
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 25, NO. 7, JULY 2015 1113

High-Performance Video Condensation System
Jianqing Zhu, Shikun Feng, Dong Yi, Shengcai Liao, Member, IEEE,

Zhen Lei, Member, IEEE, and Stan Z. Li, Fellow, IEEE

Abstract— Video synopsis or condensation is a smart solution
for fast video browsing and storage. However, most of the existing
methods work offline, where two main phases are required.
The first phase is to prepare tubes and background images.
The second phase is to rearrange tubes and stitch them into
backgrounds. However, with a long video sequence, the first phase
is memory consuming for data storage, and the second phase is
computationally expensive to rearrange all tubes simultaneously.
To overcome these problems, we propose a high-performance
video condensation system based on an online content-aware
framework. The online framework transforms the optimization
problem of tube rearrangement into a stepwise optimization
problem. Therefore, it can condense video with much less memory
and higher speed than the offline framework. With the aid of
this transformation, the proposed system can process input videos
and produce condensed videos simultaneously. Thus it is suitable
for real-time endless surveillance videos. Meanwhile, the online
mechanism allows users to directly visit the condensation video
that has been generated. Moreover, the content-aware mechanism
makes the proposed system able to automatically determine the
duration of a condensed video. Finally, the proposed system
uses Graphic Processing Unit (GPU) and multicore techniques to
improve the speed. Extensive experiments that validate the high
efficiency of the system are presented.

Index Terms— GPU acceleration, moving object segmentation,
online background generation, video condensation system, video
storage, video surveillance.

I. INTRODUCTION

I
N THE past decade, there is an explosive growth of

surveillance video data in the world. This situation brings

about great demands for fast video browsing and storage

technologies in public security field. However, how to fast

browse and effectively extract useful information from the

huge video data still remain challenging problems.

The easiest approaches about efficient browsing include fast

forwarding [1] and video skimming [2]. In those methods,
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videos are fast browsed by skipping several frames between

selected frames. However, skipped frames may cause impor-

tant contents missing. The adaptive methods of skipping

frames [3], [4] are thus proposed. Such methods skip frames

in periods of low activity, while keeping frames in periods

of high activity. A survey of fast video browsing is presented

in [5]. Other approaches are video abstraction [6], [7], which

use key frames as a synopsis to represent an original video.

However, this key frame representation may lose the dynamic

effect of a video sequence. A survey of video abstraction

is given in [8]. Overall, the smallest processing unit of the

above approaches is an entire frame, which means that they

only condense original videos in time domain, but neglect

redundances in spatial domain. Therefore, they cannot achieve

high condensation ratio.

Alternatively, the space–time video montage [9] analyzes

both the spatial and temporal information distribution of an

original video. By taking the visually informative space–

time portion as the smallest processing unit, it packs all

these portions together to maximize the visual information

of a condensed video. However, the video condensed by this

method has obvious seams and information loss.

The ribbon carving-based method [10] considers a ribbon

as the smallest processing unit. The so-called ribbon can be

thought as a flexible frame without activity. This method

repeatedly removes ribbons until there is no ribbon in an

original video. However, its condensation ratio is low, and

may fail when adjacent objects having different speeds and

directions. Moreover, it always creates vertical or horizontal

visible seams in condensed videos.

A significant progress in this field is video

synopsis [11]–[13]. The goal of video synopsis is to produce

a shortened video sequence by condensing an original video

in temporal and spatial domains. As a tube (tube is a frame-

sequence of an object)-based approach, video synopsis enables

users to browse a day long video recording in just a few

minutes by creating a summary of all activities. As shown in

Fig. 1, the video synopsis framework includes the online phase

and the response phase. The online phase is first performed to

record background images and extract tubes from an original

video using foreground segmentation and tracking algorithms.

Therefore, this online phase is actually a preprocessing step

used to collect tubes and backgrounds. In the response phase,

an energy function is minimized to determine the play time of

objects (tube rearrangement) in synopsis video and time-lapse

background video is constructed, then the objects are stitched

into the selected backgrounds to generate a synopsis video.

Because the first phase is performed on the whole input video,

therefore it is essentially an offline processing framework.
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Fig. 1. Framework of video synopsis [11]. The image is derived from [11].
It is essentially an offline framework because it relies on a preprocessing step
performed in the first phase.

Following the video synopsis framework, several improved

methods are proposed in [14]–[16]. These methods have

achieved some improvements with respect to speed or tube

rearrangement effect. However, this two-phase offline frame-

work still has some drawbacks when it handles a very long

video sequence.

1) It needs huge memory to store all tubes and backgrounds

first or have to delete some objects.

2) Its processing speed is low, because it deals with all data

in one time.

3) Its query efficiency is low, because it must perform tube

rearrangement and object stitching algorithms to generate

the corresponding synopsis video for each query.

4) The duration of a synopsis video is determined manually

rather than by the content of an input video, which

is impractical because users may not know the activity

density of an input video beforehand.

To overcome the drawbacks of huge memory cost and

slow speed when the offline framework deals with long

videos, the most direct way is to manually divide a long

input video into several short sequences, and then use the

offline framework to process each short sequence. However,

in practice, this method may face two problems: 1) an object’s

trajectory may be divided into different sequences, which will

degrade user experience, and 2) different sequences usually

have a different activity density, which makes it difficult

for users to determine an adequate length for each synopsis

video.

In this paper, a high-performance video condensation sys-

tem is proposed to overcome the mentioned drawbacks. This

paper is built upon our preliminary work: online content-

aware video condensation framework reported in [17]. The

online content-aware video condensation framework trans-

forms the optimization problem of tube rearrangement in tradi-

tional video synopsis approaches into a stepwise optimization

problem. The main novelty of this framework is the online

processing manner, which is able to keep processing a long

input video while at the same time incrementally produces

condensed video. As shown in Fig. 2, our online framework

only includes one phase, which does not need a preprocessing

step used to prepare tubes and background images.

