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High Performance Scalable Image Compression
with EBCOT

David Taubman, Member, IEEE

Abstract—A new image compression algorithm is proposed,
based on independent Embedded Block Coding with Optimized
Truncation of the embedded bit-streams (EBCOT). The algorithm
exhibits state-of-the-art compression performance while pro-
ducing a bit-stream with a rich set of features, including resolution
and SNR scalability together with a “random access” property.
The algorithm has modest complexity and is suitable for applica-
tions involving remote browsing of large compressed images. The
algorithm lends itself to explicit optimization with respect to MSE
as well as more realistic psychovisual metrics, capable of modeling
the spatially varying visual masking phenomenon.

Index Terms—Embedded coding, image compression, JPEG
2000, random access, rate-distortion optimization, scalability,
visual masking.

I. INTRODUCTION

T HIS paper describes a novel image compression algorithm
known as EBCOT. The acronym is derived from the de-

scription “embedded block coding with optimized truncation”
(EBCOT) which identifies some of the major contributions
of the algorithm. The EBCOT algorithm is related in various
degrees to much earlier work on scalable image compression.
Noteworthy among its early predecessors are Shapiro’s EZW
(embedded zero-tree wavelet compression) algorithm [14],
Said and Pearlman’s SPIHT (spatial partitioning of images into
hierarchical trees) algorithm [13] and Taubman and Zakhor’s
LZC (layered zero coding) algorithm [16]. Like each of these,
the EBCOT algorithm uses a wavelet transform to generate the
subband samples which are to be quantized and coded, where
the usual dyadic decomposition structure attributed to Mallat
[5] is typical, but other “packet” decompositions are also
supported and occasionally preferable. Fig. 1 illustrates two
decomposition structures which are considered in this paper.
In each case, the original image is represented in terms of a
collection of subbands, , , which may be organized
into increasing resolution levels, , . The lowest
resolution level consists of the single LL subband, .
Each successive resolution level,, contains the additional
subbands, , which are required to reconstruct the image with
twice the horizontal and vertical resolution.

Scalable compression refers to the generation of a bit-stream
which contains embedded subsets, each of which represents an
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Fig. 1. (a) Mallat and (b) “Spacl” wavelet decomposition structure for three
decomposition levels—five are used in the experiments.

efficient compression of the original image at a reduced resolu-
tion or increased distortion. The terms “resolution scalability”
and “SNR scalability” are commonly used in connection with
this idea. We say that a bit-stream is resolution scalable if it
contains distinct subsets, , representing each successive res-
olution level, . We say that a bit-stream is SNR scalable if it
contains distinct subsets, , such that together repre-
sent the samples from all subbands at some quality (SNR) level,
. A bit-stream may be both resolution and SNR scalable if it

contains distinct subsets, , which hold the relevant quality
refinement of only those subbands in resolution level. A key
advantage of scalable compression is that the target bit-rate or
reconstruction resolution need not be known at the time of com-
pression. A related advantage of practical significance is that the
image need not be compressed multiple times in order to achieve
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a target bit-rate, as is common with the existing JPEG compres-
sion standard.

In EBCOT, each subband is partitioned into relatively small
blocks of samples, which we callcode-blocks. EBCOT gen-
erates a separate highly scalable (orembedded) bit-stream for
each code-block, . The bit-stream associated with may
be independently truncated to any of a collection of different
lengths, , where the increase in reconstructed image distor-
tion resulting from these truncations is modeled by. An en-
abling observation leading to the development of the EBCOT
algorithm is that it is possible to independently compress rela-
tive small code-blocks (say 32 32 or 64 64 samples each)
with an embedded bit-stream consisting of a large number of
truncation points, , such that most of these truncation points
lie on the convex hull of the corresponding rate-distortion curve.
To achieve this efficient, fine embedding, the EBCOT block
coding algorithm builds upon the fractional bit-plane coding
ideas which have recently been introduced by Ordentlichet al.
[10] and by Li and Lei [4]. The embedded block coding algo-
rithm is developed in Section III.

A. Efficient One-Pass Rate Control

Given a target bit-rate, say , we can truncate each of
the independent code-block bit-streams in an optimal way so
as to minimize distortion subject to the bit-rate constraint. We
refer to this as post-compression rate-distortion (PCRD) opti-
mization, because the rate-distortion algorithm is applied after
all the subband samples have been compressed. The PCRD op-
timization algorithm is described in Section II.

Although image compression schemes involving rate-dis-
tortion optimization abound in the literature, the advantage of
PCRD optimization is its reduced complexity. The image need
only be compressed once, after which the PCRD algorithm
consumes negligible computational resources in passing over
the embedded block bit-streams. Perhaps even more impor-
tantly, there is no need to buffer the entire image or indeed
any quantity comparable to the size of the image. The wavelet
transform and block coding operations may be implemented
incrementally using a relatively small amount of memory
which is proportional to one linear dimension of the image (say
its width), as explained in [19]. Thus, the only representation of
the image which must be buffered prior to PCRD optimization
is the embedded block bit-streams, which are generally much
smaller than the original image. In fact,it is also possible to
perform the PCRD optimization step incrementally so that
only a fraction of the compressed block bit-streams need be
buffered. Earlier work on PCRD optimization may be found
in [17]. The key features which distinguish EBCOT from this
previous approach are the availability of more finely embedded
bit-streams and the use of much smaller blocks of subband
samples.

B. Feature-Rich Bit-Streams

The simplest incarnation of the concepts mentioned above is
a bit-stream generated by concatenating the suitably truncated
representations of each code-block,, including sufficient
auxiliary information to identify the truncation points,, and

Fig. 2. Progressive appearance of embedded code-block bit-streams in quality
layers. Only nine blocks and three layers shown for simplicity. The shaded
region identifies the block contributions which are discarded by truncating the
bit-stream between layers 1 and 2.

the corresponding lengths, . Such a bit-stream is clearly
resolution scalable, because the information representing the
individual code-blocks and hence the subbands and resolution
levels is clearly delineated. Also, the bit-stream possesses a
useful “random access” attribute: given any region of interest
and a wavelet transform with finite support kernels, as is
common, it is possible to identify the region within each
subband and hence the code-blocks which are required to
correctly reconstruct the region of interest [9].

