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ABSTRACT Machine learning (ML) algorithms have gained prominence in time series prediction

problems. Depending on the nature of the time series data, it can be difficult to build an accurate ML model

with the proper structure and hyperparameters. In this study, we propose a predictive error compensation

wavelet neural network model (PEC-WNN) for improving the prediction accuracy of chaotic and stochastic

time series data. In the proposed model, an additional network is used for the prediction of the main network

error to compensate the overall prediction error. The main network takes as inputs the time series data

through moving frames in multiple-scales. The same structure and hyperparameter sets are applied for

quite distinct four types of problems for verification of the robustness and accuracy of the proposed model.

Specifically, the Mackey-Glass, Box-Jenkins, and Lorenz Attractor benchmark problems, as well as drought

forecasting are used to characterize the performance of the model for chaotic and stochastic data cases.

The results show that the PEC-WNN provides significantly more accurate predictions for all compared

benchmark problems with respect to conventional machine learning and time series prediction methods

without changing any hyperparameter or the structure. In addition, the time and space complexity of the

PEC-WNN model is less than all other compared ML methods, including long short-term memory (LSTM)

and convolutional neural networks (CNNs).

INDEX TERMS Box-Jenkins, Discrete Wavelet Transform, Drought Forecasting, Lorenz Attractor,

Mackey-Glass, Neural Networks, Predictive Error Compensated Wavelet Neural Network, Standardized

Precipitation Evapotranspiration Index (SPEI), Time Series

I. INTRODUCTION

Time series prediction is an important area that has attracted

the attention of researchers from different fields, such as

business, economics, finance, science, and engineering [1],

[2].

In this study, we propose an efficient ML structure for time

series prediction problems that provide considerably higher

accuracy and low time complexity with respect to conven-

tional algorithms such as long short-term memory (LSTM)

networks, and convolutional neural networks (CNNs). Be-

sides, the proposed algorithm has capability to find accurate

solutions for different types of problems without changing

the hyperparameter set or the network structure.

The main aim of time series prediction is to collect and

analyze the past observations of the time series data to

develop a model that describes the behavior of the relevant

system [1]. Time series problems found in the literature,

such as sunspots, runoff, electric loads, temperature, gas

furnace, drought, and rainfall, can be interpreted through

chaos theory [1] - [4]. The various methods for time series

prediction have been developed by using linear models. A

conventional statistic methods such as Auto-Regressive (AR)

and Autoregressive Integrated Moving Average (ARIMA) as-

sume linear relationships between past values. The ARIMA

models are relatively robust and more efficient than complex

models. Development and implementation of linear methods

are relatively simple, however, they are not able to capture

non-linear relationships in the data [5].

In recent decades, ML methods, including artificial neural

network (ANN) models have attracted more attention in

the domain of time series forecasting. These models have

been widely used compared to various traditional time series
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models. The ANNs models are intended to resolve non-linear

functional dependencies between the time series data in the

past and its future [6]. ANN models can be classified based

on network structure into feed-forward and recurrent neural

networks [7]. The most used feedforward neural networks

in time series predictions are the multilayer perceptrons

(MLPs) [5]. The MLP structure demands a large number

of parameters to solve complex non-linear problems. This

results in a low learning rate and poor generalization [5].

The prediction of time series data to achieve better accuracy

requires the NN models to be adaptive to changes that occur

over time in the data. Several neural networks (NNs) and their

modified models have been applied for non-linear time series

prediction to overcome these drawbacks [8], [9], [10], [11],

[12], [13], [14], [15].

Convolutional neural networks (CNNs) [16] are widely

used for learning nonlinear mapping functions from complex

data. They can be applied to a variety of problems, from

image data, time series to the outputs. The CNNs can learn

and extract the most important features due to special convo-

lutional operations.

Recurrent neural networks (RNNs) possess an internal

memory and makes them capable of incorporating changes

due to internal recurrence [17]. RNNs are computationally

more powerful than feedforward networks. Despite the ef-

ficiency of NN, CNN, and RNN models in the prediction

of time series, two main problems can be addressed. The

performance of networks highly depends on the architecture

and hyperparameters of networks. The appropriate design of

CNN, RNN, and NN models becomes more difficult regard-

ing the nature of time series data. Therefore, the prediction

performance is affected by appropriate network parameters.

In this study, we propose a predictive error compensated

wavelet neural network (PEC-WNN) model consisting of two

NNs. The motivation for using two separated NNs comes

from the following perspectives. Firstly, the forecasting mod-

els are facing with expending uncertainties such as the lack

of information for making more accurate predictions and

the accumulation of errors. A well-known drawback in the

recursive methods is sensitivity to the estimation errors since

their predicted values are used in the model instead of the

target values [18]. In contrary, in the proposed approach the

models are trained independently and hence not prone to

accumulate errors. We show that compensating the predicted

error through a second NN enhances the overall prediction

performance. The PEC-WNN uses time series input data in

multiple-time windows. Sampled time series data in the mov-

ing time window are first transformed into a set of wavelet

coefficients using a discrete wavelet transform (DWT) and

then fed into the NNs. DWT is applied separately to each

window by analyzing signal in time as well as in frequency

domain. The results show that using a multi-dimensional time

window improves the prediction performance without in-

creasing the algorithm complexity. The PEC-WNN improves

accuracy while at the same time prevents overfitting by taking

the advantage of multi-resolution DWT and NN.

The main contributions of the proposed method can be

summarized as:

1. Improvement of the prediction accuracy for chaotic and

stochastic time series data using multiple neural networks

where the secondary network is trained by shifted time series

prediction error of the primary network so that overfitting

can be avoided due to increase of recurrence related feedback

input.

2. The same structure and hyperparameter sets can be applied

for broad range of time series prediction problems with

moving frames in multiple-scales.

3. The DWT yields better accuracy improvement than di-

rectly applying the time series data to the neural network in

predictive error compensation.

In the next section, we explained the proposed PEC-WNN

model for time series prediction. The time series problems:

the Mackey-Glass chaotic time series, the gas furnace data

(series J) of the Box-Jenkins benchmark problem, the Lorenz

Attractor time series data, and drought forecasting problems

are provided in Section III along the corresponding results.

The time and space complexity of the proposed model with

respect to the models found in the literature have been

discussed in section IV Section V presents the concluding

remarks.

II. PREDICTIVE ERROR COMPENSATED WAVELET

NEURAL NETWORK MODEL

The predictive error compensated wavelet neural network

model (PEC-WNN) utilized in this study comprises of two

separate wavelet preprocessed neural networks, as demon-

strated in Fig. 1. The current input is shifted to the previous

value using the unit delay operator z−1 (see Fig. 1.a)). Along

with the four consecutive values, we compute the average

values of the different time intervals obtained by applying

the unit delay operator (Fig. 1.b)), in the same manner as

in (Fig. 1.a)). The input data consist of two different time

windows that are preprocessed in accordance with the time

frame using the discrete wavelet transform (DWT). The

rationale for applying DWT is due to its ability to analyze

a signal both in time and frequency domains. Unlike FT

that provides insight just into frequency content, the wavelet

analysis can automatically adapt itself to a suitable resolution

and overcome the limitations found in the FT [19], [20].

The DWT is a linear signal processing technique that trans-

forms a signal from the time domain to the "wavelet" domain.

The wavelets characterize a family of functions generated

from one single function ψ(t) by the operation of dilation and

translation. The mother wavelet function localized both in

time and frequency domain is represented by ψ(t), a scaling

function is defined by ϕ(t) and the parameters ji and ki can

be defined as the scale and translation parameters to generate

the families of functions, respectively, as given in (1) and (2).

ψj,k(t) = 2−
j

2ψ(2−jt− k) (1)

ϕj,k(t) = 2−
j

2ϕ(2−jt− k) (2)
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FIGURE 1. The Predictive Error Compensated Wavelet Neural Network

model (PEC-WNN): a) Consecutive input values shifted using the unit delay

operator z−1 , b) Average values of size five computed applying the unit delay

operator three times, c) Forecasting error calculation and input preparation for

the compensation network.

Formerly, we sample the data into a window Wi as in (3):

Wi =

{

None, i< lx

x(i− lx + 1), x(i− lx + 2), ...x(i), i> lx
(3)

where x(i) is the i-th value of the input, lx is the length

of the signal part using the current window. Based on the

selected scaling functions and multi-resolution analysis, we

obtain the double-scaling equations as given in (4) and (5):

ψ(2−jt) =
√
2
∑

k

hkψ(2
−(j−1)t− k) (4)

ϕ(2−jt) =
√
2
∑

k

gkϕ(2
−(j−1)t− k) (5)

Applying the DWT to the current window, we compute the

scaling coefficients ci,j,k, and the wavelet coefficients di,j,k
using the following equations:

ci,j,k =
∑

n

hn−2kci,j−1,n (6)

di,j,k =
∑

n

gn−2kci,j−1,n (7)

where the coefficients hn−2k and gn−2k can be performed by

using (4) and (5):

hn−2k = 〈ϕj,k, ϕj−1,k〉 (8)

FIGURE 2. The DWT decomposition of the input signal using Mallat’s

algorithm.

gn−2k = 〈ψj,k, ψj−1,k〉 (9)

Equations (6) and (7) are mathematical expressions of filter-

ing a signal through a high-pass (h[n]) and low-pass (g[n])
filters, which corresponds to convolution with an impulse

response of k-tap filters. Subsequently, the signal reconstruc-

tion can be computed by:

ĉi,j−1,n =
∑

k

hn−2kci,j,k +
∑

k

gn−2kdi,j,k (10)

In this work, as a common wavelet basis function, the sym-

metric Haar wavelet function is used. It beneficially dimin-

ishes the distortion rate during the signal decomposition and

the signal reconstruction. The Haar wavelet function also

reduces the processing and computational time significantly

[21]. The Mallat’s pyramidal algorithm that provides high-

(hn) and low- (gn) frequencies from a given signal that are

used for the decomposition of the input signal. The low-

and high- frequency components are used together as input

to the forecasting model to capture valuable information

during the training process. A block diagram of multilevel

wavelet decomposition is presented in Fig. 2, together with

the coefficients used as input to the first NN.

The prediction of n-step-ahead time series data is obtained

by using the main network characterized by three layers:

input, hidden, and output layer. Mathematically, a hidden

layer with activation function g(.) and k hidden neurons can

be represented as given in (11):

g(
n
∑

i=1

wji · xi + bj) = yj , j = 1, 2, 3, ..., k, (11)

where wji = [wj1, wj2, ..., wjk]
T characterizes the weight

vector that connects the jth hidden neurons with the inputs,

and bj is the bias value of the jth hidden neuron. The result

of the jth output neuron mathematically can be computed as

represented in (12):

g(

k
∑

i=1

βji · yi + bj) = Oj , j = 1, 2, 3, ..., N, (12)

where βji = [βj1, βj2, ..., βjm]T denotes the weight vector

connecting the jth hidden and output neurons, and bj is the

bias value of the jth output neuron.