Fig. 2. Online content-aware video condensation framework. This framework
does not need any preprocessing step. Based on a memory buffer, it can
parallelly perform S4 and S5, thus can process an input video and generate
the condensed video simultaneously.

To construct a more practical video condensation system, a

number of techniques are introduced in this paper to enhance

the system on speed and memory consumption, including:

1) An Online Background Generation Method: This method

generates a time-lapse background image by averaging

frames in a time interval and updates it over time. The

memory cost of this method is low and the produced

background can reflect the background changes over time.

2) A Faster Moving Object Segmentation Method: The

scale invariant local ternary pattern (SILTP) feature-

based background subtraction algorithm [18] is applied

to achieve effective moving object segmentation.

3) A Multithread Implementation Framework: The online

content-aware video condensation framework is divided

into tube generation, tube rearrangement, and object

stitching modules, which are parallelly implemented.

4) An Effective Memory Buffer Design: The memory buffer

is based on the producer–consumer model used to con-

trol the memory balance between different multithread

modules of the system.

5) GPU and Multicore Acceleration Strategies: The GPU

and multicore techniques are used to accelerate the

processing speeds of SILTP-based moving object segmen-

tation and object stitching, respectively.

The advantages of the high-performance video condensation

system will be validated by experiments, which are summa-

rized as follows.

1) Fast Speed: On an eight cores 2.66-GHz computer

with a GPU (Nvidia GeForce GTX 285), the system

processing speed achieves 530–660 frames/s for videos

with 320 × 240 resolution, and even for high resolution

(704 × 576) videos, it achieves 100 frames/s.

2) Low Memory Cost: The system can online processing

videos, which does not require huge memory to preserve

all tubes and backgrounds.

3) High Condensation Ratio: The system can achieve a

higher condensation ratio than the ribbon carving-based

method [10].

4) High Query Efficiency: In each query, the system allows

users to directly obtain the condensed videos that have

been generated rather than executing tube rearrangement

and object stitching each time.

5) Ability to Process Endless Video: The system can

process input videos and produce condensed videos
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simultaneously, thus it is able to deal with real-time

endless surveillance video.

6) Adaptivity: The system can produce a condensed video

with adaptive condensation ratio. This is more reasonable

than setting by manual as in [11].

7) Compatibility: The system is able to condense videos in

offline or online modes.

The rest of this paper is organized as follows. Section II

describes the details of the online content-aware video

condensation framework, including online background gen-

eration, moving object segmentation, sticky tracking, tube

rearrangement, and object stitching, respectively. Section III

introduces the high-performance system, including software

design and acceleration strategies. Section IV presents experi-

mental results to show the superiority of the proposed system.

Section V concludes this paper.

II. ONLINE CONTENT-AWARE VIDEO

CONDENSATION FRAMEWORK

A. From Offline to Online

The smallest processing unit of video synopsis is tube.

A tube is defined as the frame sequence of the same object in

a video. The main idea of video synopsis is to remove activity-

less frames, and rearrange tubes in video frames to make

objects that appear sequently in an original video can appear

simultaneously in the shortened video. As shown in Fig. 1, the

video synopsis framework includes two phases. The online

phase is first performed in real time during video capturing

and recording. The response phase is performed following

a user query to generate synopsis videos. The online phase

can be seen as a preprocessing step for an original video to

prepare tubes and backgrounds, which must be performed first,

and then a synopsis video is produced in the respond phase,

which needs a user query. Consequently, it is essentially an

offline framework because a synopsis video is produced until

a preprocessing step was performed in the first phase.

Let us focus on the response phase where tubes are

rearranged in temporal domain. Assuming that tubes and

backgrounds have been prepared, then the problem of tube

rearrangement can be viewed as a constrained optimization

problem. Tube rearrangement is to reassign the start-time

label of each tube so that multiple tubes originally appearing

in different times can be displayed simultaneously under

some constraints. The constraints proposed in [11] include

keeping maximum activity, consistency with background,

keeping chronological order, and avoiding collisions (occlu-

sions) between tubes. The optimization problem can be

formulated as minimizing the following energy function:

E(ℓ) =
∑

i∈ Q

Eu(ℓi ) + α
∑

i, j∈ Q

E p(ℓi , ℓ j ) (1)

where Q denotes the whole tube set and ℓi denotes the

start-time label of tube i , which takes a value from the time

label set

LOffline = {1, . . . , M} (2)

where M denotes the number of frames in a condensed video

and is actually set by users. Eu and E p denote the unary

and pairwise energy functions, respectively. α is used to

control the weight of the pairwise energy function E p. Specific

formulations of Eu and E p will be discussed later. We can

find that, the optimization of (1) involves all tubes in one

time. Minimizing such problem is very time-consuming when

| Q| or M is huge. Besides that, it requires much room to

prepare all tubes and backgrounds. For example, the memory

cost of a video sequence with 10 h duration (30 frames/s ×

3600 s × 10 = 1 080 000 frames, 320 × 240 pixel resolution,

and three channels) is 1 080 000 × 320 × 240 × 3 × 8bit ≈

232 GB. Assuming that the foreground pixel ratio is 1% and

backgrounds are recorded with a 10-frame interval, therefore,

the offline framework must cost 232 × 1% = 2.32 GB to

save tubes and 232 × 0.1 = 23.2 GB to save backgrounds,

respectively. In other words, the offline framework has the

drawbacks of slow speed and huge memory cost when it deals

with long videos.

The online content-aware video condensation framework is

used to overcome the drawbacks in the offline framework.

As shown in Fig. 2, the online framework only includes one

phase, rather than two phases. It consists of five main steps:

1) S1 (Background Image Generation): Generate a back-

ground image using the online background generation

method.

