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ABSTRACT This paper presents a blind audio watermarking method that uses two different schemes to hide

binary bits and auxiliary information within separate ranges of a fast Fourier transform (FFT) sequence.

An adaptive vector norm modulation (AVNM) scheme is introduced to achieve a satisfactory balance of

imperceptibility, robustness, and payload capacity. An improved spread spectrum (ISS) scheme is developed

to produce a striking correlation peak, which facilitates the detection of synchronization codes in the FFT

domain. The combination of robust audio segment extraction and recursive FFT makes it possible to execute

these two FFT-based schemes in tandem on a sample-by-sample basis. The experiment results confirm that

watermark embedding causes merely a negligible degradation in perceptual quality. A detectability test

proved the effectiveness of the ISS scheme in self-synchronization as well as hiding auxiliary data. Three

versions of AVNM with capacities ranging from 344.53 to 1033.59 bits per second were demonstrated.

Compared with six recently developed schemes, AVNM exhibited advantages in terms of negligible quality

distortion, flexible payload capacity, and excellent robustness against a variety of common signal processing

attacks.

INDEX TERMS Synchronous blind audio watermarking, fast Fourier transform, adaptive vector norm

modulation, improved spread spectrum, robust audio segment extractor.

I. INTRODUCTION

The ease with which multimedia data can be reproduced,

modified, and distributed makes it very easy to infringe on

intellectual property rights. Digital watermarking is one of the

most effective approaches to protect copyrighted materials.

Specifically, digital watermarks (e.g., logos) embedded in

noise-tolerant signals, such as audio, video, or image files,

can later be extracted to prove ownership and/or authenticate

content [1], [2].

Depending on the application scenario, watermarks can

be classified as fragile or robust. Robust watermarks are

meant to be resilient tomodification attempts, whereas fragile

watermarks are used to detect changes in multimedia data

without compromising the fidelity of the original signal. The

three primary concerns in robust audio watermarking are

imperceptibility, robustness, and capacity [1]–[3]. An ideal

watermarking scheme provides sufficient payload capacity to

contain all necessary information. Once embedded, thewater-

mark must be inaudible to the human ear and of sufficient

robustness to withstand malicious attacks.

Watermarking methods can be divided into non-blind

(including semi-blind) and blind methods, based on the

information required for watermark recovery. Non-blind

methods require the original multimedia source and/or water-

mark for extraction, whereas blind methods require neither.

Investigators have previously explored a variety of repre-

sentations for blind audio watermarking. Watermarking in

the time domain involves a direct adjustment of audio sam-

ples in accordance with the characteristics of the watermark.

Watermarking in the transform domain is executed on feature

coefficients drawn from the host audio signal. Transform

domain methods are the most popular, due to their capac-

ity to exploit signal characteristics and/or human auditory

properties. Typical transformmethods include discrete cosine

transform (DCT) [4]–[7], discrete Fourier transform (DFT)

[8]–[11], discrete wavelet transform (DWT) [5], [12]–[15],

and singular value decomposition (SVD) [16]–[18]. These

methods provide good performance in terms of robustness

and imperceptibility; however, the computational overhead is

usually higher than that of methods implemented in the time

domain.

In the past, researchers developed a variety of schemes

to enhance the performance of watermarking, including

quantization index modulation (QIM) [19], [20], spread
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spectrum (SS) [21]–[23], echo-hiding [24], [25], and patch-

work [6], [26]. Among these schemes, QIM and its variants

have been the most popular because they provide a reason-

able tradeoff among three conflicting requirements: capac-

ity, imperceptibility, and robustness. The SS-based approach

has also attracted considerable attention due to its resistance

to tampering and the simple yet efficient processes that it

employs. Implementing SS in the transform domain allows

human perceptual properties to be exploited and prevents

compression-related data loss. Furthermore, most SS-based

implementations are blind, which means that watermark

detection can be performed in the absence of the original

signal.

Audio watermarking methods can also be classified

according to the processing strategy that is used during

embedding. Some watermarking methods require the entire

audio signal to embed the watermark; however, most schemes

divide the audio signal into frames which are processed indi-

vidually due to the computational cost of dealing with a long

audio signal. Nonetheless, the strategy of frame partition sim-

ply shifts the computational burden to extraction, because the

watermarking positions must be identified prior to extraction.

Another drawback to performing watermarking on the entire

file is a lack of flexibility in terms of payload capacity, as the

amount of information to be embedded is fixed, regardless of

the length of the audio signal.

When extracting watermarks that have been embedded

using frame-oriented schemes, recovering the exact posi-

tion of each frame is critical. Several techniques had been

proposed for synchronization and, as with embedding, syn-

chronization techniques can be implemented in the time

domain or in the transform domain. Most of the methods

in the transform domain demand intensive computational

power due to the repetitive tasks involved in searching

for the watermark. For this reason, time-domain methods

are typically preferred for real-time applications. However,

time-domain methods also tend to be vulnerable to mali-

cious attacks. In light of the aforementioned discussion,

we sought to develop a self-synchronous blind audio water-

marking scheme that employs an FFT framework. Audio

watermarking in the FFT domain may provide additional

advantages, as such techniques exploit human auditory prop-

erties which are best described in the frequency domain.

Moreover, FFT has proven well-suited to high-capacity

watermarking [8], [9].

The remainder of this paper is organized as follows.

Section II presents two novel schemes which can be used

in tandem to attain high-performance self-synchronous blind

audio watermarking in the FFT domain: adaptive vector norm

modulation (AVNM) and improved SS (ISS). AVNM is a

QIM-based scheme that is employed to embed a large quan-

tity of binary bits in low frequency FFT components. ISS

not only enables efficient frame synchronization but con-

veys additional information. Section III details the procedures

used in watermark embedding and extraction. Section IV

evaluates the proposed schemes in terms of imperceptibility,

robustness, and payload capacity. We also present a com-

parison with six recently developed watermarking schemes.

Conclusions are drawn in Section V.

II. WATERMARKING IN THE FFT DOMAIN

Discrete Fourier transform (DFT) is a process which involves

decomposing a signal into a combination of frequency com-

ponents. Fast Fourier transform (FFT) is a means to compute

the same result more quickly. FFTs are of considerable impor-

tance in a variety of digital signal processing applications,

including audio watermarking.

