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Abstract

A novel isotype heterojunction ultraviolet photodetector was fabricated by growing n-ZnO nanorod arrays on n-GaN
thin films and then spin-coated with graphene quantum dots (GQDs). Exposed to UV illumination with a wavelength
of 365 nm, the time-dependent photoresponse of the hybrid detectors manifests high sensitivity and consistent
transients with a rise time of 100 ms and a decay time of 120 ms. Meanwhile, an ultra-high specific detectivity
(up to ~ 1012 Jones) and high photoresponsivity (up to 34 mA W−1) are obtained at 10 V bias. Compared to the
bare heterojunction detectors, the excellent performance of the GQDs decorated n-ZnO/n-GaN heterostructure
is attributed to the efficient immobilization of GQDs on the ZnO nanorod arrays. GQDs were exploited as a light
absorber and act like an electron donor to effectively improve the effective carrier concentration in interfacial
junction. Moreover, appropriate energy band alignment in GQDs decorated ZnO/GaN hybrids can also be a
potential factor in facilitating the UV-induced photocurrent and response speed.
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Background

UV photodetectors have attracted great attention in the

fields of missile launching detection, space and astronom-

ical research, environmental monitoring, UV radiation

calibration and monitoring, and optical communication

[1]. Semiconductors with wide band gaps are a series of

common choices for UV photodetectors, such as GaN [2],

CdS [3], ZnO [4, 5], Ga2O3 [6], ZnS [7], and SiC [8], since

they exhibit significant ultraviolet UV absorption. Among

them, ZnO nanomaterials have been intensively explored

for short-wavelength optoelectronics devices, due to its

wide band gap (about 3.37 eV) and high exciton binding

energy (about 60 meV) at room temperature [9–12].

Many efforts have been made on constructing

ZnO-based UV photodetectors using ZnO single crystals,

thin films, or nanostructures [13–15]. Generally, the photo-

detection and photoresponse performance of ZnO material

are key parameters to determine the capability of the UV

photodetector, which is related with its surface condition,

structural quality, and rate of oxygen adsorption and de-

sorption. Fabrication of one-dimensional ZnO is found to

be an efficient solution to improve its photodetection and

photoresponse performance. Meanwhile, various nano-

structures including heterostructures [16], homojunctions

[17], nanocomposites [18, 19], and ZnO of special morph-

ologies [20] have also been sequentially reported which

could furtherly shorten the rise and decay time of

ZnO-based UV detectors. By comparison, n-ZnO/n-GaN

isotype heterojunctions have been proven to be a superior

choice owing to their similar crystal structure, lattice par-

ameter, and wide band gaps (3.37 eV for ZnO and 3.39 eV

for GaN), which could generate carriers from the interior

localized states excited by light or electric field.
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Another widely employed material to fabricate

ZnO-based heterojunctions is quantum dots (QDs),

which contribute to increase the photogenerated charge

separation and transportation rate in ZnO nanostruc-

tures. The decoration of QDs on ZnO nanostructures

can introduce new interfaces and greatly improve charge

separation through transferring the electrons from QDs

to the conduction band of ZnO, thus leading to the en-

hancement of photoresponse under ultraviolet light ir-

radiation. Recently, graphene quantum dots (GQDs), a

single-layer graphene with a few nanometers in two-di-

mensional direction, have held promising application

prospects as a light-absorbing material in designing

broadband photodetectors and photovoltaic devices, at-

tributed to its size-dependent band gap and strong op-

tical absorption [21]. Dhar et al. have prepared a series

of GQDs decorated nanorod/polymer Schottky junction

UV detector [22–24]. Yang et al. have found that the

photocurrent of GQDs coated ZnO nanorod array

(ZNRA) illuminated by UV light was enhanced remark-

ably compared to that of pure nanoarrays. They pro-

posed that this improvement was probably ascribed to

the charge transfer at the interface of GQDs and ZNRA

[25]. Rahimi et al. have then reported that the incorpor-

ation of GQDs on aligned ZnO nanorods yielded faster

sensing speed, and the maximum UV-excited photocur-

rent is ~ 2.75 times higher than that of the bare ZnO

thin film [26]. Therefore, it is reasonable to utilize the

advantages of GQDs mentioned above to boost the UV

sensing properties of ZnO. However, as to our know-

ledge, there is no reported research that reveals the

function of GQDs in n-ZnO nanorod arrays/n-GaN

photodetector.