2) S2 (Moving Object Segmentation): Segment moving

objects using the SILTP feature-based background sub-

straction algorithm [18].

3) S3 (Tube Extraction): Extract tubes using the sticky

tracking algorithm.

4) S4 (Tube Rearrangement): Decide optimal start-time

labels of tubes using the online tube filling algorithm and

push the rearranged tubes into a memory buffer.

5) S5 (Object Stitching): If the buffer is full, stitch tubes

in this buffer into the background image (S1) using the

modified Poisson image editing method [11].

Note that, based on a memory buffer, the online framework

is able to parallelly perform S4 and S5, which can process an

input video and generate the condensed video simultaneously.

Therefore, it is a real online video condensation framework.

The online property of the online content-aware framework

is first discussed, and the content-aware property will be

discussed later. The basic idea of the online framework is

to transform the optimization problem of (1) into a stepwise

optimization problem of (3), which only involves a subset of

the whole tube set; that is, it determines the start-time label of

each tube in the subset one-by-one. For the current tube i , its

start-time label ℓi is calculated by minimizing energy function

E(ℓi ) = Eu(ℓi ) + α
∑

j∈ Q′

E p(ℓi | ℓj ) (3)

where Q′ ⊂ Q denotes the subset of processed tubes;

ℓ(·) takes a value from a much smaller label set

LOnline = {1, . . . , n} (4)

where n denotes the number of frames in a temporary conden-

sation space, with n ≪ M . ℓ j is the known start-time label

of the processed tube j . The optimization of (3) deals with
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a tube subset at each step, which is a good approximation to

the optimal solution of (1). However, compared with (1), the

label set of (3) is much smaller (n ≪ M) and the number

of involved tubes is fewer (|Q′| < |Q|), which significantly

reduces the time cost of tube rearrangement. Moreover, there

is no need to store all tubes Q in memory but just a subset Q′.

Therefore, the optimization of (3) can achieve high speed with

low memory cost.

B. Online Background Generation

A condensed video sequence consists of tubes and back-

grounds; that is, each frame in a condensed video sequence

is generated by stitching moving objects into a background

image. In practice, the number of frames in a condensed

video M is much smaller than the number of frames in

the corresponding original video N (M ≪ N). Therefore, a

background selection mechanism is needed in video conden-

sation application.

The selected background images should meet two proper-

ties [12]: 1) Property-I, it should reflect background changes

over time, such as the alternation of day and night and

2) Property-II, it should be related with video activities; that

is, backgrounds containing more moving objects are preferred.

The two properties are conflicting. To address this tradeoff,

[12] combines two temporal histograms with a weight to

meet the two properties. However, this method is an offline

approach, which needs to store all N backgrounds first, requir-

ing huge storage space. To reduce storage cost, the online

principal background selection (OPBS) method is proposed

in [19]. As an online version of background selection method,

the OPBS method needs to store n backgrounds (n < M ≪ N ,

a typical value is n = 500).

In this paper, an online background generation method is

proposed to coordinate with the online framework. It generates

a background image by averaging frames in a time interval

(in our experiments, set this time interval to be 3000 frames)

and updates it over time. The advantage of this method is that

it only needs to store one background image.

The background image generated by this simple method still

meets the two properties under the online content-aware video

condensation framework. Because it is updated over time,

therefore, it naturally meet Property-I. As discussed above,

the tube rearrangement is realized in a stepwise way, thus the

corresponding condensed video is produced in a stepwise way

too. In each step, a set of tubes are stitched into a generated

background image. In the period that contains more activities

the online content-aware framework is more likely to trigger

stitching operation (this is called content-aware ability of the

online framework, which will be discussed later) to produce

stitched frames that in a condensed video, thus background

images that appear in the period with more activities are more

often to be used in the condensed video. Therefore, it also

meets Property-II.

C. Moving Object Segmentation

Because the smallest processing unit of video conden-

sation is tube, the moving object segmentation must be

TABLE I

ACCURACY COMPARISON BETWEEN THE SILTP [18] AND

GC-BASED [17] OBJECT SEGMENTATION METHODS.

THE TEST VIDEO SEQUENCES COME FROM

CHANGE DETECTION 2014 [22]

performed before tube extraction. In [11] and [17], a graph

cut (GC)-based object segmentation method is used to obtain a

smooth segmentation of moving objects. The GC-based object

segmentation method used in [11] and [17] is a simplification

of background cut [20]. In [17], the color-based unary term

is the color difference between the current image and the

estimated background image and the background image is

produced using the mixture of Gaussian (MoG) [21] method.

Since the GC-based object segmentation method is compu-

tationally expensive, the multithread GC method is proposed

in [17] to accelerate the processing speed.

In this paper, the SILTP feature-based background subtrac-

tion algorithm [18] is applied to achieve effective moving

object segmentation. As reported in [18], the SILTP feature-

based background subtraction method can achieve better

segmentation results than the MoG approach [21], whereas the

processing speed of SILTP is comparable with that of MoG.

Here, we also report a comparison of the SILTP [18]

and the GC-based [17] object segmentation methods. The

accuracy comparisons are shown in Table I, where Recall =

TP/(TP + FN), Precision = TP/(TP + FP), and F−score =

2 · Recall · Precision/(Recall + Precision). TP, FP, and FN are

true positives (true foreground pixels), false positives, and false

negatives (false background pixels), respectively.

From Table I, we can find that both SILTP and GC-based

object segmentation methods achieve high recall rates.

This shows they can completely segment moving objects.

Moreover, the precisions of SILTP-based method are higher

than that of the GC-based method in most cases; therefore,

the SILTP-based method has better F-score performance.

However, the precision rates of the two methods are relatively

low. This is resulted from a conservative background decision

threshold setting, which favors more foreground pixels so that

the extracted objects will be complete for video condensation.

The segmentation results of SILTP and GC-based methods

are shown in Fig. 3, where we can see that both of the two

methods can completely segment moving objects. However,

the GC-based algorithm used in [17] sometimes causes obvi-

ous under-segmentation because the color difference-based

unary term is sensitive to illumination variations, whereas the

SILTP-based method has a better segmentation due to its illu-

mination invariant nature in design. Furthermore, we propose

a GPU accelerated SILTP-based moving object segmentation

method, which will be described in Section III-C1, with a

processing speed comparison with [17].
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Fig. 3. Segmentation results of SILTP and GC-based methods.

Fig. 4. Occlusion between two objects. See Section II-D for details.

D. Sticky Tracking

If moving objects have been segmented, a tracking

algorithm is applied to connect the same object appear-

ing in different frames for tube extraction. Many tracking

methods [23], [24] have been proposed, however, those meth-

ods may not be entirely suitable for video condensation. The

following example shows the problems. As shown in Fig. 4(a)

with two objects, where Obj#2 is occluded by Obj#1 at

frame t . Fig. 4(b) shows the result of a common blob tracking

method [24]: two tubes are generated, but both are not good

enough. Because the merged blob is matched to Obj#1 at

frame t , something not belonging to Obj#1 will burst into

view in a condensed video. Meanwhile, no blob is matched to

Obj#2. Obj#2 will disappear abruptly and then appear again in

the view. As a result, both tubes will cause a blinking effect,

thus deteriorating user experience. Fig. 4(c) is the result of an

ideal tracking method that produces the most accurate result.

However, such an optimal tracker is not completely suitable

for video condensation application: part of Obj#2 is lost due

to the occlusion at frame t , which also causes blinking.

The sticky tracking strategy is used to reduce blinking effect

in a condensed video for better visual effects. It is based on

the following idea: if occlusions happen to two or more tubes,

they will be merged into a single tube, as if they are sticking

together in Fig. 4(d). Note that the goal of sticky tracking

is very different with that of traditional tracking methods.

The key point is to launch merging before matching. That

is, if two or more tubes in the object list are matched to the

same blob by the nearest object center distance at frame t ,

the two tubes will be merged and treated as one tube from

frame t on.

In addition to reducing the blinking effect caused by

occlusions between objects, sticky tracking presents another

Fig. 5. Some sticky tracking results. (a) The head and the body of the same
person were considered as two objects due to the over-segmentation at frame
732. When the segmentation becomes correct at frame 733, the head and body
are merged into a single tube using sticky tracking. (b) One person with a
suitcase splits into two objects at frame 4548 due to occlusions by the fence,
and sticky tracking still successfully considers them as the same object. If
two or more parts have the same color, they are considered as a single tube.

advantage, being able to amend poor object segmentation

(under-segmentation and over-segmentation). The case of

under-segmentation can be treated as object occlusion, which

can be solved by sticky tracking. Fig. 5 shows some sticky

tracking results for the other case of over-segmentation.

Moreover, sticky tracking has an ability to keep the chrono-

logical order of objects when they are close to each other

(e.g., taking a conversation): if the distance between objects is

less than a threshold (10 pixels in our experiments), they will

be merged into one tube by sticky tracking, therefore, their

chronological order will be naturally preserved.

E. Tube Rearrangement

The role of tube rearrangement is to decide each tube’s start-

time label. The online content-aware tube filling algorithm

is the core of tube rearrangement. The main idea of online

tube filling comes from the Tetris game, suggesting to deal

with tubes one-by-one, rather than all in one time as in [11].

In Tetris, a player is encouraged to manipulate the Tetris to

create a horizontal line without gaps, and then such line can

be cleared. If the player is smart enough, the game can go on

forever. Similarly, the online tube filling algorithm treats tubes

as Tetris, and regards a 3-D condensation space as the playing

field of video condensation. If the playing field is saturated,

the rearranged tubes are pushed into the object stitching stage

and so the current playing field is cleared. In the following,

our job is to design a smart player for the tube filling game.

1) Objective Function Construction: In (1) and (3), the

objective functions consist of unary and pairwise energy

functions. In [11], the unary energy function includes activity

cost (the penalty of losing tubes in a condensed video) and

background inconsistency cost (the penalty of the inconsis-

tency among tubes and background images), whereas the

pairwise energy function includes collision cost (the penalty of

occlusion between tubes) and temporal consistency cost (the

penalty of the temporal inconsistency between tubes). Based

on these four cost terms, it is time consuming to find an opti-

mal solution for (3); therefore, according to the characteristics

of the online content-aware framework, we define a simplified

objective function

E(ℓi ) =
∑

j∈ Q′

Ec(ℓi | ℓ j ) (5)

where Ec(·|·) represents the collision cost between two tubes,

and its definition will be discussed later.
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First, we can find that (5) does not include the unary energy

function Eu(·), where it is set as Eu(·) ≡ 0. The motivations

are follows: 1) considering the activity cost is to punish the

case that some tubes disappear in a condensed video, therefore,

if all tubes are forcibly stitched into the condensed video, there

is no need to consider the activity cost and 2) the background

inconsistency among tubes and background images is not

significant in the online framework. Because the background

image generation and tube rearrangement both are performed

in online way that the time difference between rearranged

tubes and background image is not too large, therefore, there

is no need to consider the background inconsistency cost.

Second, we can find that only the collision cost is considered

in (5). The motivation is that the temporal inconsistency

between tubes is not remarkable in the online framework

where the tube rearrangement is performed in a stepwise way;

that is, rearranged tubes are extracted from a short interval

at each step. Besides that, the start-time label set LOnline is

small so that it can not produce serious temporal inconsistency

between two tubes.

In [11], the collision cost is defined as the volume of two

tubes’ space–time overlap weighted by their activity measures.

