   
   
   
   
      

M M
M M

t
bC PCP=

b b bX C Z=

• Find reordering permutation P

• DFT matrix equation becomes

where

Base-4 Coefficient Matrix

Cb =













































































































d1





























1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

d2





























1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

d3





























1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

d4





























1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

d1





























1 −I -1 I

1 −I -1 I

1 −I -1 I

1 −I -1 I

W d2





























1 −I -1 I

1 −I -1 I

1 −I -1 I

1 −I -1 I

W2 d3





























1 −I -1 I

1 −I -1 I

1 −I -1 I

1 −I -1 I

W3 d4





























1 −I -1 I

1 −I -1 I

1 −I -1 I

1 −I -1 I

d1





























1 -1 1 -1

1 -1 1 -1

1 -1 1 -1

1 -1 1 -1

W2 d2





























1 -1 1 -1

1 -1 1 -1

1 -1 1 -1

1 -1 1 -1

W4 d3





























1 -1 1 -1

1 -1 1 -1

1 -1 1 -1

1 -1 1 -1

W6 d4





























1 -1 1 -1

1 -1 1 -1

1 -1 1 -1

1 -1 1 -1

d1





























1 I -1 −I

1 I -1 −I

1 I -1 −I

1 I -1 −I

W3 d2





























1 I -1 −I

1 I -1 −I

1 I -1 −I

1 I -1 −I

W6 d3





























1 I -1 −I

1 I -1 −I

1 I -1 −I

1 I -1 −I

W9 d4





























1 I -1 −I

1 I -1 −I

1 I -1 −I

1 I -1 −I

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 01 ; 2 ; 3 ; 40 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0 0 0

I Id d d d
I I

       
− − −       = = = =       − −

       − −       

Base-4 DFT Matrix Equation
(Compact Form)

1 2 3 42 3
5 6 7 82 4 6
9 10 11 12

3 6 9
13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 1 1 1 1 1 1 1
1 1 1

1 1 1 11
1 11

1 1 1 1
1 1
1 1 1 1
1 1

x x x x
W W W x x x xI IY x x x xW W W

I I x x x xW W W
z z z z
z z z z I I
z z z z

I Iz z z z

     
    − = •     − −
     −     

  
  −=   − −
  − 

tY




 

“ ”= element by element
multiply

•

• Form for N=16

• General Form

1

2

= ⋅
= t

b

b

t
M M

M

Y W C X
Z C Y

1 / 4 1 / 4

1 / 4 1 / 4/ 2 / 2

1 / 2 1 / 23 / 4 3 / 4

1 3 / 4 1 3 / 4

,+ +

+ +

+ +

   
   = =   
      

N N

N NN N

N NN N

N NN N

b b

Z Z X X
Z XZ XZ XZ XZ X
Z XZ X

L L

Base-4 DFT Equation Characteristics

• Coefficient matrices represent series of 4-point transforms:

⇒ Takes advantage of reduced arithmetic with radix r = 4 butterfly, but
transform length not limited to N = r m

⇒ Transform length must be divisible by 16

• CM 1 and CM 2 contain only elements from the set
⇒ CM 1 X and CM 2Yt only involve complex additions

• Twiddle factor matrix WM is of size N/4 x N/4 rather than N x N
⇒ x16 fewer multiplies than original DFT equation (Z=CX)

1 | | ...
tt t

M B BC C C =   

[]2 | | ...M B BC C C=
1 1 1 1
1 1
1 1 1 1
1 1

B
I IC
I I

 
− − = − − − 

where

{1, -1, - , }I I

Systolic Array Example: Matrix Multiply

Project
along
time axis

d

e

c

1
[,] [,]* [,] 1 , ,

N

k
c i j d i k e k j for i j k N

=

= ≤ ≤∑
• Algorithm:

• Space-time mapping: computations at {i,j,k} “mapped” to indices
{time,x,y}

Systolic Array: Each intersection point corresponds
to a “processing element” (PE) that receives data
from its neighbors, does a multiply-add, and passes
the result to adjacent PEs, once per time cycle.