The proposed watermarking method embeds two types of

information in two separate parts of the FFT sequence using

two different tactics. The methods presented in [4] and [15]

suggest two rules applicable to audio watermarking. First,

the use of a larger number of vector coefficients tends

to enhance resistance to attacks. As the payload capacity

also depends on the number of coefficients gathered in

each vector, the capacity decreases whenever the number

of coefficients increases. Second, it is preferable to adapt

embedding strength to the spectral distribution of the audio

signal. One commonly used strategy to resolve the contradic-

tory requirements between imperceptibility and robustness

involves increasing the embedding strength to the maximum

level that can be achieved without introducing perceptual

distortion. The methods in [4], [13], and [15] are typical

examples in which the embedding strength is adjusted adap-

tively to achieve high performance watermarking.

The proposed watermarking method first involves search-

ing for audio segments that would be appropriate for water-

mark embedding. Audio segments which lack sufficient

intensity should be avoided as they are unlikely to render

effective watermarks. Each embeddable audio segment is

then partitioned into non-overlapping frames of length Lf .

After applying FFT to the selected audio frame, two fre-

quency ranges are allocated for the embedding of watermark

bits and synchronous information. In this study, we adopt a

frame length of 213; i.e., Lf = 8192. As will be clarified

in the subsequent discussion, such a frame length renders

a necessary amount of FFT coefficients to secure effective

watermarking.

FIGURE 1. The proposed watermarking schemes that are applied to
separate sections of the FFT sequence.

Figure 1 illustrates the watermarking objects in the

FFT domain. In this illustration, binary data are embed-

ded in the low-frequency region. A pseudorandom bipolar
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sequence (PBS) is then placed in succeeding FFT coeffi-

cients. In this study, we deliberately controlled the embedding

strength below the masking threshold to achieve adequate

imperceptibility. The energy of an audio signal is gener-

ally concentrated in the low-frequency region; therefore,

these frequency components tend to provide higher tolerance

for alterations introduced by the watermark. Accordingly,

embedding the watermark in low-frequency FFT coefficients

can receive better robustness.

Accurately extracting the embedded watermark requires

precise identification of the frame position. The existence

of a synchronization mark can be verified by examining the

correlation function between the FFT sequence and the syn-

chronization mark. For SS conducted in the FFT domain, this

can be excessively time consuming due to the computational

power required to perform FFT and correlation function asso-

ciated with every possible move of frame location. One possi-

ble solution is to use a fast algorithm to accelerate the process.

Another solution is to employ a locator to perform a coarse

demarcation and then refine the frame position afterwards.

In this study, we exploited both schemes in order to maximize

efficiency.

A. WATERMARK EMBEDDING USING ADAPTIVE VECTOR

NORM MODULATION (AVNM) IN THE FFT DOMAIN

Many watermarking schemes belong to the QIM class

because this class of schemes achieves provably good rate-

distortion-robustness performance [19]. In QIM watermark-

ing, the embedding strength is characterized by the choice

of the quantization step size. A large step size is conducive

to robustness but detrimental to audio quality. In contrast,

a smaller step size is conducive to imperceptibility but

tends to compromise robustness. Selecting the appropriate

quantization step size involves seeking a reasonable trade-

off among imperceptibility, data payload, and robustness.

In [4], [13], and [15], it was demonstrated that the quanti-

zation step size can be adaptively retrieved from the water-

marked audio as long as the energy level remains unchanged

throughout the watermarking process.

Based on the same principle, we introduce an adaptive

scheme to perform binary watermarking in the FFT domain.

For this, once an audio frame of size Lf is converted into

an FFT sequence (termed {X (k)| k = 0, 1, · · · ,Lf − 1}),
we divide the leading LX coefficients (d.c. term excluded)

into Lρ subgroups of size q coefficients. Without a loss of

generality, it is assumed here that LX (192) is divisible by q.

The magnitude FFT coefficients in each subgroup form a

vector:

xm =
[∣

∣X (km,1)
∣

∣

∣

∣X (km,2)
∣

∣ · · ·
∣

∣X (km,q)
∣

∣

]T ;
km,n ∈ {1, 2, · · · ,LX } m = 0, 1, · · · ,Lρ − 1;
n = 0, 1, · · · , q− 1; Lρ = LX/q = 192/q. (1)

where | · | denotes the complexmagnitude. km,n represents the

nth index collected in themth vector xm. For simplicity, km,n is

assigned as

km,n = m+ (n− 1)
192

q
. (2)

Accordingly, the norm of vector xm, termed ρ(m), can be

derived as follows:

ρ(m) = |xm| =





q−1
∑

n=0
X (km,n)X

∗(km,n)





1/2

, (3)

where the superscript ∗ denotes the complex conjugate opera-

tor. Our goal here is to determine the size of quantization step

1which is most suitable to modulate the vector norm used in

QIM. During this process,1 ought to be adapted to the spec-

tral intensity in order to achieve a reasonable balance between

robustness and imperceptibility. Using QIM, the vector norm

is modified according to the watermark bit w(i), as follows:

ρ̂(i) =















⌊

ρ(i)

1
+ 0.5

⌋

1, if w(i) = 0;
⌊

ρ(i)

1

⌋

1+ 1
2
, if w(i) = 1.

(4)

Watermarking errors, which are defined as the difference

between ρ̂(i) and ρ(i) in Eq. (4), is assumed to have a uni-

form distribution over [−1/2, 1/2]. Given that the FFT

coefficients and the watermarking errors maintain a power

ratio Ŵ in decibels, the relationship between 1 and Ŵ can be

estimated as follows:

10
Ŵ
10 =

LX
∑

i=1
X (i)X∗(i)

LρE

[

Lρ−1
∑

i=0

(

ρ̂(i)− ρ(i)
)2

]

=

1
LX

LX
∑

i=1
X (i)X∗(i)

1
q
E

[

Lρ−1
∑

i=0

(

ρ̂(i)− ρ(i)
)2

]

= PX
1
q
· 12

12

, (5)

where E[·] denotes the expectation of a random process.