However, this cost function is insufficient because it is prone

to ignore small tubes. Since a small tube contributes a tiny

penalty in the overall energy function, it may be completely

occluded by other tubes. To overcome this drawback, a new

collision cost will be necessary to give a high penalty for this

case.

Assuming a current tube i and a rearranged tube j ∈ Q′

are placed at the location ℓi and ℓ j , respectively. Then, the

collision cost function Ec(ℓi | ℓ j ) is defined as

Ec(ℓi |ℓ j ) =
∑

t∈ti∩t j

et(i, j) (6)

et (i, j) =

⎧

⎪

⎨

⎪

⎩

st
i, j ,

st
i, j

I t (i, j) · at
j + (1 − I t (i, j)) · at

i

< β

κ · at
i , otherwise

(7)

where ti ∩ t j is the temporal intersection of tube i and j

in the condensation space, et (i, j) denotes the collision cost

between tube i and a rearranged tube j at frame t , at
i and at

j

denote the area of tube i and j at frame t , respectively,

st
i, j ∈ [0, min(at

i , at
j )] denotes the area intersection between

tube i and j at frame t , β ∈ [0, 1] denotes the maximal

tolerable occlusion ratio, and I t (i, j) is an indicator used to

designate the depth ordering of tube i and j at frame t : if tube

i is closer to the camera than tube j , which means tube i may

occlude tube j , then I t (i, j) = 1; otherwise, I t (i, j) = 0.

As shown in Fig. 6, tube i occludes tube j , while it is

occluded by tube k at frame t . In this case, I t (i, j) = 1 and

I t (i, k) = 0. Such depth ordering of tubes, which determines

the relationship of occlusion, can be obtained by a simple

ground plane heuristic [12]. See [25] for more about depth

ordering.

With (7), no matter the size of tube i , once the occlusion

ratio of the corresponding slice t of tube i is higher than β

which indicates the rearrangement of tube i will cause serious

Fig. 6. Collision situations of tube i , j , and k at frame t .

Fig. 7. Two-level condensation space.

occlusion, then it should be heavily penalized, and the strength

of penalty depends on the coefficient κ .

2) Two-Level Condensation Space: The two-level conden-

sation space is used as the playing field of the tube filling

game. As show in Fig. 7, it includes two level with different

size: the size of the first-level condensation space L1 is

w × h × n, whereas the size of the second-level condensa-

tion space L2 is w × h × ∞, where w and h denote the

width and height of the input video frames, and n [same as

in (4)] denotes the number of frames in the L1 condensation

space. The tube set Q′ in (3) is made of tubes in the

L1 condensation space.

The L1 condensation space is the real playing field of the

tube filling game. That is to say, the start-time label of an

incoming tube should be confined in the L1 condensation

space. Besides, the function of the L2 condensation space is

to receive the tail of the incoming tube if L1 condensation

space can-not hold the whole tube.

As the L1 condensation space receives more-and-more

tubes, it will be full at some point, just like creating a

horizontal line of blocks without gaps in the Tetris game.

At this time, the content of the L1 condensation space is

stitched to a background image for producing condensed

video, then the L1 condensation space will be cleared and

the first n frames of L2 condensation space will be pushed

into the L1 condensation space. That is to say, the tube set

Q′ is set to Q′′ at this time, where Q′′ is the tube tails whose

start-time labels have been set as 1. This mechanism is able

to keep the chronological order of tubes even they may not be

filled into the same L1 condensation space in one time.

Note that, both L1 and L2 condensation spaces are logical

spaces rather than real physical memory spaces; that is,

rearranged tubes are stored in the rearranged tube buffer, which

will be introduced in Section III-B.

3) Online Content-Aware Tube Filling: There are two main

tasks for the online content-aware tube filling algorithm:

1) deciding each tube’s optimal location in the L1 conden-

sation space and 2) deciding whether the L1 condensation

space is saturated. For the first, a greedy optimization method

is used to decide each tube’s optimal location. For the second,

tubes with high collision ratio are saved in a temporary list,
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Fig. 8. Tube division.

once the length of the temporary list surpasses a threshold, the

L1 condensation space is considered as saturated.

Based on (5)-(7), the optimal location L (i) of tube i is

found by greedy search, as

L (i) = arg min
ℓi

∑

j∈ Q′

Ec(ℓi | ℓ j ) (8)

where ℓ(·) ∈ {1, 2, . . . , n}. The optimal location is found

according to the locally optimal choice at each greedy search

step with the hope of making the L1 condensation space full

with least collision at last.

A content-aware mechanism is further designed to accom-

plish the second task. The following criterion is used to decide

if tube i can be filled into the L1 condensation space:

CRi (L (i)) > τ (9)

where τ is the maximum tolerable threshold and the collision

ratio CRi (L (i)) of tube i is defined as

CRi (L (i)) =
∑

j∈ Q′

Ec(L (i) | ℓj )
/

∑

t∈ti

at
i (10)

where at
i denotes the area of tube i at frame t and ti denotes

the frame length of tube i . The tube i can not be filled into the

L1 condensation space if its collision ratio CRi (L (i)) larger

than the maximum tolerable threshold τ , then such tube will be

added to a temporary list D, and the L1 condensation space is

assumed to be saturated once the length of this temporary list

reaches to the maximum temporary list size m. The benefit

of this content-aware mechanism is that the duration of a

condensed video is determined by the content of the input

video, rather than by users as in [11].

4) Tube Division: Tube division is used to produce the

dynamic stroboscopic effect [11]: the same object from

different frames in an original video may be displayed at the

same frame in the corresponding condensed video. It is simply

achieved by dividing a tube into several smaller tubes, and the

size of each one after division is guaranteed to be smaller or

equal to the number of frames n in the L1 condensation space.

See Fig. 8 for an example.