“Space-Time” View

Find Systolic Architecture Using SPADE
†

1
2

t
M Mt
M

Y W C X
Z C Y
= ⋅
=

Mathematical
Algorithm

Simulator,
Graphical
Outputs

for j to N/4 do
for k to N/4 do

Y[j,k]:=WM[j,k]*add(CM1[j,i]*X[i,k],i=1..4);
od;
for k to 4 do

Z[k,j] := add(CM2[k,i]*Y[j,i],i=1..N/4);
od

od;

Input
Code

Automatic
Search for Space-Time

Transformations, T

Architectural
Constraints

Objective FunctionsVariable position,
area, regularity, bandwidth

†Symbolic Parallel Algorithm Development Environment
{ }, , , 1, 2,

time i
x T j
y k

X Y Z CM CM WM

v
v

v

   
=   

      

∈

SPADE Functionality

() () ()
2 0 0. ., (2 , 1) ()0 1 1

x x y yx A I a depends on y B I b for all I V I
ie g x i j x j

+ + ∈
     + ≡ +          

• SPADE accepts input statements of the affine form

– Where Ax,By/ax,by are integer matrices/vectors, S is the dimension of
the algorithm space and the “depends on” includes commutative and
associative operators: min, max, Σ, Π

• SPADE finds latency optimal systolic designs subject to constraints
imposed by scheduling, localization, reindexing, and allocation

• Secondary objective functions used to select architectures are
minimum area, maximum regularity and minimum network bandwidth

Systolic Array Designs: Minimum Area

Y

X

Z

CM1

IM2

IM1

CM2

CM2

Space-Time Views (N=64)

Example Systolic Array Views (N=64)

X

Y

Z

CM1

X1

2

= ⋅
=

b

b

t
M M

t
M

Y W C X
Z C Y

Multipliers Adders

N/4=16

4

• Latency (cycles) = N/2 + 8
• Six unique designs
• Throughput (cycles/block) = N/4 + 6
• WM mapped to same space-time location as Y
• IM1 and IM2 variables (SPADE created) perform matrix

multiply/adds

Systolic Array Designs: Maximum Regularity

Space-time view (N=32)

Adders AddersMultipliers

Systolic Arrays (N=32)

X

Z

CM2

Y

IM1

CM2

X

Z

Y

CM1

CM2

Z

CM1

X

Y

CM2

Transformations

CM1

1

2

= ⋅
=

b

b

t
M M

t
M

Y W C X
Z C Y

 variable T t

Y

1 1
0 0
1 0

 
 
 − 

[5 0 0]

IM1

1 1 1
1 0 0
0 1 0

 
− 
 − 

[0 5 0]

CM1

1 1
0 1
1 0

 
− 

 − 

[0 5 0]

X

1 1
1 0
0 0

 
− 
  

[0 5 0]

Z

1 1
1 0
0 1

− 
 
 − 

[19 -5 0]

IM2

1 1 1
0 0 1
0 1 0

− 
 
 − 

[10 -5 0]

CM2

1 1
1 0
0 0

− 
 
  

[10 –5 0]

Z

N/4 = 8

4
• Two unique designs found
• Throughput and latency optimal
• Latency (cycles) = N/2 + 8
• Throughput (cycles/block) = N/4 +1
• WM mapped to same space-time position

as Y

Systolic Architecture to Array Design

Systolic Architecture (N=32) Array Design (N=32)

Input Data (X) Coefficients (CM2)

Multiplier

Processing Element 2: 2 registers, 1 adder

Data flow bus

Processing Element 1: 2 registers, 1 adder

Y ZCM1

X CM2

⇒

Altera Stratix FPGA: DFT Mapping

Systolic DFT
Array

1D FFT via Factorization

• Factor N = N1 * N2

• Creat a 2-D matrix with N1 rows by N2 columns, (assume N1 > N2),
• Do N2 1-D “column” DFTs followed by N1 “row” DFTs:

• If N1 ≈ N2 then (linear) array size can be reduced from O(N1 N2) to
O(N1) with minimal effect on throughput:

– Cycles for N/4 array (no factorization) = N/4 + 1
– Cycles for N1 /4 array = N1 (N1 /4 + 1) + N1 (N1 /4 + 1) + twiddle mult ≈ N/2

• Can do 2-D DFT by not performing twiddle multiplication WN

• Use base-4 DFT mapping to do all row/column DFTs

N1

N

N2

*

*

Y W X
Y W Y
Z Y W

=
′ = •

′=

Base-4 Factorization Architecture

• N = 1024 points
• N = N1 * N2

• N1 = N2 = 32
• Uses both of the

two optimal
systolic designs

• Twiddle
multiplications not
shown

• Throughput/latency
optimal except for
interstage delay

X

Z

Y

CM1

CM2

CM1

X

Y

CM2

Z

DFT Output

2 “column”
DFTs

2 “row”
DFTs

Z

X

X

CM2

Z

Z

CM1

CM1

Y

Two Space-Time Views
(only two of N1 iterations shown)

DFT Input

Two DFT Architectures Combined

• Shown for N = 1024 points

• N = N1 * N2

• N1 = N2 = 32

• M = 512 bits (16 bit word)

Input Data (X)
(N words)

Coefficients
(CM2)

Output Data (Z)
(N Words)

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

Multiplier

Processing Element 2: 2 registers, 1 adder

Local data flow bus

Processing Element 1: 2 registers, 1 adder

M Memory

1st to 2nd Stage Data Formatting Problem
(32 Point DFT)

• DFT data positions of 1st stage output sequences

• Desired data positions for input sequences to 2nd stage





























1 9 17 25

2 10 18 26

3 11 19 27

4 12 20 28

5 13 21 29

6 14 22 30

7 15 23 31

8 16 24 32





























1 9 17 25

2 10 18 26

3 11 19 27

4 12 20 28

5 13 21 29

6 14 22 30

7 15 23 31

8 16 24 32





























1 9 17 25

2 10 18 26

3 11 19 27

4 12 20 28

5 13 21 29

6 14 22 30

7 15 23 31

8 16 24 32





























1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

X

Z

Y

CM1

CM2

CM1

X

Y

CM2





























2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2





























32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

32 32 32 32

Z

.....

.....

Interstage Data Formatting via “On-the-Fly”
Permutations

• New code with matrix rotation steps

• New DFT first stage output sequences

for n to N
 for j to N/4 do
 for k to N/4 do
 Y[j,k] := WM[j,k]*add(CM1[j,i]*X[i,k],i=1..b) od;

 for k to b do
 Z[k,j] := add(CM2[k,i]*Y[j,i],i=1..N/4) od;

 WM := matrix_rotate(WM,"up");
 CM1 := matrix_rotate(CM1,"down");
 if n mod(b)=0 then CM2 := matrix_rotate(CM2,"down") fi;
 od;
od;





























1 9 17 25

2 10 18 26

3 11 19 27

4 12 20 28

5 13 21 29

6 14 22 30

7 15 23 31

8 16 24 32





























2 10 18 26

3 11 19 27

4 12 20 28

5 13 21 29

6 14 22 30

7 15 23 31

8 16 24 32

1 9 17 25





























3 11 19 27

4 12 20 28

5 13 21 29

6 14 22 30

7 15 23 31

8 16 24 32

1 9 17 25

2 10 18 26





























25 1 9 17

26 2 10 18

27 3 11 19

28 4 12 20

29 5 13 21

30 6 14 22

31 7 15 23

32 8 16 24

.....