PX = 1
LX

LX
∑

i=1
X (i)X∗(i) signifies the average power of the

first LX FFT coefficients. During the course of watermarking,

we deliberately extend the length of the FFT coefficients from

LX to LX + La for the purpose of maintaining a consistent

power level. Hence 1 is reformulated as

1 =











12q
LX+La

LX+La
∑

i=1
X (i)X∗(i)

10
Ŵ
10











1/2

. (6)

The connection between 1 and Ŵ allows us to take psychoa-

coustic modeling into account while using Ŵ to determine
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a suitable strength for watermark embedding. In accordance

to the auditory masking theory [27], [28], the inserted water-

mark will be inaudible if the distortion energy falls below

the masking threshold for each critical band. The conversion

from a frequency range to a critical band in a Bark scale is

carried out using the equation as below [29]:

zrep = 13 tan−1
(

0.00076frep
)

+ 3.5 tan−1
(

(frep/7500)
2
)

.

(7)

where frep and zrep denote the representative frequency and

resulting Bark scale, respectively. The auditory masking

threshold for a band with a center Bark frequency zrep can

be further estimated using

a(zrep) = λatmn(zrep)+ (1− λ)anmn(zrep) [dB], (8)

where λ denotes the tonality factor varying between 0 and 1,

atmn(z) is the tone-masking noise index estimated as atmn(z) =
−0.275z − 15.025, and anmn(z) is the noise-masking noise

index usually fixed as anmn(z) = −9 [2].
The QIM in Eq. (4) leads to variations in energy, which

violates the prerequisite that1 be retrievable from the water-

marked audio signal. This conflict can be settled by min-

imizing the variations in energy over the LX participating

coefficients and then tuning the coefficients in the index range

between LX + 1(= 193) and LX +La(= 204). To resolve this

problem, we first sort the vector norms in descending order:

ρ(l0) ≥ ρ(l1) ≥ · · · ≥ ρ(li−1) ≥ ρ(li) ≥ · · · ≥ ρ(lLρ−1),
(9)

where li, which is drawn from
{

0, 1, · · · ,Lρ − 1
}

, signifies

the index associated the ith largest magnitude.When applying

Eq. (4) to the l thi vector norm, the optimal solution η1(li) is

η1(li) = ρ̂(li), (10)

and the suboptimal η2(li) is

η2(li) =
{

ρ̂(li)+1, if ρ̂(li) ≤ ρ(li);
ρ̂(li)−1, if ρ̂(li) > ρ(li).

(11)

In general, vectors with large norms contribute more varia-

tions in energy. Conversely, vectors with small norms can be

modulated directly using Eq. (4) without causing noteworthy

changes in overall energy. To minimize the overall variation

in energy in each frame, we select between η1(li) and η2(li)

for the vector norms in the top Lo ranks.

{

n̂i
}

= argmin
{ ni|i=0,··· ,Lo−1}

∣

∣

∣

∣

∣

Lo−1
∑

i=0

(

η2ni (i)− ρ
2(i)
)

+
Lρ−1
∑

i=Lo

(

ρ̂2(i)− ρ2(i)
)

∣

∣

∣

∣

∣

∣

, (12)

where Lo is set as 10 in this study. The two summation

terms in the above equation respectively represent the energy

differences in the top Lo vectors and the energy differences in

the remaining vectors. Output argument n̂i is a binary option

drawn from {1, 2}. As the final solution is drawn from 2Lo

possible combinations of
{

n̂i
}

, we pursue n̂i in a brutal-force

manner by choosing the best fit among 2Lo possibilities.

Substituting ηn̂i (i) for the vectors in {ρ(li)|0 ≤ i ≤ Lo − 1};
i.e., assigning ρ(li) ← ρ̂η(li) = ηn̂i (li), is meant to yield the

least variation in energy. Once the modulated norm for the

l thi vector is determined, the FFT coefficients associated with

this particular vector can be modified as follows:

X̂ (kli,n) = X (kli,n)
ρ̂η(li)

ρ(li)+ ε
; i = 0, 1, · · · ,Lρ − 1;

n = 0, 1, · · · , q− 1, (13)

where ε represents an infinitesimal number added to the

denominator to avoid having to divide by zero. To ensure a

perfect match with the original energy level, we employed

additional La(= 12) FFT coefficients to absorb the energy

differences which result from watermarking. The modifica-

tion is formulated as

X̂ (k) = X (k)











LX+La
∑

i=1
X (i)X∗(i)−

Lρ−1
∑

i=0
ρ̂2η(i)

LX+La
∑

i=1
X (i)X∗(i)−

Lρ−1
∑

i=0
ρ2(i)











1/2

;

k = LX + 1, · · · ,LX + La. (14)

With the use of Eq. (14), the energy in {X̂ (k)|1 ≤ k ≤
LX+La} remains the same as that in {X (k)|1 ≤ k ≤ LX + La}.
This renders an identical 1 while replacing X (k) as X̂ (k) in

Eq. (6). Because of the symmetry of the FFT, we also need

to modify X (k) in the second half of the FFT sequence as

follows:

X̂ (Lf − k) = X̂∗(k), k = 1, 2, · · · ,LX . (15)

The FFT coefficients in other indexes remain intact,

as follows:

X̂ (k) = X (k), for k = 0,LX + La, · · · ,Lf − LX − La−1.
(16)

Taking the inverse FFT of {X̂ (k)} renders a watermarked

audio signal, termed x̂(n), with embedded binary information.

Embedding the watermark occasionally results in undue

discontinuities at frame boundaries in the watermarked audio.

The transition across frames can be smoothed using a window

weighting function, as follows:

x̂ ′(n) =































(1−̟ (n)) x(n)+̟ (n)x̂(n),

n = 0, · · · , 15;
x̂(n), n = 16, 17, · · · ,Lf − 17;
(1−̟ (n)) x(n)+̟ (n− N + 31)x̂(n),

n = Lf − 16, · · · ,Lf − 1,

(17)

where x(n) and x̂ ′(n) denote the original signal and

the smoothed, watermarked signal, respectively. ̟ (n) is
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FIGURE 2. Effect due to window smoothing: (a) watermarked signal
without the use of window smoothing at the frame boundary signified by
the red dashed line. (b) smoothed watermarked signal.

a 32-point Hamming window defined as

̟ (n) = 0.54− 0.46 cos

(

2π
n

N̟

)

, 0 ≤ n ≤ N̟ = 31.

(18)

Figure 2 depicts the audio signals before and after window

weighting. As verified in the section on performance evalu-

ation, this slight modification does not have any detrimental

effects on the watermark.

