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We present a theoretical demonstration on the generation of entangled coherent states and of
coherent state superpositions, with photon numbers and frequencies orders of magnitude higher
than those provided by the current technology. This is achieved by utilizing a quantum mechanical
multimode description of the single- and two-color intense laser field driven process of high harmonic
generation in atoms. It is found that all field modes involved in the high harmonic generation process
are entangled, and upon performing a quantum operation, leads to the generation of high photon
number optical cat states spanning from the far infrared to the extreme-ultraviolet spectral region.
This provides direct insights into the quantum mechanical properties of the optical field in intense
laser matter interaction. Finally, these states can be considered as a new resource for fundamental
tests of quantum theory, quantum information processing or sensing with non-classical states of
light.

The superposition of classically distinguishable states
is of fundamental interest since the development of
quantum theory, and was brought to an extreme by
Schrödinger in his famous Gedankenexperiment [1]. In
quantum optics this notion can be retrieved by superpo-
sitions of coherent states [2, 3]. Beside their fundamental
interest for testing quantum mechanics [4, 5], the gener-
ation of these Schrödinger cat states, and of entangled
coherent states [6, 7], is also of direct technological impor-
tance. These states are a powerful tool in quantum infor-
mation processing [8–11], quantum computation [12, 13],
quantum metrology [14], or can be used to visualize the
classical-to-quantum transition [15]. To generate super-
positions of coherent states, atom-light interaction in cav-
ities [16, 17], or conditioning approaches at the output of
a beam-splitter [18–20] can be employed. Such condi-
tioning experiments are of general interest in quantum
information theory due to their ability for generating en-
tangled optical states [21], to describe quantum opera-
tions [22] or conditional quantum measurements [23, 24].
But, the size of the generated superpositions of coherent
states is limited to the range of a few photons, corre-
sponding to moderately small coherent state amplitudes
[3, 25, 26], restricting their applicability in quantum in-
formation processing. However, due to the relevance of
such non-classical states of light in quantum technologies
[8, 13, 27], it is of particular interest to generate a super-
position, and entanglement, of coherent states with high

photon numbers. In the present manuscript we show how
both can be achieved by means of a conditioning proce-
dure, performed on a so far unrelated photonic platform,
namely intense laser-matter interaction. Laser sources
can easily reach intensities up to 1014 W / cm2, and the
field induced material response can be highly non-linear
[28]. Since these laser fields naturally involve very high
photon numbers with corresponding coherent state am-
plitudes in the range of |α| = 106, it will be of great ad-
vantage to use them for the generation of the sought high
photon number non-classical field states [29, 30]. Until
recently the intense laser-matter interaction was mainly
described by a semi-classical theory, in which the laser
field was considered classically such that the properties
of the quantum state of the field were not envisioned. A
commonly used intense laser driven process is the gen-
eration of high-order harmonics, in which the coherent
properties of the driving laser are transferred to an elec-
tronic wavepacket, and later returned to the field modes
by the emission of coherent radiation at frequencies of
integer multiple of the driving laser field [31]. However,
the recent advances in the quantum optical description
of high harmonic generation (HHG) [30, 32–36] allows to
conceive new experiments, in which non-classical prop-
erties of the field can be observed with the prospective
use for modern quantum technologies. In particular, it
was shown that a conditioning procedure on HHG can
lead to non-classical optical Schrödinger cat states in the

ar
X

iv
:2

10
7.

12
88

7v
3 

 [
qu

an
t-

ph
] 

 6
 M

ar
 2

02
2



2

infrared spectral range [30]. To extend the approach to
different spectral regions, and to unravel the entangle-
ment between all field modes participating in the HHG
process, we have developed a complete quantum mechan-
ical multimode approach. This is used for the description
of the interaction of atoms with single- and two-color
intense laser fields. We show that all field modes in-
volved in the HHG process are naturally entangled, and
upon performing a quantum operation leads to the gen-
eration of high photon number coherent state superpo-
sition spanning from the extreme-ultraviolet (XUV) to
the far-infrared (IR). We provide the conditions for the
generation of XUV cat states, and for the generation of
entangled coherent states between two frequency modes
in the IR regime with very high photon numbers.

For the description we consider an uncorrelated state
prior to the laser-matter interaction |g〉 ⊗ |φ〉, in which
the atom is prepared in its ground state |g〉 and the
field is described by |φ〉 = |α〉 ⊗ |{0q}〉, where |{0q}〉 =⊗

q |0q〉. The intense driving laser in the fundamen-
tal mode is in a coherent state |α〉, and the harmonic
modes q ∈ {2, ... , N} are in the vacuum, where the
generated harmonics extend to a cutoff N . If the in-
teraction is conditioned on the atomic ground state
(leading to HHG) [30, 31], and neglecting the corre-
lations of the atomic dipole moment [37], the effec-
tive interaction is described by a multimode displace-
ment operator [30, 38], D(χ) =

∏N
q=1D(χq), where

χq = −iκ√q 〈d〉 (qω), with coupling constant κ, and the
Fourier transform of the time-dependent dipole moment
expectation value 〈d〉 (qω) =

∫∞
−∞ dt 〈d〉 (t)eiqωt. Accord-

ingly, the state of the field after the interaction is shifted
|φ′〉 = D(χ) |φ〉 = |α+ χ1〉 ⊗Nq=2 |χq〉. The shift of the
coherent state amplitude of the driving laser χ1 = δα
accounts for the depletion of the fundamental mode due
to HHG, which are displaced by χq. However, since the
depletion of the fundamental mode and the shift of the
harmonic modes are correlated, the actual mode which
is excited due to the interaction with the atomic medium
is given by a wavepacket mode consisting of all field
modes participating in the process. The excitation of
this wavepacket mode can be described by the creation
operator B†, with the corresponding number states |ñ〉
satisfying B†B |ñ〉 = ñ |ñ〉. It is this wavepacket mode
which is excited during the HHG process [30]. In or-
der to take into account the correlation between the shift
of the fundamental and harmonic modes, we represent
the total state |φ′〉 in terms of the wavepacket mode
|ñ〉. Considering only those cases where an excitation
of the wavepacket mode is present, but without discrim-
inating between the number of excitation, we project on∑
ñ 6=0 |ñ〉〈ñ|, and obtain

|ψ〉 =
[
1−

∣∣0̃
〉〈

0̃
∣∣] |α+ δα〉 ⊗Nq=2 |χq〉 . (1)

Recalling that the vacuum state of this wavepacket
mode is given by the initial state before the interaction,

FIG. 1. Schematic illustration of the conditioning measure-
ment performed in HHG to generate coherent state superpo-
sition. The intense driving laser in the fundamental mode
described by the coherent state |α〉 is interacting with a HHG
medium, and the generated optical field is in the wavepacket
mode corresponding to |ñ〉. This gives rise to an entangled
state between all field modes |ψ〉. Performing a condition-
ing measurement on the harmonics modes, by projecting on
|{χq}〉 =

⊗
q |χq〉, the fundamental mode is found in the co-

herent state superposition |Ψ〉.

i.e.
∣∣0̃
〉
≡ D(α) |0〉 ⊗ |{0q}〉, the total state of the field

after the HHG process is given by (up to normalization)

|ψ〉 = |α+ δα〉 ⊗Nq=2 |χq〉 (2)

− 〈α|α+ δα〉 |α〉 ⊗Nq=2 〈0q|χq〉 |0q〉 .
It shows that in the process of HHG all field modes, in-
cluding the fundamental and all harmonic modes, are
naturally entangled. Thus, whenever harmonics are gen-
erated the state of the total optical field is entangled.
Note that the field modes are entangled in such a way
that measuring one mode can leave the entanglement of
the other modes intact, which suggest the ability of us-
ing HHG for generating high dimensional optical cluster
states [39] which are used for measurement based quan-
tum computation [40, 41].

This entangled state, which is heralded by the gener-
ation of harmonic radiation, shall now be used to gen-
erate non-classical coherent state superposition from the
far-IR to XUV spectral region. This is achieved by using
the scheme developed in [30] for the generation of optical
cat states in the IR regime. This scheme is illustrated
in Fig. 1, and relies on a post-selection procedure by
performing a measurement on the harmonic modes with-
out photon number resolving detectors [30, 34]. Part of
this measurement constitutes a conditioning on HHG by
separating it from other processes (like ionization), i.e.
taking only into account the wavepacket excitations via
|ñ〉. Thus, the fundamental mode conditioned on the
harmonic signal is given by projecting on the harmonic
coherent states |Ψ〉 = 〈{χq}|ψ〉 of amplitude χq. The
fundamental mode, up to normalization, is then found to
be in a superposition of coherent states

|Ψ〉 = |α+ δα〉 − 〈α|α+ δα〉 e−Ω |α〉 , (3)

where Ω =
∑
q>1 |χq|

2
. This state coincides with the

state recently reported and measured in [30], but with
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the proper prefactor for the second term which takes
into account all modes appearing in the experiment. To
understand the influence of the decoherence factor Ω
we only consider energy conserving events during HHG,
i.e. |δα|2 =

∑N
q=3 q|χq|

2
. Assuming that the shift of

the harmonics are equal, and using that in single-color
HHG only odd harmonics are generated, we find that
Ω = 2|δα|2(N − 1)/(N2 + 2N − 3). We thus observe that
the influence of the harmonics scales as O(1/N) with
the harmonic cutoff. Due to the extension to large har-
monic orders, it makes the scheme intrinsically robust
against this kind of decoherence (see Supplementary Ma-
terial (SM) for more details).

However, due to the complete multimode description of
the HHG process developed in this work, we can further
generalize this scheme to generate non-classical optical
states in extreme wavelength regimes. In fact the process
of HHG allows to generate entanglement between differ-
ent frequency modes of the optical field ranging from the
far-IR to the XUV regime. Depending on the particular
modes measured on (2), for instance measuring all modes
except q̃ ∈ {qi, qj}, we obtain the entangled state

|Ψij〉 =
⊗

q̃

|χq̃〉 − e−Ωij

⊗

q̃

〈0q̃|χq̃〉 |0q̃〉 , (4)

where Ωij =
∑
q 6=q̃ |χq̃|

2
. Note that for the driving laser

mode we have |01〉 ≡ |α〉 and |χ1〉 ≡ |α+ δα〉. This
scheme therefore leads to entangled states between IR-
IR, IR-XUV and XUV-XUV modes by choosing qi and
qj appropriately. For instance, by interchanging the role
of the fundamental with the harmonics, i.e. measuring
the fundamental mode and projecting (2) on the coher-
ent state |α+ δα〉, we obtain the entangled state of all
harmonic modes

|ΨΩ〉 =
⊗

q

|χq〉 − e−|δα|
2 ⊗

q

e−
1
2 |χq|2 |0q〉 . (5)

The fact that the remaining harmonic modes are still
entangled, illustrates the peculiar feature of the entan-
gled state in (2) as an optical cluster state with possible
application in quantum information processing. If we
further measure the harmonic modes q′ 6= q, the state of
the q-th harmonic is given by

|Ψq〉 = |χq〉 − e−γ |0q〉 , (6)

where γ = |δα|2+Ω′+ 1
2 |χq|

2
with Ω′ =

∑
q′ 6=q |χq′ |

2
. The

state |Ψq〉 represents a superposition of a coherent state
with the vacuum in the XUV regime. To characterize
this state we compute the corresponding Wigner function
[42, 43]

Wq(β) =
2N2

q

π

[
e−2|β−χq|2 + e−(Ω+Ω′)e−2|δα|2e−2|β|2

−e−Ωe−|δα|
2

e−2|β|2
(
e2βχ∗q + e2β∗χq

)]
, (7)

with the normalization Nq of (6). In Fig. 2 (a) we show
the Wigner function (7) for an XUV field of wavelength
λXUV = 72.7 nm for the 11-th harmonic of a driving
laser with frequency λIR = 800 nm. For comparison,
Fig. 2 (b) shows the Wigner function of the IR field cor-
responding to (3). The non-classical features of the XUV
and IR coherent state superposition are clearly visible, as
both deviate from the Gaussian distribution of a coherent
state and depict negative values. Since the corresponding
mean photon number for the Wigner functions of Fig. 2
(a) is less than one, it makes this scheme an interesting
source for generating single XUV photons.

However, to obtain a genuine high photon number co-
herent state superposition in the XUV regime, a second
and independent HHG process can be added to the pro-
posed scheme. In the second HHG process harmonics are
generated within the same frequency mode with ampli-
tude χ′q. Formally, by coherently adding the harmonic
mode from both schemes, i.e. the low photon number
coherent state superposition (6) with the high photon
number coherent state

∣∣χ′q
〉
, gives rise to the coherent

state superposition
∣∣Ψ′q
〉

= D(χ′q) |Ψq〉 =
∣∣χ′q + χq

〉
− eiφ′e−γ

∣∣χ′q
〉
, (8)

where φ′ = Im(χ′qχ
∗
q). Regardless of the small average

photon number in (6) with χq � 1, the spatiotempo-
ral overlap with the large amplitude coherent state

∣∣χ′q
〉

leads to the effective displacement operation in (8) [44].
Thus, the coherent state superposition in the IR (3)
and XUV (8) describe large amplitude optical cat states.
Taking into account the typical photon numbers of the
IR driving field and the conversion efficiency of the HHG
process [45], the IR and XUV cat state can be produced
with photon numbers in the range of 〈nIR〉 ∼ 1013 and
〈nXUV 〉 ∼ 107 photons per pulse, respectively. Here we
want to emphasize that HHG is performed in vacuum
such that the optical field is subjected to negligible en-
vironmental decoherence effects during propagation. In
addition to the technological importance of generating
coherent state superpositions in the XUV and IR spec-
tral range, they depict a notable feature which has a di-
rect consequence to fundamental test of quantum theory.
The opposite shift in the imaginary part of their Wigner
function is a result of the correlation in the shift of the co-
herent state amplitudes of the field modes in the process
of HHG. Such quantum correlations between field modes
can be used, via homodyne quadrature measurements,
towards violating Bell type inequalities [4, 5].

However, to generate genuine high photon number en-
tangled coherent states in the order of |α| = 106 we gener-
alize the HHG process by using a two-color driving field.
Such high harmonic generation experiments are often
performed for a ω−2ω laser frequency configuration with
frequencies in the visible to far-infrared spectral region,
with parallel or orthogonal polarizations between the two
driving lasers [46–48]. In this case, the initial state of the
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FIG. 2. Wigner function of the coherent state superposition
(a) of the q-th harmonic Eq. (6) and (b) of the fundamental
mode corresponding to Eq. (3). The calculation has been
performed using δα = −0.2, such that χq ≈ 0.03 for an har-
monic cutoff N = 11. The opposite shift in imaginary part
reflects the correlation between the field modes.

two mode driving field is given by |α1〉 ⊗ |α2〉, such that
the total field after the interaction with the HHG medium
is given by |α1 + δα1〉 ⊗ |α2 + δα2〉 ⊗ |{χ̄q}〉, where δα1

and δα2 are the depletion of the two driving field modes,
respectively. Following the procedure introduced above,
and after taking into account the correlations via the cor-
responding wavepacket mode, the obtained state reads

|Ψ〉 = |α1 + δα1〉 ⊗ |α2 + δα2〉
⊗

q>2

|χ̄q〉 (9)

− e−i(ϕ1+ϕ2)e−
1
2 ∆ |α1〉 ⊗ |α2〉

⊗

q>2

e−
1
2 |χ̄q|2 |0q〉 ,

where ϕi = Im(αiδα
∗
i ) and ∆ = |δα1|2 + |δα2|2. By

conditioning on the harmonic signal, i.e. projecting on
|{χ̄q}〉, we obtain

|ECS〉 = |α1 + δα1〉 ⊗ |α2 + δα2〉 (10)

− e−i(ϕ1+ϕ2)e−
1
2 ∆e−Ω̄ |α1〉 ⊗ |α2〉 ,

with Ω̄ =
∑
q>2 |χ̄q|

2
. This scheme can be utilized in

the spectral range from the visible to the far-infrared
regime, which is within the telecom optical fiber wave-
length regime useful for long distance entanglement dis-
tribution for quantum information processing due to min-
imized attenuation. Due to the high degree of coherent
control in the two-color HHG processes, the relative field
amplitudes and phase of the amplitude entangled state
between the two physical frequency modes can be tai-
lored in a controllable way. For instance by indepen-
dently varying the driving field amplitudes αi or the rel-
ative depletion δαi via the respective field polarization,
e.g. linear or circular orthogonal polarized fields.

In order to compare the single- and two-color HHG
setup we shall quantify the degree of entanglement be-
tween the field modes in each scheme. We will make
use of the degree of purity of the reduced density matrix
of a subsystem. Since the reduced density matrix of an

entangled state is not pure ρ2 6= ρ, we use the linear en-
tropy Slin = 1−Tr

(
ρ2
)

as a quantitative measure of the
involved entanglement between coherent states [49, 50].
Since Tr

(
ρ2
)
≤ 1, where the equality only holds for pure

states, a non-vanishing linear entropy serves as a wit-
ness of entanglement in the total system. For the single-
color HHG experiment (2) we particularly focus on two
cases. First, on the entanglement between the funda-
mental driving field with all harmonic modes, and sec-
ond, on the entanglement of n harmonic modes with all
remaining modes (including the fundamental). We thus
compute the reduced density matrices of the fundamen-
tal mode, and for the q ∈ {2, ..., n + 1} harmonics via
ρq=1 = Trq>1(|ψ〉〈ψ|), and ρnq = Trq′ 6=q(|ψ〉〈ψ|), respec-
tively. The corresponding linear entropy measures, for
the fundamental mode S1

lin (black, solid) and for n har-
monics Snqlin (black dashed and dotted), are shown in Fig.
3 as a function of |δα| (SM). The entanglement witness
depends on the depletion of the fundamental mode δα,
which is correlated to the harmonic amplitude χq. We
observe that the entanglement between the fundamental
mode with the harmonics (solid) is larger than the entan-
glement between n harmonic modes with all other field
modes (dashed, dotted), and that the entanglement mea-
sure monotonically decreases for an increasing depletion
of the fundamental mode. For large δα, all entangle-
ment decays since the amplitude of the second term in
(2) vanishes due to the decreasing overlap between the
two coherent states. For the different partitions of the
n harmonic modes we observe that for larger n the en-
tanglement with the remaining modes is increased and al-
most negligible for n = 1. For the two-color HHG process
in which an entangled pair of coherent states of large am-
plitude can be generated (10), we quantify the involved
entanglement by tracing over the second 2ω driving field
mode in (10). The corresponding linear entropy S′lin is
shown in Fig. 3 (red) for different ratios of the depletion

of the two modes r = |δα2|2/|δα1|2 (SM). We observe
that for small depletion the involved entanglement be-
tween the two driving field modes in the two-color HHG
experiment is larger than in any single-color experiment,
and is the largest for equal depletion (red, solid). For
a larger depletion |δα| the entanglement decays slower
when the 2ω field has smaller depletion than the ω mode,
e.g. r = 0.5 (red, dotted). In the opposite case, with
r = 2.0, the entanglement is smallest (red, dashed).

In conclusion, we developed a quantum mechanical
multimode approach for the description of HHG driven
by single- and two-color intense laser fields. We showed
that all field modes involved in the HHG process are nat-
urally entangled once harmonics are generated. Perform-
ing quantum operations on particular field modes leads
to the generation of high photon number coherent state
superpositions spanning from the XUV to the far IR spec-
tral region. We provided the conditions for the genera-
tion of XUV-IR correlated coherent state superposition,
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FIG. 3. Linear entropy measures S1
lin (black solid) and Snq

lin

for two different partitions of the entangled state (2) with
n = 1(black dashed) and n = 10 (black dotted) for increasing
depletion of the fundamental mode |δα|. The linear entropy
measure for the two-color high harmonic generation experi-
ment S′lin (red) with different ratios of the depletion of the
two driving fields r = |δα2|2/|δα1|2. In all cases we have used
the harmonic cutoff at N = 11.

and the generation of entangled states in the visible-
IR spectral region with controllable quantum features.
The entangled states generated by using HHG are de-
terministically generated whenever harmonic radiation is
emitted, and the coherent state superposition is heralded
when the conditioning measured is performed. Consider-
ing that similar HHG mechanism underlie the majority
of the intense-laser matter interactions [35, 51, 52], we
anticipate that the findings will set the stage for conceiv-
ing novel experiments for the generation of a whole fam-
ily of high photon number non-classical entangled field
states, challenging the quantum state characterization
schemes [53], advancing fundamental studies of quantum
theory and provide a new platform for optical quantum
technologies [27]. Finally, we note that the dynamics of
the HHG process is intrinsically in the attosecond time
regime, which further stress the potential impact of the
present work on quantum information technologies to-
wards a previously inaccessible time scale, and can fur-
ther be used for optical signaling and spectroscopy with
non-classical light states [54].
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ENERGY CONSERVATION DURING HIGH HARMONIC GENERATION

By considering only the energy conserving events in the HHG process, i.e. in which the energy of the driving laser
field is transferred to the harmonic field modes only, and no additional processes take place, we have to fulfill

|δα|2 =

N∑

q=3

q|χq|2, (1)

where we have neglected the contributions from the vacuum fluctuations. To evaluate the contributions of the harmonic
modes on the right hand side, we assume that the shift of the harmonic modes are equal |χq|2 = |χ|2, which is fulfilled
in HHG due to the plateau structure of the high harmonic intensities. Further using that only odd harmonics are
generated for single color driving fields, we can write

|χ|2
N∑

q=3

q = |χ|2N
2 + 2N − 3

4
. (2)

Using that Ω =
∑N
q=3 |χq|

2
= |χ|2(N − 1)/2, for the odd harmonics, we have

Ω =
2(N − 1)

N2 + 2N − 3
|δα|2. (3)

And we observe that the environmental induced decay parameter Ω becomes smaller for an increased high harmonic
cutoff and scales as O(1/N). Thus high harmonic generation itself stabilizes against this kind of decoherence, since
the cutoff usually extends to values N ≥ 15.

For the case of a two-color ω − 2ω driven HHG process the energy conservation includes the depletion of both
driving modes such that

|δα1|2 + 2|δα2| =
N∑

q=3

q|χ̄q|2. (4)

With the same assumption about the plateau structure of the harmonics, i.e. |χ̄q|2 = |χ̄|, the summation on the
right hand side is over all harmonics (even and odd) and thus we have

|δα|2(1 + 2r) = |χ̄|2N
2 +N

2
− 3, (5)

where we have introduced the ratio between the driving laser field amplitudes r = |δα2|2/|δα1|2. Further evaluating

Ω̄ =
∑N
q=3 |χ̄q|

2
= |χ̄|2(N − 2), including even and odd harmonics for a two-color driving laser, we have

Ω̄ =
2N − 4

N2 +N − 6
(1 + 2r)|δα1|2. (6)

Note that in general the depletion of the fundamental mode |δα| itself has a complicated dependence on the
harmonic cutoff N . The dependence is determined by the particular experimental configuration including the driving
field intensity, its frequency and polarization. It depends as well on the details of the HHG medium like the gas density
or the alignment with respect to the laser polarization axis in case of molecular media. Also other mechanisms may
intervene such as the absorption of the generated harmonic radiation within the medium itself.
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FIG. 1. Wigner function of the coherent state superposition for δα = −1.0 (top row) and different decoherence factors, (a)
N = 5, (b) N = 11 and (c) N = 101. Wigner function for δα = −2.0 (bottom row) and (d) N = 5, (e) N = 21 and (f) N = 101.

INFLUENCE OF THE DECOHERENCE FACTOR ON THE FUNDAMENTAL MODE

To characterize the coherent state superposition of the fundamental mode

|Ψ〉 = |α+ δα〉 − 〈α|α+ δα〉 e−Ω |α〉 , (7)

we compute the corresponding Wigner function

W (β) =
2N 2

π

[
e−2|β−α−δα|2 + e−Ωe−|δα|

2

e−2|β−α|2 ×
(
e−Ω − e2(β−α)δα∗ − e2(β−α)∗δα

)]
, (8)

with the normalization N of (7). To analyze the influence of the decoherence factor Ω on the signatures of the
Wigner function we consider different high harmonic generation processes by varying the harmonic cutoff N . Since
the decoherence factor depends on the high harmonic cutoff N according to (3), we show the Wigner function (8) for
the different cutoffs N ∈ {5, 11, 101} for δα = −1.0 in Fig. 1 (a) - (c). We can see that for an increasing high harmonic
cutoff N , and consequently reduced Ω, the non-classical feature of the Wigner function, by means of the negativity, is
enhanced. Since the high harmonic generation process usually extends to high orders, i.e. large N , implies that the
process stabilizes itself against the influence of the decoherence of the coherent state superposition in the fundamental
mode induced by the residual field modes since Ω → 0 for N → ∞. This effect is even more pronounced when the
shift of the fundamental mode is increased, which also increases Ω due to (3). In Fig. 1 (d) - (f) we show the Wigner
function (8) for δα = −2.0, where the overlap of the second term in the coherent state superposition (7) is already
strongly reduced and thus almost all negativity vanishes for a small harmonic cut-off in (d) and only rudimentary
appear in (e) corresponding to N = 5 and N = 21, respectively. However, we can see that for large high harmonic
cut-off N = 101 in (f) the negativity of the Wigner function can be clearly seen and thus s state tomography can
show non-classical signatures. This signature is robust for large harmonic cut-off frequencies, and further show the
intrinsic stabilization of the generated coherent state superposition in HHG.

COHERENT STATE SUPERPOSITION IN THE EXTREME ULTRAVIOLET REGIME

We have shown that the process of high harmonic generation with a conditioning procedure can be used to generate
non-classical coherent state superpositions in the extreme ultraviolet regime. This was achieved by projecting the
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FIG. 2. Wigner function of the coherent state superpositions of the q-th harmonic mode (11) for δα = −0.2 and different
harmonic cutoff, (a) N = 5, (b) N = 11, (c) N = 21 and (d) N = 101.

entangled state from high harmonic generation

|ψ〉 = |α+ δα〉 ⊗q |χq〉 − 〈α|α+ δα〉 |α〉 ⊗q 〈0q|χq〉 |0q〉 , (9)

on the shifted state of the fundamental mode |α+ δα〉 and the state |{χq′}〉 of all harmonics q′ 6= q, such that the
state of the q-th harmonic is given by

|Ψq〉 = Nq
[
|χq〉 − e−γ |0q〉

]
. (10)

where Nq = [1 + e−Ω(e−2|δα|2e−Ω′ − 2e−|δα|
2

)]−1/2, γ = |δα|2 + Ω′ + 1
2 |χq|

2
and Ω′ = |χ|2N−3

2 = N−3
N−1Ω.

The corresponding Wigner function of the coherent state superposition of the q-th harmonic (10) is given by

Wq(β) =
2N2

q

π

[
e−2|β−χq|2 + e−(Ω+Ω′)e−2|δα|2e−2|β|2 − e−Ωe−|δα|

2

e−2|β|2
(
e2βχ∗q + e2β∗χq

)]
. (11)

The Wigner function of the coherent state superposition of the q-th harmonic is shown in Fig. 2, and shows the
opposite behavior as the coherent state superposition of the fundamental mode (compare Fig. 1). While the non-
classical signatures of the Wigner function of the fundamental mode gets protected for increasing harmonic cutoff,
the coherent state superposition of the harmonic mode simply show a Gaussian shape for large N corresponding
to a classical Wigner function. In contrast, for smaller harmonic cutoff the Wigner function of the coherent state
superposition of the q-th harmonic reveal its non-classical characteristics by virtue of the negative values.
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REDUCED DENSITY MATRICES AND LINEAR ENTROPY

Here we provide the exact reduced density matrices and the corresponding linear entropy measures used in the
main text for the entanglement measure.

