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ABSTRACT

We present a proof-of-concept prototype for high perfor-

mance spreadsheet simulation called S3. Our goal is to

provide a user-friendly, yet computationally powerful sim-

ulation environment for end users. Our approach is to add

power of parallel computing on Windows-based desktop

grid into popular Excel models. We show that, by using

standard Web Services and Service-Oriented Architecture

(SOA), one can build a fast and efficient system on a desk-

top grid for simulation. The complexity of parallelism can

be hidden from users through a well-defined computation

template. This work also demonstrates that a massive com-

puting power can be harvested by linking off-the-shelf office

PCs into a desktop grid for simulation. The experimental

results show that the prototype system is highly scalable. In

the best case, the execution time can be reduced 13.6 times

using 16 desktop PCs; the simulation time is dramatically

reduced from 200 minutes to 14 minutes.

1 INTRODUCTION

Spreadsheet is a widely used computer application because

of its versatility and ease of use in calculation or modeling a

problem. Currently, the most popular spreadsheet program is

Microsoft Excel on Windows since Windows shared more

than 90% of the client operating system market (as of

2004) (Legard 2004). In fact, many textbooks use Excel

as a calculation tool, e.g., Ragsdale (2004) and Stevenson

and Ozgur (2007) which prove that Excel is sufficiently

applicable to many types of analysis.

What-if analysis is used to assess how sensitive outputs

are to changes in input values; e.g., how much total cost

would increase if the project is delayed by x days. The

analysis is inefficient if one parameter is changed at a

time. Stochastic simulation is a widely-used technique

for sensitivity analysis as it allows users to explore many

more scenarios automatically. Applications of spreadsheet

simulation include financial risk analysis (e.g., Paisittanand

and Olson 2006) and operational risk analysis (e.g., Shariff

et al. 2006). Seila (2006) and Seila, Ceric, and Tadikamalla

(2003) provide a comprehensive introduction to spreadsheet

simulation.

When a problem size is large, computation power of a

single computer might not be enough; users may have to wait

for a few hours to see simulation results. Thus, accelerating

computing speed for Excel in a transparent way is beneficial

since it allows users to quickly “play” with the problem

and gain insights. One approach to solve this problem is to

enhance Excel using a parallel/distributed computing. The

idea is to break a large simulation problem into many small

sub-problems that can be executed concurrently on multiple

computers. Excel can be customized through user-defined

Visual Basic for Applications (VBA) macros or add-ins

that allow users to include their own functions; therefore,

it is possible to modify Excel to seamlessly use parallel

computing to speed up its execution of a large simulation

problem.

In this paper, we build a spreadsheet simulation system

(S3) that is easy to use and computationally fast by utilizing

power of parallel computing on a Windows-based desktop

grid. When simulation runs are faster, an analyst can ex-

ecute a simulation model under multiple sets of decision

variables, or they may want to find the best set of deci-

sion variables for the system of interest (optimization via

simulation). S3 allows users to execute a spreadsheet sim-

ulation model under multiple set of integer-valued decision

variables by specifying their upper and lower bounds. For

each combination of decision variables, S3 returns sample

means and standard errors. Users can then explore these

outputs by sorting them and examine which set of decision

variables give the top x% performance.

We consider two key design problems:

1. To design spreadsheet simulation infrastructure

which is inexpensive and easy to maintain.

2. To design an Excel user’s interface in such a way

that users can slightly modify their existing mod-
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els or build their models without being aware of

parallelism and infrastructure used. The parallel

computation should be hidden from users as much

as possible to make it user-friendly.

We address the first issue with a desktop grid which are

built from commodity PCs, readily available in most orga-

nizations. Grid computing focuses on large-scale resource

sharing. Grid architecture specifies protocols that define

“the basic mechanisms by which users and resources nego-

tiate, establish, manage, and exploit sharing relationships”

(Foster, Kesselman, and Tuecke 2001).

Desktop grid computing generally consists of clients,

workers, a manager, and servers. A client submits jobs

that are executed by workers. A manager is responsible

for job scheduling and resource management. Servers are

used for data storage. A well-known example of desktop

grids is SETI@home which is based on BOINC (Anderson

2004). Desktop grids are appealing for they allow intensive

computation to be performed at low cost. However, the

main challenge is stability and security. Given that our

desktop grid consists of PCs within the same organization,

the security issue may not be too prohibitive.

The second issue is more challenging. Typically, Excel

evaluates formulas and display the results as values in the

cells that contain the formulas (Ecklund 2007). A .xls

file is an Excel Workbook which consists of Worksheets. By

default, Excel has automatic calculation: it recalculates any

cells that are dependent on other cells whose values have

been changed. Abramson et al. (2001) calls it sequential

calculation. This feature complicates evaluation of multiple

cells that have built-in formulas in parallel.

As a result, the issue of hiding parallelism is resolved by

separating random inputs and simulation outputs so that they

are on separate Worksheets. We have a Worksheet template

where a user specifies the number of inputs and their cell

locations and similarly for outputs. When simulation runs

are finished, users get outputs of each replication (if there

is only one set of decision variables) or sample means and

standard errors of each set of decision variables, i.e., a

parametric sweep. Due to space limitation, we will only

discuss the template and result display of the latter case.

This paper is organized as follows: We summarizes

related work in Section 2. We describe our system archi-

tecture in Section 3. We present our experimental results in

Section 4, and we conclude with future research direction

in Section 5.

2 RELATED WORK

In this section, we summarize works that address the issue

of achieving parallelism, especially for spreadsheet.

Condor is a widely-known tool for maximizing utiliza-

tion of computing resources (Litzkow, Livny, and Mutka

1988). The Condor scheduling system identifies idle ma-

chines and schedules background jobs on them. When those

machines are used for non-Condor jobs, the Condor job is

terminated and transferred to another machine, with the last

system state before termination.

ActiveSheets is an application that allow parallel evalua-

tion of spreadsheets. User interface is Microsoft Excel. Ac-

tiveSheets require custom functions for parallel calculation

which are done at backend computers. When the computa-

tion is finished, the results are displayed on a spreadsheet. In

Abramson et al. (2001), the backend platform is managed

by EnFuzion (www.axceleon.com) on a high perfor-

mance computing (HPC) system such as computer clusters

or grids. On the other hand, Abramson et al. (2004) uses

NetSolve (Agrawal et al. 2003), a grid middleware.

Nadiminti et al. (2004) introduce ExcelGrid, an open-

source .NET plug-in that uses Excel as a front-end to a grid

and perform user-defined calculations on it. Mustafee et al.

(2006) show how WinGrid can enable Witness—a commer-

cial simulation package—perform simulation replications

in parallel on enterprise grid (linked resources within the

same organization, as opposed to the public grid). In this

work, users do not build a simulation model on Witness

directly but specifying model parameters through Excel.

The simulation results are also displayed on Excel.

ActiveSheets, ExcelGrid and WinGrid use Excel mainly

for user interface; they do not perform computing-intensive

calculation on Excel, and they are not designed specifically

for spreadsheet simulation. On the other hand, our S3

still exploits Excel calculation, and it aims specifically at

spreadsheet simulation applications. Hence, no complex

programming is needed to benefit from our approach.

Microsoft also offers a tool for creating Excel Ser-

vices for running a parametric sweep on a Excel 2007

Windows Compute Cluster Server (CCS) 2003 (Microsoft

Corp. 2008). Excel Services is an architecture that allows

Excel calculation on servers and enable applications to ac-

cess Excel files. However, Excel Services and Windows

CCS are not specifically designed for stochastic simulation.

Thus, without further programming, users have no control

over random number streams, and they have to implement

their own algorithms for generating random variates.

Platform Symphony (www2.platform.com) is a com-

mercial software designed to operate on enterprise grids.

Platform introduces Adapter which enables Excel calcula-

tions to be run in parallel. Symphony’s Adapter is targeted

for financial applications.

Widely used commercial spreadsheet simulation

Excel add-ins also offer parallel versions: @Risk

(www.palisade.com) has RiskAcceleratorTM, and Crys-

tal Ball (www.crystalball.com) provides Crystall Ball

TurboTM.
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3 DESIGN AND ARCHITECTURE

We first describe a S3 spreadsheet simulation model. Then

we provide details on system design and implementation.

3.1 Spreadsheet Simulation Models

By design, each simulation replication (i.e., runs) of the same

model yield outputs that are independent and identically

distributed (i.i.d.); therefore, we can achieve parallelism by

assigning simulation replications that use different set of

random inputs to each compute node, i.e., parallelism is

achieved via domain decomposition (Quinn 2003). This

technique relies on the execution of the same spreadsheet

on multiple computers using different data set for each one.

Once the calculation at all compute nodes are completed,

simulation outputs are then aggregated and summarized,

numerically via summary statistics, such as sample means

and standard errors, or graphically, through Excel’s charting

tools.

It can be shown that random numbers of any paramet-

ric distributions can be transformed from uniform random

numbers over the range (0,1) (see, for example, Banks et al.

2005 for proof). These standard uniform random variables

are generated from mathematical algorithms, the so-called

random number generators (RNGs). RNGs produce a very

long sequence of pseudo-random numbers, and RNG seeds

allow us to specify from which point in this sequence we get

our numbers; we obtain the same sequence of numbers if

the seeds are identical (see Henderson and Nelson 2006 for

brief summaries on RNGs and random variate generation).

Excel has a built-in RNG, called RAND() which is not

used in S3 for the following reasons: we do not know how

to control sequence of numbers that RAND() produces. In

addition, RAND() has some statistical deficiencies: Knusel

(2005) and McCullough and Wilson (2005) discuss RAND()

issues in Excel 2003. Therefore, we separate (0,1) uni-

form random numbers and Excel outputs from other Excel

calculations.

We illustrate our approach via an example (more details

in Section 4.1): We estimate value-at-risk (VaR) of stock

portfolios by first simulating daily stock prices. In doing

so, we need normally distributed random variables which

in turn require uniform (0,1) random numbers. We fix the

names of the following two Worksheets:

• Model contains calculation.

• SimRun is a template where a user specifies de-

tails on uniform(0,1) random numbers (number of

rows and columns and their locations), outputs

(number of outputs and their cell locations), and

decision variables (number of decision variables,

their location and their respective lower and upper

bounds). See Figure 7. The location of some of

these cells are fixed, but some cell locations depend

on locations of other cells. SimRun also holds uni-

form(0,1) random numbers that Worksheet Model

needs. The RNG that our compute nodes use is

Mersenne Twister (“mt19937”) where we adapt to

C# from C code in the GNU Scientific Library

(Galassi et al. 2006). S3 knows the details about

a simulation model through this worksheet.

In this VaR example, we have three simulation outputs

that are estimated from multiple i.i.d. trials in Worksheet

Model: VaR, average portfolio values on the next day

and average profit/loss. S3 knows that they are outputs

because we link them to Worksheet SimRun. Users can

also execute simulation runs under multiple set of decision

variables (DVs) by specifying the upper and lower bounds of

each DV in Worksheet SimRun (see Figure 7). Currently,

we only allow integer values with step size of 1. In this

example, our DVs are the number of lots (one lot consists of

100 stocks) of each stock in our portfolio. DVs are specified

on Worksheet SimRun, and they are used in Worksheet

Model for calculation.

Once the calculation is completed, a user gets result

on another Worksheet called Output (see Figure 8). For

each combination of DVs in the specified range, sample

means and standard errors are provided. (Standard error is

a measure of how close a sample mean is to the unknown

true mean. It is defined as a sample standard deviation

divided by square root of the number of replications.)

3.2 Design and Implementation

We first explain the execution steps of S3 and discuss the

details about system architecture.

The S3 system architecture is shown in Figure 9. The

system is consisted of four main components:

1. Users upload Excel simulation models and down-

load Excel output files when jobs are completed.

2. Manager is responsible for resource management

(book keeping of status of workers), job man-

agement (job submission, job scheduling, and job

allocation), and data management (managing data

files).

3. Workers or compute nodes are PCs that execute

Excel calculations. Currently, we have dedicated

workers which are always available for Manager

even if there are other jobs running on them.

4. File Server stores data files that are created during

job execution. Users upload Excel files that con-

tain their simulation models onto this File Server

from which workers subsequently download. Once

simulation is finished, users download Excel files

that hold simulation results from the File Server.
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The execution steps of S3 can be explained as follows

(the number below correspond to ones in Figure 1).

Figure 1: System configuration.

1. A user creates a simulation model in Excel which

has our add-in that connects to Manager through

Web Services. Figure 2 shows the dialog box

for job submission. Job description (such as the

number of replications, number of workers and a

seed number) is sent to Manager (1(a)) and the

user’s Excel file is sent to File Server (1(b)).

2. “Idle” Workers (not currently running Manager’s

jobs but maybe doing other jobs) periodically check

with Manager to request jobs. If there are pending

jobs, Manager sends them to Workers.

3. A Worker downloads an Excel file according to

what Manager has assigned.

4. When a Worker completes his job, Worker uploads

his job onto File Server.

5. Then Worker updates his status with Manager.

6. A user can check status of his submitted jobs

through Manager (see Figure 3).

7. When user’s job is completed, he downloads his

output Excel file from File Server.

Figure 8 shows an example of output display.

4 EXPERIMENTAL RESULTS

We first describe our test problem and the experimental

setups, followed by experimental results and discussion.

4.1 Value-at-Risk Test Problem

VaR is a risk metric that probabilistically describe market

risks. Let L be investment profit or loss. Given some

confidence level α ∈ (0,1), the VaR of the portfolio at

the confidence level α is given by the smallest number ℓ
such that Pr{L > ℓ} = 1−α (Jorion 2001). For a given

Figure 2: Dialog box when a user requests simulation runs.

combination of stocks, we simulate a value-at-risk over one-

day period. We assume that stock prices follow a Brownian

motion process. The calculation steps are (Hull 2003):

1. Compute the value of portfolio today using the

current stock prices. Let Sit be the price of stock

i on day t, and xi is the number of stock i in the

portfolio, i = 1,2, . . . ,n. The value of portfolio on

day t is Pt = ∑i xiSit .

2. Sample stock returns, r = [r1,r2, . . . ,rn]
′, from the

multivariate normal distribution whose mean is

zero and the covariance matrix is estimated from

historical data.

3. Use ri to determine the stock price on day t +1:

Si(t+1) = Site
ri . Revalue the portfolio value on day

t +1, Pt+1 = ∑i xiSi(t+1).

4. Compute δP = Pt+1 −Pt .

5. Repeat steps 2 to 4 m times to get samples of δP.

We estimate the α% VaR as the α percentiles of m

simulated values of δP. We use m = 200 and n = 10 stocks

that are traded in the Stock Exchange of Thailand. The

covariance matrix of stock returns are estimated from 50

trading days, from December 7, 2007 to February 20, 2008.

4.2 Experimental Setups

The experiment is done on a 19-PC system. The user’s

system is an AMD Athlon XP 1GHz system with 512MB

RAM installing Windows XP. Both the manager and file

server system are an AMD Athlon XP 2500+ system with

512MB RAM installing Windows Server 2003. The rest

of computing nodes are an Intel Celeron 2.53 GHz system
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Figure 3: Dialog box when a user checks job status.

with 512MB RAM installing Windows XP. All machines

are connected together using 100Mbps Fast Ethernet switch.

In this work, all the softwares are developed with Visual

Studio 2005 and Visual Studio Tool for Office (VSTO). The

manager uses the FCFS (first come, first served) algorithm

for job assignments.

We vary the number of combinations of decision vari-

ables (i.e., problem size) by changing the upper and lower

bounds of each DVs, and the number of workers used.

Each combination of decision variables gets 10 simulation

replications. The performance measure is the computational

time to complete the simulation runs. The test is done at

256, 512, 1024, 2048, 4096 combinations of decision vari-

ables. The number of workers used are 1, 2, 4, 8, and 16

workers.

4.3 Experimental Results

The runtime results are shown in Figure 4. We see that

the run time decreases when number of processing nodes

increases. This is due to the distribution of the processing

tasks to multiple computing nodes simultaneously. However,

benefits of increasing the number of workers diminish as

the number of workers increases, e.g., the runtime decreases

sharply when we include the second worker, but the benefit

declines as we go from 8 to 16 workers.