The total number of output neurons is given by N . The

activation function g(.) approximate the relationship between
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the input xi and the output, target ti. Consequently, there are

βi, wi, and bi such that:

n
∑

i=1

βjig(wi · xj + bj) = tj , j = 1, 2, 3, ..., n (13)

The employed network uses Rectified Linear Unit (ReLU)

activation function. The ReLU activation function, compared

to the widely used activation functions (sigmoid and hyper-

bolic tanged), significantly improves the performance of the

feed-forward networks [22]. The ReLU is a linear function

that returns the value provided as input if the value is higher

than zero as given in (14).

f(x) = x+ = max(0, x) (14)

The stochastic gradient descent (SGD) is used for optimiz-

ing, where the learning rate and momentum are 0.05 and

0.75, respectively. The SGD maintains a single learning rate

for all weight updates without varying during the training.

The learning rate is maintained for each network weight,

whereas it is distinctly adopted as learning folds. Secondly,

the PEC-WNN is used to improve forecasting performances

obtained in the first NN. The input data of the second NN is

constructed using the DWT preprocessed prediction errors.

The prediction error at a time (t + 1) is shifted applying the

unit delay operator z−1 (Fig. 1.c)). The output of the second

NN is the prediction of the error at a time (t + 1) using the

prediction errors at time (t), (t− 1), (t− 2) and (t− 3).
Finally, the predictive value from the first NN at a time

(t+ 1) and predictive error (t+ 1) from the second NN, are

used together to acquire the compensated predictive value at

a time (t+1). The main equations of the proposed model can

be expressed as given below:

xp(t+ 1) = f(x(t), x(t− 1), x(t− 2), x(t− 3), x[t,t−4],

x[t−5,t−9], x[t−10,t−14], x[t−15,t−19]) (15)

x[i, j] =

∑j

i xi

(j − i) + 1
(16)

errorp(t+ 1) = f(err(t), err(t− 1), err(t− 2), err(t− 3))
(17)

error(t) = real value(t)− forecasted value(t) (18)

compensated value (t+ 1) = xp(t+ 1)− errorp(t+ 1) (19)

where xp(t + 1) characterizes predicted value at time (t + 1).
Four consecutive values, (x(t), x(t− 1), x(t− 2), x(t− 3)) and its
average values of size five (x[t, t− 4], x[t− 5, t− 9], x[t− 10, t−
14], x[t − 15, t − 19]) computed using (15),represent the input of
the first NN. The average values of an interval [i, j] are computed
using (16). The input data of the second NN contains four errors
obtained using the predicted values from the first NN using (17).
The compensated predicted value is computed by subtracting the
predictive value at a time (t+1) from the predictive error at (t+1),
which is given in the (19).

TABLE 1. The mathematical equations of used evaluation metrics.

Evaluation metrics: Formulation

MAPE(%) 100
n

∑n
i=1

∣

∣

∣

Xmodel,i −Xobs,i

Xobs,i

∣

∣

∣

RMSE

√

∑
n
i=1

(Xobs,i−Xmodel,i)
2

n

DA(%) 100
n

∑n
i=0 di

III. MATERIALS AND RESULTS
The performances of the proposed model are verified using the
Mackey-Glass, the Box-Jenkins gas furnace (series J), the Lorenz
Attractor time series data, and for the drought forecasting problem
the global SPEI index. The data sets are applied to the different mod-
els such as simple neural network model (hereafter NN), predictive
error compensated neural network model (PEC-NN), wavelet neural
network (WNN), and predictive error compensated wavelet neural
network (PEC-WNN).

The data sets are scaled by using the minimum/maximum nor-
malization method given in (20):

x(t)
norm

= (max2 −min2) · (
x(t)−min1

max1 −min1
) +min2 (20)

where x(t) represents the real value, min1 and max1 are the
minimum and maximum values of observations. The max2 and the
min2 refer to the desired maximum and minimum of the new scaled
values. The mean absolute percentage error (MAPE), root-mean-
square error (RMSE), and directional accuracy (DA) are used for the
comparison of the experimental results. In Tab. 1, the mathematical
formulations of evaluation metrics are shown.

where Xobs is observed value and Xmodel is modeled value in
time i. The number of data samples is given by n. The di is given
by:

Wi =

{

1 (Xmodel,i −Xmodel,i−1)(Xobs,i −Xobs,i−1) ≥ 0

0 otherwise

(21)

A. THE MACKEY-GLASS CHAOTIC TIME SERIES DATA

The chaotic Mackey-Glass time series data (Fig. 3) has been typ-
ically used as a benchmark problem before considering the suit-
ability of a specific approach to real-world forecasting problems
[23]. The time series data have been generated from the following
differential equation (22):

dx(t)

dt
=

ax(t− τ)

1 + x10(t− τ)
− bx(t) (22)

where x (unitless) is the series in time t, and τ is the time delay. The
parameters α, β and τ are set as α = 0.2, β = 0.1, τ = 17. Note
that, for τ > 17, the time series show chaotic behavior [24]. The
initial condition x(0) = 1.2 is used to generate the data points by
using the fourth-order Runge-Kutta method with time step 0.1.

The work from [24], uses non-consecutive values with the
constant time interval, T = 6 for prediction of the short-term
outputs. They performed experiments by considering inputs as
x(t − 18), x(t − 12), x(t − 6), x(t) to predict x(t + 6). Out of
1000 samples, the authors used 500 for training the model and 500
for testing performance. Similarly, [23] considered sequential four
input variables, x(t− 3), x(t− 2), x(t− 1), x(t) to estimate single
output variable at time x(t + 5). Out of 300 samples, half of the
samples served for training and the remaining half for testing.

Different than the previous studies, in this work, we construct
the data sets which contains the averages of different window sizes
together with sequential values. The first data set contains only
four successive values obtained by (23). In order to observe the
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FIGURE 3. The chaotic Mackey-Glass time series data.

effects of the average values on the forecasting performance in the
following data sets, we include the average values of window size
5 and size 10, obtained using equations (24) and (25), respectively,
which can be considered as daily data. Hence by using the average
values of size 5, we gain the business week resolution of data.
Moreover, extending it to the four shifted average values, we obtain
the monthly resolution.