1-D DFT Performance Estimates

FFT
Size

Throughput
(cycles/DFT)

Throughput
(µsec/DFT) Multipliers Adders

256 210 1.0 4 32
512 274 1.3 8 64
1024 671 3.1 8 64
2048 914 4.3 16 128
4096 2322 10.8 16 128
8192 3346 15.6 32 256

Based on:

• Register transfer level behavioral simulation of 1024 point DFT

• Partially populated layout

• Timing analysis using Altera Stratix EP1S60 FPGA chip

• 16 bit fixed-point word length

Latency

• Base-4 FFT pipeline depth is nominally N1 /4+ 9 << N

• Latency (cycles) ≅ 1/Throughput (cycles-1) when complete X
available

Coefficients (CM2)

Output Data (Z)

N1 /4

9

longest path (red)

Partitioning to Scale Computations to Application

• Use an array “section” to perform
partially processed result

• Partial results accumulated at output

• Memory needed scales with partition size

Input Data (X) Coefficients (CM2)

Output Data (Z)

Input Data (X) Coefficients (CM2)

+ + + +

Output Data (Z)

⇒

Fully Parallel Array Partitioned Array

Non-Square 2-D Inputs (N1 ≠ N2)

• Example: 512-point FFT (N1 = 32, N2 = 16)
• On-the-fly permutations for correct

data placement

Input Data (X)
16 32-point DFTs

Coefficients
(CM2)

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

N1/4

Coefficients
(CM2)

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

M M M M

Output Data (Z)
(16 16-point DFTs)

Output Data (Z)
(16 16-point DFTs)

N2/4

N2/4

Rows: Compute 2 sets of 16 16-point DFTsColumns: Compute 16 32-point DFTs

Example Resource Usage†: 1024 Point DFT

† Altera Stratix EP1S60F1508C6 FPGA chip (16 bit fixed point)

Resource

Logic
Cells

Flip

flops

M512

M4K

DSP

Blocks

Global
Clocks

Usage

14717 9200 64 32 8 1

Percent
Resources

26 15 11 11 44 17

Base-4 DFT Architecture Summary

• High performance 1-D and 2-D DFTs
• Based on latency and throughput optimal parallel circuits
• Transform size not restricted to N = rm

• Latency 1/throughput when entire input block available
• Architecture is scaleable and easily parameterized
• Design is simple, regular, local and synchronous
• Fast convolutions naturally supported
• Natural partitioning strategies exist
• Pseudo-linear architecture good fit to latest generation of

FPGA chips

≈

More Information at www.centar.net

• “Automatic Generation of Systolic Array Designs For
Reconfigurable Computing” , Proc. Engineering of
Reconfigurable Systems and Algorithms (ERSA '02),
International Multiconference in Computer Science, Las
Vegas, Nevada, June 24, 2002.
– General description of SPADE
– Faddeev algorithm (Find CX+D, given AX=B, X is

unknown)

• Constraint Directed CAD Tool For Automatic Latency-Optimal
Implementations, SPIE ITCom 2002, Boston, Massachussetts,
July 29-August 2, 2002.
– Use of constraints as a filter of systolic designs
– 2-D Discreet Fourier transforms using base-4 architecture

	High-Performance Scalable Base-4 Fast Fourier Transform Mapping
	27P_Nash.pdf
	High Performance Scalable Base-4 Fast FourierTransform Mapping
	Outline
	Discreet Fourier Transform
	Base-4 Matrix Equation
	Base-4 Coefficient Matrix
	Base-4 DFT Matrix Equation(Compact Form)
	Base-4 DFT Equation Characteristics
	Systolic Array Example: Matrix Multiply
	Find Systolic Architecture Using SPADE†
	SPADE Functionality
	Systolic Array Designs: Minimum Area
	Systolic Array Designs: Maximum Regularity
	Systolic Architecture to Array Design
	Altera Stratix FPGA: DFT Mapping
	1D FFT via Factorization
	Base-4 Factorization Architecture
	Two DFT Architectures Combined
	1st to 2nd Stage Data Formatting Problem (32 Point DFT)
	Interstage Data Formatting via “On-the-Fly” Permutations
	1-D DFT Performance Estimates
	Latency
	Partitioning to Scale Computations to Application
	Non-Square 2-D Inputs (N1 ? N2)
	Example Resource Usage†: 1024 Point DFT
	Base-4 DFT Architecture Summary
	More Information at www.centar.net

	Abstract button:
	Presentation button:
	Agenda button:
	Next button:

