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Abstract 

Energy harvesting devices based on the triboelectric effect have attracted great attention because of their higher 

output performance compared to other nanogenerators, which have been utilized in various wearable applications. 

Based on the working mechanism, the triboelectric performance is mainly proportional to the surface charge density 

of the triboelectric materials. Various approaches, such as modification of the surface functional group and dielectric 

composition of the triboelectric materials, have been employed to enhance the surface charge density, leading to 

improvements in triboelectric performances. Notably, tuning the dielectric properties of triboelectric materials can 

significantly increase the surface charge density because the surface charge is proportional to the relative permittivity 

of the triboelectric material. The relative dielectric constant is modified by dielectric polarization, such as electronic, 

vibrational (or atomic), orientation (or dipolar), ionic, and interfacial polarization. Therefore, such polarization rep-

resents a critical factor toward improving the dielectric constant and consequent triboelectric performance. In this 

review, we summarize the recent insights on the improvement of triboelectric performance via enhanced dielectric 

polarization.
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Introduction
Piezoelectric, pyroelectric, and triboelectric devices have 

attracted great attention as energy harvesting devices for 

power generation from surrounding environments, such 

as water, wind, light, temperature, and vibration [1]. In 

addition to the power sources, these devices can be used 

as self-powered sensors for varied applications such as 

electronic skins, healthcare monitoring devices, and 

robotics [2]. Among them, triboelectric devices display 

relatively higher output performances when a couple of 

triboelectric materials are contacted [3–6]. �e produced 

triboelectric signals can be used for directly operating 

electric devices [7–11] or monitoring the mechanical 

or chemical stimuli on the devices [4]. �e triboelec-

tric devices can be simply designed for the simple fab-

rication, low cost, excellent output performance, and 

flexibility when compared with other technologies, which 

are advantageous for self-powered wearable applications 

[12].

Triboelectricity occurs owing to contact electrification 

and electrostatic induction between dissimilar triboelec-

tric materials. �e mechanical contact induces the com-

pensated opposite charges on each triboelectric layer 

owing to the contact electrification, and the mechanical 

separation results in the current flow through the exter-

nal circuit because of electrostatic induction. �erefore, 

the triboelectric output performance is directly affected 

by the surface charges on triboelectric layers.

For high triboelectric output performances, efficient 

surface charge generation during contact electrifica-

tion and effective charge transfer during electrostatic 

induction are necessary. �erefore, it is crucial to select 

suitable triboelectric contact-pair materials and design 

optimum device structures. Based on their working 

mechanism, four different types of triboelectric devices 

consisting of dielectric materials as triboelectric layers 
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Fig. 1 Dielectric-based triboelectric device and dielectric polarization: a Theoretical models for parallel-plate contact-modes and equivalent circuit 

diagram for dielectric-to-dielectric and conductor-to-dielectric  TENG (Reproduced from Ref. [21]. Copyright 2014 Royal Society of Chemistry). b Real 

(ε’) and imaginary part (ε") of the dielectric constant as a function of frequency in a polymer having interfacial, orientational, ionic, and electronic 

polarization mechanisms (Reproduced with permission from Ref. [32, 33]. Copyright 2012 American Chemical Society)
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have been reported [5]. �ere are two categories of tri-

boelectric devices based on the types of triboelectric 

contact pair materials: dielectric-to-dielectric and con-

ductor-to-dielectric contact mode devices (Fig. 1a) [13]. 

In the former, two dielectric plates, with thicknesses d1 

and d2, as well as relative dielectric constants εr,1 and 

εr,2, respectively, are stacked face to face as triboelec-

tric layers, and the electrode layers are deposited on 

the outer dielectric surface. �e distance (x) between 

the two triboelectric layers is varied under a periodic 

mechanical force.