In our study the forecasting intervals differ from the next value
(t+1), the fifth (t+5), the sixth (t+6), the forty-second (t+42)
until the eighty-fourth (t+ 84) value. Equally divided into training
and test sets, 1000 samples are used as in [24].

MG1 : y1 (t+ T ) = f (x (t− 3) , x (t− 2) , x (t− 1) , x (t))
(23)

MG2 : y2 (t+ T ) = f(x(t), x(t− 1), x(t− 2), x(t− 3),

x[0,4], x[5,9], x[10,14], x[15,19]) (24)

MG3 : y3 (t+ T ) = f(x(t), x(t− 1), x(t− 2), x(t− 3),

x[0,9], x[10,19], x[20,29], x[30,39]) (25)

The RMSE results are presented concerning the constructed data
sets (presented in the above equations) and its forecasting time
interval in Tab. 2. The results show that the use of averages along
with consecutive values significantly reduces the error. In addition,
the average values used in conjunction with the successive values
improve the forecasting performances of the proposed model (PEC-
WNN). The selection of window size has a huge impact, con-
sidering the predicting time interval. Small window size averages
show better results for short-term predictions, while window size
expansion shows better forecast performance for long-term fore-
casts. Similarly, in comparison to the MAPE (Tab. 3) we confirmed
that appending the averages to the consecutive values improve the
results and reduce the forecasting errors. The results for directional
accuracy, DA in Tab. 4, shows descent results for applied models
where the PEC-WNN model precedes.

The Mackey-Glass time series problem results showed that at
different forecasting intervals, the PEC-WNN achieves the lowest
RMSE error. The second-best result found in the literature [25], for
short-term forecasting (t + 1) is 0.0327. The same time-interval
forecasting done with PEC-WNN obtain the RMSE of 0.0013,
which reduces the RMSE by 95%. Similar results are noticed for
(x+6) forecasting term, where the best result found in the literature
is 0.0055 [26]. This result is obtained by using the dynamic cell

TABLE 2. The RMSE results of The Mackey-Glass time series data

considering applied equations and forecasting time interval.

Forecasting interval Equation NN PEC-NN WNN PEC-WNN

MG1 (23) 0.013 0.006 0.013 0.005
x+1 MG2 (24) 0.003 0.001 0.002 0.001

MG3 (25) 0.010 0.007 0.011 0.006

MG1 (23) 0.072 0.029 0.071 0.029
x+5 MG2 (24) 0.005 0.004 0.005 0.004

MG3 (25) 0.0031 0.019 0.029 0.018

MG1 (23) 0.087 0.036 0.086 0.035
x+6 MG2 (24) 0.004 0.003 0.003 0.002

MG3 (25) 0.006 0.004 0.005 0.003

MG1(23) 0.136 0.042 0.131 0.034
x+42 MG2 (24) 0.033 0.026 0.024 0.014

MG3 (25) 0.018 0.012 0.014 0.010

MG1 (23) 0.159 0.040 0.160 0.038
x+84 MG2 (24) 0.124 0.035 0.082 0.030

MG3 (25) 0.067 0.028 0.41 0.025

TABLE 3. The MAPE (%) results of The Mackey-Glass time series data

considering applied equations and forecasting time interval.

Forecasting interval Equation NN PEC-NN WNN PEC-WNN

MG1 (23) 1.253 0.547 1.266 0.486
x+1 MG2 (24) 0.264 0.152 0.200 0.118

MG3 (25) 0.925 0.552 1.001 0.643

MG1 (23) 7.200 2.519 6.991 2.49
x+5 MG2(24) 0.486 0.366 0.542 0.407

MG3 (25) 2.912 1.747 2.722 1.534

MG1 (23) 8.767 3.475 8.584 3.100
x+6 MG2 (24) 0.374 0.260 0.311 0.241

MG3 (25) 0.568 0.381 0.513 0.369

MG1 (23) 13.446 3.809 12.605 2.938
x+42 MG2 (24) 3.120 1.840 2.161 1.203

MG3 (25) 1.722 0.970 1.252 0.970

MG1 (23) 16.307 3.660 16.351 3.524
x+84 MG2 (24) 12.113 2.517 7.935 2.782

MG3 (25) 6.610 2.692 3.535 2.414

TABLE 4. The DA (%) results of The Mackey-Glass time series data

considering applied equations and forecasting time interval.

Forecasting interval Equation NN PEC-NN WNN PEC-WNN

MG1 (23) 96.267 96.673 96.493 96.719
x+1 MG2 (24) 98.484 98.592 98.672 9.709

MG3 (25) 95.682 95.482 95.227 95.341

MG1 (23) 69.432 70.682 72.612 74.659
x+5 MG2 (24) 96.816 96.432 96.226 96.755

MG3 (25) 80.909 87.343 87.913 89.369

MG1 (23) 62.841 63.841 62.955 64.091
x+6 MG2 (24) 97.642 98.231 97.642 98.426

MG3 (25) 95.873 95.991 94.108 96.187

MG1 (23) 61.457 66.510 64.160 67.568
x+42 MG2 (24) 87.912 89.499 87.424 90.005

MG3 (25) 88.889 91.209 91.941 93.592

MG1 (23) 49.572 58.752 58.384 59.241
x+84 MG2 (24) 74.268 75.924 76.815 77.834

MG3 (25) 74.268 82.293 75.921 86.242
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TABLE 5. The RMSE error comparison for the Mackey-Glass time series data

found in the literature for prediction time interval t= {+1,+6,+84}

Models: x+1 x+6 x+84 Source:

Linear Predictor 0.0327 0.7173 1.50351 [ [25]]
6th-order Polynom 0.04 0.85 [ [25]]
BPNN 0.02 0.06 [ [27]]
DSC-LMM 0.0055 0.03 [ [26]]
Cascade correlation NN 0.06 [ [28]]
PEC-WNN 0.0013 0.0027 0.028
LSTM 0.0576 0.0644 0.1642

FIGURE 4. The CO2 concentration in the gas in the furnace data set, the

output of the Box-Jenkins time series data.

structures, and local linear models (DSC-LMM) proposed in [26].
The PEC-WNN RMSE for time interval (t+ 6) was 0.0027, which
is 49% better in comparison to the results found in the literature.
The long-term forecasting interval (t + 84) using the proposed
model achieves the RMSE of 0.028. On the other hand, for the same
forecasting interval, Cudy et al. [26], reached the RMSE of 0.03
using the DSC-LMM model.