In this paper, n-ZnO/n-GaN isotype heterojunction

UV photodetector decorated with GQDs has been fabri-

cated via a facile method. An obvious enhancement of

the photocurrent and good reproducibility of the GQDs

decorated heterojunction detector has been observed, in

contrast to that of the bare n-ZnO/n-GaN detector. The

superior photo-to-dark current ratio and response rate

of the hybrid UV photodetector can be attributed to the

synergistic effect and appropriate energy band structures

of n-ZnO, n-GaN, and GQDs, in which GQDs were

exploited as the light absorbers and electron donors to

greatly boost the electron transport in n-ZnO/n-GaN

isotype heterogeneous junction. These efforts broaden

the application potential of GQDs in UV photodetectors

and pave a new way to explore the various photodetec-

tion performances by designing hybrid nanostructures.

Methods/Experimental

Preparation of n-ZnO/n-GaN Heterojunction

All the reagents of analytical grade were purchased from

Sigma-Aldrich and used as received without further

purification. The n-ZnO nanorod arrays/n-GaN film iso-

type heterojunctions were prepared via a two-step

process. Firstly, the n-GaN film was synthesized on

Al2O3 substrate by the metal organic chemical vapor de-

position method (MOCVD). Then, the ZnO NRs were

directly grown on the n-GaN film by a hydrothermal

method which has been reported in previous studies

[27]. Firstly, the Al2O3 substrate plated with n-GaN film

was placed in an aqueous solution containing 0.025 M

zinc acetate ((CH3COO)2Zn·2H2O) and 0.025 M hexam-

ethylene tetramine (C6H12N4) as the precursors. The

precursors were transferred into a Teflon-lined stainless

steel autoclave. Next, the autoclave was sealed and put

into the oven. The hydrothermal treatments were carried

out at 95 °C for 12 h. Finally, the autoclave was allowed

to cool down naturally. The samples were taken out,

washed using deionized water for several times, and

dried in air.

Synthesis of GQDs

The graphene quantum dots were prepared via a hydro-

thermal method utilizing pyrolyzed citric acid (CA) as

the precursor in an alkaline environment according to

some previously reported literature [28–30]. Typically,

0.21 g (1 mmol) CA and 0.12 g (3 mmol) sodium hy-

droxide (NaOH) were dissolved into 5 mL water and

stirred to form a clear solution. Then, the solution was

transferred into a 20-mL Teflon-lined stainless autoclave.

The sealed autoclave was heated to 160 °C in an electric

oven and kept for additional 4 h. The synthesized GQDs

were collected by adding ethanol into the solution and

centrifuged at 10000 rpm for 5 min and then ultrasonic

cleaned with ethanol for three times. The solid can be

easily re-dispersed into water.

Fabrication of UV Photodetector

The Al2O3 substrate plated with n-ZnO/n-GaN hetero-

junction was firstly cleaned with deionized water and

ethanol and dried at 60 °C in air. Then, the GQDs were

spin-coated on the heterojunctions. After that, the

devices were spin-coated with polymethylmethacrylate

(PMMA), followed by inductively coupled plasma (ICP)

etching. The devices were covered by the indium tin

oxide (ITO) immediately, and an Ag electrode was ap-

plied on GaN for Ohmic contacts. The final effective

area of the isotype heterojunction is ~ 5 × 5 mm2. A

schematic diagram of the fabrication process of the

n-ZnO nanorod arrays/n-GaN film isotype heterojunc-

tion is shown in Scheme 1.