Subsequently, the contacted triboelectric layer sur-

faces have opposite surface charges but the same den-

sity (σ) through contact electrification. When the 

triboelectric layers  begin to separate from each other 

owing to the increasing distance, a potential differ-

ence (V) is induced between the two electrodes by 

the amounts of transferred positive/negative charges 

(+Q/–Q). Similarly, in the conductor-to-dielectric 

contact mode without the dielectric 1 layer, metal 1 

is used as both the top triboelectric layer and the top 

electrode. In this device structure, there are two parts 

of charges in metal 1: the triboelectric charges ( S × σ ) 

and the transferred charges between the two electrodes 

(–Q), thereby leading to ( Sσ − Q ) of the total charges 

in metal 1. Considering the contact mode triboelectric 

devices mentioned above, the output performance can 

be derived based on electrodynamics as follows [13]:

�e effective dielectric thickness d0 is defined as the 

summation of all the thicknesses of dielectric di divided 

by its relative permittivity εr,i. Based on Eq. 2, the tribo-

electric performance is directly affected by the surface 

charge density ( σ ) of the dielectric layers.

Previously, the surface modification of triboelectric 

materials or the introduction of highly dielectric mate-

rials has been reported to increase the surface charge 

density. Surface modification, such as the control of 

surface morphology [14–17] or the introduction of 

charged ions [18–21], increases surface charge density 

by enlarging the surface area or triboelectric polarity 

between the triboelectric pair layers. In addition to tun-

ing the surface property, an increase in the dielectric 

constant can enhance the capacitance of the dielectric 

(1)V = −
Q

Sε0
(d0 + x(t)) +

σx(t)

ε0

(2)

VOC =
σ · x(t)

ε0
, ISC =

dQSC

dt
,

QSC =
Sσx(t)

d0 + x(t)
, d0 =

n∑

i=1

di

εr,i

layer, thereby resulting in an increase in the surface 

charge density [6, 22, 23]. In a parallel-plate capacitor 

model, the surface charge density can be related to the 

capacitance of the dielectric layer as follows [23–25]:

where C and S indicate the capacitance and contact area, 

respectively. From Eq. 3, since the capacitance (C), which 

is a factor capable of improving the surface charge den-

sity in a dielectric contact mode triboelectric device [6], 

increases with the dielectric constant and/or the reduc-

tion in the thickness of the dielectric layer, the surface 

charge density is directly proportional to the ratio of the 

dielectric constant to the thickness (ε/d). Similarly, in the 

triboelectric device, the capacitance of the tribo-dielec-

tric layer can be expressed from Eq. 2 as:

For instance, using a porous dielectric layer in a tri-

boelectric device is an efficient way to greatly enhance 

the ε/d ratio by simultaneously increasing the dielectric 

constant and decreasing the thickness when the dielec-

tric layer is pressed under external pressure, thereby sig-

nificantly enhancing the surface charge density [17, 23, 

26, 27] even when the same triboelectric layers are used. 

�erefore, the dielectric constant of the triboelectric 

layer is an effective factor to improve the surface charge 

density better than the surface potential determined by 

the selection of triboelectric pair materials.

Although the dielectric constant of a triboelectric 

material is an important factor in the enhancement of 

triboelectric performances, there have been no com-

prehensive discussions on the principles and strategies 

to increase the dielectric constant. Previously, several 

excellent reviews on triboelectric devices, including tri-

boelectric materials and their working mechanisms, had 

been reported [3–6, 12, 21, 28, 29]; however, only a few 

studies on dielectric-induced triboelectric devices have 

been reported to date. Herein, we introduce the basics of 

dielectric polarization and demonstrate that the output 

performances of triboelectric devices can be significantly 

controlled and enhanced by the design of dielectric mate-

rials with controlled dielectric polarization.

Dielectric Polarization for Enhanced Triboelectric 
Performance
�e dielectric constant (or relative permittivity) is defined 

as a factor whereby the applied electric field is decreased 

through the dielectric polarization of materials, which 

can be enhanced by engineering dielectric materials 

(3)σ =

CV

S
, C =

Sεε0

d

(4)C =
QSC

VOC

=
ε0S

d0 + x(t)
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through the introduction of dielectric additives or the 