B. THE BOX-JENKINS TIME SERIES DATA

The Box-Jenkins time series data set is another frequently used
benchmark example in the prediction algorithms [24]. The method
refers to the iterative application of a three-stage modeling ap-
proach: 1) model-identification and selection, 2) estimation, and
3) statistical model checking [29]. The first stage determines the
stationarity of the data. The plots of the dependent time series
data are used to decide which autoregressive or moving average
components should be applied. In the second stage, the estimation of
parameters of the selected model is obtained by using the maximum
likelihood or non-linear least square estimation. In the last stage, the
statistical model checking, we examine whether the model follows
the conditions of a stationary univariate process. The data used in
this study are well known as gas furnace data (series J) prediction
problem. The output of the Box-Jenkins gas furnace time series data
set is given in Fig. 4.

The inputs proposed in the literature, given as in 26 are applied
first. Subsequently, we used successive values of the methane gas
flow (27) to forecast the successive value. We expanded our in-
vestigation by checking how the increased amount of input data
with its average values, affect the forecasting performances. For that
purpose, we applied the averages of five and ten window sizes with
four successive values of methane gas flow with CO2 concentration
in the gas. Note that, the forecasting value is always the next (t+1)
value of CO2 concentration in the gas, while the input data set

TABLE 6. The RMSE results of the Box-Jenkins time series data considering

applied models and equations.

Equation NN PEC-NN WNN PEC-WNN

BJ1 (26) 0.082 0.081
BJ2 (27) 0.077 0.076 0.074 0.071
BJ3 (28) 0.074 0.068 0.066 0.059
BJ4 (29) 0.070 0.069 0.064 0.061

TABLE 7. The MAPE (%) results of the Box-Jenkins time series data

considering applied models and equations.

Equation NN PEC-NN WNN PEC-WNN

BJ1 (26) 25.268 28.022
BJ2 (27) 20.126 18.707 27.680 37.744
BJ3 (28) 17.927 21.232 16.577 23.513
BJ4 (29) 19.401 17.104 19.163 21.150

TABLE 8. The DA(%) results of the Box-Jenkins time series data considering

applied models and equations.

Equation NN PEC-NN WNN PEC-WNN

BJ1 (26) 90.5 90.5
BJ2 (27) 91.0 91.0 90.5 91.0
BJ3 (28) 91.0 91.5 91.5 91.5
BJ4 (29) 90.0 90.5 90.0 91.0

differs.
The input equations for applied experiments are given below (26

-29):

BJ1 : y1 (t+ 1) = f (v (t− 3) , y(t)) (26)

BJ2 : y2 (t+ 1) = f (v (t) , v (t− 1) , v (t− 2) , v (t− 3) , y(t))
(27)

BJ3 : y3 (t+ 1) = f(v(t), v(t− 1), v(t− 2), v(t− 3),

v[0,9], v[10,19], v[20,29], v[30,39], y(t)) (28)

BJ4 : y4 (t+ 1) = f(v(t), v(t− 1), v(t− 2), v(t− 3),

v[0,4], v[5,9], v[10,19], v[20,29], y(t)) (29)

The results indicate that the proposed PEC-WNN shows the
lowest RMSE (Tab. 6) when the data set with four successive
and four average values with window size ten is used. Compared
to the MAPE (Tab. 7) and DA results (Tab. 8), the PEC-WNN
shows the lowest MAPE and the highest DA results. The applied
average values of a different time window to the consecutive values
improves the results.

In the literature, the RMSE results for the gas furnace (series J),
or the Box-Jenkins problem changes from 0.273 to 0.843, while
the lowest RMSE using the PEC-WNN is 0.059. The PEC-WNN
achieves 78% less RMSE compared to the second-best results found
in the literature.
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TABLE 9. The RMSE error comparison for Box-Jenkins time series data

found in the literature for prediction time t= {1}

Models: y+1 Source:

Arima 0.843 [ [29]]
Tong’s model 0.685 [ [30]]
Xu’s model 0.573 [ [31]]
Sugeno’s model 0.596 [ [32]]
Surmans’model 0.4 [ [33]]
Adaptive network-based fuzzy inference system (ANFIS) 0.405 [ [34]]
Generalized fuzzy NN 0.273 [ [34]]
PEC-WNN 0.0589
LSTM 0.9730

FIGURE 5. The Lorenz Attractor.

C. THE LORENZ ATTRACTOR

The Lorenz Attractor represents a classical time series multivariate
prediction problem consisting of three ordinary differential equa-
tions given in (30)-(32).

dx

dt
= σ(y − x) (30)

dy

dt
= x(ρ− z)− y (31)

dz

dt
= xy − βz (32)

The equations are obtained from the Navier-Stokes equations
and used in fluid mechanics. The parameter settings to exhibit the
chaotic behavior are σ = 10, β = 8/3 and ρ = 28, with initial
conditions [x (0) , y (0) , z(0)] = [0, 1, 1.05] as studied in Lorenz
[35]. Different Lorenz maps with the same general dynamics can
be obtained by using distinctive initial conditions and parameter
values. The Lorenz map is given in the Fig. 5.