Tube division may cause the blinking effect and is not favor-

able in the online video condensation algorithm. However,

with it the online video condensation algorithm can achieve

higher condensation ratio.

5) Computational Cost Analysis: Assume that the compu-

tational cost of (6) is c; the start-time label set of online

and offline tube filling are {1, 2, . . . , n} and {1, 2, . . . , M},

respectively; the L1 condensation space saturated count is k,

then we have M = kn; there are P tubes to be rearranged.

Furthermore, we assume the L1 condensation space includes

p tubes at each saturated moment, thus we have P = kp.

With greedy search (8), the computational cost of online and

offline tube filling is k · n(p − 1)p/2c and M(P − 1)P/2c,

respectively. Therefore, their ratio is

k · n
(p − 1)p

2
c

M
(P − 1)P

2
c

=

k · n
(p − 1)p

2
c

kn
(kp − 1)kp

2
c

≈
1

k2
. (11)

F. Object Stitching

The rearranged tubes are stitched into backgrounds using

the modified Poisson image editing [11] according to the

corresponding start-time labels. See [11] for more details about

the modified Poisson image editing.

III. HIGH-PERFORMANCE VIDEO

CONDENSATION SYSTEM

A. Multithread-Based System

The online content-aware video condensation framework

includes three primary modules: 1) tube generation module,

including online background generation, moving object seg-

mentation, and sticky tracking and 2) tube rearrangement

module and 3) object stitching module. As shown in Fig. 9,

these modules are paralleled performed by the tube generation

thread, the tube rearrangement thread, and the object stitching

thread, respectively. The relationship between the tube gener-

ation thread and the tube rearrangement thread can be seen

as the relationship between producer and consumer. The tube

generation thread just like a tube producer that pushes tubes

into a tube buffer, whereas the tube rearrangement thread like

a consumer that gets out tubes from the tube buffer for online

tube filling. The detail of this producer–consumer parallel

model is introduced in [26]. Similarly, there is also a producer–

consumer relationship between the tube rearrangement thread

and the object stitching thread. However, in this case, the tube

rearrangement thread is a producer and the object stitching

thread is a consumer.

Note that, the system is compatible with offline video

synopsis [11]–[13] by a slight adjustment. Specially, one can

trigger the tube generation thread first to extract all tubes and

backgrounds from an input video sequence, and then trigger

the tube rearrangement thread to rearrange all tubes, at last

trigger the object stitching thread to generate a condensed

video. Note that, tubes are still rearranged using (8), however,

the system must prepare all tubes and backgrounds existing in

the input video sequence in this case.

B. Buffer Design

As shown in Fig. 9, there are two memory buffers in

the proposed system. The tube buffer used between the tube

generation thread and the tube rearrangement thread is an first

in first out (FIFO) list. The element of this FIFO buffer is a

tube that waiting to be rearranged. The rearranged tube buffer

used between the tube rearrangement thread and the object

stitching thread is also a FIFO list. To avoid the efficiency
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Fig. 9. Structure of the online content-aware video condensation system.

deterioration caused by the frequent data interaction between

the tube rearrangement thread and the object stitching thread,

the element of the rearranged tube buffer is designed to

store multiple rearranged tubes. Adjusting the length of the

two buffers can balance the speed and memory usage of the

proposed system.

C. Acceleration Strategies

In Fig. 9, moving object segmentation and object stitching

are the most time-consuming steps. To achieve faster process-

ing speed, the GPU-based moving object segmentation and the

multicore-based object stitching are proposed.

1) GPU-Based Moving Object Segmentation: Traditional

background subtraction methods, such as the MoG

approach [21], are usually based on the color of pixels,

and each pixel is processed independently. This makes

the mixture of Gaussian approach a highly parallelable

algorithm, which can be easily accelerated by GPU. However,

the SILTP [18] pattern of each pixel is related to its four

neighborhood; therefore, SILTP is harder to be parallelized

on GPU. However, there are many tricks introduced in [27]

can be used to parallelize the SILTP method. The SILTP is

optimized in three aspects: 1) pinned memory; 2) memory

coalescing; and 3) asynchronous execution.

The bandwidth between host memory and device memory

is usually a bottleneck in GPU computation. As suggested

in [27], pinned memory can help to improve the speed of data

transfer between host memory and device memory, hence, the

pinned memory is used. Furthermore, using pinned memory

allow us to launch the SILTP algorithm asynchronously. In

Compute Unified Device Architecture (CUDA), when 16

continuous threads in the same block access continuous global

memory, all individual transfers will be combined into a single

transfer automatically, which is called memory coalescing

[27]. To take this advantage, the distribution of the neighbor-

hood pixels to the threads is designed from a same block as

possible. In the calculation of SILTP pattern for each pixel, it

always access the four neighborhood in a block. However, the

four pixels are not continuous in global memory. Therefore,

they are first fetched from global memory to local shared

memory, and then the pattern is calculated based on the values

in shared memory.

Asynchronous execution is a famous way to improve the

performance of CUDA programs. The pipeline of CUDA is

usually divided into three steps: 1) memory copy from host to

device; 2) kernel execution; and 3) memory copy from device

to host. In synchronous execution mode, if the step 1) or 3)

TABLE II

SPEED COMPARISON AMONG CPU-SILTP, STGC, MTGC [17], AND

GPU-SILTP-BASED OBJECT SEGMENTATION METHODS

is running, the kernel is idle. In contrast, when the kernel is

running, the memory bus is idle. To parallelize the memory

copy and kernel execution, double buffer and two CUDA

streams are used one for memory copy and the other for kernel

execution. When the kernel is processing the image data in the

first buffer, the copy stream is used to transfer new image data

into the second buffer. When the kernel is finished, the pointers

of buffer are swapped and the kernel is restarted.