modification of chemical structures, thereby leading to 

various dielectric phenomena. Dielectric polarization can 

be divided into electronic, vibrational (or atomic), orien-

tational (or dipolar), ionic, and interfacial polarization 

(Fig.  1b) [30–33]. Electronic and atomic polarizations 

are induced by the distortion of negative electrons and 

positive nuclei in an atom in an opposite direction to the 

external electric field, thereby acquiring electric dipole 

moments, which occur in the resonance regime above the 

infrared frequencies (> 100 GHz). As polarization-based 

materials, such as semiconductors, have no dielectric 

loss below 1 GHz, they are the most desired for practical 

applications ranging from a few Hz to 1 GHz. However, 

most organic polymers exhibit lower dielectric constants 

(< 10) than semiconducting materials because of the 

intrinsic nature of their molecular bonding, which can-

not induce electronic and atomic polarization. To further 

induce electronic and atomic polarizations in the poly-

mers, the polymer chain structures should involve larger 

atoms with polarizable electrons, such as Si, Ge, or Sn, 

than the basic polymer compositions [34–36]. Although 

Si-based polymers, such as polysiloxanes or their deriva-

tives, are synthesized, the dielectric constant is no greater 

than 3–4. �erefore, it is difficult to increase the elec-

tronic/atomic polarization in insulating polymers.

In polymers, whereas the electronic and atomic polari-

zations are limited to enhancing the dielectric constant 

because of the intrinsic molecular bonding structure, the 

other dipolar, ionic, and interfacial polarizations can be 

utilized to improve the dielectric constant. Dipolar (ori-

entation) polarization is caused by the reorientation of 

permanent molecular dipole moments in the polymers 

or nanocomposites including nanoparticles or dipo-

lar moieties, which is affected by the phase structures 

(amorphous or crystalline), temperature, and frequency 

(usually < 10  MHz) [32, 33]. �e modification of dipole 

structures enables the preparation of dipolar glass, fer-

roelectric, and relaxor ferroelectric polymers [30]. For 

example, the dipole orientation of polyvinylidene fluo-

ride (PVDF)-derivatives leads to the formation of a 

β-phase, thereby increasing the dielectric constant, 

which enhances the triboelectric performance [37, 38]. 

Ionic polarization can be caused by relative displace-

ments between positively and negatively charged ions 

under an external force [30, 39]. �erefore, polymers 

with ionic components can be used to enhance the 

capacitive performance through ionic polarization. For 

instance, the ionic components (e.g., NaCl and LiCl) in 

hydrogels are polarized under an external field, leading to 

the formation of electric double layers, which results in 

the improvement of triboelectric performance [40–43]. 

Interfacial polarization is induced by the reorganization 

of space charges at interfaces in dielectric composites 

[30, 31]. �erefore, interfacial polarization is observ-

able in all multicomponent dielectric systems, including 

semi-crystalline polymers, polymer blends, or nanocom-

posites with high-k- or conducting-nanofillers. Recently, 

polymer nanocomposites with high-k nanoparticles, 

which improve the net dielectric constant, thereby lead-

ing to the enhancement of the surface charge density, 

and thus the triboelectric performance, have been uti-

lized in triboelectric devices [23, 44, 45]. In the following 

sections, we introduce some examples to demonstrate 

the enhancement of triboelectric output performance 

through an increase in the dielectric constant.

Interfacial Polarization in High‑Permittivity 
Nanoparticle/Polymer Composites
High-permittivity nanoparticles are utilized to improve 

the dielectric constants of polymer nanocomposites 

owing to the polarization at the interface between the 

polymer and nanoparticles. Because inorganic (e.g., bar-

ium titanate  (BaTiO3) nanoparticles and nanowires) or 

conductive (e.g., metal nanoparticles, carbon nanotubes, 

and graphene) nanomaterials are widely employed in 

polymer matrices to increase the net dielectric constant, 

polymer composites with various additives have higher 

dielectric constants than base polymers, thereby lead-

ing to improved triboelectric performances. Chen et  al. 

prepared a sponge-like polydimethylsiloxane (PDMS) 

film, including high-k nanoparticles  (SiO2,  TiO2,  BaTiO3, 

and  SrTiO3), to enhance triboelectric performances 

(Fig. 2a) [23]. Because  SrTiO3 exhibits higher permittiv-

ity than the others, PDMS with  SrTiO3 displays a higher 

dielectric constant. �is can also be caused by the space 

charge polarization at the interface between the PDMS 

and  SrTiO3 particles. Notably, the triboelectric output 

performance is improved by the increase in capacitance 

through the increased εr/dPDMS during the contact pro-

cess. In addition to dielectric nanoparticles, different 

kinds of high-permittivity materials, such as Al-doped 

 BaTiO3 and  CaCu3Ti4O12, are applied in the triboelectric 

layers, leading to an improved dielectric constant and the 

resultant triboelectric performance (Fig. 2b) [44, 45]. On 

the other hand, the addition of conductive materials ena-

bles the formation of micro-capacitor structures in the 

polymer matrix, which can induce space charge accumu-

lation at the interface between the polymer matrix and 

additives. �is type of interfacial polarization is caused 

by the larger difference in conductivity between the poly-

mer and conducting additives.