The data set contains 10,000 multivariate data samples. From the
plots of each trajectory interdependencies between the time series
can be seen (Fig. 6). Xiu et al. [36] applied a multivariate data set as
inputs to predict the single variable as the output. We applied similar
single and multivariate inputs to our model. The input equations are

FIGURE 6. The Lorenz Attractor trajectories projection of each time series for

the first 3000 values.

TABLE 10. The RMSE results for Lorenz Attractor data considering applied

models and equations.

Equation NN PEC-NN WNN PEC-WNN

LA1 (33) 0.0015 0.0014
LA2 (34) 0.0359 0.0340 0.0356 0.0308
LA3 (35) 0.0609 0.0476 0.0378 0.0113

given below in (33)-(35). The output represents the next (t + 1)
value of a single variable.

LA1 : x(t+ 1) = f(x(t), y(t), z(t)) (33)

LA2 : x(t+ 1) = f(x(t), y(t), y(t− 1), y(t− 2),

y(t− 3), z(t), z(t− 1), z(t− 2), z(t− 3)) (34)

LA3 : x(t+1) = f(x(t), y(t), y(t−1), y(t−2), y(t−3), z(t),

z(t− 1), z(t− 2), z(t− 3), ȳ[0,9], ȳ[10,19], ȳ[20,29],

ȳ[30,39], z̄[0,9], z̄[10,19], z̄[20,29], z̄[30,39]) (35)

The constructed data sets are divided into training and test sets,
where 80% of the data is used for training and 20% for testing
performances. The significantly low RMSE (Tab. 10) is achieved
using only the one previous value of each trajectory for forecasting
the next value. Similar to previous experiments, herein we try to
observe the impact of adding average values of different time-
window to the consecutive values. The growth in the number of
variables, from a single to multivariate, increases the RMSE. On
the other hand, the usage of multivariate average values together
with consecutive multivariate values reduces the RMSE error in
comparison to the successive multivariate input. The lowest value
of MAPE (Tab. 11) is found in the PEC-WNN model, with the
utilization of consecutive and average values together. In the end,
very high DA (Tab. 12) results are noticed for the applied input data
set.

The best result for the Lorenz Attractor data set using the
multivariate input data is 0.0013 for the PEC-WNN model. The
PEC-WNN result obtained 64% less RMSE compared to a similar
experiment found in the literature, Xiu et. al. [36]. The Lorenz
multivariate time series data with the natural structure used as the
input overperform the predicting results where the single variable
sequence is used.
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TABLE 11. The MAPE(%) results for Lorenz Attractor data considering

applied models and equations.

Equation NN PEC-NN WNN PEC-WNN

LA1 (33) 0.024 0.014
LA2 (34) 1.179 0.526 1.5570 0.4287
LA3 (35) 2.909 1.500 1.6632 0.3002

TABLE 12. The DA(%) results for Lorenz Attractor data considering applied

models and equations.

Equation NN PEC-NN WNN PEC-WNN

LA1 (33) 99.975 99.988
LA2 (34) 99.875 99.900 99.9250 99.9750
LA3 (35) 99.738 99.213 99.6250 99.7650

TABLE 13. The RMSE error comparison for Lorenz Attractor found in the

literature for prediction time t= {1}

Models: x+1 Source:

Neural Network 0.072 [ [37]]
NARX(multivariate) 0.000295 [ [36]]
NARX(single variable) 0.068 [ [36]]
MKELM(multivariate) 0.0312 [ [36]]
MKELM(single variable) 0.0973 [ [36]]
PEC-WNN 0.0113
LSTM 0.3148

D. THE DROUGHT FORECASTING

In this section, we also demonstrate the performance of the proposed
model when it is applied to the stochastic time series data. The
benchmark problems previously explained, the Mackey-Glass, the
Box-Jenkins gas furnace (series J), and the Lorenz Attractor repre-
sent chaotic problems with deterministic models. Their output can
be determined based on representing mathematical models when
the initial conditions and the model parameters are known. The
proposed PEC-WNN model for performance comparison is also
applied to the stochastic problem. The standardized precipitation-
evapotranspiration index (SPEI) drought index developed by Begue-
ria et. al [38] is selected for that purpose. Drought identification and
forecasting are very important in limiting their effects. However,
accurate drought prediction remains a scientific issue due to the
nature of data. The SPEI represents an index that quantifies the
drought condition over a given area. The index can be calculated in
several time scales to adopt the characteristic drought response time
of the target natural and economic systems, by determining their
drought resistance [38]. The data set evaluates accumulated pre-
cipitation minus potential evapotranspiration (PET) over multiple
time scales between 1 and 48 months, with global coverage at a 0.5-
degree resolution [39]. The advantages of a used data set are that (a)
it improves the spatial resolution of the unique global drought data
set at a global scale; (b) it is spatially and temporally comparable
to other data sets, given the probabilistic nature of the SPEI; and,
(c) it enables the identification of various drought types, given the
multiscalar character of the SPEI [39]. The analyzed period is from
January 1901 until December 2015. The 1-month, 4-months, and
6-months data were used (Fig. 7). The input-output functions for
the prediction model are given in the (36) and (37). The input data
sets consist of eight inputs with different window sizes. The first
data set contains one-month and four-month data (36); the second
data set one-month and six-month data (37). In both cases, we tried
to forecast the next six months’ drought period. In equations, t
represents the SPEI values of one-month data, 4t the SPEI values
of four-month data, and 6t the SPEI values of six-month data. The
used PEC-WNN model contains the same hyperparameters and the

FIGURE 7. The Standardized Precipitation Evapotranspiration Index (SPEI)

for the period from January 1901 until December 2015 within a) month, b) four

months and c) six months.