Interestingly, this simple bit-stream organization is not itself
SNR scalable, despite the fact that it is composed of SNR scal-
able block bit-streams. This is because only a single truncation
point and length are identified within the final bit-stream for
each code-block. The EBCOT algorithm overcomes this dif-
ficulty by collecting incremental contributions from the var-
ious code-blocks into so-called quality layers, , such that
the code-block contributions represented by layersthrough

form a rate-distortion optimal representation of the image,
for each . This is easily achieved with the aid of the PCRD
algorithm described in Section II. In this way, truncating the
bit-stream to any whole number of layers yields a rate-distor-
tion optimal representation of the image, while truncating to an
intermediate bit-rate yields a bit-stream which is approximately
optimal provided the number of quality layers is relatively large.
Fig. 2 illustrates the layered bit-stream concept; it also illus-
trates the effect of truncating the bit-stream between the first and
second layers. Each quality layer must include auxiliary infor-
mation to identify the size of each code-block’s contribution to
the layer. When the number of layers is large, only a subset of the
code-blocks will contribute to any given layer, introducing sub-
stantial redundancy in this auxiliary information. To take advan-
tage of this, EBCOT introduces a “second tier” coding engine
to compress the auxiliary information for each quality layer.

EBCOT’s layered bit-stream organization and two-tiered
coding strategy represent a novel departure from current con-
vention. Image compression algorithms previously described
in the literature generate bit-streams whose organization is tied
concretely to the structure of the embedded quantization and
coding algorithm which is used. EBCOT, however, constructs
abstract bit-stream layers, whose relationship to the trunca-
tion points offered by the underlying block coding engine is
entirely arbitrary and is itself compressed. Fig. 3 illustrates
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Fig. 3. Two-tiered coding structure of the EBCOT image compression
algorithm.

this two-tiered compression paradigm. The layered abstraction
and associated coding techniques are discussed further in Sec-
tion IV. Useful bit-stream organizations range from single-layer
streams which possess only the resolution scalable and random
access attributes, through streams with a few layers targeted
at specific bit-rates of interest, and ultimately to streams with
a large number of layers, which offer excellent generic SNR
scalability, in combination with the resolution scalable and
random access attributes. EBCOT is able to achieve all of these
features in a single bit-stream while exhibiting state-of-the-art
compression performance, as demonstrated in Section V. By
contrast, well known scalable image compression algorithms
such as EZW [14] and SPIHT [13] offer only SNR scalability,
to which the LZC algorithm [16] adds resolution scalability.
The utility of the random access attribute is examined in
Section VII. It is worth pointing out that the IW44 algorithm
in AT&T’s DjVu document compression system also achieves
resolution and SNR scalability in combination with the random
access attribute, using similar techniques to EBCOT; however,
the abstract layering and PCRD optimization concepts are
missing from IW44, which also has a less efficient embedded
representation for each code-block. The DjVu specification is
available at http://djvu.research.att.com/djvu/sci/djvuspec.

As a result of this rich set of features, modest implementa-
tion complexity, and excellent compression performance, the
EBCOT algorithm was adopted for inclusion in the evolving
JPEG2000 image compression standard at the Los Angeles
international meeting of ISO/IEC JTC1/SC29/WG1 (JPEG
working group) in November 1998. Most features of the algo-
rithm were initially described in [18] and later in [19] as part of
this standardization effort, but the work has not previously been
published in the public arena. Since its original acceptance for
JPEG2000, the algorithm has undergone several modifications
to further reduce implementation complexity [6]; these are
outlined in Section VIII for the benefit of readers who are
interested in the relationship between EBCOT and JPEG2000.

II. RATE DISTORTION OPTIMIZATION

Recall that EBCOT partitions the subbands representing the
image into a collection of relatively small code-blocks,,

whose embedded bit-streams may be truncated to rates,.
The contribution from to distortion in the reconstructed
image is denoted , for each truncation point,. We are thus
assuming that the relevant distortion metric is additive, i.e.,

(1)

where represents overall image distortion anddenotes the
truncation point selected for code-block. In our experimental
work, two different distortion metrics are considered. An addi-
tive distortion metric which approximates Mean Squared Error
(MSE) is obtained by setting

Here, denotes the two-dimensional (2-D) sequence of sub-
band samples in code-block, denotes the quantized rep-
resentation of these samples associated with truncation point,
and denotes the L2-norm of the wavelet basis functions for
the subband, , to which code-block belongs. This approxi-
mation is valid provided the wavelet transform’s basis functions
are orthogonal or the quantization errors in each of the samples
are uncorrelated. Neither of these requirements is strictly sat-
isfied; however, the wavelet kernels used in our experimental
investigations in Section V have nearly orthogonal basis func-
tions. A second distortion metric which correlates more suc-
cessfully with perceived visual distortion is investigated in Sec-
tion VI.

We now briefly discuss the optimal selection of the truncation
points, , so as to minimize distortion subject to a constraint,

, on the available bit-rate, i.e.,

(2)

The procedure is not novel [2], but is summarized here for com-
pleteness.

It is easy to see that any set of truncation points, , which
minimizes

(3)

for some is optimal in the sense that the distortion cannot be
reduced without also increasing the overall rate and vice-versa.
Thus, if we can find a value of such that the truncation points
which minimize (3) yield , then this set of trunca-
tion points must be an optimal solution to our R-D optimization
problem. Since we have only a discrete set of truncation points,
we will not generally be able to find a value of for which

is exactly equal to . Nevertheless, since EBCOT’s
code-blocks are relatively small and there are many truncation
points, it is sufficient in practice to find the smallest value of
such that .

The determination of the optimal truncation points,, for
any given , may be performed very efficiently, based on a small
amount of summary information collected during the genera-
tion of each code-block’s embedded bit-stream. It is clear that
we have a separate minimization problem for each code-block,
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. A simple algorithm to find the truncation point, , which

minimizes , is as follows:

• initialize ;
• for

set and ;
if then update .

Since this algorithm must be executed for many different
values of , we first find the subset, , of feasible truncation
points. Let be an enumeration of these
feasible truncation points and let the corresponding distor-
tion-rate “slopes” be given by where

and . Evidently,
the slopes must be strictly decreasing, for if
then the truncation point, , could never be selected by the
above algorithm, regardless of the value of, contradicting
the fact that is the set of feasible truncation points. When
restricted to a set of truncation points whose slopes are strictly
decreasing, the above algorithm reduces to the trivial selection

so that each such point must
be a valid candidate for some value of. It follows that is
the largest set of truncation points for which the corresponding
distortion-rate slopes are strictly decreasing. This unique set
may be determined using a conventional convex hull analysis.