Characterization

The surface morphology of the ZnO nanorod arrays

was characterized using the field-emission scanning

electron microscope (FE-SEM, FEI, Quanta FEG). The
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morphology and size distribution of the GQDs was

characterized by high-resolution transmission electron

microscope (HRTEM, FEI, Tencai G20). The UV-vis spec-

tra were recorded on a Lambda 25 UV-vis spectropho-

tometer (PerkinElmer, USA). The photoluminescence

spectroscopy (PL) was recorded using a Shimadzu

RF-5301 Fluorescence spectrophotometer. X-ray photo-

electron spectroscopy (XPS) was performed using a

ThermoFisher-250XI X-ray electron spectrometer with fo-

cused monochromatized Al Kα radiation. The crystal

structures were measured using X-ray diffractometer

(XRD, Brukes, D8 Advance). Raman spectra were exam-

ined using Raman station 400F machine (PerkinElmer).

The photocurrent response was measured by a semicon-

ductor characterization system (Keithley 4200), and a

300 mW/cm2 Xenon lamp (365 nm) was employed as the

UV light irradiation source.

Results and Discussions

Figure 1a presented the SEM image of the as-grown

ZnO nanorod arrays. Uniform ZnO nanorod arrays on

entire Al2O3 substrate plated with GaN film have been

obtained under hydrothermal conditions. Figure 1b

shows the cross-sectional SEM image of the device. The

thickness of the substrate, GaN film, and ZnO NRs is

measured as 20, 6, and 4 μm, respectively. Figure 1c de-

picts the X-ray diffraction pattern of n-ZnO/n-GaN het-

erojunctions. GaN and ZnO with wurtzite crystal

structure have similar lattice parameters, thus leading to

merge of the (002) diffraction peaks of the two semicon-

ductors. Through analysis of the high-resolution X-ray

rocking curve, the (002) peaks of both GaN and ZnO

could be observed clearly, shown in the inset of Fig. 1c.

The strongest (002) diffraction peak indicated that the

microrods mainly grow along the [001] direction. In

Fig. 1d, the D band at ≈ 1360 cm−1 and G band at ≈

1600 cm−1 could also be observed, which are attributed

to the sp2 graphitized structure and local defects/

disorders of carbonaceous materials, respectively. The

high ratio of D/G peak intensity demonstrated that large

amounts of defects and disorders existed in the edge or

surface of the GQDs structure [31].

Figure 2a, b shows the TEM and HRTEM images of

the obtained GQDs. It can be found that the GQDs have

a relatively uniform particle size distribution with a lat-

tice fringe of 0.21 nm, and the average lateral size was

statistically calculated to be 3.0 ± 0.6 nm (seen from the

inset in Fig. 2a). Figure 2c shows the UV-Vis spectrum

of the GQDs. As can be seen, there is a strong peak

around 240 nm, corresponding to the π–π* transition of

aromatic sp2 clusters, and a weaker shoulder in the

range of 300~320 nm, corresponding to the n–π* transi-

tion of C=O bonds [32, 33]. The PL spectra of the GQDs

exhibit a peak centered at 442 nm, mainly originated

from π→π* transition. In the XPS survey spectrum, two

peaks centered at ~ 284.5 eV and 531.4 eV were shown

in Fig. 2d, which corresponds to C 1s and O 1s, respect-

ively. The high-resolution C 1s spectrum demonstrates

two peaks at 284.8 and 288.7 eV (Fig. 2e). The binding

energy peak at 284.8 eV is ascribed to C=C bonds, and

the binding energy peak at 288.7 eV is attributed to

O=C–O bonds. The high-resolution O 1s spectrum of

the sample (Fig. 2f ) shows a peak at 531.8 eV, attributed

to the C=O group [34]. The analysis indicates that the

basic structure of the GQD sample is aromatic unit,

similar to some previous literatures [35].