�erefore, polymer composites with metal or carbon-

based materials exhibit increased dielectric constants 

compared to pure polymers, leading to the enhancement 

of surface charge density and the resultant triboelectric 
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performance (Fig.  3) [6, 46]. Although high-permittiv-

ity polymer composites are widely used as triboelectric 

negative materials, there are some limitations regarding 

improving the output performance: (1) �ere is an opti-

mized ratio of additives in the polymer matrix because 

excessive additives cause leakage current [46, 48] or 

reduced surface friction area [23, 49], thereby result-

ing in a decrease in output performance. (2) �e addi-

tives should be homogeneously dispersed in the polymer 

matrix to improve the interfacial polarization because the 

aggregated nanoparticles interrupt interfacial polariza-

tion through the reduction of the interfacial area between 

the polymer and nanoparticles.

Interfacial Polarization in Multilayer Polymer Films
For random phase nanoparticle/polymer composites, 

interfacial polarization is difficult to control because 

precisely controlling the amount and dispersion of 

Fig. 2 Triboelectric performances enhanced by interfacial polarization in high-permittivity nanoparticle/polymer composites: a Dielectric 

nanoparticle/sponge PDMS composite-based triboelectric nanogenerator (Reproduced with permission from Ref. [23]. Copyright 2016 American 

Chemical Society). b Contact-separation mode triboelectric nanogenerator with P(VDF-TrFE) and PDMS-high dielectric particle composite films as 

the friction layers (Reproduced from Ref. [45]. Copyright 2018 Royal Society of Chemistry)
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nanoparticle is required [30]. In multilayer dielectrics, 

interfacial polarization can be easily controlled because 

all the interfaces are perpendicular to the electric field, 

resulting in uniform space charge accumulation at the 

multilayer interfaces and enhanced dielectric constant. 

Multilayer polymer dielectrics have been widely inves-

tigated to enhance their dielectric constant via interfa-

cial polarization between dissimilar polymer layers [50]. 

Interfacial polarization occurs when the space charges 

(electrons and ions) are accumulated at the interface 

between two dissimilar materials with large contrasts in 

permittivity and electrical conductivity under an external 

field [30]. Kim et al. [51] and Feng et al. [52] demonstrated 

the effect of bilayer films with a larger difference in the 

relative permittivity on the triboelectric output perfor-

mance (Fig. 4a,b). �e addition of lower dielectric layers 

between the conductive layer and electrode causes charge 

trapping or storage in the dielectric film, thereby leading 

to an increased charge density. �e charge accumulation 

could be caused by the increased polarization at the 

interface of bilayer films through the large difference 

in the permittivity or conductivity between PVDF and 

insulating films. On the other hand, our group demon-

strated the effect of a bilayer film consisting of polymers 

with different fluorine units and polyethylene terephtha-

late (PET) insulating layers on the output performance 

(Fig.  4c) [53]. Notably, fluorinated polymers with three 

fluorine units in the side chain (poly(2,2,2-trifluoroethyl 

methacrylate), PTF) are coated on PET substrates with a 

lower dielectric constant, thereby increasing the dielec-

tric constant, which is caused by the improved interfacial 

polarization at the interface between the semi-crystal-

line PTF and PET. Consequently, the PTF–PET exhib-

ited a higher triboelectric performance than the other 

fluorinated polymer films. Based on the abovementioned 

results, heterogeneous dielectric multilayer films can be 

a robust design to enhance the triboelectric performance 

of flexible or wearable devices.