In a typical implementation of the EBCOT algorithm, , is
determined immediately after the bit-stream for has been
generated. The rates, and slopes, , for each ,
are kept in a compact form along with the embedded bit-stream
until all code-blocks have been compressed, at which point the
search for the optimal and proceeds in a straightforward
manner. It is worth emphasizing that only rate and slope values
must be stored, not the distortion. This requires only a fraction
of the storage for the embedded bit-stream itself.

III. B LOCK CODING

In this section, we describe the actual block coding algo-
rithm, which generates a separate embedded bit-stream for each
code-block, . The algorithm relies upon the use of classical
context adaptive arithmetic coding to efficiently represent a col-
lection of binary symbols. The coder is essentially a bit-plane
coder, using similar techniques to those of the LZC algorithm
[16]. The key enhancements are: 1) the use of “fractional bit-
planes,” in which the quantization symbols for any given bit-
plane are separated into multiple coding passes; 2) careful re-
duction of the number of model contexts for arithmetic coding;
and 3) the code-block is further partitioned into “sub-blocks,”
with the significance of each sub-block coded explicitly prior
to sample-by-sample coding in the significant sub-blocks. The
use of fractional bit-planes is motivated by separate work by
Ordentlichet al. [10] and by Li and Lei [4]; its purpose is to
ensure a sufficiently fine embedding. Another variation on the
fractional bit-plane concept was introduced into an early incar-
nation of the JPEG2000 verification model [15]. The introduc-
tion of sub-blocks, with explicit coding of whether or not each
sub-block contains at least one significant sample in the relevant
bit-plane, is a useful tool for reducing the model adaptation cost
as well as implementation complexity. The assumption behind

Fig. 4. Deadzone quantizer thresholds.

explicit sub-block significance coding is that significant sam-
ples tend to be clustered so that the opportunity frequently ex-
ists to dispose of a large number of samples by coding a single
binary symbol. This is the same assumption which underlies
quad-tree and zero-tree coding algorithms as in [14], [13]. In our
case, however, we exploit the block-based clustering assump-
tion only down to relatively large sub-blocks of size 1616,
rather than individual samples.

A. Quantization and Significance

Following the notation of Section II, let de-
note the 2-D sequence of subband samples belonging to code-
block . For the LH (vertically high-pass) subband, as well as
the HH and LL subbands, and denote horizontal and ver-
tical position, respectively. For the HL (horizontally high-pass)
subband, however, we first transpose the code-block so that
and correspond to vertical and horizontal position, respec-
tively, in the original image. This transposition allows us to
treat subbands with LH and HL orientation in exactly the same
way, thereby simplifying the ensuing description. Let

denote the sign of and let denote the quan-
tized magnitude, i.e.,

where is the step-size for subbandand is the subband to
which code-block belongs. Fig. 4 depicts the thresholds for
this so-called “deadzone” quantizer. Evidently the quantizer has
uniformly spaced thresholds, except in the interval containing 0,
which is twice as large.

Let denote the th bit in the binary representation of
, where corresponds to the least significant bit. Also,

let denote the maximum value of(i.e. the most signif-
icant bit) such that for at least one sample in the
code-block. It turns out to be most efficient to encode the value
of in the second tier coding algorithm, as described in Sec-
tion IV. The idea behind bit-plane coding is to encode first the
most significant bits, , for all samples in the code-block,
then the next most significant bits, , and so forth until
all bit-planes have been encoded. If the bit-stream is truncated
then some or all of the samples in the block may be missing one
or more least significant bits, which is equivalent to having used
a coarser dead-zone quantizer for the relevant samples, with step
size , where is the index of the last available bit-plane for
the relevant sample.

In order to efficiently encode , it is important to ex-
ploit previously encoded information about the same sample
and neighboring samples. We do this primarily by means of
a binary-valued state variable, , which is initialized to 0,
but transitions to 1 when the relevant sample’s first nonzero
bit-plane, , is encoded. We refer to the state, ,
as the sample’s “significance.” The point at which a sample
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becomes significant depends intimately upon the sequence in
which sample values are encoded, which is the subject of Sec-
tion III-D.

B. Sub-Block Significance Coding Front-End

Each block, , is partitioned into a 2-D sequence of sub-
blocks, , whose size is typically 16 16. For each bit-
plane, , we first encode information to identify
those sub-blocks which contain one or more significant sam-
ples; all other sub-blocks are by-passed in the remaining coding
phases for that bit-plane, which reduces complexity as well as
the cost of adapting probability models to highly skewed statis-
tics. Let denote the significance of sub-block ,
in bit-plane . That is, if and only if
for some ; otherwise, . There are a va-
riety of ways to encode the values, , in each successive
bit-plane, of which one of the most obvious is quad-tree coding.

In brief, we introduce a tree structure by identifying
the sub-blocks with the leaf nodes, i.e. ,
and defining higher levels in the tree according to

, . At the
root of the tree, we have , representing the
entire code-block. In any given bit-plane,, the significance of
the quads, , is identified one level at a time, starting
from the root at and working to the leaves at . In our
implementation, these binary significance symbols are sent to
the arithmetic coding engine as uniformly distributed symbols
without any adaptive model whatsoever; however redundant
symbols are always skipped. A symbol, , is redundant
if any of the following conditions holds: 1) the parent quad,
if any, is insignificant, i.e., ;
2) the quad was significant in the previous bit-plane, i.e.,

; or 3) this is the last quad visited amongst
those which share the same, significant parent and the other
siblings are all insignificant.

C. Bit-Plane Coding Primitives

The purpose of this section is to describe the four different
primitive coding operations which form the foundation of the
embedded block coding strategy. The primitives are used to code
new information for a single sample in some bit-plane,. If the
sample is not yet significant, i.e. , a combination of the
“zero coding” (ZC) and “run-length coding” (RLC) primitives
is used to code whether or not the symbol becomes significant
in the current bit-plane; if so, the “sign coding” (SC) primitive
must also be invoked to identify the sign, . If the sample is
already significant, the “magnitude refinement” (MR) primitive
is used to encode the value of . In every case, a single bi-
nary-valued symbol must be coded using a common arithmetic
coding engine. The probability models used by the arithmetic
coder evolve within 18 different contexts: nine for the ZC prim-
itive; one for the RLC primitive; five for the ZC primitive; and
three for the MR primitive.

1) Zero Coding (ZC):The objective here is to code ,
given that . Empirical evidence suggests that the
sample statistics are approximately Markov: the significance of
sample depends only upon the values of its immediate

TABLE I
ASSIGNMENT OF THENINE ZC CONTEXTS BASED ON NEIGHBOURHOOD

SIGNIFICANCE

eight neighbors. In fact, almost all the relevant information ap-
pears to be captured by the significance of these neighbors,
which we group into the following three categories:

horizontal:we write so that
;

vertical: we write so that
;

diagonal:we write
so that .
Neighbors which lie outside the code-block are interpreted as in-
significant, so as to ensure that the block bit-streams are truly in-
dependent. No such assumption is imposed on neighbors which
lie outside the relevant sub-block, however, so that sub-blocks
are by no means independent.