To furtherly examine the GQDs decorated heterojunc-

tion nanoarrays, TEM image of a representative GQDs/

ZnO nanorod was shown in Fig. 3a, demonstrating a

uniform decoration of GQDs on the ZnO nanorods. The

inset in Fig. 3a corresponds to the HRTEM image cir-

cled by a green square. The UV-DRS spectra of the ZnO

nanorods decorated with/without GQDs have also been

compared, shown in Fig. 3b. The devices show a strong

absorption in the ultraviolet region. Furthermore, the

light absorption intensity of the ZnO nanorod array

Scheme 1 Schematic diagram of the fabrication process of the isotype heterojunction UV photodetector
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decorated with GQDs is enhanced by a factor of ap-

proximately 20%, compared to that of the bare ZnO

nanorods. The higher UV absorption of the GQDs

treated ZnO nanorods makes the device more suitable

when applied in UV photodetectors. Meanwhile, the

pure PMMA mainly absorbs light in the range of

300~350 nm, shown in Fig. 3b. In our study, the UV

light irradiation source is 365 nm; thus, the effect of

PMMA on the photoresponse performance of the whole

device is negligible.

Figure 4a, b plots the I–V characteristics curves of the

ZnO NRs/GaN UV photodetectors decorated with and

without GQDs under dark (power density = 0 mW/cm2)

and UV illumination (λ = 365 nm, power density =

120 mW/cm2), respectively. In dark, the I–V characteris-

tic curve exhibits a typical rectifying characteristic with

a very low leakage current, and the current increases

linearly with the applied voltage shown in the inset of

Fig. 4a, signifying the Ohmic contact between the het-

erojunction and the electrodes, while the dark current

increases slightly by coating the heterojunction with

GQDs. When irradiated under UV light, the photocur-

rent of the photodetector decorated without GQDs

nearly kept the same. However, the photocurrent of the

device coated with GQDs increases dramatically and

reaches a large value of 0.4 mA at the applied bias of

1.5 V, which is more than 40 times higher than its corre-

sponding dark current.

In addition, we examined the photoresponse of ZnO/

GaN UV photodetectors under 365 nm UV light illu-

mination at 10 V bias. Figure 4c displays the time-de-

pendence of the photocurrent with respect to incident

power densities of 9.5, 10, 25, 50, 70, and 100 mW/cm2.

It can be found that when the incident power density is

9.5 mW/cm2, the light current of the device showed no

response. Meanwhile, the minimum accuracy of the UV

lamp is 0.5 mW/cm2. Therefore, we can infer that the

minimum light intensity detected by the device is among

9.5~10 mW/cm2. The photocurrent increased upon in-

creasing the light power density and changed instantly

in response to on/off switching cycles of the light source.

The reversible and reproducible switching revealed good

stability of the devices. Moreover, the performance of

the photodetector can be quantified by the responsivity

(Rλ), defined as [25],

Rλ ¼
Iph

Popt

where Iph is the difference between the currents mea-

sured under illumination with light and in dark, Popt is

the incident power of the device, and λ is the excitation

light wavelength. The calculated responsivities of the de-

vice under incident power densities of 25, 50, 70, 100,

Fig. 1 a The FE-SEM image of ZnO nanorod arrays grown over GaN film on Al2O3 substrate (45° tilted). b The cross-sectional FE-SEM image of
the device. c The X-ray diffraction pattern of ZnO/GaN sample (inset: high resolution rocking curve of the (002) reflection resolving ZnO and GaN
peaks). d Raman spectra of n-ZnO/n-GaN heterojunctions decorated with GQDs
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Fig. 3 a TEM image of a representative GQDs/ZnO nanorod (inset: HRTEM image of the green circle in (a)). b UV-DRS absorption spectra of the
GQDs/ZnO nanorods, bare ZnO nanorods, and PMMA

Fig. 2 a TEM image (inset: size distribution of GQDs). b HRTEM image of GQDs. c UV-vis spectra and PL spectra of the GQDs (the excitation
wavelength is 365 nm). d XPS survey spectra. e C 1s high-resolution XPS spectra. f O 1s high-resolution XPS spectra
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and 120 mW/cm2 were 34, 21, 16.4, 13, and 12.9 mA/

W, respectively.