Fig. 3 Triboelectric performances enhanced by interfacial polarization in polymer composites with metal or carbon-based materials: a GPs@

PDMS composite-based triboelectric nanogenerator (Reproduced from Ref. [82]. Copyright 2015 Royal Society of Chemistry). b Liquid–

metal-inclusion-based triboelectric nanogenerator with sandwiched dielectric stacks (Reproduced from Ref. [48]. Copyright 2019 Royal Society of 

Chemistry)
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Ionic Polarization in Ionic Polymer Gels
In the polymer matrix including the ionic components 

except impurity ions, ionic polarization promotes the 

formation of an electric double layer (EDL) at the inter-

face between the polymer electrolyte and the electrode, 

thereby leading to the enhancement of the dielectric con-

stant [30, 39, 54]. Polarization is often utilized in energy 

storage devices, such as capacitors (e.g., supercapacitors 

or EDL capacitors) and batteries [55]. According to the 

Helmholtz equation, the capacitance can be expressed as 

C ≈ kε0/λ, where k, ε0, and λ are the effective dielectric 

constant of the EDL, vacuum permittivity, and Debye 

screening length (or the thickness of the double layer), 

respectively. In a triboelectric device, ionic components, 

such as symmetric or asymmetric ion pairs and ionic liq-

uids, in polymeric materials are often employed. Since 

poly(vinyl alcohol) (PVA) is a type of negative triboelec-

tric material because of the hydroxyl groups in the poly-

mer backbone, it can interact with different types of ion 

pairs. When an external electric field is applied, ionic 

polarization can occur owing to the relative displace-

ments between the positive and negative ions, thereby 

contributing to EDL formation at the interface between 

the triboelectric layers. Ryu et  al. [43] prepared PVA-

based solid polymer electrolytes (SPEs) with symmetric 

or asymmetric ions as positive or negative triboelectric 

layers, respectively (Fig.  5a). After the contact process 

with pristine PVA, different surface potentials were sys-

tematically measured by the effect of different types of 

ionic doping. For example, the SPEs become negative or 

positive triboelectric materials after the addition of phos-

phoric acid  (H3PO4) with more cations than anions or 

calcium chloride  (CaCl2) with more anions than cations, 

respectively, because the cations or anions create addi-

tional electron charged or unoccupied states. Practically, 

it is shown that an ionic conductor consisting of PVA 

with borax solution or poly(acylamide) with lithium chlo-

ride is applied in biomechanical energy harvesting and 

tactile sensing applications, which enhances triboelec-

tric performances through the EDL formation (Fig.  5b) 

[41, 42, 56]. Similarly, Zou et al. [40] fabricated a bionic 

stretchable nanogenerator consisting of an elastomer 

Ecoflex and sodium chloride (NaCl) solution inspired by 

the structure of the ion channels on the cytomembrane 

of the electrolyte in an electric eel. By combining the 

effects of triboelectrification through flowing liquid and 

electrostatic induction through polarized ions, the device 

harvests mechanical energy from underwater human 

motion with an open-circuit voltage over 10 V. Further-

more, Lee et al. [56] investigated the triboelectric perfor-

mance when a nanogenerator was connected to an ion 

gel unit composed of an ionic liquid and poly(vinylidene 

fluoride-co-hexafluoropropylene), making a broad and 

sluggish voltage profile because of the large relaxation 

time of the polarized ions (Fig. 5c). Ionic gel-based tribo-

electric devices enable the fabrication of ultrastretchable, 

transparent, and waterproof wearable devices, although 

the devices should be encapsulated by the elastomeric 

matrix to prevent ion leakage.

Dipolar Polarization in Ferroelectric PVDF 
Derivatives
Dipolar (orientational) polarization is another strategy 

to enhance the dielectric constant with low dielectric 

loss, which is caused by the increased dipole moment 

through the aligned dipoles in the phase structures of 

the polymer chains. Typical examples are PVDF and 

its derivatives. �e polymers have permanent dipole 

moments since the unidirectional β-phase is formed, 

leading to an increase in the dielectric constant and the 

resultant triboelectric performance. Cheon et  al. [37] 

demonstrated high-performance triboelectric nano-

generators based on PVDF-silver nanowire (AgNW) 