To minimize both model adaptation cost and implementa-
tion complexity, we quantize the 256 possible neighborhood
configurations to nine distinct coding contexts, with the labels
indicated in Table I. The context assignment for the LH and
HL bands is identical, because the HL (horizontally high-pass)
subband’s code-blocks are transposed, as explained in Sec-
tion III-A. The LH (vertically high-pass) subband responds
most strongly to horizontal edges in the original image, so
we expect strong correlation amongst horizontally adjacent
samples; this explains the emphasis on horizontal neighbors in
the first three rows of the table.

2) Run-Length Coding (RLC):The RLC primitive is used
to reduce the average number of binary symbols which must be
processed by the arithmetic coding engine. It is invoked in place
of the ZC primitive when a horizontal run of insignificant sam-
ples is encountered whose immediate neighbors are also all in-
significant. Specifically, each of the following conditions must
hold: 1) four consecutive samples must all be insignificant, i.e.,

, for ; 2) the samples must have
insignificant neighbors, i.e.,

; 3) the samples must reside within the same
sub-block; and 4) the horizontal index of the first sample,,
must be even. The last two conditions are enforced only to facil-
itate efficient implementations of the symbol grouping scheme.

When a group of four samples satisfies the above conditions,
a single symbol is encoded to identify whether any sample in
the group is significant in the current bit-plane. A separate con-
text is used to model the distribution of this symbol. If any of
the four samples becomes significant, i.e., ,
the zero-based index,, of the first such sample is sent as a
two-bit quantity with a nonadaptive, uniform probability model.
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Fig. 5. Typical vertical spectra traced from the image domain to the vertically high-pass subbands.

This is reasonable subject to the assumption that the proba-
bility of any sample from the group becoming significant is very
small; in this case, the conditional distribution of the run-length,

, given the significance of at least one sample in
the group, is approximately uniform. Empirically, we observe
that the introduction of the RLC primitive tends to slightly im-
prove compression efficiency; its main role, however, is to sub-
stantially reduce the number of symbols which must be coded
and hence implementation complexity.

3) Sign Coding (SC):The SC primitive is used at most once
for each sample, immediately after a previously insignificant
sample is first found to be significant during a ZC or RLC opera-
tion. It turns out that the sign bits, , from adjacent samples,
exhibit substantial statistical dependencies which can be effec-
tively exploited to improve coding efficiency. To understand
this, consider the LH (vertically high-pass) subbands. We claim
that horizontally adjacent samples from LH subbands tend to
have the same sign, whereas vertically adjacent samples tend to
have opposite signs. Equivalently, the LH subband samples have
predominantly low-pass horizontal power spectra and high-pass
vertical power spectra. In the horizontal direction, this is entirely
reasonable, since images typically have low-pass spectra which
are preserved by the horizontal low-pass filtering and decima-
tion operations used to generate the LH subbands.

In the vertical direction, the aliasing introduced by the
high-pass filtering and decimation operations leads to the oppo-
site conclusion. Fig. 5 illustrates the effect of these operations
on the vertical spectrum of a typical image. Again, images
typically have low-pass spectra; even sharp horizontal edges
yield spectra whose amplitude decreases in inverse proportion
to the vertical frequency. After high-pass filtering, then, the
vertical spectrum typically exhibits more energy at the lower
end of the pass band. Finally, the aliasing associated with ver-
tical decimation reverses this trend, so that the actual subband
samples are primarily high-pass in the vertical direction, which
substantiates our claim.

To exploit this redundancy in the sign information, we use five
model contexts for coding , according to the available in-
formation concerning the signs of the immediate horizontal and
vertical neighbors. Since there are four such neighbors, each of
which may be insignificant, positive or negative, there would ap-
pear to be unique neighborhood configurations. How-
ever, two inherent symmetry properties dramatically reduce this
number: there is no reason not to expect horizontal and vertical
symmetry amongst the neighborhoods; and the conditional dis-
tribution of given any particular neighborhood should be
identical to the conditional distribution of , given the dual
neighborhood with the signs of all neighbors reversed. Taking
these symmetries into account, it is not difficult to show that
the number of unique conditional distributions is at most 13.

TABLE II
ASSIGNMENT OF THEFIVE SC CONTEXTS BASED ON THE SIGNS OF

SIGNIFICANT HORIZONTAL AND VERTICAL NEIGHBORS

We further reduce this to five contexts by not distinguishing the
case in which opposite neighbors are both significant with the
same sign. Let equal 0 if both horizontal neighbors are
insignificant or both are significant with different signs, 1 if at
least one of the horizontal neighbors is positive and1 if at
least one of the horizontal neighbors is negative. Define
in similar fashion for the vertical neighbors. Table II identifies
the five unique probability contexts formed by and ,
along with the sign prediction, , which is used to exploit the
second type of symmetry mentioned above. The binary valued
symbol which is coded with respect to the relevant context is

. In view of the transposition of code-blocks from
the HL subbands, the same strategy may be applied to the LH
and HL subbands; for convenience, it is extended without mod-
ification to the less important LL and HH subbands as well.

4) Magnitude Refinement (MR):The objective here is to
code the value of , given that . Experience
shows that the conditional distribution of is only weakly
dependent on the magnitude, , represented by the
previously encoded bit-planes and also only weakly dependent
on the magnitude of neigbouring samples. For this reason, we
use only three model contexts for magnitude refinement. It is
convenient to introduce a second state variable, , which
transitions from 0 to 1 after the the MR primitive is first applied
to . The magnitude refinement context depends upon
the value of and also on whether or not any immediate
horizontal or vertical neighbors are significant. Specifically,

is coded with context 0 if ,
with context 1 if and , and with
context 2 if .

D. Fractional Bit-Planes and Scanning Order

For each bit-plane,, the coding proceeds in a number of dis-
tinct passes, which we identify as “fractional bit-planes.” In this
work we consider a total of four such passes,, , and

and we identify the truncation available points with these
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(a)

(b)

(c)

Fig. 6. Rate-distortion properties of (a) regular bit-plane coding and (b)
fractional bit-plane coding. (c) shows the percentage of code-block bit-planes
in which each of the four EBCOT coding passes yields a point on the convex
hull of the rate-distortion curve. Data are obtained by averaging results at 1 bpp
from the three most popular images in the JPEG2000 test set: “bike,” “cafe,”
and “woman,” each of which measures 2560� 2048.

coding passes, so that is the number of leading bytes from
the arithmetic code word, which are required to uniquely decode
the symbols in the first fractional bit-plane coding passes. The
reason for introducing multiple coding passes is to ensure that
each code-block has a finely embedded bit-stream.