TABLE 14. The RMSE results for applied models and equations for SPEI data

set.

Forecasting period Equation NN PEC-NN WNN PEC-WNN LSTM LR

SPEI1 (36) 0.157 0.151 0.150 0.139 0.353 0.409
6-months SPEI forecasting SPEI2 (37) 0.216 0.147 0.221 0.146 0.386 0.485

number of inputs that are applied to the previous chaotic time series
problems.

SPEI1 : y1 (6t+ 1) = f(x(t), x(t− 1), x(t− 2),

x(t− 3), x(4t), x(4t− 1), x(4t− 2), x(4t− 3) (36)

SPEI2 : y2 (6t+ 1) = f(x(t), x(t− 1), x(t− 2),

x(t− 3), x(6t), x(6t− 1), x(6t− 2), x(6t− 3)) (37)

As an alternative to the previously mentioned models, for drought
forecasting problems we additionally used the LSTM model pro-
posed in [13] and multivariate linear regression (LR) for perfor-
mance comparison. The proposed PEC-WNN accomplished signifi-
cantly low RMSE (Tab. 14) with monthly and four-month data used
as inputs given in (36). The PEC-WNN model also provides the
lowest MAPE as seen in table 15.

The results of forecasting the SPEI index have shown reasonable
prediction accuracy for a six-month time scale considering the un-
certainty level of stochasticity. The accuracy of the proposed method
with increasing the scale of SPEI input data from four-months
to six-months average data does not show better performances.
Evaluated SPEI prediction at different time scale simultaneously
used increases the performance of the proposed method.

IV. DISCUSSION
The time series prediction model where a separate NN model is
used for predictive error correction of the main NN, PEC-WNN
has been applied to different kinds of deterministic, chaotic, and
stochastic time series problems. The introduced method, PEC-
WNN, has been compared to twenty time series prediction methods
found in the literature, to demonstrate the prediction performance
where the PEC-WNN model demonstrates the lowest RMSE error.
The predictive error compensation model overall reduces the RMSE
but when applied together with wavelet transform as a preprocessing
mechanism surpasses the other methods applied and found in the
literature. The PEC-WNN has been applied to different problems
without changing the network structure and hyperparameters. The

TABLE 15. The MAPE (%) results for applied models and equations for SPEI

data set.

Forecasting period Equation NN PEC-NN WNN PEC-WNN LSTM LR

SPEI1 (36) 0.301 0.287 0.296 0.278 0.356 0.429
6-months SPEI forecasting SPEI2 (37) 0.351 0.289 0.348 0.286 0.378 0.493
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TABLE 16. The DA (%) results for applied models and equations for SPEI

data set.

Forecasting period Equation NN PEC-NN WNN PEC-WNN LSTM LR

SPEI1 61.26 63.18 64.21 64.95 33.94 45.33
6-months SPEI forecasting SPEI2 60.0 57.46 55.86 56.61 32.17 42.76

TABLE 17. The SPEI RMSE error comparison for PEC-WNN, LSTM and LR.

Input data set 6-months

PEC-WNN 0.139
LSTM 0.353

LR 0.409

PEC-WNN, although in its structure, uses two NNs is less com-
putationally expensive and time-consuming with respect to other
ML methods found in the literature. The PEC-WNN complexity
concerning the number of parameters is relatively low (Tab. 18).
The results are consistent with one of the conclusions found in
[40], which states that simple models tend to outperform complex
models. The proper arrangement of input data sets can significantly
improve the forecasting performance of the proposed model. The
results show that different sizes of input data frames used together
with consecutive values improve the forecasting performances.

V. CONCLUSION
In this work, a predictive error compensated wavelet preprocessed
NN model for time series prediction problems is proposed. The
model is consisting of at least two separate NNs, where the input
data are preprocessed using DWT in both of them. It has been
demonstrated that the second predictive error compensating network
significantly improved the overall accuracy of the proposed model
at all benchmark problems. The Mackey-Glass, Box-Jenkins, and
Lorenz Attractor problems are used to evaluate the prediction per-
formance for chaotic time series case and global drought forecasting
problem for a stochastic case. The results show that the PEC-
WNN model provides 64% less RMSE for the Lorenz Attractor,
78% less RMSE for the Box-Jenkins, and 95% less RMSE for the
Mackey-Glass benchmark problems. The proposed method achieves
reasonable results also in forecasting the global drought SPEI index.
An additional advantage of the proposed model is less sensitivity
to its hyperparameters and structural settings for a broad range of
time series prediction problems. The same network structure of
PEC-WNN has been used in all given benchmark evaluations. Both
the time and space complexity of the proposed model was less
than the compared other machine learning methods in all cases.
Though the proposed PEC-WNN method demonstrated promising
results, more improvements can also be achieved through fusion
with additional cascaded predictive error compensating networks
for multidimensional data sets.
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movement based on daily high prices. Quantitative Finance, 16(5):793–

826, 2016.

[16] Yann Lecun and Yoshua Bengio. Convolutional networks for images,

speech, and time-series. MIT Press, 1995.

[17] Xindi Cai, Nian Zhang, Ganesh K Venayagamoorthy, and Donald C

Wunsch II. Time series prediction with recurrent neural networks trained

by a hybrid pso–ea algorithm. Neurocomputing, 70(13-15):2342–2353,

2007.

[18] Gianluca Bontempi, Souhaib Ben Taieb, and Yann-Aël Le Borgne. Ma-

chine learning strategies for time series forecasting. In European business

intelligence summer school, pages 62–77. Springer, 2012.

[19] AJ Rocha Reis and AP Alves Da Silva. Feature extraction via multiresolu-

tion analysis for short-term load forecasting. IEEE Transactions on power

systems, 20(1):189–198, 2005.