Figure 4d shows the responsivity of the photodetector

as a function of incident power density. The device is

very sensitive to UV light illumination. With the increase

of illumination light power, the detectivity and respon-

sivity decrease obviously, which might be owing to the

absorption saturation of ZnO or the screening of the

built-in electric field by the photoexcited electrons in

the conduction band of ZnO [36]. Assuming that short

noise from the dark current is the major noise source,

the specific detectivity (D*) can be expressed as [37]:

D
� ¼ Rλ

ð2e�Idark=SÞ
1=2

where e is the charge of an electron and Idark is the

dark current. Accordingly, the maximum detectivity up

to 1012 Jones has been achieved, which is higher than

that of the photodetectors based on most ZnO photode-

tectors [38, 39]. The employment of GQDs as the light

absorbers and electron donors could attribute to en-

hancement of carrier concentration in heterogeneous

junction, thus greatly improving the responsivity and

detectivity of the UV photodetectors.

To examine the response rate and stability of the

n-ZnO/n-GaN UV photodetectors decorated with GQDs,

the time-resolved photocurrent at 10 V bias with multiple

on/off cycles has been measured. As shown in Fig. 5a, the

photocurrent of the device exhibits two distinct states, a

low-current state in dark and a high-current state under

365 nm UV light illumination. The current increases

sharply from one state to another, indicative of a very fast

response rate of the two samples. As shown in Fig. 5b, the

time-resolved photocurrent revealed that the response

rate of the ZnO UV photodetectors decorated with GQDs

is faster than that of the bare one. In view of the process,

the current would rapidly ramp to the saturated value

upon UV illumination. The rise times corresponding to

the heterojunction photodetectors decorated with and

without GQDs were ~ 100 ms and ~ 260 ms, respectively.

When the light is off, the photocurrent promptly falls to

the dark current value after ~ 120 ms and ~ 250 ms which

correspond to the ZnO NRs/GaN UV photodetectors dec-

orated with and without GQDs, respectively. The response

rate in our studies is comparable or even faster than many

reported results, shown in Table 1.

The schematic diagrams of the photoresponse

mechanism for the UV photodetector are illustrated in

Scheme 2. Surface oxygen on ZnO nanorods is a crucial

factor in influencing the observed photoresponse. As is

shown in Scheme 2a, the electron capture process is

mainly mediated by the oxygen adsorption and desorp-

tion process at the ZnO NRs surface under ambient cir-

cumstances. The absorbed oxygen molecules firstly

capture free electrons from the ZnO NRs, leading to the

formation of depletion layer near the surface and

charged oxygen ions (O2
−). The depletion layer

Fig. 4 a The I–V characteristic curves of the UV photodetectors under dark and UV light irradiation decorated with/without GQDs (inset: the
magnified I–V characteristic curves of the UV photodetectors). b The I–V characteristic curves illuminated with UV light of different incident power
densities (mW/cm2). c The photoresponse at different incident light power densities (mW/cm2). d The responsivity (red) and detectivity (blue) as
a function of the incident light power density, respectively
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decreases the conductivity of ZnO NRs. When the ZnO

NRs were illuminated by 365 nm UV light with the en-

ergy level above or close to the band gap of ZnO, the

electron–hole pairs generate. After that, most of the

photogenerated holes are rapidly trapped by oxygen ions

(O2
−), resulting in the discharge of oxygen ions and des-

orbing of the oxygen from ZnO surface. The hole-cap-

turing process attributes to the increase of free-carrier

concentration, producing an apparent enhancement in

conductivity. When the UV irradiation is switched off,

the holes recombine with electrons, and oxygen

re-adsorbed onto ZnO nanorods again. The photo-

response mechanism for the n-ZnO/n-GaN UV photo-

detector decorated with GQDs is similar while more

electrons would generate if the ZnO NRs were coated

with GQDs.