Fig. 6 is helpful in understanding the goals and benefits of
fractional bit-plane coding. The dashed line in Fig. 6(a) identi-
fies the rate-distortion curve described by modulating the quan-
tization step size and decoding all bit-planes. It is important to
note that this curve is almost invariably convex. The solid dots
in Fig. 6(a) identify the rate and distortion associated with the

end of each coding pass of a conventional bit-plane coder. These
points lie on the dashed rate-distortion curve because discarding
the last bit-planes from the bit-stream is equivalent to multi-
plying the quantization step size by; neither the distortion
nor the information content and hence entropy are affected by
whether we discard bit-planes or scale the step size. The solid
lines in Fig. 6(a) illustrate the rate-distortion curve which one
could expect to obtain by truncating the bit-stream produced
by a conventional bit-plane coder to an arbitrary bit-rate. Sup-
pose and are the rate-distortion pairs cor-
responding to two adjacent bit-planes, and . If we trun-
cate to some arbitrary bit-rate, , so that a
fraction, , of the samples is refined to bit-plane and the re-
mainder are available only at bit-plane, then we expect to
find and ,
because there is no reason to suppose that the initial samples
coded in each bit-plane pass exhibit different statistics to later
samples. Consequently, the solid lines in Fig. 6(a) are simply the
convex interpolation of the R-D points corresponding to whole
bit-planes. This is necessarily sub-optimal with respect to the
convex dashed rate-distortion curve.

On the other hand, if we separate the code-block samples into
smaller subsets with different statistics, then it is possible to im-
prove upon this behavior by coding the next bit-plane one subset
at a time, starting with the subsets which are expected to offer
the largest reduction in distortion for each extra bit in the code
length. This de-interleaving of the samples into subsets with dis-
tinct statistics is the goal of fractional bit-plane coding. In the
present work, there are four subsets corresponding to the four
coding passes and the end of the fourth coding pass,, marks
the point at which all samples have been updated to bit-plane.
Thus, the solid dots in Fig. 6(a) and (b) may be associated with
this coding pass. Since the initial coding passes generally have
steeper rate-distortion slopes, the end points of each coding pass
lie below the convex interpolation of the bit-plane termination
points, as indicated in the figure.

The rate-distortion points corresponding to the various
fractional bit-plane coding passes can even lie below the dashed
line in Fig. 6(a). Fig. 6(c) provides empirical evidence for this.
Recall from Section II that the candidate truncation points for
a given embedded bit-stream are those which lie on the convex
hull of the rate-distortion curve described by all available
truncation points. Fig. 6(c) clearly shows that each of the four
coding passes frequently generates a point on this convex hull;
moreover, the rate-distortion points corresponding to fully
coded bit-planes at the end of coding pass, do not always
lie on the convex hull, so that other passes occasionally yield
superior rate-distortion performance to that which is achievable
by coding all samples with a fixed quantization step size.

Fig. 7 provides a helpful illustration of the appearance of in-
formation within the embedded bit-stream generated for each
code-block. Here, denotes the quad-tree code which iden-
tifies which sub-blocks are significant in bit-plane. Notice
that appears immediately before the final coding pass,,
not the initial coding pass, , for the bit-plane. This means
that sub-blocks which become significant for the first time in
bit-plane , are ignored until pass . We now define the roles
played by each coding pass.
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Fig. 7. Appearance of coding passes and quad-tree codes in each block’s embedded bit-stream.

1) “Forward Significance Propagation Pass,” : In this
pass, we visit the sub-block samples in scan-line order, skip-
ping over all samples which are either insignificant or do not
have a so-called “preferred neighborhood.” For the LH and HL
subbands, sample is said to have a preferred neighbor-
hood if at least one of its horizontal neighbors is significant,
i.e., . Recall that HL subband code-blocks are
transposed so that both LH and HL subbands tend to contain
horizontal line segments. The LL subband is treated in the same
way for convenience, while the HH subbands’ samples are said
to have a preferred neighborhood if one or more of the four di-
agonal neighbors is significant, i.e., . To
each such sample, we apply the ZC and RLC primitives, as ap-
propriate, to identify whether or not the sample first becomes
significant in bit-plane ; if so, we invoke the SC primitive to
code its sign. We call this the “forward significance propagation
pass” because samples which have been found to be significant
typically serve as seeds for waves of new significance determi-
nation steps which propagate in the direction of the scan.

2) “Reverse Significance Propagation Pass,” : This
coding pass is identical to , except that the samples are
visited in the reverse order and the notion of a preferred
neighborhood is expanded to encompass samples for which at
least one of the eight immediate neighbors has already been
found to be significant. Of course, we skip over samples for
which information was coded in the previous pass.

3) “Magnitude Refinement Pass,” : During this pass we
skip over all samples except those which are already significant,
i.e. , and for which no information has been coded in
the previous two passes. These samples are processed with the
MR primitive.

4) “Normalization Pass,” : Here we code the least sig-
nificant bit, , of all samples not considered in the previous
three coding passes, using the SC and RLC primitives as appro-
priate; if a sample is found to be significant in this process, its
sign is coded immediately using the SC primitive.

IV. L AYER FORMATION AND REPRESENTATION

In this section we consider the second tier coding engine of
Fig. 3, which is responsible for efficiently identifying the con-
tribution of each code-block to each bit-stream layer, along with
other summary information for the code-blocks. Recall that the
final bit-stream is composed of a collection of quality layers,

. Together, layers through contain the initial
bytes of each code-block, . Here, we write for the trun-
cation point selected for theth quality layer, with some abuse
of the notation established in Section II where denotes the
R-D optimal truncation point corresponding to a threshold of
on the distortion-rate slope. Thus, is short-hand for with

denoting the distortion-rate threshold selected for layer.

Layer contains the incremental contribution,

, from code-block . As illustrated in Fig. 2, some
code-blocks might contribute no bytes at all to some layers.
Along with these incremental contributions, the length of the
segment, , and the number of new coding passes,

, in the segment must be explicitly identified. Finally,
if makes its first nonempty contribution to quality layer
then the most significant bit-plane, , must also be identi-
fied, as mentioned in Section III-A.