We also consider a performance measure called speedup

which is defined as a ratio between sequential runtime

(runtime on one worker) and parallel runtime (runtime on

multiple workers). Parallel run time consists of computation

Figure 4: Runtime on the desktop grid when the problem

sizes and the number of workers vary.

time and communication overhead. Thus,

Speedup =
TSeq

TParallel

=
TSeq

Tcomp +Tcomm

. (1)

Speedup shows how many times faster the execution is

when parallel computing is used; if we use n identical

processors, the ideal speedup is n, i.e., when Tcomm = 0,

Tcomp = Tseq/n in (1). The actual speedup is lower due to

communication overhead, which increases with the number

of processors and the problem size. In our experiment,

the communication overhead is mostly due to preparing

communication channels between servers and workers,

rather than in uploading or downloading files. Thus, for

a given the number of processors, our communication

overhead are relatively close across all problem sizes,

and speedup for large problems is higher than for small

problems. (that we consider).

Figure 5: Speedup on the desktop grid when the problem

sizes and the number of workers vary.

In Figure 5, we observe the following results:
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• Speed up increases at a faster rate when the number

of computing Service nodes are added. Maximum

speedup gained in this experiment is 13.6; therefore,

the application runs 13-14 times faster for the

system of only 16 nodes.

• Speedup for large problems is higher than for small

problems. The reason is that when more computing

workload is available, the fraction of computing

overhead (e.g., in load balancing and communica-

tion) to the computing workload is lower. Thus,

our proposed system will work even better for large

and complex problems. Note the seemingly un-

usual behavior of the results for 256DVs, where the

runtime for 8 and 16 processors are approximately

3 minutes. This is because the communication

overhead is much larger than the parallel compu-

tational time, and this overhead is also close to

the sequential run time. As a result, speedup is

non-increasing (see (1)).

A fraction of runtime used as system overhead can be

assessed through a ratio called efficiency. The efficiency

of parallel computation is speedup divided by number of

workers. Efficiency indicates the effectiveness that our

computing systems are utilized to solve the problem. Due

to communication overhead, efficiency is between 0 and 1

(100%), where being closer to one is desirable. Figure 6

shows the efficiency of our desktop grid. For a given

problem size, the efficiency is high for a small number of

workers since communication cost is low. As number of

workers increases, the communication overhead increases

as well. Thus, the efficiency is decreasing accordingly, and

at a higher rate. In addition, running a larger simulation

model is more efficient because the ratio of computation

time to communication time is higher. We can also see

that our implementation is very efficient since we can still

maintain efficiency of more than 80% (0.8) for 16 nodes

with the problem size of 4096 DVs.

5 FUTURE WORK

In this paper, we propose an architecture that allows spread-

sheet simulation to use Windows-based desktop grids to

accelerate the execution speed. Our approach is different in

that we base almost all computations on Excel spreadsheets

(except for random number generations). Thus, no complex

programming is needed. We also show that the complexity of

parallel computing can be mostly hidden from users through

well-designed computation templates in Excel. With these

templates, users can have a flexibility of modeling a sim-

ulation problem while enjoying massive computing power.

From the experiments, we show that runtime can be reduced

from 200 minutes to about 14 minutes. This speedup can

Figure 6: Efficiency on the desktop grid when the problem

sizes and the number of workers vary.

make a huge difference in how a user analyzes problems;

with desktop grids, they are able to consider many scenarios

simultaneously or even to optimize a sizable model, thus

gaining greater insights on the problem at hand.

Our work can be enhanced in many ways. More tem-

plates can be added for broader classes of problems. More

transparency can be built so users are not aware of the

manager existence by adding automatic job submission into

Excel. For a longer term execution, some of the fault han-

dling mechanism should be added to make it easy to use

the system in a less reliable IT environment.
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Figure 7: Screenshot of Worksheet SimRun.

Figure 8: Screenshot of Worksheet Output.

Figure 9: S3 architecture.
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