We compared the speeds of the CPU-SILTP-based,

GC-based [17] and GPU-SILTP-based object segmentation

methods at an eight-cores 2.66-GHz computer with Nvidia

GeForce GTX 285 (the same device used in other exper-

iments of this paper). The results are shown in Table II.

The CPU-SILTP method is implemented in single-thread

mode. Both the single-thread (STGC) and multithread

GC (MTGC)-based methods are evaluated, and the number of

threads used in MTGC is set to be 8, as in [17]. From Table II,

we can see that the speed of CPU-SILTP is ∼1 time faster than

STGC. Moreover, we can find that the speedup ratio between

GPU-SILTP and CPU-SILTP consistently surpasses 10 and

increases with pixel resolution. Finally, we can see that the

speedup ratio between GPU-SILTP and MTGC consistently

surpasses 7 and also increases with pixel resolution.

2) Multicore-Based Object Stitching: The modified Poisson

editing method [11] is used to achieve the smooth stitching and

can be seen as a problem of solving the linear equations [11]

Ax = b (12)

where A is a large, sparse and known p × p matrix, and

p denotes the processing pixel number; the column vector x

denotes the p unknown pixel values, and b is a known column

vector for the Poisson equation. Therefore, our goal is to find

a fast solution for (12).

Konstantinidis and Cotronis [28] proposed a parallel red–

black successive over-relaxation method to fast solve (12),

based on GPU with CUDA. The key idea of this parallel

method is to divide the unknown variables x into a red set

and a black set according to their coordinates, then parallelly

update the values of each set in turn at each iteration with

GPU. However, the GPU resource has been assigned to accel-

erate the moving object segmentation as mentioned before,

therefore, to avoid the competition for the GPU resource, the

multicore parallel technique is used. Thus, the OpenMP [29]

programming is used to parallelly update the values of each

set in turn at each iteration. Table III shows the comparison of

stitching time between solving (12) with and without OpenMP.

It can be found that the speedup increases with the processing

pixel number. This inspires us to combine object stitching

jobs of several frames as a whole linear equation to be solved.
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TABLE III

STITCHING TIME COMPARISON BETWEEN

WITH AND WITHOUT OPENMP

D. Tube Reallocation

Rearranged tubes can be reallocated to further improve the

solution for the optimization problem of (5). The idea is to

reassign optimal start-time labels of the tube set Q′ − Q′′,

where Q′ is a set, including rearranged tubes in current

stepwise and Q′′ is a set, including tube tails of the previous

stepwise. A tube tail is often caused by the fact that the frame

length of the tube is longer than the frame length of the

L1 condensation space (Fig. 8). In this case, the start-time

label of Q′′ must be set as 1 to keep chronological order

of tubes. Therefore, tube reallocation only process tubes that

from Q′ to Q′′.

In practice, the system randomly selects a tube from

Q′ to Q′′ and treats it as an incoming tube, then recalculates

it’s optimal start-time label with (8). Because there does not

exist tubes to be processed all the time, tube reallocation

can be applied to the online video condensation at idle

time. As a result, the proposed system can obtain a better

solution without decelerating the processing speed. Fig. 10

shows a comparison of a typical process of the online video

condensation with and without tube reallocation, where the

same parameters are applied. We can find that before being

full, the L1 condensation space accepts more tubes by the tube

reallocation, which suggests that tube reallocation is helpful

for improving condensation ratio.

IV. EXPERIMENTS AND ANALYSIS

The proposed system was evaluated with extensive

experiments. Nine surveillance video sequences taken from

indoor and outdoor scenes are used. The details of the

running environment and the system setup are listed in

Tables IV and V, respectively. During the whole evaluation

process, the proposed system does not do any down sample

operation for input videos. In the following, the performance

of the proposed system is summarized in five aspects:

1) speed; 2) condensation ratio; 3) content-aware ability;

4) memory usage; and 5) visual quality. The results and

condensed videos are reported on a project Web site:

http://www.cbsr.ia.ac.cn/users/jqzhu/hpvcs.htm.

A. Speed

The results of speed are summarized in Table VI. The

speed decreases with the increase of the pixel resolution.

For the video sequence Overpass [10] with the smallest

pixel resolution, the processing speed of the proposed sys-

tem achieves 995.00 frames/s. For those video sequences

with 320 × 240 resolution, the processing speed ranges from

531.99 to 662.57 frames/s. For those video sequences with

352 × 288 resolution, the processing speed is ∼390 frames/s.

Fig. 10. Comparison between the online video condensation with and without
tube reallocation for a typical tube filling process. The dots in the figure denote
the moment when the L1 condensation space is full.

TABLE IV

DETAILS OF THE RUNNING ENVIRONMENT

TABLE V

SYSTEM SETUP

The processing speed of the proposed system is ∼5 times

as faster as that reported in [17]. Even for those high-

resolution (704 × 576) video sequences, the proposed system

still has 100 frames/s that is three times faster than real-time

(25 frames/s). Besides, as shown in Fig. 11, the time cost of

the whole process is mostly determined by the tube generation

thread. This result demonstrates that the time cost of the tube

arrangement thread and the object stitching thread is well

hidden, thus our multithread-based system is a very effective

parallel system.

To show the speed advantage of online tube filling, the

time cost of the online and offline tube filling algorithms was

compared under the same hardware condition. Both of these

two tube filling algorithms use greedy search (8) and the frame

number of condensed video used in offline tube filling is equal

to that in online tube filling. From Fig. 12, it can be found

that the online tube filling is faster than offline tube filling.

Especially, when the number of frames in an input video is

huge (Outdoor, Street, and T -junction cases in Fig. 12), the

running time of the online tube filling is only 6.53% to 20.10%

of the offline tube filling. Because the longer the input video

is, the larger the saturated count k of the L1 condensation

space will be, resulting in the larger speedup ratio between

the online and the offline tube filling according to (11).