B. AUXILIARY EMBEDDING USING IMPROVED SPREAD

SPECTRUM (ISS) IN THE FFT DOMAIN

Hu et al. [30] recently introduced a novel SS-based audio

watermarking scheme capable of providing a striking cor-

relation peak, which facilitates watermark detection in the

DCT domain. With suitable modification, the same SS-based

scheme can be applied to a specified range of the FFT

sequence.

The embedded target {ψ(k)| k = 0, 1, · · · ,Nss} is a PBS

of length NSS , with each element taking a value of

‘‘−1’’ or ‘‘1’’, determined at random. When inserting a PBS

into the host audio, the conventional SS scheme [21] modu-

lates the magnitude FFT as follows:

MY (k) = MX (k) max {1+ αψ(k − kb), 0} ;
k = kb, kb + 1, · · · , kb + Nss − 1, (19)

where MX (k) = |X (k)| is the magnitude of the k th FFT

coefficient. kb denotes the beginning index, which is just the

one next to the last FFT coefficient for binary embedding; i.e.,

kb = LX +La+1 = 205. Variable α specifies the embedding

strength, the value of which can be set to match an intended

signal-to-noise ratio (SNR) in dB; i.e., α = 10−SNR/20.
In accordance with the auditory masking threshold shown

in Eq. (7) and (8), SNR can be set at 16 [dB] to achieve a

reasonable balance between imperceptibility and robustness

[27], [28]. The modification inMX (k) takes effect on X (k) via

Y (k) = MY (k)

MX (k)+ ε
X (k), (20)

FIGURE 3. Procedure for smoothing the magnitude FFT coefficients.

where Y (k) denotes the resultant FFT coefficient with a mag-

nitude of MY (k). In this study, Nss was set at 1024 to enable

reliable detection. Given that the sampling rate is 44.1 kHz,

the involved FFT coefficients occupy a frequency range from

1103.6 to 6610.7 Hz for Lf = 8192 and kb = 205.

To detect the PBS, the linear correlation between the

received FFT coefficients
{

Ỹ (k)
}

and sequence {ψ(k)} is first
computed as follows:

Corr
〈{

M̃Y (k)
}

, {ψ(k)}
〉

= 1

NSS

kb+NSS−1
∑

k=kb
M̃Y (k)ψ(k − kb),

(21)

where Corr 〈·, ·〉 denotes the correlation function. The tilde

symbol atop the variable implies the effect due to possible

attacks. The PBS is classified as present or absent, depend-

ing on whether Corr 〈·, ·〉 exceeds a predefined threshold.

Correlation detection generally requires a relatively long

sequence. For example, the time-domain SS developed in [22]

requires a segment of 217 audio samples to achieve satis-

factory performance. For SS implementations in the DCT

domain, the number of participating coefficients drops to

approximately 211 [23]. The length of the sequence is limited

by the coefficients available in the FFT; therefore, we devel-

oped a reinforced correlation function to allow SS-based

watermarking at a sequence length of 1024. As in Eq. (19),

the embedding of the PBS is performed using the following:

MY (k)

=















MX (k)+ αψ(k − kb)
⌢

MX (k),

if 1+αψ(k−kb)
⌢

MX (k)/MX (k) > 0.01;
0.01MX (k), otherwise.

k = kb, kb + 1, · · · , kb + Nss − 1; (22)

where the second branch serves as a threshold to prevent a

negative magnitude. The term
⌢

MX (k) denotes a smoothed

version ofMX (k).
⌢

MX (k) is used for the purpose of distribut-

ing the embedding strength more evenly across the frequency

range, rather than concentrating on a few coefficients with

large magnitudes. Thus, the resulting coefficient MY (k) can

be expressed as

MY (k) = β(k)MX (k) (23)

with

β(k) = max

{

0.01, 1+ αψ(k)
⌢

MX (k)

MX (k)+ ε

}

. (24)

When deriving
⌢

MX (k), we adopted a nonlinear approach

shown in Fig. 3. After taking the square of each coefficient,
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we apply a first-order zero-phase recursive filter to produce a

curve which resembles the power spectrum. The subsequent

square root operation renders a smoothed version of the mag-

nitude FFT sequence. Here, filter coefficient γ is chosen as

0.9 to render a highly smoothed power spectrum. This makes
⌢

MX (k) larger whenever MX (k) is close to a FFT coefficient

with a large component. This arrangement coincides with the

auditory masking theory, which states that noise (i.e., water-

marking modification associated with MX (k)) in a critical

band can be masked out by a strong frequency component

in the vicinity.

In view of this deficiency in conventional SS, we also

incorporated a magnitude adaptation scheme within the cor-

relation function, which results in each coefficient contribut-

ing a comparable weight to the outcome. Let magnitude FFT

at the receiving end be M̃Y (k) = β(k)MX (k)+ e(k), i.e.

e(k) =
∣

∣

∣Ỹ (k)

∣

∣

∣− |Y (k)| = M̃Y (k)−MY (k)

= M̃Y (k)− β(k)MX (k). (25)

The linear correlation function is formulated as

Corr
〈{

M ′Y (k)
}

, {ψ(k)}
〉

= Corr

〈{

M̃Y (k)

M̂Y (k)

}

, {ψ(k)}
〉

= 1

Nss

kb+Nss−1
∑

k=kb

β(k)MX (k)+ e(k)
M̂Y (k)

ψ(k)

= 1

Nss

kb+Nss−1
∑

k=kb

β(k)MX (k)

M̂Y (k)

(

1+ e(k)

β(k)MX (k)

)

ψ(k)

≈ 1

Nss

kb+Nss−1
∑

k=kb

(

1+ αψ(k)
⌢

MX (k)

MX (k)+ ε

)

×
[(

MX (k)

M̂Y (k)

)(

1+ e(k)

β(k)MX (k)

)]

ψ(k)

≈ α

Nss

kb+Nss−1
∑

k=kb

( ⌢

MX (k)

M̂Y (k)

)

(

1+ e(k)

β(k)MX (k)

)

≈α, (26)

where M ′Y (k) is a magnitude-adjusted sequence obtained by

adaptively rescaling M̃Y (k) by 1/M̂Y (k). Here, M̂Y (k) is just

another smoothed version of M̃Y (k). The value of M̂Y (k) is

obtained using the procedure in Fig. 3. We adopted γ = 0.6

to perform lowpass filtering, thereby rendering M̂Y (k) close

to
⌢

MX (k). The use of γ = 0.6 in lowpass filtering tends to

result in a moderately smoothing effect, which should not

impair the synchronization information hidden in the FFT

coefficients. In Eq. (26), the result within the brackets is close

to unity if |e(k)| ≪ β(k)MX (k). Hence each product term

makes approximately the same contribution to the correlation

function, regardless of the variation in magnitude FFT.