composite nanofibers (Fig.  6a). �e introduction of 

AgNWs into PVDF increases the ratio of the β-phase to 

the α-phase through the interaction between AgNWs 

and PVDF molecular chains, thereby resulting in an 

improved dielectric constant, which enables charge 

trapping at the PVDF-AgNW dielectric layer. In addi-

tion to the metal sources, Seung et al. [38] introduced 

semiconducting nanoparticles  (BaTiO3) into a ferro-

electric copolymer matrix (poly(vinylidenefluoride-trif-

luoroethylene), PVDF-TrFE) (Fig. 6b). �e triboelectric 

performance is significantly enhanced after the poling 

process, which is over 150 times larger than that of typi-

cal polytetrafluorethylene-based triboelectric nanogen-

erators. Unlike the heterogeneous polymer composites, 

our group recently demonstrated the effect of ferroelec-

tric multilayer nanocomposites on triboelectric perfor-

mance (Fig.  6c) [57]. �e multilayered dielectric films 

consisting of alternating PVDF-TrFE and  BaTiO3 layers 

display a higher dielectric constant (17.1) than the pure 

Fig. 4 Triboelectric performances enhanced by interfacial polarization in multilayer polymer films: a Triboelectric nanogenerator consisting of 

PVDF/PDMS double layer and Nylon 6/PDMS double layer with various PDMS interlayer thicknesses (Adapted from Ref. [51]. Copyright 2018 

Elsevier). b Triboelectric nanogenerator without and with PI as transition layer for charge storage (Adapted from Ref. [52]. Copyright 2017 Elsevier). c 

Bilayer triboelectric nanogenerator based on fluorinated polymers with different kinds of fluorine units (Reproduced from Ref. [53]. Copyright 2018 

Elsevier)

(See figure on next page.)
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PVDF-TrFE film (13.9) and single PVDF-TrFE/BaTiO3 

nanocomposite (15.9) because of the interfacial polari-

zation between the copolymer and nanoparticle layers, 

as explained in the section on the multilayered dielec-

tric film (Fig.  4). Sequentially, the triboelectric output 

performance increases compared to the single-layered 

films. Although ferroelectric polymer nanocompos-

ites improve the triboelectric output performance 

owing to the increased dielectric constant through the 

high ferroelectric polarization, there is a limitation in 

increasing the output performance because of the per-

colation threshold of the additives.

On the other hand, the dipole moment can be 

modified by introducing polar single molecules [58], 

such as –CN, –NO2, and –SO2–, or polar polymers 

[59–61], including polystyrene, poly(2-hydroxyethyl 

methacrylate), and poly(dopamine methacrylamide), 

which allow the rotation of dipoles in the free vol-

ume of polymers, thereby leading to an improvement 

in the dielectric constant. Dipolar polarization has 

been recently utilized to increase the dielectric 

Fig. 5 Triboelectric performances enhanced by ionic polarization in an ionic polymer gel: a SPE-triboelectric nanogenerator based on PVA with 

different kinds of ions (Reproduced with permission from Ref. [43]. Copyright 2017 Wiley–VCH). b Soft skin-like triboelectric nanogenerator that 

enables both biomechanical energy harvesting and tactile sensing by hybridizing elastomer and ionic hydrogel (PAAm-LiCl) as the electrification 

layer and electrode, respectively (Reproduced under the terms of the CC-BY-NC 4.0 license. Ref. [41]. Copyright 2017, The American Association for 

the Advancement of Science). c Triboelectric-ion-gel system, which consists of the triboelectric nanogenerator and the ion gel units (Reproduced 

from Ref. [56]. Copyright 2018 Elsevier)
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constant of triboelectric materials by attaching polar 

groups with large dipole moments to the side chain 

of polymers [22]; Lee et  al. demonstrated that the 

PVDF-graft copolymer remarkably increased the tri-

boelectric output performance (Fig.  7). Poly(tert-butyl 

acrylate) (PtBA) with different grafting ratios was 

introduced into the PVDF chain, leading to enhanced 

dipole moment by π-bonding and polar ester groups 

in PtBA, which improved the dielectric constant and 

subsequently the triboelectric output performance. In 

addition to the grafting polymer, polymer dielectrics 

with nanostructured domains increase the dielectric 

constant by dipolar orientational polarizability [62]. 

Although polymer-based dielectric materials have some 

advantages, such as solution processability and flexibil-

ity, few studies wherein such a polarization in triboe-

lectric devices is employed have been reported so far.