B. Condensation Ratio

Condensation ratio (CR) is defined as the ratio between

the number of frames in an input video and the number of
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TABLE VI

RESULTS OF THE ONLINE CONTENT-AWARE VIDEO CONDENSATION

SYSTEM ON NINE SURVEILLANCE VIDEO SEQUENCES

Fig. 11. Time cost of the three threads on nine video sequences.

Fig. 12. Running time comparison between the online and the offline tube
filling.

frames in the condensed video. The results of condensation

ratio are summarized in Table VI. In Table VI, the lowest

condensation ratio is 8.20, whereas the highest one is 36.76.

Because the most existing methods have not reported con-

densation ratio results, we only compare our method with

the ribbon carving-based method [10]. The proposed method

has higher condensation ratio on the overpass sequence, ∼8

times (the condensation ratio reported in [10] is <3 for

the overpass sequence). Moreover, the condensation ratio of

the propose method can be easily adjusted by setting the

maximum temporary list size m to different values. Comparing

Fig. 13(b)–(d), we can find that our method can produce con-

densed videos with denser activities than the ribbon carving-

based method [10].

C. Content-Aware Ability

The nine surveillance videos were processed automatically

without any manual intervention. As shown in Table VI, the

condensation ratio varies with different input video sequences,

which demonstrates that our system has a content-aware ability

Fig. 13. Comparison of the proposed method versus the ribbon carving-
based method [10]. (a) One frame from Overpass video. (b) Results by [10].
(c) and (d) Results by the proposed method with the maximum temporary list
size m = 8 and m = 16, respectively.

Fig. 14. Content-aware ability in the T -junction video sequence condensation
process. The blue line represents the activity at each frame. Each red nabla
in the figure denotes the moment that the L1 condensation space is full and
green delta denotes the updating moment of the background image used for
object stitching.

to adaptively control condensation ratio. Fig. 14 intuitively

exhibits the content-aware ability of our system. As shown in

Fig. 14, from 3 × 105 to 4 × 105th frame, there are more

activities in this period and the L1 condensation space is

saturated more frequently. Besides that, in this period, more

background images are used for object stitching, which is

the desiring property of the background image selection. The

content-aware ability is more desirable and reasonable than

setting a fixed condensation ratio as in video synopsis [11],

because users usually do not know the activity density of an

input video beforehand.

D. Memory Usage

The average memory usage (AMU) and peak memory usage

(PMU) are summarized in Table VI. In Table VI, even for

those high-resolution (704 × 576) input video sequences, the

peak memory usage of our system is <1.5 GB. In addition,

for the T -junction sequence with 600 001 frames, its memory

usage status over time is plotted in Fig. 15. Combining Figs. 14

and 15, we can find two situations: 1) the memory usage is low

and changes smoothly from 1 ×105 to 3 ×105th frame where

the activity is sparse and 2) the memory usage firstly increases

and then decreases from 3 × 105 to 4 × 105th frame, where

the activity is dense. This is because the online processing

mechanism makes the system use less memory in the activity

sparse period and the two producer–consumer parallel models

(Fig. 9) make our system is able to limit the memory usage

when the consumption speed lower than the production speed

in the activity dense period. Therefore, our system is suitable

for endless input videos.

E. Visual Quality

For object-level recall rate, both the proposed system and

our previous work [17] are able to condense all moving
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Fig. 15. Memory usage status in the condensation process of T -junction.

Fig. 16. Visual quality comparison on the pedestrians [22] sequence.
(a) Input video. (b) Condensed video produced by [11] and red circles point
out the missing parts. (c) Condensed video produced by the proposed method.

Fig. 17. Visual quality comparison on the IndoorGTTest1 [30] sequence.
(a) Input video. (b) Condensed video produced by [11]. (c) Condensed video
produced by the proposed method.

objects into the condensed video due to the online content-

aware strategy. However, the method in [11] has a chance of

discarding some moving objects in the synopsis video due to

fixed synopsis video length and occlusion conflict. For pixel-

level recall rate, as shown in Table I, the SILTP-based moving

object segmentation method used in our system achieves

higher recall rate than the GC-based object segmentation

method used in [17], thus the recall rate of the proposed

system is higher than that in [17]. Note that [11] used a similar

GC-based object segmentation method as in [17].

We further made a visual quality comparison between the

proposed method and the video synopsis method [11] on two

public sequences, pedestrians [22], and IndoorGTTest1 [30], as

shown in Figs. 16 and 17. The IndoorGTTest1 [30] sequence

was captured in indoor scene, whereas the pedestrians [22]

was captured in outdoor scene with a poorer imaging quality.

The numbers of frames in the condensed videos produced by

the two methods were set equal. Because the video synopsis

method [11] uses a color and GC-based moving object seg-

mentation method, it has a chance of over-segmentation when

the color of a moving object is similar to background. From

Fig. 16, we can see that the man (the color of the head region

is similar to background) in the condensed video is more

completely segmented by the texture feature (SILTP)-based

method than that of [11]. Furthermore, from Fig. 17, we can

find that the proposed system can correctly keep the chrono-

logical order of moving objects because of the sticky tracking

strategy, whereas the method of [11] has a blinking effect

[moving objects suddenly appear or miss in two consecutive

frames, Fig. 17(b)] due to tracking failure. Therefore, the

propose method achieves better visual effect than [11].

V. CONCLUSION

A high-performance video condensation system based on

an online content-aware video condensation framework has

been proposed in this paper. The online framework can

process input videos and produce condensed videos simulta-

neously, with much less memory and higher speed than the

offline framework. Besides that, the online framework can

automatically determine the duration of a condensed video.

The high-performance video condensation system is designed

using the multithreading technique. The proposed system

further applies GPU and multicore techniques to accelerate

the processing speed. The extensive experiments have shown

the superiorities of the proposed system.
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