FIGURE 4. Embedding procedure of the FFT-based blind audio
watermarking scheme.

III. PROCEDURE FOR WATERMARK EMBEDDING

AND EXTRACTION

Figure 4 depicts the procedure used in embedding a water-

mark. In the proposed scheme, the Robust Segment Extractor

Algorithm (RASE) presented in [31] is used to render a series

of feature points. RASE smooths the gradient audio signal

using a Gaussian filter and then takes the magnitude of the

smoothed gradient audio signal as an output response. The

points with the largest responses are treated as preliminary

feature points. RASE then goes through an elimination pro-

cess involving the iterative screening out of adjacent feature

points with lower responses. In this study, we set the mini-

mum gap between any two feature points as double the frame

length (i.e., 2Lf ), which means that each audio segment spans

a range of no less than 16,384 samples. We then divided

each audio segment into frames of Lf , with the leading frame

starting at the RASE feature point. The frames with energy

levels that exceeded the predefined threshold were selected

as embeddable frames.

The role of RASE is twofold. RASE can not only locate

audio frames for watermark embedding but also help to accel-

erate frame synchronization necessitated by the watermark

extraction conducted in the FFT domain. Following frame

partition, the FFT-based schemes discussed in Section II are

brought in to hide various types of information in separate

areas in the FFT sequence. That is,

(1) AVNM is in charge of binary embedding in low-

frequency FFT coefficients {X (k)| k = 1, 2, · · · , 204}.
For the sake of security, the watermark is scrambled

using an encryption key.
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FIGURE 5. The arrangement of the 11 bits used to carry the side
information contained in an audio segment.

(2) ISS is adopted to embed auxiliary information

in low-to-middle FFT coefficients {X (k)| k =
205, · · · , 1228}without causing any inference with the
binary embedding. The auxiliary information consists

of the synchronization code for frame alignment and a

circularly shifted PBS for tag indexing. Specifically,

the ISS embeds the synchronization code (which is

essentially a PBS) in the first frame and another cir-

cularly shifted PBS in the second frame.

Note that other information related to the embedded PBS

can also be wrapped up with SS embedding. For example,

the polarity of the PBS can represent a binary variable. The

shift interval of a circularly shifted PBS may indicate an

integer number. Theoretically, the computational effort and

distortion which results from the embedding of a circularly

shifted PBS is identical with that resulting from the employ-

ment of the original PBS. In other words, the circular shift

operation allows the PBS to deliver additional information at

no extra cost in terms of imperceptibility or computational

load in the embedding phase. However, searching for the

exact location of the embedded PBS (such as the synchro-

nization code in the first frame) can be tedious. To reduce the

computation burden required to perform correlation compar-

isons during the search, we set the synchronization code as a

fixed pattern. The correlation function is examined only once

while moving the frame one sample at a time. Unlike the case

of the synchronization code in the first frame, detection of

a circularly shifted PSB in the second frame requires extra

computation for identifying the shift interval. Fortunately,

the computational burden is mild, as the frame is has already

been aligned during the search for the synchronization code in

the first frame. Eventually, we hid additional 11 bits (i.e., 1 bit

for the polarity and 10 bits for 1024 possible shifting

interval) in order to provide auxiliary information in the sec-

ond frame. Figure 5 explains the formation and arrangement

of the 11 bits. Among them, 4 bits are used to denote the

number of available frames in an audio segment and the

remaining 7 bits indicate an index entry for all the water-

mark bits contained in that segment. Figure 6 demonstrates

how to use the PBS to deliver an 11-bit message. Given

that the side information contains an 11-bit message, namely

(10001100100)2, we can simply circularly shift the PBS to

the right by 100 and reverse the polarity of every element in

the PBS.

The procedure used in watermark extraction is illustrated

Fig. 7. In general, the computational power required for

FIGURE 6. The use of circularly shifted PBS to represent 11 bits side
information. Symbol ‘‘‖’’ denotes the concatenation operator. (X )B
denotes the numeric representation of X with a base of B.

FIGURE 7. Extraction procedure of the FFT-based blind audio
watermarking scheme.

watermark extraction is lower than that required for embed-

ding, due to the fact that there is no need to modify the audio

signal. Nonetheless, the procedure in our case is much more

complicated because we have to identify the actual position

of each frame. The search for the frame boundaries imposes

a heavy computational burden, particularly when the search

is conducted in the transform domain. As shown in Fig. 7,

RASE is first used a coarse tracker to locate the feature

points in the watermarked audio. Starting from the position

of the first feature point, we apply a rectangular window of

length Lf to extract an audio frame of the audio signal and

perform FFT on that frame. We then trim the FFT sequence

in order to conduct a correlation comparison, as outlined in

Section II-B. This results in a value which indicates whether

the synchronization code could exist there. The feature points
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selected by RASE can be disturbed by intentional attacks or

unintentional modifications; therefore, extending the search

range is generally appropriate. Eventually, the watermark

extraction procedure involves repeatedly moving the analysis

frame forward sample-by-sample, recalculating the FFT, and

then comparing the magnitude FFT sequence with the syn-

chronization code based on the correlation formula specified

in Eq. (26). During each time shift, we continue updating

the position of the largest absolute value in the correlation

function. The search in the forward direction terminates when

the distance moved is 16 samples from the largest absolute

value. The same search process is then applied backward to

ensure that the location of the largest absolute value corre-

sponds to a peak. The foregoing search process starts with the

acquisition of the FFT at a pace of one sample per iteration,

thereby imposing a heavy computational load on watermark

extraction. Fortunately, the FFT sequence of a frame can be

computed recursively from a frame that is one sample ahead

or behind.

Let Xp(k) denote the FFT coefficient obtained from an

audio frame of length N (= Lf ) starting at position p.

Xp(k) =
N−1
∑

n=0
x(p+ n)W nk (27)

with

W = e−j
2π
N . (28)

Thanks to the recursive formulation of the FFT, we can

derive a new FFT sequence from the available ones when the

analysis frame is moved forward (i.e., from p to p+1) by one
sample.