We focus our description on the two quantities which exhibit
substantial inter-block redundancy and show how this redun-
dancy is exploited within the second tier coding engine; full de-
tails may be found in [19], [1]. These two quantities are
and the index, , of the quality layer to which first makes a
nonempty contribution. The latter quantity,, is encoded using
a separate embedded quad-tree code within each subband as
follows. Let denote the sequence of quads at levelin the
quad-tree, with denoting the leaves and the root
of the tree, representing the entire subband. Letbe the index
of the first layer in which any code-block in quad makes a
nonempty contribution, i.e. . In each
quality layer, , a binary quad-tree code is used to identify
whether or not . That is, a single bit is used to identify
whether or not for each quad at each level,, in the
tree, skipping over quads for which the value of this bit may be
inferred by the decoder, for one of the following two reasons:
1) , in which case the value of has already been
identified in a previous quality layer; or 2) where
belongs to the parent quad, , in which case we must have

. To see how this code exploits inter-block redundancy,
consider an initial set of lowest quality layers which correspond
to very low bit-rates; in this case, it is reasonable to suppose that
none of the code-blocks from the highest frequency subbands
have sufficiently steep distortion-rate slopes to make any contri-
bution to these layers. The quad-tree code for each such subband
consists of a single 0 bit for each of these empty layers. More
generally, the distortion-rate slopes for individual code-blocks
depend upon local image statistics; if these statistics vary slowly
over the image then neighboring code-blocks should have sim-
ilar or identical values.

The other quantity which exhibits substantial inter-block
redundancy is . One might consider using a similar em-
bedded quad-tree code to represent this quantity. However, the
value of is irrelevant until the quality layer in which
the code-block first makes a contribution to the bit-stream
and the code-blocks in any given subband do not generally
all make their first contribution in the same quality layer. The
embedding principle suggests that we should avoid sending
any unnecessary information concerning until layer

. EBCOT achieves this, while still exploiting inter-block
redundancy in coding the values, by means of a mod-
ified embedded quad-tree, which is driven from the leaves
rather than the root of the tree. Specifically, let denote
the elements of the quad-tree structure built on top of the
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code-blocks, , from any given subband, exactly as described
above; define . Also, let
denote the ancestry of quads from which is descended,
so that . Let be
a value which is guaranteed to be larger than for any
code-block, , in the relevant subband. When code-block
first contributes to the bit-stream in quality layer , we code
the value of using the following algorithm.

• For
Send binary digits to identify whether or not

for , skipping all redundant bits. If
then stop.

The redundant bits mentioned above are those corresponding
to conditions which can be inferred either from
previously coded conditions in the same partial quad-tree scan,
i.e. if , or from the partial quad-tree code which
was used to identify for a different code-block, .

In this way, we delay sending information for any condi-
tion, , which is not relevant to the code-blocks
which are contributing for the first time to the quality layer at
hand. As one might expect, efficient implementation strategies
exist for this leaf-driven embedded quad-tree coding algorithm.
At first glance, our policy of exploiting inter-block redundancy
through a second tier coding engine would appear to interfere
with the random access property mentioned in Section I, since
code-blocks are no longer strictly independent. However, the
second tier coding engine operates only on summary informa-
tion for whole code-blocks, rather than individual samples, so
that the second tier decoding process is best viewed as a some-
what elaborated parser for recovering pointers to code-block
segments in the bit-stream.

V. NUMERICAL RESULTS

Table III provides numerical results to illustrate the perfor-
mance of the proposed EBCOT algorithm under a variety of
conditions. Results are presented for the well-known USC im-
ages, “Lenna” and “Barbara,” as well as the three most pop-
ular test images from the JPEG2000 test suite, “bike,” “cafe,”
and “woman,” which are substantially more complex and less
blurred than the USC images. The first column of PSNR re-
sults corresponds to the well known SPIHT [13] algorithm with
arithmetic coding. The remaining columns are obtained with the
EBCOT algorithm, running within the framework of JPEG2000
Verification Model VM3A [20]. In all cases, we use the popular
Daubechies 9/7 bi-orthogonal wavelet filters with a five level
transform. For EBCOT we use code-blocks of size 6464 with
sub-blocks of size 16 16.

Recall that the EBCOT bit-stream is composed of a collec-
tion of quality layers and that SNR scalability is obtained by
discarding unwanted layers. The second column in the table cor-
responds to a bit-stream with only one layer, so that the overall
bit-stream is not SNR scalable. Results in this case are obtained
by generating a separate compressed bit-stream for each of the
relevant bit-rates. Each of the remaining columns are obtained
by truncating a single bit-stream to the relevant bit-rates. The
third column corresponds to a limited form of SNR scalability
in which there are only five quality layers, optimized for each of

TABLE III
PSNR RESULTS, MEASURED INdB, FORVARIOUS IMAGES AND BIT-RATES

the target bit-rates in the table; this may be sufficient for some
applications. The fourth column corresponds to the extreme case
in which 50 separate layers are included in the bit-stream span-
ning bit-rates ranging from approximately 0.05 bpp to 2.0 bpp;
in this case, the layer bit-rates are spaced approximately loga-
rithmically through this range by selecting an appropriate set of
distortion-rate slope parameters,, but no rate-control iteration
is performed to adjust the values for specific target bit-rates.

As might be expected, performance decreases as more layers
are added to the bit-stream, because the overhead associated
with identifying the contributions of each code-block to each
layer grows. Nevertheless, performance continues to be com-
petitive with respect to state-of-the-art compression algorithms,
significantly outperforming the common reference, SPIHT. All
results for the EBCOT algorithm are obtained using a single
quantization step size, regardless of the image or bit-rate, with
rate control implemented exclusively through truncation of the
embedded block bit-streams. For the smaller images, at very low
bit-rates the EBCOT results are slightly penalized by the 59 byte
header included by the JPEG2000 VM3A software [20]. Some
of the results appear to be counter-intuitive. Specifically, at 0.25
bpp, the performance for “Lenna” with five layers appears to be
marginally higher than that with only one layer, even though the
overhead associated with signaling five layers is undoubtedly
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higher. Similar behavior is observed with the “Barbara” image.
The explanation for this lies with the observation in Section II
that it is not generally possible to find a distortion-rate threshold,

, which satisfies the rate constraint exactly. As a result, the por-
tion of the bit-stream which is actually decoded in SNR progres-
sive tests sometimes includes part of the next quality layer after
that which was optimized for the target bit-rate, as in Fig. 2.