[20] Husam Y Alzaq and B Berk Ustundag. An optimized two-level discrete

wavelet implementation using residue number system. EURASIP Journal

on Advances in Signal Processing, 2018(1):41, 2018.

[21] Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial

time series using stacked autoencoders and long-short term memory. PloS

one, 12(7):e0180944, 2017.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT

press, 2016.

VOLUME 4, 2016 9



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3038724, IEEE Access

B.Ustundag, A.Kulaglic : High-Performance Time Series Prediction with PEC-WNN

[23] K Meng, ZY Dong, and KP Wong. Self-adaptive radial basis function

neural network for short-term electricity price forecasting. IET generation,

transmission & distribution, 3(4):325–335, 2009.

[24] Yuehui Chen, Bo Yang, and Jiwen Dong. Time-series prediction using a

local linear wavelet neural network. Neurocomputing, 69(4-6):449–465,

2006.

[25] Felix A Gers, Douglas Eck, and Jürgen Schmidhuber. Applying lstm to

time series predictable through time-window approaches. In Neural Nets

WIRN Vietri-01, pages 193–200. Springer, 2002.

[26] Lucius Chudy and Igor Farkas. Prediction of chaotic time-series using

dynamic cell structures and local linear models. Neural Network World,

8(5):481–489, 1998.

[27] Shawn P Day and Michael R Davenport. Continuous-time temporal back-

propagation with adaptable time delays. IEEE Transactions on neural

networks, 4(2):348–354, 1993.

[28] R Scott Crowder III. Predicting the mackey-glass timeseries with cascade-

correlation learning. In Connectionist Models, pages 117–123. Elsevier,

1991.

[29] George EP Box and Gwilym M Jenkins. Time series analysis: Forecasting

and control san francisco. Calif: Holden-Day, 1976.

[30] RM Tong. The evaluation of fuzzy models derived from experimental data.

Fuzzy sets and systems, 4(1):1–12, 1980.

[31] Chen-Wei Xu and Yong-Zai Lu. Fuzzy model identification and self-

learning for dynamic systems. IEEE Transactions on Systems, Man, and

Cybernetics, 17(4):683–689, 1987.

[32] Michio Sugeno. Linguistic modelling based on numerical data. Proceed-

ings of the IFSA’91, 1991.

[33] Hartmut Surmann, Andreas Kanstein, and Karl Goser. Self-organizing and

genetic algorithms for an automatic design of fuzzy control and decision

systems. In In Proc. EUFIT’93, 1993.

[34] Yang Gao and Meng Joo Er. Narmax time series model prediction:

feedforward and recurrent fuzzy neural network approaches. Fuzzy sets

and systems, 150(2):331–350, 2005.

[35] Edward N Lorenz. Deterministic nonperiodic flow. Journal of the

atmospheric sciences, 20(2):130–141, 1963.

[36] Yan Xiu and Wei Zhang. Multivariate chaotic time series prediction

based on narx neural networks. In 2017 2nd International Conference

on Electrical, Automation and Mechanical Engineering (EAME 2017).

Atlantis Press, 2017.

[37] J. B. Elsner and A. A. Tsonis. Nonlinear prediction, chaos, and noise.

Bulletin of the American Meteorological Society, 73(1):49–60, 1992.

[38] Santiago Beguería, Sergio M. Vicente-Serrano, and Marta Angulo-

Martínez. A Multiscalar Global Drought Dataset: The SPEIbase: A New

Gridded Product for the Analysis of Drought Variability and Impacts.

Bulletin of the American Meteorological Society, 91(10):1351–1356, 10

2010.

[39] S. M. Vicente-Serrano, S. Beguería, J. I. López-Moreno, M. Angulo, and

A. El Kenawy. A New Global 0.5° Gridded Dataset (1901–2006) of

a Multiscalar Drought Index: Comparison with Current Drought Index

Datasets Based on the Palmer Drought Severity Index. Journal of Hy-

drometeorology, 11(4):1033–1043, 08 2010.

[40] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-

Shishiny. An empirical comparison of machine learning models for time

series forecasting. Econometric Reviews, 29(5-6):594–621, 2010.

BERK USTUNDAG is a Professor of Computer

Engineering Department at Faculty of Computer

and Informatics, Istanbul Technical University

(ITU). Dr.Ustundag has received Ph.D. and M.Sc.

in control systems and computer engineering at

ITU and B.Sc. in electrical engineering. He has

served as Science and Technology Advisor to

Ministers and Governmental Institutions for more

than 15 years. He has more than 100 scientific

publications and patents. Dr.Ustundag is a member

of the IEEE Communication Society and Computational Intelligence. His

research interests involve Data Fusion, Artificial Intelligence, Signal Pro-

cessing, Global Optimization, Cognitive Communication, and Agricultural

Information Systems.

AJLA KULAGLIC She received a B.Sc. degree

and M. Sc. Degree in Computing and Informat-

ics, both from the University of Sarajevo (Faculty

of Electrical Engineering), Sarajevo, Bosnia, and

Herzegovina, in 2008 and 2010 respectively. She is

currently a Ph.D. candidate and research assistant

at the Computer Engineering Department, Grad-

uate School of Science Engineering and Tech-

nology, Istanbul Technical University, Istanbul,

Turkey, under the supervision of Prof. Dr. Burak

Berk Ustundag. She has published papers at international conferences and

journals interested in data fusion. The published works are mainly about

data fusion models for time series, remotely sensed, and ground-based

measurement data of agricultural sensor networks using preprocessing tech-

niques, such as Wavelet transformation together with Neural Networks for

estimation performances. She is interested in doing further research in the

development of deep wavelet networks for estimation performances. Her

current primary fields of investigation are forecast of time series data, natural

events, data fusion, and machine learning techniques.

10 VOLUME 4, 2016