Xp+1(k)

=
N−1
∑

n=0
x(p+ n+ 1)W nk =

(m=n+1)

N
∑

m=1
x(p+ m)W (m−1)k

=
[

−x(p)W 0 + x(p+ N )WNk +
N−1
∑

m=0
x(p+ m)Wmk

]

W−k

=
[

−x(p)+ x(p+ N )+ Xp(k)
]

W−k . (29)

The operation involves replacing x(p) with x(p + N ) in

the formulation, followed by the multiplication of W−k for

the k th coefficient. Similarly, when the analysis frame moves

backward, the new FFT sequence becomes

Xp−1(k)

=
N−1
∑

n=0
x(p+ n− 1)W nk =

(m=n−1)

N−2
∑

m=−1
x(p+ m)W (m+1)k

= x(p−1)W 0−x(p+N−1)WNk+
N−1
∑

m=0
x(p+ m)Wmk ·W k

= x(p− 1)− x(p+ N − 1)+ Xp(k)W k . (30)

Using Eq. (30), the steps described in the forward pro-

cess are applied to the watermarked signal in the backward

FIGURE 8. Illustration of synchronization code detection: (a) Time
waveform of the audio signal, (b) Response of the RASE; The ‘‘o’’-shape
markers represent the feature points, each of which can be used to
indicate the beginning of an embeddable audio segment. (c) Enhanced
correlation function using a correct PBS in the FFT domain when the
analysis window moves across time, (d) the result using an incorrect PBS.

direction one sample at a time. The above processes repeat

until the search finds a salient local peak. In the event that

the peak value of the correlation function exceeds a prede-

fined threshold, then its position is set to the beginning of

the frame. If the thresholding criterion is not met, then the

synchronization code is assumed to be absent. The extraction

routine then jumps directly to the next feature point and

launches a new search. Figure 8 presents a typical example

of frame partition and synchronization. Following frame par-

tition and synchronization, we extracted the index tag hidden

in the second frame. Figure 9 exemplifies the information

recovered from the second frame of each audio segment.

The derived information instructs the FFT-AVNM scheme

to retrieve binary bits from the embedded frames. Let X̃p̂(k)

denotes the k th FFT coefficient obtained from a watermarked

frame at position p̂. Substituting X̃p̂(k) forX (k) in Eqs. (3) and

(6) results in the vector norm ρ̃(i) and adaptive quantization

step 1̃, respectively. The ith watermark bit, termed w̃(i),

is then determined based on the QIM rule:

w̃(i) =







1, if

∣

∣

∣

∣

ρ̃(i)

1̃
−
⌊

ρ̃(i)

1̃

⌋

− 0.5

∣

∣

∣

∣

≤ 0.25;

0, otherwise.

(31)

The next step is to piece all the retrieved watermark bits

together as awhole. If multiple copies of the bits are available,
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FIGURE 9. Illustration of information retrieval from the second frame
(demarcated by two blue dashed line) within each embeddable audio
segment. The index with the sharpest peak (either positive or negative)
represents the embedded integer number, which is 100, 200 and 300 in
(b), (c), and (d), respectively.

then majority voting is used to make the final decision. The

above process continues until all feature points have been

used. Finally, once all of the binary bits have been gathered

together, the watermark is descrambled using the encryption

key.

IV. PERFORMANCE EVALUATION

The test materials in the following experiments comprised

sixty 30-second music clips drawn from RWC (Real World

Computing) Music Genre Database [32]. The music clips

could be classified within the following nine categories: pop-

ular (5), rock (5), dance (5), jazz (4), Latin (6), classical

(14), march (4), world (13), and vocal (4). All audio signals

were sampled at 44.1 kHz with 16-bit resolution. While

testing various schemes with different payload capacities,

the watermark bits used in the test were a series of alternating

1’s and 0’s long enough to cover the entire host signal. The

synchronization code was a PBS of length 1024 with an equal

number of ‘‘+1’’ and ‘‘−1’’ values. We used a second PBS

to record an 11-bit message shown in Fig. 5, which includes

7 bits for the index entry of the watermark bits and 4 bits for

the frame count in a given audio segment. The message was

inserted by circularly shifting the polarized PBS to a specific

location corresponding to a 10-bit number.

TABLE 1. Processing times (in seconds) required for carrying out
watermark embedding and extraction.

A. PROCESSING COMPLEXITY

In this study, we implemented the proposed blind audiowater-

marking in a Matlab environment operating with an Intel

I7-4790 CPU and 32G RAM. Table 1 presents the average

processing times required for executing an audio file of 30-

second long. Most of the CPU time was expended on the

detection of embedded synchronization codes. The required

CPU time varied with the examined audio and the attack

inflicted on that audio. The reason is due to that the attackmay

perturb the accuracy of the RASE, which affects the initial

estimate of the locations and quantities of the synchronization

codes in an audio. This also explains why the required time

in the synchronization code detection has a relatively large

standard deviation.

B. DETECTION OF DESIGNATED PBS PATTERN

IN FFT SEQUENCES

Our second concern was the survivability of the synchro-

nization codes inserted in the FFT sequence between the

205th and 1228th coefficients using the formula in Eq. (22).

In addition to the implementation of ISS, we also adopted

conventional SS [21] (denoted as CSS) for evaluation and

comparison purposes.

The quality of the resulting watermarked audio signals

was assessed using signal-to-noise ratio (SNR), as defined in

Eq. (32), in conjunction with the PEAQ metric [33].

SNR = 10 log10







∑

n
x2(n)

∑

n

(

x̂ ′(n)− x(n)
)2






, (32)

where x(n) and x̂ ′(n) follow the same definitions in Eq. (17).

The PEAQ metric was an implementation released by the

TSP Lab at McGill University [33]. It renders an objective

difference grade (ODG) between −4 and 0, signifying a

perceptual impression from ‘‘very annoying’’ to ‘‘impercep-

tible’’. Table 2 lists the five-grade quality scale of PEAQ.

TABLE 2. Five-grade quality scale of PEAQ.

TABLE 3. Statistics of the measured SNR’s and ODG’s. The data in the last
two columns are interpreted as ‘‘mean [standard deviation]’’.

Table 3 presents SNRs and ODGs measured in this study.