Whereas the first four columns of PSNR results in Table III
are obtained using a five-level Mallat decomposition of the form
shown in Fig. 1(a), the fifth column corresponds to a five-level
decomposition of the form shown in Fig. 1(b), using five tar-
geted bit-stream layers as for the second column. This has been
coined the “Spacl” decomposition within the JPEG2000 com-
munity. Evidently, this decomposition structure typically leads
to lower MSE distortion (higher PSNR) at all but the highest
bit-rates. We point out that tree-based coders such as SPIHT
cannot readily be adapted to non-Mallat decomposition struc-
tures.

VI. V ISUAL DISTORTIONMETRICS ANDPERFORMANCE

The numerical results in Table III are obtained with MSE as
the distortion metric for the PCRD optimization algorithm of
Section II. It is well known that MSE is a poor model for the
visual significance of distortion. Various authors (e.g., [7], [8])
have considered the relatively straightforward extension to fre-
quency weighted MSE, in which the overall image distortion is
taken to be a weighted sum of the MSE contributions from each
subband, with the weights derived from studies of the contrast
sensitivity function (CSF). These approaches have two notable
drawbacks: the weights depend strongly upon the angle sub-
tended by each reconstructed pixel at an assumed viewing dis-
tance; and the model fails to account for the substantial impact
of visual masking effects. In fact, the CSF accounts primarily for
the modulation transfer function (MTF) of the physical proper-
ties of the optics and aperture of the cones in the human eye; the
MTF of the relevant display device is often also incorporated.

More generally, we may consider spatially varying distortion
metrics which attempt to exploit the masking phenomenon.
Watson’s work [22] on visual optimization of JPEG com-
pressed images is noteworthy in this regard, as is the work of
Höntsch and Karam [3]. In these and other previous works,
visual masking effects must be taken into account by explicitly
modifying the quantization parameters; scalable compression is
not considered; and rate-control must be performed iteratively.

The EBCOT algorithm provides an excellent context within
which masking phenomena can be exploited without substan-
tially increasing computational complexity or sacrificing other
properties such as random access or scalability. In our studies,
the following distortion metric has been found to yield signifi-
cantly superior visual image quality than the MSE metric

(4)

Here , and are all as in Section II, is the
“visual masking strength” at sample and is a “visibility
floor” term which establishes the visual significance of distor-
tion in the absence of masking.

The proposed visual masking strength operator, , has the
form

(5)

Here denotes a neighborhood of samples about and
denotes the size of this neighborhood. The nonlinear

operation is to be understood within the context of normalized
image samples with a range of 0 to 1 and a normalized wavelet
transform whose low-pass and high-pass analysis filters have
unit gain at DC and the Nyquist frequency, respectively, so that

. For our experiments, the exponentis set to ,
and the neighborhoods, , are obtained by partitioning the
code-block into 8 8 cells, using the same masking strength
value for all samples in any given cell. This reduces the com-
plexity of computing the visual distortion metric to a small frac-
tion of that for the entire encoder. Our formulation is closely re-
lated to the models used in [22] and [3] in which and

, respectively; in our experiments, appears to give
superior visual performance. We use a single small visibility
floor, , of for all subbands, so that the distortion metric
is rendered independent of any assumptions on the viewing dis-
tance, which is highly desirable for uncontrolled viewing con-
ditions.

Not surprisingly, this visual masking metric has a greater
effect on image quality when the code-blocks are small; we find
the best performance over a wide range of images when using
32 32 code-blocks. Fig. 8 provides a comparison of SPIHT
[13] with arithmetic coding against EBCOT, operating in the
context of JPEG2000 VM3A with this visual distortion metric.
When optimizing for MSE alone, the visual quality of EBCOT
compressed images is very similar to that of SPIHT. Although
only small segments from the 2560 2048 image “woman”
can be reproduced here, we note that quality is uniformly
improved over the entire image. The EBCOT images exhibit
substantially less ringing around edges and superior rendition
of texture; some details preserved in the EBCOT images are
completely lost by the SPIHT algorithm. In fact, for this image
we find that the image quality obtained using EBCOT at 0.2
bpp is comparable to that obtained using SPIHT at 0.4 bpp.
Similar results are observed with other large images having
comparable content, although the method is less effective with
some image types. Although we make no assumptions here
concerning viewing distance, other studies [8] have shown that
the visual masking metric outlined here can be successfully
combined with an appropriate global compensation for known
CSF characteristics, yielding complementary improvements in
quality.

VII. U TILITY OF THE RANDOM ACCESSATTRIBUTE

Since EBCOT partitions each subband into relatively small
code-blocks and codes each of them independently, it would
appear to be suited to applications requiring some degree of
“random access” into the image. At one extreme we may con-
sider applications which intend to decompress the entire image,
but in a different order to that in which it was compressed,
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Fig. 8. Comparison between SPIHT (left) and EBCOT using the visual masking metric (right). Shows 500� 500 regions from the 2560� 2048 test image
“woman,” at 0.15 bpp.

e.g., from bottom to top or left to right. Since the code-blocks
can be decoded in any order and the wavelet transform may
be incrementally implemented in any direction, it is clear that
EBCOT is well suited to such applications. At the opposite ex-
treme we consider applications which require only a small, ar-
bitrarily located region in the original image. In general, the
number of subband samples represented by the code-blocks re-
quired to synthesize the requested image region will be larger
than the region itself. In this section we attempt to quantify this
inherent inefficiency. Remote browsing applications lie between
these two extremes: a client interactively requests regions from

a server, which may or may not ultimately constitute the entire
image. The efficient realization of such applications depends
upon careful caching of code-blocks which will often belong
to multiple regions.

For the purposes of this investigation, we assume that a square
image region with pixels must be decompressed from
an EBCOT bit-stream representing an original image with very
much larger dimensions so that we can ignore boundary condi-
tions. Fig. 9 contains a log-log plot of vs. , where
is the number of bits required to reconstruct the requested region
and is the compressed bit-rate of the original image. Thus, the
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Fig. 9. Random access efficiency for various regions of size 64� 64 through
to 2048� 2048.

cost of recovering the requested region is equivalent to
the cost of recovering an image, separately compressed
to the same bit-rate. In our case bpp. The curves in Fig. 9
are averages, assuming a uniform distribution for the location of
the requested region. The relevant subband samples and hence
code-blocks are computed as in [9], assuming Daubechies 9/7
wavelet kernels with the usual Mallat decomposition. The trans-
mission cost is determined by taking into account the average
bit-rate in each of the subbands, as determined from the statis-
tics of the three large images in Table III.