Conclusions and Outlooks
Self-powered wearable and implantable electronic 

devices are essential, especially since the development 

of Internet-of-�ings (IoT) technology. Since the tribo-

electric effect is one of the most frequently experienced 

phenomena in everyday life, triboelectric devices are a 

promising energy harvester for self-powered wearable 

devices combined with other types of applications. In 

Fig. 6 Triboelectric performances enhanced by dipolar polarization in ferroelectric PVDF composites: a Triboelectric nanogenerator based on the 

PVDF–AgNW composite and nylon nanofibers prepared through electrospinning methods (Reproduced with permission from Ref. [37]. Copyright 

2018 Wiley–VCH). b Ferroelectric composite-based triboelectric nanogenerator (Reproduced with permission from Ref. [38]. Copyright 2017 Wiley–

VCH). c Multilayered PVDF-TrFE/BTO-based triboelectric nanogenerator (Reproduced with permission from Ref. [57]. Copyright 2020 American 

Chemical Society)
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the development of the IoT industry, electronic devices 

require miniaturization and multifunctionality, which 

need high output performances. Although triboelectric 

devices with high output performances have been devel-

oped by employing device structures with combined 

working modes [63–65], it is necessary to enhance the 

output performance for multiple devices.

Until now, research has been focused on the develop-

ment of triboelectric pair materials (usually negative tri-

boelectric materials), whereas dielectric tribo-materials 

have rarely been investigated. As dielectric materials 

have the potential to enhance triboelectric performances 

according to the relationship between the surface charge 

density and dielectric constant, the invention of tri-

boelectric materials based on various polarization 

mechanisms enables the development of high-powered 

wearable devices, which can be achieved as follows:

1. Because a variety of high-k dielectric materials have 

been synthesized by controlling the structural fac-

tor [66] or chemical doping [67, 68], there are several 

candidates to increase the dielectric constant of poly-

mer composites. Moreover, the surface modification 

of dielectric nanomaterials for homogeneous disper-

sion in the polymer matrix [69, 70] and the control 

of the dielectric structure (e.g., heterostructured mul-

tilayer composites [30, 31, 71, 72] or dielectric com-

posites with aligned conductive materials [73, 74]) 

have been investigated to increase dielectric proper-

ties. However, few approaches have been utilized in 

triboelectric devices to enhance the output perfor-

mance. �e high compatibility or alignment of addi-

tives in the polymer matrix will enable an increase 

in the interfacial area or reduce the leakage current, 

which leads to the enhancement of the dielectric 

constant and the resultant output performance.

Fig. 7 Triboelectric performances enhanced by dipolar polarization in PVDF-graft copolymer: PVDF-grafting polymer-based triboelectric 

nanogenerator. a Dipole moments of bare PVDF and PVDF-g-PtBA and b their dielectric properties and triboelectric performances (Reproduced 

under the terms of the CC-BY-NC 4.0 license. Ref. [22]. Copyright 2017, The American Association for the Advancement of Science)
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2. In addition to dielectric polymer nanocomposites, 

modifying polymer chain structures can enhance the 

dielectric properties because of the dipolar polariza-

tion through the improved dipole moments. Until 

now, polymeric materials with high dielectric con-

stants have been synthesized by grafting polarizable 

components [58, 60] or by engineering nanostruc-

tures [61, 62, 75, 76], which increases the dielectric 

constant by dipolar polarization. Polymer-based 

dielectric materials are good candidates for use as 

triboelectric materials because of their physical prop-

erties, such as flexibility and solution-processability, 

which facilitate the development of printable tribo-

electric devices for next-generation wearable applica-

tions.

3. In addition to dielectric polarization, an electric 

poling process that can induce dipole realignment 

under a strong electric field can be another approach 

to improve the dielectric constant, which subse-

quently enables the enhancement of triboelectric 

performances [77–80]. Recently, self-poling meth-

ods have been applied to considerably improve fer-

roelectric properties via the shear-induced process 

[81] in piezoelectric generators, although the output 

performance remains lower than that of the tribo-

electric generators. �e mechanism, combined with 

dielectric polarization and self-poling in dielectric 

composites, can be a synergistic effect to significantly 

improve the dielectric constant, leading to a remark-

able enhancement of triboelectric performances.

4. Most studies have focused on negative triboelec-

tric materials. Because triboelectric performance 

arises from the contact electrification between the 

positive and negative triboelectric layers, the posi-

tive triboelectric materials are an important factor 

toward enhancing output performances. Polariza-

tion-induced triboelectric pair materials can promote 

the development of triboelectric devices with signifi-

cantly enhanced output performances, which facili-

tates practical applications requiring high-output 

power, such as smart wearable devices and portable 

IoT devices.
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