For the single color high harmonic generation procedure, we consider the state in Eq.(2) of the main manuscript.
The reduced state of the fundamental mode after tracing over the harmonic degrees of freedom ρq=1 = Trq>1(|ψ〉〈ψ|)
reads

ρ1 =N 2
[
|α+ δα〉〈α+ δα|+ e−|δα|

2

e−Ω |α〉〈α| − e− 1
2 |δα|2e−Ω

(
e−iϕ |α〉〈α+ δα|+ eiϕ |α+ δα〉〈α|

)]
, (12)

with normalization N =
[
1− exp

(
−∑q=1 χq

)]−1/2

. And hence the linear entropy Slin = 1− Tr
(
ρ2
)

is given by

S1
lin = 1−N 4

[
1−

(
e−2|δα|2 − 2e−|δα|

2
)(

e−2Ω − 2e−Ω
)]
. (13)

Furthermore, we compute the entanglement witness between n harmonic modes q ∈ {2, ..., n+ 1} and the residual
field modes q′ ∈ {1, n + 2, ..., N} (including the fundamental mode q = 1). The reduced density matrix of the n
harmonic modes is given by ρnq = Trq′ 6=q(|ψ〉〈ψ|) and reads

ρnq =N 2

[
n+1⊗

q=2

|χq〉〈χq|+ e−|δα|
2

e−Ω′N−n

n+1⊗

q=2

|0q〉〈0q| − e−|δα|
2

e−Ω′N−n

(n+1⊗

q=2

e−
1
2 |χq|2 |χq〉〈0q|+

n+1⊗

q=2

e−
1
2 |χq|2 |0q〉〈χq|

)]
,

(14)

where Ω′N−n =
∑N
n+2 |χq′ |

2
= |χ|2N−n2 , and the corresponding linear entropy is given by

Snqlin =1−N 4
[
1− e−|δα|2e−Ω

(
2− e−|δα|2e−Ω′N−n

) (
2− e−Ω′n

)]
, (15)

where we have the relation Ω′N−n = Ω(N −n)/(N − 1) and Ω′n = |χ|2 n−1
2 = Ω(n− 1)/(N − 1) for equal and only odd

high harmonic amplitudes.
For the two-color high harmonic generation procedure, which leads to the generation of large amplitude entangled

coherent states of the two driving fields, we are interested in the associated entanglement. To quantify the entangle-
ment between the two driving field modes we proceed by tracing over the second 2ω driving field and compute the
linear entropy of the remaining state from Eq.(11) of the main manuscript. The reduced density matrix of the first
driving mode reads

ρω =N 2
2ω

[
|α1 + δα1〉〈α1 + δα1|+ e−∆e−2Ω̄ |α1〉〈α1| − e−

1
2 (∆+|δα2|2)e−Ω̄

[
e−iϕ1 |α1〉〈α1 + δα1|+ eiϕ1 |α1 + δα1〉〈α1|

]]
,

(16)

where ∆ = |δα1|2 + |δα2|2, ϕi = Im(αiδαi) and Ω̄ is given by (6). And accordingly the linear entropy is given by

S′lin =1−N 4
2ω

[
1− 2e−∆e−Ω̄

[
2− e−Ω̄

(
e−|δα1|2 + e−|δα2|2

)]
+ e−2∆e−2Ω̄

(
2− 4e−Ω̄ + e−2Ω̄

)]
, (17)

with normalization N2ω = [1 + e−∆(e−2Ω̄ − 2e−Ω̄)]−1/2.