The four curves in Fig. 9 correspond to four different block
size configurations: the curves labeled “F64” and “F32” corre-
spond to code-blocks with a fixed size of 6464 and 32
32 in every subband; The curves labeled “H64” and “H32” uti-
lize the “frames” mode in the JPEG2000 VM3A software [20]
to obtain code-blocks whose size depends upon the resolution
level. In the “H64” case, code-blocks of size 6464 are used
in the highest resolution subbands, while blocks of size 3232
are used in the next lower resolution level and so forth. We start
with 32 32 code-blocks in the “H32” case. Each of the curves
in Fig. 9 is also labeled with the average loss in compression
performance relative to that reported in Table III. It would ap-
pear that the two most attractive configurations for applications
requiring this type of random access are those corresponding
to “F32” and “H64.” Both exhibit only relatively small losses
in compression efficiency for a significant gain in random ac-
cess efficiency. While “H64” offers superior random access ef-
ficiency, we note that it degenerates into the less desirable “H32”
case if the image is browsed at half the original resolution.

Evidently, random access granularity is relatively coarse: in
the “H64” case, a region of size 256 256 requires the same
number of bits as an image of size 400400 compressed to
the same bit-rate. Nevertheless, the capability is attractive for
interactive browsing of very large images, where the requested
regions might represent a significant portion of the client’s dis-
play.

VIII. R ELATIONSHIP TO JPEG2000

Since EBCOT was first adopted as the basis for the JPEG2000
image compression standard, some modifications have been in-
troduced to the entropy coding part of the algorithm described
in Section III. Since many readers are likely to have an interest
in JPEG2000 and PART-I of the standard is now stable [1], we

include here a brief summary of these changes. Most of the
changes are described in [6].

A. Changes to Enhance Compression Efficiency

In this paper, the 18 probability models used by the condi-
tional arithmetic coder are initialized to the usual equi-probable
state. By contrast, in JPEG2000 some of the contexts are started
in an assumed highly skewed state to reduce the model adapta-
tion cost in typical images.

B. Changes to Reduce Complexity

A low complexity arithmetic coder, known as the MQ coder
[21], has replaced the more classical arithmetic coder used in
this paper. The MQ coder avoids multiplications and divisions
in a similar manner to the more widely known QM coder. The
JPEG2000 entropy coder does not transpose the HL subband’s
code-blocks, as described in Section III-A; instead, the corre-
sponding entries in the ZC context assignment map are trans-
posed. The JPEG2000 standard uses only three coding passes
per bit-plane instead of four; the forward and reverse signifi-
cance propagation passes have been merged into a single for-
ward significance propagation pass, whose preferred neighbor-
hood is identical to that of the reverse pass. This ensures that
all coding passes have a consistent scan direction, at a small ex-
pense in compression efficiency.

Each sub-block is scanned column-by-column, rather than
row-by-row, and sub-blocks have been reduced to size 44
from the optimal size of 16 16 considered in this paper. With
these very small sub-blocks and highly skewed initialization of
the probability models, we found that explicit coding of sub-
block significance, as in Section III-B, is no longer justified. The
coder behaves as though all sub-blocks are significant from the
outset so that the corresponding bit-stream entries,, in Fig. 7
are all empty. With this modification, the coder is now more
easily understood as operating on stripes of four rows each. Nev-
ertheless, it appears that the most efficient software implemen-
tations, such as that in JPEG2000 VM5, are those which exploit
properties of the MQ coder to realize the sub-block paradigm at
an implementation level.

The cumulative effect of these modifications is an increase
of about 40% in software execution speed for the entropy
coding part of the system, with an average loss of about 0.15
dB, relative to the results reported in Section V. Since the
software implementation of the entropy decoder in VM5.1
[1] has been heavily optimized (short of actually resorting to
assembly code), the timing results reported in Table IV help
to establish the complexity of the EBCOT coder. With small
images (e.g., 512 512), the JPEG2000 VM5.1 entropy coder
has comparable execution speed to the official public domain
implementation of SPIHT [13] without arithmetic coding;
this coder suffers about 0.5 dB loss relative to that reported
in Table III for SPIHT with arithmetic coding. For the larger
images of Table IV, SPIHT suffers from inherently nonlocal
memory accesses, and runs 6 to 30 times more slowly than
JPEG2000 VM5.1, depending the bit-rate.

C. Options in JPEG2000

JPEG2000 has an optional mode to enable parallel implemen-
tation of the coding passes within any code-block. Although the
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TABLE IV
CPU DECODING TIMES OBTAINED USING JPEG2000 VM5.1WITH A 400
MHz PENTIUM II PROCESSOR. CPU TIMES EXPRESSED INSECONDSPER

MILLION IMAGE PIXELS

independent coding principle in EBCOT ensures that multiple
code-blocks may be processed in parallel, microscopic paral-
lelism at the level of individual coding passes can be exploited
for more efficient hardware implementations. To enable this
behavior, the arithmetic codeword generation process can be
reset at the commencement of each coding pass and the various
coding contexts reset to their skewed initial states. The context
quantization process for the various coding primitives may also
be constrained to bevertically stripe causal, meaning that sam-
ples from future stripes may be considered insignificant when
determining the coding contexts. These options typically result
in an additional loss of about 0.15 dB with 6464 code-blocks
and about 0.35 dB with 32 32 code-blocks at modest bit-rates.
Most of the ideas behind these parallel processing options are
explained in [11], [12].

A so-called lazy codingoption has also been introduced,
in which the arithmetic coding procedure is completely by-
passed for most of the significance propagation and magnitude
refinement coding passes. This mode substantially reduces
complexity at high bit-rates, with the loss of less than 0.1 dB in
compression performance.

IX. CONCLUSIONS

The EBCOT image compression algorithm offers
state-of-the-art compression performance together with an
unprecedented set of bit-stream features, including resolution
scalability, SNR scalability and a “random access” capability.
All features can coexist-exist within a single bit-stream without
substantial sacrifices in compression efficiency.

The ability to produce independent, finely embedded
bit-streams, for relatively small blocks of subband samples
enables the effective use of post-compression rate-distortion
optimization. In turn, this enables the successful exploitation
of visual masking, which has been hampered by causality
constraints in more conventional compression frameworks.
The EBCOT algorithm also introduces the concept of abstract
quality layers which are not directly related to the structural
properties of the underlying entropy coder. This endows the
bit-stream with tremendous flexibility, since the encoder may
decide to construct any number of layers from any combination
of code-block contributions whatsoever.
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