These two measures were used to assess the watermarked

segments as well as the entire audio clip. As revealed in the
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tabulated data, the average SNR values obtained using the

two SS-based schemes far exceeded the preset SNR value

(i.e., 16 dB). This is due to fact that the preset SNR is

only applied to designated FFT coefficients, whereas SNR

takes account of all FFT coefficients. The average ODGs in

the embedded audio segments were above −0.2 (for both

schemes), which implies that the original and watermarked

audio signals were nearly indistinguishable. When the mea-

surement duration was extended to cover the entire audio clip,

the overall average SNR and ODG increased to 29.98 dB and

−0.05, respectively. The near zero ODG values suggest that

it would be highly unlikely that any listener would notice a

difference between the watermarked audio and the original.

Interpreting the message in the second PBS required mul-

tiple correlation comparisons; therefore, we resorted to FFT

to compute the circular correlation between
{

M̃y(k)/M̂y(k)
}

and {ψ(k)}. More specifically, we first applied FFT to the

two sequences individually, and thenmultiplied one sequence

by the complex conjugate of the other in an element-wise

manner. Taking the inverse FFT of the multiplication result

renders a circular correlation function R(n) with n denoting

the circular shift.

{R(n)| n = 0, 1, · · · ,Nss − 1}

= F
−1
{

1

Nss
F

{

M̃y(k)/M̂y(k)
}

◦ (F {ψ(k)})∗
}

, (33)

where F {·} and F
−1 {·} denote the FFT and inverse FFT

operations, respectively. Symbol ‘‘◦’’ represents the element-

wise multiplication. The zero lag of R(n) (i.e., R(0)) coincides

with the correlation function associated with the synchroniza-

tion code, and the results of other lags emulate the random test

of the linear correlation using arbitrary PBS.

FIGURE 10. A typical example of the linear correlation function obtained
by the proposed scheme. The cyan dash-dot line stands for the RMS of
the correlation function drawn from the indexes other than zero.

Figure 10 delineates a typical linear correlation function.

In accordance with the SS formulation, a large value is

expected to occur at index zero. The values appearing in

other indexes exhibit noise-like fluctuations around zero. The

synchronization code can be identified as long as the value at

index zero is (1) the largest of all and (2) preferably above

a predefined threshold. To evaluate the performance of the

embedding schemes, we defined a measure ρc, which is the

ratio of the correlation function at index zero to the root-

mean-square values associated with other indexes (referred

to as ‘‘contrast ratio’’):

ρc =
R(0)

√

Nss−1
∑

n=1
R2(n)

. (34)

Theoretically, a higher contrast ratio indicates that fewer false

detections can happen.

The detectability of the embedded watermarks was evalu-

ated by comparing the resulting contrast ratios in the presence

of frequently encountered attacks. These attacks included

resampling, requantization, amplitude scaling, noise cor-

ruption, lowpass filtering with different cutoff frequencies,

DA/AD conversion, echo addition, MPEG-I layer 3 compres-

sion, and time shifting. Table 4 outlines the details of these

attacks.

TABLE 4. Attack types and specifications.

As shown in Table 5, the proposed ISS yielded values

which were significantly higher than those obtained using

CSS in all cases considered in this study. The data com-

bination in each cell of Table 5 can also be interpreted

as the mean µs and standard deviation σs of the sam-

pling distribution when the event is present. Suppose that

{R(n)| n = 1, 2, · · · , 1023} presents a Gaussian distribution

with a zero mean (i.e., µn = 0) and a unit variance (σn = 1).

We use ρc > λ as the criterion by which to determine the

presence of the PBS. The probability of failing to detect the
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TABLE 5. Statistics of the measured contrast ratios, ρ
′
c s. The expression

in each data cell follows the definition in Table 3.

TABLE 6. Miss and false alarm rates estimated from the statistics
presented in Table 5.

PBS, termed PMiss, can be estimated as follows:

PMiss = 8
(

µs − λ
σs

)

(35)

with function8(·) defined as8(z) = 1√
2π

∫ z
−∞ e−

x2

2 dx. The

false alarm rate PFA is the probability of falsely reporting the

presence of the PBS. It can be calculated as follows:

PFA = 1−8
(

λ− µn
σn

)

= 1−8(λ) . (36)

In the case that λ is assigned as 0.35ρc, Table 6 provides

the estimated PMissand PFA values for the parameters drawn

from Table 5. Table 6 shows that the improved SS resulted in

far lower miss rates than did CSS under all types of attacks.

By contrast, CSS suffered much worse miss rates around 0.02

and false alarm rates around 0.08 under these attacks.

FIGURE 11. The receiver operating characteristic (ROC) curves
corresponding to attacks F and K .

TABLE 7. Statistics of the measured SNR’s and ODG’s along with the
payload capacities. The data expressions in the second and third columns
follow the definition in Table 3.

Figure 11 depicts the receiver operating characteristic

(ROC) curves corresponding to the cases considered in

attacks F and K . These two cases are chosen for demonstra-

tion because they have lowest gaps between the two mean

values respectively deduced from FFT-CSS and FFT-ISS.

In both cases, the ROC curves for the FFT-ISS scheme are

much closer to the upper left corner than do those for the FFT-

CSS scheme, indicating that FFT-ISS can providemuch better

detection accuracy.

C. COMPARATIVE EVALUATION OF IMPERCEPTIBILITY

AND ROBUSTNESS

The parameters used in FFT-AVNMwere set as follows: Lf =
8192, LX = 204, La = 12, Ŵ = 21. This study considered

three versions of FFT-AVNM with different payload capaci-

ties: (1) 344.53 bits per second (bps) for FFT-AVNM-(I) with

q set at 3, (2) 689.06 bps for FFT-AVNM-(II) with q set at 2,

and (3) 1033.59 bps for FFT-AVNM-(III) with q set at 1.

We compared the performance of the proposed FFT-AVNM

scheme in terms of imperceptibility and robustness against six

other schemes, namely DWT-KFDA [14], DWT-RDM [13],

FFT-LR [8], DWT-DCT [5], DWT-VDVM [15], and DCT [4]

in abbreviated form. These six schemes were selected

because their capacities are within the test range of

FFT-AVNMs. In FFT-LR, the frame size was set to 8192 to

match that of FFT-AVNM. The frequency samples used for
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TABLE 8. Averaged bit error rates (in percentage) of the extracted watermarks obtained from the compared schemes.

watermarking in FFT-LR were also consistent with those

used in FFT-AVNM. The linear regression used for each

binary FFT-LR watermark was applied to three adjacent FFT

coefficients, which led to a capacity of 344.53 bps. As for

the other schemes in the comparison, the parameters were the

same as those specified in the literature.