Scheme 2b displays the band diagram of the GQDs-

ZnO/GaN composite and its carrier separation/trans-

port mechanism in the interfacial region under UV ir-

radiation. The band gap of ZnO is around − 3.27 eV,

and its conduction band is located at − 4.35 eV below

the vacuum level [40]. The band gap of n-GaN is

around − 3.39 eV, and its conduction band is located

at − 4.20 eV below the vacuum level [41]. When the

two semiconductors are contacted, an energy barrier of

0.15 eV appears between the two conduction bands

(ΔEc). The HOMO and LUMO position of the GQDs

were obtained from the literature in which the GQDs

were prepared via the same method [42]. The band gap

of GQDs is around 1.5 eV with its LUMO band of −

3.5~3.7 eV and HOMO band of − 5.1~5.4 eV versus

vacuum level [43]. The CB band level of GaN and

GQDs is higher than that of ZnO, while the VB band

level of ZnO is higher than that of GaN and GQDs.

Therefore, when ZnO is decorated with GQDs irradi-

ated under UV light, the bands of GaN and GQDs will

bend downward and the bands of ZnO will bend up-

ward near the interface. Then, the photogenerated elec-

trons on the conduction band of GaN and GQDs can

be efficiently transferred to the conduction band of

ZnO. Compared to the majority carrier, the movement

of the holes in the valence band of n-GaN and n-ZnO

can be neglected. As a result, there is a significant in-

crease of unpaired electrons upon UV illumination

which could contribute to the enhancement of carrier

injection and transportation and thus dramatically in-

creasing the photocurrent. During this process, the

rapid separation of photogenerated electron–hole pairs

and efficient carrier migration is responsible to the fast

responding rate.

Table 1 Comparison of the characteristic parameters of the isotype heterojunction UV photodetector

Material Substrate Bias (V) Wavelength (nm) Rise time (s) Decay time (s) References

ZnO film/GQDs Glass 0 UV 2.6 6.31 [26]

ZnO nanorods/CdS GaN 0 254 < 0.35 < 0.35 [44]

ZnO nanorods GaN 1 360 0.28 0.32 [45]

ZnO nanorods/GQDs FTO 2 365 2.14 0.91 [46]

ZnO nanorods/ZnO film GaN − 4 362 < 1 < 1 [47]

ZnO nanorods arrays GaN 10 365 0.26 0.25 This work

ZnO nanorods arrays/GQDs GaN 10 365 0.1 0.12 This work

Fig. 5 a The reproducible on/off switching of the device decorated with/without GQDs upon 365 nm light illumination with a 20-s cycle under
10 V bias, respectively. b The enlarged portions of the light-off to light-on and light-on to light-off transitions with/without GQDs
decoration, respectively
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Conclusions

The photocurrent and sensing rate of GQDs decorated

n-ZnO/n-GaN heterojunctions illuminated under UV

light is enhanced remarkably compared to that of pure

n-ZnO/n-GaN detectors. The maximum photocurrent of

the hybrid device reaches 0.4 mA at the applied bias of

1.5 V, which is more than 40 times higher than its corre-

sponding dark current. The device showed selective UV

response with pulse duration within milliseconds. The

superior performance of the ZnO/GaN heterostructures

is attributed to the efficient immobilization of GQDs on

ZnO NRs which function as the light absorbers and elec-

tron donors, and also appropriate energy band alignment

in GQDs decorated ZnO/GaN hybrids. The designing

device holds the prospects for utilizing the synergistic ef-

fect of multi-composites, paving the way for developing

GQD-sensitized efficient optoelectronic n-type devices.
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