We evaluated the quality of the watermarked audio signal

based on the SNR defined using Eq. (32) and PEAQ [33].

As shown in Table 7, DWT-KFDA achieved the highest SNR;

however, this scheme showed the worst average ODG value.

This can be explained by the fact that DWT-KFDA does

not apply congruous embedding strength across the DWT

coefficients. DCT achieved the second lowest SNR, and the

resulting ODG was among the lowest in the group. The

excellent performance of the DCT scheme can be attributed to

the fact that watermark embedding was subject to an auditory

masking constraint. Among all of the schemes considered

in the comparison, FFT-LR presented the lowest SNR; how-

ever, the resulting average ODG was not as unsatisfactory

as expected. This can be partly attributed to the fact that

FFT-LR attempts to alter adjacent FFT components based

on linear regression. The ODGs achieved by the DWT-DCT,

DWT-VDVM, and DWT-RDM schemes were very close to

zero, indicating that the watermarked audio signals were

perceptually indistinguishable from the original signals. The

SNRs of the three FFT-AVNMs were around 20 dB, which is

slightly less than the specification (i.e.,Ŵ = 21). Such an out-

come is due to the contribution of the suboptimal QIM used

in Eq. (12). Careful inspection revealed that FFT-AVNM-(I),

a scheme which features a lower bitrate, tends to have a lower

SNR as well. This is conceivably due to the use of an equal

number of vectors (10 in this study) to maintain energy bal-

ance. Assuming that a vector has an equal chance of chang-

ing from an optimal to suboptimal QIM, FFT-AVNM-(I) is

affected the most in terms of the total number of FFT coef-

ficients, followed by FFT-AVNM-(II) and FFT-AVNM-(III).

Surprisingly, the slight decrease in SNR did not appear to

compromise imperceptibility. Though the difference in ODG

is not manifest, the average ODG actually increased from

−0.39 for FFT-AVNM-(III) to −0.20 for FFT-AVNM-(I).

We evaluated robustness against attacks by examin-

ing the bit error rate (BER) between the recovered

watermark W̃ = {w̃(n)} and the original watermark

W = {w(n)}:

BER
(

W , W̃
)

=

Nw
∑

n=1
w(n)⊕ w̃(n)

Nw
, (37)

where Nw denotes the total number of bits. The attacks con-

sidered in this evaluation were those listed

in Table 4.

Table 8 lists the average BERs obtained using the water-

marking schemes investigated in this study. All of the

schemes except for DWT-DCT succeeded in restoring the

watermarks in the absence of attacks. Note that DWT-DCT

performed QIM using a quantization step acquired directly

from the DWT coefficients. The problemwith the DWT-DCT

scheme is that it lacks a mechanism to compensate for

the excessive alteration caused by watermarking. Except

DWT-DCT, all of the watermarking schemes survived

requantization, resampling, amplitude scaling, and zero

thresholding attacks. In the case of lowpass filtering with

a cutoff frequency of 8 kHz, all schemes performed per-

fectly. DWT-KFDA was the only one failed when the cutoff

frequency was decreased to 4 kHz. This can be attributed

to the fact that the watermark was embedded in a sub-

band spanning 0 to 5.5125 kHz. Therefore, setting the cut-

off frequency to 4 kHz caused an unrecoverable loss to

DWT-KFDA.

All of the schemes except FFT-LR proved highly effective

in cases of noise corruption where SNR = 30 dB; how-

ever, the performance DWT-KFDA degraded when the SNR
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dropped to 20 dB. DA/AD conversion can be regarded as

a composite effect of time-scaling, amplitude scaling, and

noise corruption [34]; therefore, FFT-LR did not performwell

in DA/AD conversion. The minor time shift appeared not

to cause any harm to the FFT-LR or FFT-AVNM schemes,

due to the fact that FFT computation employed a far wider

range of audio samples than did the other schemes. Jittering

attacks inflicted serious damage to DWT-KFDA and FFT-LR;

however, it had little effect on the DWT-RDM, DWT-DCT,

DWT-VDVM, and DCT schemes as well as on the proposed

FFT-AVNM scheme. Schemes with high capacities (such as

those considered in the performance comparison) are sus-

ceptible to the effects of MPEG compression. In the case

of 128 kbps MPEG-1 layer 3 compression, FFT-AVNM-(I)

and FFT-AVNM-(II) successfully retrieved watermarks with-

out any errors. They also presented good robustness against

the 64 kbps MPEG-1 layer 3 codec.

Overall, FFT-AVNM demonstrated excellent resistance

against most of the attacks; however, performance against

echo addition and 64 kbps MPEG-1 layer 3 compression

was only passable. Nonetheless, even in the worse scenario

(i.e., FFT-AVNM-(III) under the attack by 64 kbps MPEG-1

layer 3 compression), the average BER of 5.61% was suf-

ficient to verify the credibility of the watermark. Finally,

the data in the last three columns of Table 8 illustrate a

principle commonly observed in blind audio watermarking.

Specifically, for a given embedding strength (in terms of

SNR) there is a trade-off between robustness (in terms of

BER) and payload capacity (in terms of bps).

V. CONCLUSIONS

This study presents a novel FFT-based blind audio water-

marking method, which employs two schemes to embed two

types of binary information within separate sections of an

FFT sequence. Binary embedding is achieved by applying a

scheme called ‘‘adaptive vector norm modulation (AVNM)’’

to low frequency FFT coefficients, while auxiliary data such

as the synchronization code and index tag are inserted in

low-to-middle FFT coefficients using a spread spectrum

(SS)-based approach. The improved SS technique makes it

possible to accurately identify the synchronization code

within a range of 1024 FFT coefficients and thereby

retrieve embedded auxiliary information. The incorporation

of RASE to search for embedding locations facilitates self-

synchronous watermarking. The study demonstrates three

versions of FFT-AVNMwhich respectively operate at 344.53,

689.06, and 1033.59 bps. Experiment results indicate that the

proposed FFT-AVNM is capable of attaining an ODG score

around −0.3 with an SNR of approximately 20 dB. Further-

more, FFT-AVNM proved highly robust against a wide range

of common signal processing attacks. The proposed scheme

was able to match or outperform six well-established blind

audio watermarking schemes when evaluated according to a

composite measure that included robustness, imperceptivity,

and payload capacity.
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